JP4996854B2 - Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product - Google Patents

Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product Download PDF

Info

Publication number
JP4996854B2
JP4996854B2 JP2006005415A JP2006005415A JP4996854B2 JP 4996854 B2 JP4996854 B2 JP 4996854B2 JP 2006005415 A JP2006005415 A JP 2006005415A JP 2006005415 A JP2006005415 A JP 2006005415A JP 4996854 B2 JP4996854 B2 JP 4996854B2
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
temperature
alloy material
speed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006005415A
Other languages
Japanese (ja)
Other versions
JP2007186748A (en
Inventor
幸司 一谷
勉 田形
俊雄 小松原
健 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Furukawa Sky Aluminum Corp
Original Assignee
Nippon Steel Corp
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Furukawa Sky Aluminum Corp filed Critical Nippon Steel Corp
Priority to JP2006005415A priority Critical patent/JP4996854B2/en
Priority to EP07706623A priority patent/EP1975263A4/en
Priority to PCT/JP2007/050276 priority patent/WO2007080938A1/en
Publication of JP2007186748A publication Critical patent/JP2007186748A/en
Priority to US12/171,380 priority patent/US8500926B2/en
Application granted granted Critical
Publication of JP4996854B2 publication Critical patent/JP4996854B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は冷間プレスでは成形することが困難な複雑形状を有し、なおかつ高強度が要求されるアルミニウム合金部材を高温高速成形による成形加工により製造するのに好適な高温高速成形用アルミニウム合金材に関するものである。   The present invention is a high-temperature high-speed high-speed forming aluminum alloy material suitable for manufacturing an aluminum alloy member having a complicated shape difficult to be formed by a cold press and requiring high strength by high-temperature high-speed forming. It is about.

Al-Mg系アルミニウム合金は、高温領域で、10-3/s程度のひずみ速度において300%以上もの高い伸びを示す超塑性現象を発現することが知られており、この特性を利用して、アルミニウム合金板を高温に加熱してガス圧等により任意の形状に成形し、室温でのプレス成形では製造することが困難な複雑形状に成形することが可能である超塑性成形用のアルミニウム合金板に関する技術が例えば文献1に開示されている。
最近では、高温成形時のひずみ速度を従来よりも一桁以上大きくして、例えば10-2〜1/sのひずみ速度として、生産性を大幅に高める高温高速成形に関する技術が例えば次の特許文献2〜7に開示されている。
特許第2831157号公報 特開平8−199272号公報 特許第3145904号公報 特開平10−259441号公報 特開2003−342665号公報 特開2004−225114号公報 特開2004−285390号公報
Al-Mg aluminum alloys are known to exhibit a superplastic phenomenon exhibiting a high elongation of over 300% at a strain rate of about 10 -3 / s at high temperatures. An aluminum alloy plate for superplastic forming that can be formed into a complex shape that is difficult to manufacture by press forming at room temperature by heating the aluminum alloy plate to a high temperature and forming it into an arbitrary shape by gas pressure or the like A technique related to this is disclosed in, for example, Document 1.
Recently, a technology related to high-temperature high-speed molding that significantly increases productivity by increasing the strain rate during high-temperature molding by an order of magnitude or more, for example, a strain rate of 10 −2 to 1 / s, is disclosed in the following patent document, for example. 2-7.
Japanese Patent No. 2831157 JP-A-8-199272 Japanese Patent No. 3145904 Japanese Patent Laid-Open No. 10-259441 JP 2003-342665 A JP 2004-225114 A JP 2004-285390 A

Al-Mg系アルミニウム合金をひずみ速度10-3/s以下で成形を行う超塑性成形では、結晶粒界でのすべりが主要な変形機構であり、このため成形前の素材の結晶粒が微細なほど超塑性成形伸びが高いことが知られている。例えば超塑性成形に関する特許文献1では高い超塑性成形性を確保するために平均結晶粒径は20μm以下に規定されている。 In superplastic forming, in which Al-Mg aluminum alloy is formed at a strain rate of 10 -3 / s or less, sliding at the grain boundary is the main deformation mechanism, so the crystal grains of the material before forming are fine. It is known that the superplastic forming elongation is higher. For example, in Patent Document 1 relating to superplastic forming, the average crystal grain size is defined as 20 μm or less in order to ensure high superplastic formability.

一方で、10-2〜1/sという高いひずみ速度領域で行われる高温高速成形では成形中にアルミニウム合金を構成する結晶粒内に、亜結晶粒が形成される。ここでいう亜結晶粒とは、隣り合う粒の方位差である粒界角が15度未満の粒界(亜結晶粒界と呼ばれる)で構成される粒である。この成形中に形成される亜結晶粒組織は高温高速成形性と成形後の成形品の強度等に強く影響を及ぼすものと考えられる。しかしながらこれまでのAl-Mg系アルミニウム合金では、高温高速成形性に対して最適な亜結晶組織の形態とは一体どのようなものであるのかについては検討されてこなかった。例えば特許文献2では成形前の素材の平均結晶粒径が15〜120μmに規定され、また高温高速成形時に結晶粒が異常粒成長することを防止すること目的にMn・Cr・Zr等を適量添加することが開示されているが、いずれも結晶粒組織に関するものであり、亜結晶組織については検討されていない。また特許文献4でも同様に、平均結晶粒径が20〜200μmに規定され、高温変形中の合金の再結晶おいて結晶粒を微細にするためにMn・Cr・Zr等が適量添加されているが、これらも結晶粒に関する事項である。 On the other hand, in high-temperature high-speed forming performed in a high strain rate region of 10 −2 to 1 / s, sub-crystal grains are formed in the crystal grains constituting the aluminum alloy during forming. The term “sub-crystal grain” as used herein refers to a grain composed of a grain boundary (called a sub-crystal grain boundary) whose grain boundary angle, which is an orientation difference between adjacent grains, is less than 15 degrees. It is considered that the subgrain structure formed during the molding has a strong influence on the high-temperature high-speed moldability and the strength of the molded product after molding. However, in the past Al-Mg-based aluminum alloys, what is the optimal subcrystalline structure morphology for high-temperature high-speed formability has not been studied. For example, in Patent Document 2, the average crystal grain size of the material before molding is defined as 15 to 120 μm, and an appropriate amount of Mn, Cr, Zr, etc. is added for the purpose of preventing abnormal growth of crystal grains during high temperature and high speed molding. However, all are related to the grain structure, and the subcrystalline structure has not been studied. Similarly in Patent Document 4, the average crystal grain size is defined as 20 to 200 μm, and an appropriate amount of Mn, Cr, Zr, etc. is added to make the crystal grains finer during recrystallization of the alloy during high temperature deformation. However, these are also matters concerning crystal grains.

本発明は以上の事情を背景としてなされたもので、Al-Mg系アルミニウム合金の高温変形時の結晶粒内部に形成される亜結晶組織と、高温高速成形性及び成形終了後の成形品の強度の関係について詳細に検討し、高い高温高速成形性と成形後の高強度を両立することが可能な亜結晶組織を形成しうる特定の最適合金組成のアルミニウム合金材とその製造方法を提供することを目的とする。   The present invention has been made against the background of the above circumstances, and the subcrystalline structure formed inside the crystal grains during high temperature deformation of the Al-Mg based aluminum alloy, the high temperature high speed formability and the strength of the molded product after the completion of molding. To provide an aluminum alloy material having a specific optimum alloy composition capable of forming a subcrystalline structure capable of achieving both high-temperature high-speed formability and high strength after forming, and a method for producing the same. With the goal.

まず、高温高速成形性に及ぼす亜結晶粒組織の影響について鋭意検討した結果、亜結晶粒組織が微細に発達した組織を有する場合は、高温高速成形途中に再結晶が逐次発生することにより亜結晶粒が消滅した組織となった場合に比較して、高い高温高速成形伸びを示すことが明らかとなった。さらに、高温高速成形後の成形品の強度は、亜結晶粒組織が微細に発達した組織のほうが、高温高速成形中もしくは成形後に再結晶して亜結晶粒が無い組織となった場合に比較して高いことが明らかとなった。また高温高速変形中に発達した亜結晶粒組織が高温で再結晶せずに安定に存在するためには、Mn・Zr等の遷移元素系の微細分散粒子がマトリックス中に均一かつ密に存在する必要があることが明らかとなった。   First, as a result of intensive studies on the influence of the subgrain structure on the high-temperature and high-speed formability, if the subgrain structure has a finely developed structure, recrystallization occurs sequentially during high-temperature and high-speed forming. It became clear that the high temperature high speed molding elongation was shown compared with the case where it became the structure where the grain disappeared. Furthermore, the strength of the molded product after high-temperature high-speed molding is higher than that in the case where the microstructure in which the subgrain structure is finely developed is recrystallized during high-temperature high-speed molding or after molding to have a subgrain-free structure. It became clear that it was expensive. In addition, in order for the subgrain structure developed during high-temperature and high-speed deformation to exist stably without recrystallization at high temperatures, finely dispersed particles of transition elements such as Mn and Zr exist uniformly and densely in the matrix. It became clear that there was a need.

本発明者らはこれらの知見をもとに、亜結晶粒組織を安定化させるために必要な各種遷移元素の量、組み合わせについて鋭意検討を行い、MnとZrを適量共添加することにより、これらの遷移元素系の分散粒子がマトリックス中に均一且つ密に分布することを見出し、本発明をなすに至った。すなわち、本発明は、
(1)Mg:2.0〜8.0mass%、Mn:0.05〜1.0mass%、Zr:0.01〜0.3mass%、Si:0.06〜0.4mass%、Fe:0.06〜0.4mass%を含有し、残部がAl及び不可避不純物よりなる高温高速成形用アルミニウム合金材であって、
Mn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子が300,000個/mm 2 以上の分布密度で存在していることを特徴とする高温高速成形用アルミニウム合金材
(2)Mg:2.0〜8.0mass%、Mn:0.05〜1.0mass%、Zr:0.01〜0.3mass%、Si:0.06〜0.4mass%、Fe:0.06〜0.4mass%を含有し、さらに、Cr:0.05〜0.5mass%、V:0.01〜0.1mass%、Sc:0.01〜0.4mass%、Ti:0.001〜0.1mass%、B:0.0001〜0.05mass%、Be:0.0001〜0.01mass%のうち1種又は2種以上を含有し、残部がAl及び不可避不純物よりなる高温高速成形用アルミニウム合金材であって、
Mn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子が300,000個/mm 2 以上の分布密度で存在していることを特徴とする高温高速成形用アルミニウム合金材
(3)Mg:2.0〜8.0mass%、Mn:0.05〜1.0mass%、Zr:0.01〜0.3mass%、Si:0.06〜0.4mass%、Fe:0.06〜0.4mass%、Cu:0.05〜1.0mass%を含有し、残部がAl及び不可避不純物よりなる高温高速成形用アルミニウム合金材であって、
Mn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子が300,000個/mm 2 以上の分布密度で存在していることを特徴とする高温高速成形用アルミニウム合金材
(4)Mg:2.0〜8.0mass%、Mn:0.05〜1.0mass%、Zr:0.01〜0.3mass%、Si:0.06〜0.4mass%、Fe:0.06〜0.4mass%、Cu:0.05〜1.0mass%を含有し、さらに、Cr:0.05〜0.5mass%、V:0.01〜0.1mass%、Sc:0.01〜0.4mass%、Ti:0.001〜0.1mass%、B:0.0001〜0.05mass%、Be:0.0001〜0.01mass%のうち1種又は2種以上を含有し、残部がAl及び不可避不純物よりなる高温高速成形用アルミニウム合金材であって、
Mn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子が300,000個/mm 2 以上の分布密度で存在していることを特徴とする高温高速成形用アルミニウム合金材
)200〜550℃の温度、10-2〜10/secの歪速度における成形後に直ちに20℃/分以上の冷却速度で室温まで冷却を行う高温高速成形に用いられることを特徴とする(1)〜()のいずれか1項に記載の高温高速成形用アルミニウム合金材、
)Mg:2.0〜8.0mass%、Mn:0.05〜1.0mass%、Zr:0.01〜0.3mass%、Si:0.06〜0.4mass%、Fe:0.06〜0.4mass%を含有し、残部がAl及び不可避不純物よりなるアルミニウム合金鋳塊に、350〜550℃、1〜48時間で均質化処理を行う工程と、前記均質化処理を経た合金鋳塊に熱間加工・冷間加工の両方又はいずれかを行う工程とを少なくとも含む工程によって、前記アルミニウム合金材中にMn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子を300,000個/mm2以上の分布密度で存在させることを特徴とする高温高速成形用アルミニウム合金材の製造方法、
)Mg:2.0〜8.0mass%、Mn:0.05〜1.0mass%、Zr:0.01〜0.3mass%、Si:0.06〜0.4mass%、Fe:0.06〜0.4mass%を含有し、さらに、Cr:0.05〜0.5mass%、V:0.01〜0.1mass%、Sc:0.01〜0.4mass%、Ti:0.001〜0.1mass%、B:0.0001〜0.05mass%、Be:0.0001〜0.01mass%のうち1種又は2種以上を含有し、残部がAl及び不可避不純物よりなるアルミニウム合金鋳塊に、350〜550℃、1〜48時間で均質化処理を行う工程と、前記均質化処理を経た合金鋳塊に熱間加工・冷間加工の両方又はいずれかを行う工程とを少なくとも含む工程によって、前記アルミニウム合金材中にMn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子を300,000個/mm2以上の分布密度で存在させることを特徴とする高温高速成形用アルミニウム合金材の製造方法、
)Mg:2.0〜8.0mass%、Mn:0.05〜1.0mass%、Zr:0.01〜0.3mass%、Si:0.06〜0.4mass%、Fe:0.06〜0.4mass%、Cu:0.05〜1.0mass%を含有し、残部がAl及び不可避不純物よりなるアルミニウム合金鋳塊に、350〜550℃、1〜48時間で均質化処理を行う工程と、前記均質化処理を経た合金鋳塊に熱間加工・冷間加工の両方又はいずれかを行う工程とを少なくとも含む工程によって、前記アルミニウム合金材中にMn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子を300,000個/mm2以上の分布密度で存在させることを特徴とする高温高速成形用アルミニウム合金材の製造方法、
)Mg:2.0〜8.0mass%、Mn:0.05〜1.0mass%、Zr:0.01〜0.3mass%、Si:0.06〜0.4mass%、Fe:0.06〜0.4mass%、Cu:0.05〜1.0mass%を含有し、さらに、Cr:0.05〜0.5mass%、V:0.01〜0.1mass%、Sc:0.01〜0.4mass%、Ti:0.001〜0.1mass%、B:0.0001〜0.05mass%、Be:0.0001〜0.01mass%のうち1種又は2種以上を含有し、残部がAl及び不可避不純物よりなるアルミニウム合金鋳塊に、350〜550℃、1〜48時間で均質化処理を行う工程と、前記均質化処理を経た合金鋳塊に熱間加工・冷間加工の両方又はいずれかを行う工程とを少なくとも含む工程によって、前記アルミニウム合金材中にMn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子を300,000個/mm2以上の分布密度で存在させることを特徴とする高温高速成形用アルミニウム合金材の製造方法、
10)前記高温高速成形用アルミニウム合金材は、200〜550℃の温度、10-2〜10/secの歪速度における成形後に直ちに20℃/分以上の冷却速度で室温まで冷却を行う高温高速成形に用いられることを特徴とする()〜()のいずれか1項に記載の高温高速成形用アルミニウム合金材の製造方法、
11)(1)〜()のいずれか1項に記載の高温高速成形用アルミニウム合金材を、200〜550℃の温度、10-2〜10/secの歪速度で高温高速成形し、直ちに20℃/分以上の冷却速度で室温まで冷却することにより、金属組織を亜結晶粒組織とすることを特徴とするアルミニウム合金成形品の製造方法
を提供するものである。
Based on these findings, the present inventors have intensively studied the amount and combination of various transition elements necessary for stabilizing the subgrain structure, and by adding appropriate amounts of Mn and Zr, The present inventors have found that these transition element-based dispersed particles are uniformly and densely distributed in the matrix, and have made the present invention. That is, the present invention
(1) Mg: 2.0 to 8.0 mass%, Mn: 0.05 to 1.0 mass%, Zr: 0.01 to 0.3 mass%, Si: 0.06 to 0.4 mass%, Fe: 0.06 to 0.4 mass%, the balance being Al and a Atsushi Ko high-speed molding aluminum alloy material ing from unavoidable impurities,
An aluminum alloy material for high-temperature high-speed forming, characterized in that intermetallic compound particles having a diameter of 10 to 1000 nm exist as Mn and Zr-based precipitates at a distribution density of 300,000 particles / mm 2 or more ,
(2) Mg: 2.0 to 8.0 mass%, Mn: 0.05 to 1.0 mass%, Zr: 0.01 to 0.3 mass%, Si: 0.06 to 0.4 mass%, Fe: 0.06 to 0.4 mass%, and Cr: 0.05 to 0.5 mass%, V: 0.01 to 0.1 mass%, Sc: 0.01 to 0.4 mass%, Ti: 0.001 to 0.1 mass%, B: 0.0001 to 0.05 mass%, Be: 0.0001 to 0.01 mass% comprise two or more, the balance being a high-temperature high-speed molding aluminum alloy material ing of Al and unavoidable impurities,
An aluminum alloy material for high-temperature high-speed forming, characterized in that intermetallic compound particles having a diameter of 10 to 1000 nm exist as Mn and Zr-based precipitates at a distribution density of 300,000 particles / mm 2 or more ,
(3) Mg: 2.0 to 8.0 mass%, Mn: 0.05 to 1.0 mass%, Zr: 0.01 to 0.3 mass%, Si: 0.06 to 0.4 mass%, Fe: 0.06 to 0.4 mass%, Cu: 0.05 to 1.0 mass% containing the balance a Atsushi Ko high speed molding aluminum alloy material ing of Al and unavoidable impurities,
An aluminum alloy material for high-temperature high-speed forming, characterized in that intermetallic compound particles having a diameter of 10 to 1000 nm exist as Mn and Zr-based precipitates at a distribution density of 300,000 particles / mm 2 or more ,
(4) Mg: 2.0 to 8.0 mass%, Mn: 0.05 to 1.0 mass%, Zr: 0.01 to 0.3 mass%, Si: 0.06 to 0.4 mass%, Fe: 0.06 to 0.4 mass%, Cu: 0.05 to 1.0 mass% Further, Cr: 0.05-0.5 mass%, V: 0.01-0.1 mass%, Sc: 0.01-0.4 mass%, Ti: 0.001-0.1 mass%, B: 0.0001-0.05 mass%, Be: 0.0001- containing one or more of 0.01 mass%, the balance being a high-temperature high-speed molding aluminum alloy material ing of Al and unavoidable impurities,
An aluminum alloy material for high-temperature high-speed forming, characterized in that intermetallic compound particles having a diameter of 10 to 1000 nm exist as Mn and Zr-based precipitates at a distribution density of 300,000 particles / mm 2 or more ,
( 5 ) It is characterized by being used for high-temperature high-speed molding in which cooling is performed to room temperature at a cooling rate of 20 ° C./min or more immediately after molding at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec ( 1) to the aluminum alloy material for high-temperature high-speed forming according to any one of ( 4 ),
( 6 ) Mg: 2.0 to 8.0 mass%, Mn: 0.05 to 1.0 mass%, Zr: 0.01 to 0.3 mass%, Si: 0.06 to 0.4 mass%, Fe: 0.06 to 0.4 mass%, the balance being Al and An aluminum alloy ingot made of inevitable impurities is subjected to a homogenization treatment at 350 to 550 ° C. for 1 to 48 hours, and / or either hot working or cold working on the alloy ingot after the homogenization treatment. Characterized in that intermetallic compound particles having a diameter of 10 to 1000 nm are present in a distribution density of 300,000 particles / mm 2 or more as Mn and Zr-based precipitates in the aluminum alloy material by a process including at least a step of performing A method for producing an aluminum alloy material for high temperature and high speed forming,
( 7 ) Mg: 2.0 to 8.0 mass%, Mn: 0.05 to 1.0 mass%, Zr: 0.01 to 0.3 mass%, Si: 0.06 to 0.4 mass%, Fe: 0.06 to 0.4 mass%, and Cr: 0.05 to 0.5 mass%, V: 0.01 to 0.1 mass%, Sc: 0.01 to 0.4 mass%, Ti: 0.001 to 0.1 mass%, B: 0.0001 to 0.05 mass%, Be: 0.0001 to 0.01 mass% A process of homogenizing an aluminum alloy ingot containing two or more types, the balance being Al and inevitable impurities, at 350 to 550 ° C. for 1 to 48 hours, and heating the alloy ingot after the homogenization process And at least including a step of performing either or both of cold working and cold working, 300,000 particles / mm 2 of 10 to 1000 nm diameter intermetallic compound particles as Mn and Zr-based precipitates in the aluminum alloy material. A method for producing an aluminum alloy material for high-temperature high-speed forming, characterized by being present in the above distribution density,
( 8 ) Mg: 2.0 to 8.0 mass%, Mn: 0.05 to 1.0 mass%, Zr: 0.01 to 0.3 mass%, Si: 0.06 to 0.4 mass%, Fe: 0.06 to 0.4 mass%, Cu: 0.05 to 1.0 mass% Aluminum alloy ingot containing Al and inevitable impurities, and a process of homogenizing at 350 to 550 ° C. for 1 to 48 hours, and hot working on the alloy ingot that has undergone the homogenization treatment Distribution of 300,000 particles / mm 2 or more of intermetallic compound particles having a diameter of 10 to 1000 nm as Mn and Zr-based precipitates in the aluminum alloy material by a process including at least a process of performing either or both of cold working A method for producing an aluminum alloy material for high-temperature high-speed forming, characterized by being present in a density;
( 9 ) Mg: 2.0 to 8.0 mass%, Mn: 0.05 to 1.0 mass%, Zr: 0.01 to 0.3 mass%, Si: 0.06 to 0.4 mass%, Fe: 0.06 to 0.4 mass%, Cu: 0.05 to 1.0 mass% Further, Cr: 0.05-0.5 mass%, V: 0.01-0.1 mass%, Sc: 0.01-0.4 mass%, Ti: 0.001-0.1 mass%, B: 0.0001-0.05 mass%, Be: 0.0001- A step of homogenizing at 350 to 550 ° C. for 1 to 48 hours on an aluminum alloy ingot containing one or more of 0.01 mass% and the balance being Al and inevitable impurities, and the homogenization By performing a process including at least a process of performing hot processing and / or cold processing on the alloy ingot that has undergone the treatment, an Mn and Zr-based precipitate between the metals having a diameter of 10 to 1000 nm in the aluminum alloy material A method of producing an aluminum alloy material for high-temperature, high-speed forming, characterized by having compound particles present at a distribution density of 300,000 particles / mm 2 or more,
( 10 ) The high temperature and high speed forming aluminum alloy material is cooled to room temperature at a cooling rate of 20 ° C./min or more immediately after forming at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec. The method for producing an aluminum alloy material for high-temperature and high-speed forming according to any one of ( 6 ) to ( 9 ), wherein the method is used for forming,
( 11 ) The aluminum alloy material for high-temperature high-speed forming according to any one of (1) to ( 5 ) is formed at a high temperature and high speed at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec. The present invention provides a method for producing an aluminum alloy molded product characterized by immediately cooling to room temperature at a cooling rate of 20 ° C./min or more to make the metal structure a subcrystalline structure.

本発明でいう高温高速成形とは、250〜550℃の温度範囲、10-2〜10/sのひずみ速度で行われる成形加工方法であり、ガス等の流体の圧力を利用したバルジ成形や任意のプレス成形方法、金型成型方法を含む。
また、本発明でいう亜結晶粒組織とは、粒界角が15度以上の粒界を通常の結晶粒界、角度差が15度未満の粒界を亜結晶粒界として分類し、通常の結晶粒界と亜結晶粒界を合わせたすべての粒界に占める亜結晶粒界の割合の平均値が5%以上である組織をいう。
The high-temperature high-speed molding referred to in the present invention is a molding method performed at a temperature range of 250 to 550 ° C. and a strain rate of 10 −2 to 10 / s. Including a press molding method and a mold molding method.
Further, the subgrain structure referred to in the present invention is classified as a normal grain boundary with a grain boundary angle of 15 degrees or more, and a grain boundary with an angle difference of less than 15 degrees as a subgrain boundary. This refers to a structure in which the average value of the ratio of the sub-crystal grain boundaries in all the grain boundaries including the crystal grain boundaries and the sub-crystal grain boundaries is 5% or more.

本発明により、遷移元素系の分散粒子をマトリクス中に均一かつ高密度に分散させることができ、亜結晶粒組織を成形時および成形後の冷却過程で安定に存在させ、優れた高温高速成形性と成形後の強度を有する高温高速成形用のアルミニウム合金材が提供できる。また、本発明のアルミニウム合金材を使用することにより、従来の冷間プレスでは成形することが困難な複雑形状を有する成形品の量産が可能となる。   The present invention makes it possible to disperse transition element-based dispersed particles uniformly and in a high density in the matrix, allowing the subcrystalline structure to exist stably during and after the molding process, and excellent high-temperature and high-speed formability. And an aluminum alloy material for high-temperature high-speed forming having strength after forming. Further, by using the aluminum alloy material of the present invention, it becomes possible to mass-produce molded products having complicated shapes that are difficult to be formed by a conventional cold press.

以下、本発明について詳細に説明する。
先ず、合金成分の限定理由を以下に示す。
本発明において、マグネシウム(Mg)の含有量は2.0〜8.0mass%である。Mgはアルミニウム(Al)に高温高速成形性を付与する必須元素であると同時に、固溶硬化により成形品の強度向上に寄与する。Mg量が2.0mass%より少ないと十分な高温高速成形伸びが得られないと同時に、成形品の強度が大きく低下する。またMg量が8.0mass%より多いと熱間圧延性が大幅に低下して、圧延により高温高速成形用の素材を製造することが困難となる。Mgの含有量は2.4〜7.6mass%が好ましい。
Hereinafter, the present invention will be described in detail.
First, the reasons for limiting the alloy components are shown below.
In the present invention, the content of magnesium (Mg) is 2.0 to 8.0 mass%. Mg is an essential element that imparts high-temperature high-speed formability to aluminum (Al), and at the same time contributes to improving the strength of the molded product by solid solution hardening. If the amount of Mg is less than 2.0 mass%, sufficient high-temperature high-speed molding elongation cannot be obtained, and at the same time, the strength of the molded product is greatly reduced. On the other hand, when the Mg content is more than 8.0 mass%, the hot rolling property is significantly lowered, and it becomes difficult to produce a material for high-temperature high-speed forming by rolling. The content of Mg is preferably 2.4 to 7.6 mass%.

マンガン(Mn)の含有量は0.05〜1.0mass%である。また、ジルコニウム(Zr)の含有量は0.01〜0.3mass%である。
本発明において、MnおよびZrは必須元素である。これらは鋳造に引き続いて通常行われる均質化処理によってマトリクス中に均一且つ密に分散粒子として析出して、高温高速成形時に結晶粒内に形成される亜結晶粒組織を安定化させ、成形中および成形終了後の再結晶により亜結晶組織が消滅することを防止する。これにより、高温高速成形伸びを増大させると同時に、成形品の強度向上に寄与する。
The content of manganese (Mn) is 0.05 to 1.0 mass%. Moreover, the content of zirconium (Zr) is 0.01 to 0.3 mass%.
In the present invention, Mn and Zr are essential elements. These are precipitated uniformly and densely as dispersed particles in the matrix by a homogenization process that is normally performed subsequent to casting, stabilizing the subgrain structure formed in the crystal grains during high-temperature high-speed molding, and during molding and It prevents the subcrystalline structure from disappearing due to recrystallization after the molding. This increases the high-temperature and high-speed molding elongation and at the same time contributes to improving the strength of the molded product.

これらの分散粒子はマトリクス中に隙間無く分布する必要がある。もし、分散粒子が存在しない領域が比較的広い場合には、その領域中に存在する亜結晶粒は安定化されず、再結晶の核として成長し、一定の大きさに達すると分散粒子の有無に関係なく粗大な再結晶粒として成長することにより、亜結晶粒組織が消滅してしまう。   These dispersed particles need to be distributed without gaps in the matrix. If the area where the dispersed particles do not exist is relatively wide, the sub-crystal grains present in that area are not stabilized and grow as recrystallization nuclei. Regardless of the growth, the subgrain structure disappears by growing as coarse recrystallized grains.

Mn・Zr両元素を適量共含有することにより、分散粒子を隙間無く分布させることが可能となる。この理由について以下で説明する。工業的に生産されるアルミニウム合金鋳塊では、適量添加されたMnは凝固時に偏析を生じ、初期に凝固した領域で濃度が低く、最終的に凝固した領域で濃度が高くなる傾向がある。このため、均質化処理後のMn系の分散粒子の分布は均一ではなく、特にMn量の少ない初期凝固領域でMn系の分散粒子が少ない領域がある。一方、Zrも偏析を生じるが、Mnとは逆に、初期の凝固領域で濃度が高く、最終的な凝固領域で濃度が低い傾向にある。このため、均質化処理時にZr系の分散粒子はMnの分散粒子の少ない領域に主に析出することとなる。このため、MnとZrを同時に添加することにより、マトリックス中にMnもしくはZr系の分散粒子が隙間なく分散し、組織の全領域において亜結晶組織の安定化に寄与する。MnまたはZrの一方のみを添加した場合には、分散粒子が存在しない領域が生じるため、組織の全領域にわたって亜結晶組織の安定化を図ることはできない。   By containing an appropriate amount of both Mn and Zr elements, the dispersed particles can be distributed without gaps. The reason for this will be described below. In an aluminum alloy ingot produced industrially, Mn added in an appropriate amount tends to segregate during solidification, and the concentration tends to be low in the initially solidified region and high in the finally solidified region. For this reason, the distribution of the Mn-based dispersed particles after the homogenization treatment is not uniform, and there is a region where there are few Mn-based dispersed particles particularly in the initial solidification region where the amount of Mn is small. On the other hand, although Zr also segregates, contrary to Mn, the concentration tends to be high in the initial solidification region and low in the final solidification region. For this reason, during the homogenization treatment, the Zr-based dispersed particles are mainly precipitated in a region where there are few dispersed Mn particles. For this reason, by simultaneously adding Mn and Zr, Mn or Zr-based dispersed particles are dispersed in the matrix without any gaps, contributing to stabilization of the subcrystalline structure in the entire region of the structure. When only one of Mn and Zr is added, a region in which dispersed particles do not exist is generated, so that the subcrystalline structure cannot be stabilized over the entire region of the structure.

分散粒子によって亜結晶粒組織を効果的に安定化させるためには、Mn系及びZr系の分散粒子のサイズが10〜1000nmであることが好ましく、また分散粒子の分布密度は300,000個/mm2以上であることが好ましい。本発明においては、Mn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子が、好ましくは300,000個/mm2以上の分布密度存在し、450,000個/mm2以上の分布密度で存在することがさらに好ましい。アルミニウム合金材における金属間化合物粒子の分布密度および直径は薄膜のアルミニウム合金サンプルを透過型電子顕微鏡により観察して得られる観察写真を解析することにより測定することができる。また、析出物がMn及びZr系の金属間化合物粒子であることは透過型電子顕微鏡に具備されている元素分析装置によって、個々の析出物の元素分析を行なうことにより確認できる。 In order to effectively stabilize the subgrain structure by the dispersed particles, the size of the Mn-based and Zr-based dispersed particles is preferably 10 to 1000 nm, and the distribution density of the dispersed particles is 300,000 particles / mm 2. The above is preferable. In the present invention, intermetallic compound particles having a diameter of 10 to 1000 nm as Mn and Zr-based precipitates are preferably present at a distribution density of 300,000 particles / mm 2 or more, and at a distribution density of 450,000 particles / mm 2 or more. More preferably. The distribution density and diameter of the intermetallic compound particles in the aluminum alloy material can be measured by analyzing an observation photograph obtained by observing a thin aluminum alloy sample with a transmission electron microscope. Further, it can be confirmed that the precipitates are Mn and Zr-based intermetallic compound particles by performing an elemental analysis of each precipitate with an elemental analyzer provided in a transmission electron microscope.

Mn量が0.05mass%以下、及びZr量が0.01mass%以下では亜結晶組織の安定化の効果に乏しく、Mn量が1.0mass%以上、及びZr量が0.3mass%以上では鋳造時に巨大な金属間化合物が発生して、高温高速成形時にこれが破壊の起点となることにより、高温高速成形性が大幅に低下してしまう。Mnの含有量は0.2〜0.8mass%が好ましく、Zrの含有量は0.05〜0.20mass%が好ましい。   When the Mn content is 0.05 mass% or less and the Zr content is 0.01 mass% or less, the effect of stabilizing the sub-crystal structure is poor. When the Mn content is 1.0 mass% or more and the Zr content is 0.3 mass% or more, a huge metal is cast. An intermetallic compound is generated and becomes a starting point of fracture during high-temperature high-speed molding, so that the high-temperature high-speed moldability is greatly reduced. The Mn content is preferably 0.2 to 0.8 mass%, and the Zr content is preferably 0.05 to 0.20 mass%.

本発明において、必須元素である、ケイ素(Si)の含有量は0.06〜0.4mass%、鉄(Fe)の含有量は0.06〜0.4mass%である。
Fe・Siは高温高速成形用アルミニウム合金材の結晶粒を微細化することにより、高温高速成形性を高める効果を有する。具体的には、高温高速成形用アルミニウム合金材の製造工程である冷間加工後の焼鈍時に、Fe・Siを主成分とする1〜5μm程度の大きさの晶出物が核となって再結晶が生じることによって、高温高速成形用のアルミニウム合金材の結晶粒径が微細化し、その後の高温高速成形性が向上する。Fe・Si量が0.06mass%より少ないと上述の効果に乏しく、Fe・Si量が0.4mass%よりも多いと鋳造時に巨大な金属間化合物が発生して、高温高速成形時に破壊の起点となることによって、高温高速成形性が大幅に低下する。Siの含有量は0.10〜0.35mass%が好ましく、Feの含有量は0.10〜0.35mass%が好ましい。
In the present invention, the content of silicon (Si), which is an essential element, is 0.06 to 0.4 mass%, and the content of iron (Fe) is 0.06 to 0.4 mass%.
Fe / Si has the effect of improving high-temperature high-speed formability by refining the crystal grains of aluminum alloy material for high-temperature high-speed forming. Specifically, during annealing after cold working, which is a manufacturing process for aluminum alloy materials for high-temperature, high-speed forming, the crystallized material having a size of about 1 to 5 μm mainly composed of Fe / Si is regenerated as the nucleus. By the formation of crystals, the crystal grain size of the aluminum alloy material for high-temperature high-speed forming becomes fine, and the subsequent high-temperature high-speed formability is improved. If the amount of Fe / Si is less than 0.06 mass%, the above effects are poor, and if the amount of Fe / Si is more than 0.4 mass%, a huge intermetallic compound is generated during casting, which becomes the starting point of fracture during high-temperature high-speed forming. As a result, the high-temperature and high-speed formability is significantly reduced. The content of Si is preferably 0.10 to 0.35 mass%, and the content of Fe is preferably 0.10 to 0.35 mass%.

本発明においては、任意に、クロム(Cr)を0.05〜0.5mass%、バナジウム(V)を0.01〜0.1mass%、スカンジウム(Sc)を0.01〜0.4mass%をそれぞれ含有させることができる。
Cr・V・ScはいずれもMn・Zrと同様に均質化処理によってマトリックス中に分散粒子として析出し、高温高速成形時に形成される亜結晶粒組織の安定化に寄与することによって、高温高速成形性を向上させると同時に、成形品の強度を向上させる効果がある。Cr量が0.05mass%以下、V量が0.01mass%以下、Sc量が0.01mass%以下では、これらの効果に乏しい。一方、Cr量が0.5mass%以上、V量が0.1mass%以上、Sc量が0.4mass%以上では、鋳造時に巨大な金属間化合物を生成して、高温高速成形性が大幅に低下してしまう。それぞれ含有させる場合には、Crの含有量は0.05〜0.35mass%が好ましく、Vの含有量は0.02〜0.08mass%が好ましく、Scの含有量は0.05〜0.25mass%が好ましい。
In the present invention, 0.05 to 0.5 mass% of chromium (Cr), 0.01 to 0.1 mass% of vanadium (V), and 0.01 to 0.4 mass% of scandium (Sc) can be optionally contained.
Cr / V / Sc, like Mn / Zr, precipitates as dispersed particles in the matrix by homogenization and contributes to the stabilization of the sub-grain structure formed during high-temperature high-speed forming. This has the effect of improving the strength of the molded product at the same time. When the Cr content is 0.05 mass% or less, the V content is 0.01 mass% or less, and the Sc content is 0.01 mass% or less, these effects are poor. On the other hand, if the Cr amount is 0.5 mass% or more, the V amount is 0.1 mass% or more, and the Sc amount is 0.4 mass% or more, a huge intermetallic compound is generated during casting, and the high-temperature high-speed formability is greatly reduced. . When each is contained, the Cr content is preferably 0.05 to 0.35 mass%, the V content is preferably 0.02 to 0.08 mass%, and the Sc content is preferably 0.05 to 0.25 mass%.

本発明においては、任意に、チタン(Ti)を0.001〜0.1mass%、ホウ素(B)を0.0001〜0.05mass%含有させることができる。Ti・Bは鋳塊の結晶粒を微細化し、その結果成形前の素材の結晶粒径が微細化することにより、高温高速成形性を向上させる。Ti量が0.001mass%以下、B量が0.0001mass%以下では上述の効果に乏しく、Ti量が0.1mass%以上、B量が0.05mass%以上では巨大な晶出物を形成して、高温高速成形性が著しく低下してしまう。それぞれ含有させる場合には、Tiの含有量は0.005〜0.05mass%が好ましく、Bの含有量は0.0005〜0.005mass%が好ましい。   In the present invention, 0.001 to 0.1 mass% of titanium (Ti) and 0.0001 to 0.05 mass% of boron (B) can be optionally contained. Ti / B refines the crystal grain of the ingot, and as a result, the crystal grain size of the material before molding is refined, thereby improving high-temperature and high-speed formability. When the Ti content is 0.001 mass% or less and the B content is 0.0001 mass% or less, the above-mentioned effects are poor, and when the Ti content is 0.1 mass% or more and the B content is 0.05 mass% or more, a large crystal is formed, and high temperature and high speed are formed. Formability will be significantly reduced. When each is contained, the content of Ti is preferably 0.005 to 0.05 mass%, and the content of B is preferably 0.0005 to 0.005 mass%.

本発明においては、任意に、ベリリウム(Be)を0.0001〜0.01mass%含有させることができる。Beは高温高速成形用のアルミニウム合金材表面のMgの高温成形中における酸化を抑制し、表面を安定化することにより、成形後に引き続いて実施される塗装・陽極酸化処理性が向上する。Be量が0.0001mass%以下では上記の効果が発現しない。Be量が0.01mass%以上では上記の効果が飽和してしまい経済的に問題となる。含有させる場合、Beの含有量は0.0005〜0.005mass%が好ましい。   In the present invention, 0.0001 to 0.01 mass% beryllium (Be) can be optionally contained. Be suppresses the oxidation of Mg on the surface of an aluminum alloy material for high-temperature high-speed forming during high-temperature forming and stabilizes the surface, thereby improving the coating and anodizing treatment properties that are subsequently performed after forming. If the amount of Be is 0.0001 mass% or less, the above effect is not exhibited. If the amount of Be is 0.01 mass% or more, the above effect is saturated, which is economically problematic. When contained, the content of Be is preferably 0.0005 to 0.005 mass%.

本発明においては、任意に、銅(Cu)を0.05〜1.0mass%含有させることができる。Cuは高温高速成型終了後に成形品を室温に1日以上保持するか、または100℃以上の温度で1時間以上保持することにより、マトリクス中に析出して成形品の強度向上に寄与する。このようなCuの析出により強度を向上させる場合には、高温高速成形終了後に成形品をできるだけ速やかに室温まで冷却する必要がある。成形温度から室温まで冷却速度は20℃/分以上が好ましい。Cu量が0.05mass%以下では上記の効果が発現しない。また、Cu量が1.0mass%以上では成形品の耐食性が著しく低下してしまう。含有させる場合、Cuの含有量は0.1〜0.8mass%が好ましい。   In the present invention, it is possible to arbitrarily contain 0.05 to 1.0 mass% of copper (Cu). Cu keeps the molded product at room temperature for 1 day or more after completion of high-temperature and high-speed molding, or keeps it at a temperature of 100 ° C. or more for 1 hour or more to precipitate in the matrix and contribute to improvement of the strength of the molded product. In the case of improving the strength by such Cu precipitation, it is necessary to cool the molded product to room temperature as soon as possible after completion of the high-temperature high-speed molding. The cooling rate from the molding temperature to room temperature is preferably 20 ° C./min or more. If the Cu amount is 0.05 mass% or less, the above effect is not exhibited. On the other hand, if the amount of Cu is 1.0 mass% or more, the corrosion resistance of the molded product is significantly reduced. When contained, the content of Cu is preferably 0.1 to 0.8 mass%.

本発明の高温高速成形用アルミニウム合金材は、化学的成分組成としては以上の条件を満たしていればよいが、良好な高温高速成形性と成形品の高い強度を確保するためには、以下に述べる成形条件で成形することにより成形後の組織が亜結晶組織からなることが好ましい。   The aluminum alloy material for high-temperature and high-speed forming of the present invention only needs to satisfy the above conditions as the chemical component composition, but in order to ensure good high-temperature high-speed formability and high strength of the molded product, It is preferable that the structure after molding is made of a subcrystalline structure by molding under the molding conditions described.

本発明において、高温高速成形温度は200〜550℃の範囲内である。成形温度が200℃に満たない場合には、十分な高温高速成形伸びが得られず、冷間プレスで成形困難な複雑形状の成形品を得ることができない。一方、成形温度が550℃以上では、成形中に形成される亜結晶粒組織を安定化するためにマトリクス中に均一かつ高密度に析出せしめたMn・Zr系の分散粒子が成形時にマトリクス中に再固溶し消滅してしまうことにより、成形中もしくは成形終了後に再結晶が生じて亜結晶組織が消滅してしまう。高温高速成形温度は300〜500℃が好ましい。   In the present invention, the high-temperature high-speed molding temperature is in the range of 200 to 550 ° C. When the molding temperature is less than 200 ° C., sufficient high-temperature and high-speed molding elongation cannot be obtained, and a molded product having a complicated shape that is difficult to mold by a cold press cannot be obtained. On the other hand, when the molding temperature is 550 ° C. or higher, the Mn / Zr-based dispersed particles precipitated uniformly and densely in the matrix in order to stabilize the sub-grain structure formed during molding are formed in the matrix during molding. By re-dissolving and disappearing, recrystallization occurs during molding or after completion of molding, and the subcrystalline structure disappears. The high temperature and high speed molding temperature is preferably 300 to 500 ° C.

本発明の高温高速成形時の平均のひずみ速度は10-2〜10/sである。ひずみ速度が10-2/s以下のひずみ速度での成形は技術的に可能であるが、生産性に著しく劣るため経済的ではない。一方、ひずみ速度が10/s以上では変形速度が高すぎて、亜結晶組織が形成されないため高温高速成形性が著しく低下して、複雑な形状に成形することが不可能となる。ひずみ速度は10-2〜1/sが好ましい。
さらに高温高速成形後の室温までの冷却速度を20℃/min以上とすることが好ましい。冷却速度が20℃/min以下の場合には、冷却過程で再結晶が生じることにより亜結晶粒が消滅して、成形品の強度が大幅に低下してしまう。高温高速成形後の室温までの冷却速度は、40℃/min以上がさらに好ましい。
The average strain rate during high-temperature high-speed molding of the present invention is 10 -2 to 10 / s. Molding at a strain rate of 10 −2 / s or less is technically possible, but it is not economical because the productivity is remarkably inferior. On the other hand, when the strain rate is 10 / s or more, the deformation rate is too high and a subcrystalline structure is not formed, so that the high-temperature high-speed moldability is remarkably deteriorated and it becomes impossible to mold into a complicated shape. The strain rate is preferably 10 −2 to 1 / s.
Furthermore, it is preferable that the cooling rate to room temperature after high-temperature high-speed molding is 20 ° C./min or more. When the cooling rate is 20 ° C./min or less, recrystallization occurs during the cooling process, so that the sub-crystal grains disappear and the strength of the molded product is greatly reduced. The cooling rate to room temperature after high-temperature high-speed molding is more preferably 40 ° C./min or more.

ついで、高温高速成形中および高温高速成形後の冷却過程において、再結晶が生じずに、高温高速成形時に形成された亜結晶組織により成形品の組織が構成されることにより、良好な高温高速成形性が得られるとともに、成形品の高い強度が確保される理由について以下に記す。   Next, during the cooling process after high-temperature high-speed molding and during the cooling process after high-temperature high-speed molding, recrystallization does not occur, and the structure of the molded product is composed of the subcrystalline structure formed during high-temperature high-speed molding, thereby achieving good high-temperature high-speed molding The reason why the high strength of the molded product is ensured while the properties are obtained will be described below.

まず、亜結晶粒組織によって高温高速成形性が向上する理由は、高温高速成形時に結晶粒内に形成される微細な亜結晶組織における個々の亜結晶粒の回転が、高温高速成形中の主要な変形機構である粒内変形と粒界すべりに重畳するためである。このため、高温高速成形中に局所的に再結晶が生じて亜結晶組織が消滅すると、その部位での高温高速伸びが急速に低下して破断の起点となって、高温高速成形伸びが大幅に低下する。   First, the reason why the high-temperature high-speed formability is improved by the sub-crystal grain structure is that the rotation of the individual sub-crystal grains in the fine sub-crystal structure formed in the crystal grains during the high-temperature high-speed molding is the main factor during the high-temperature high-speed molding. This is because the deformation mechanism overlaps with intragranular deformation and grain boundary sliding. For this reason, when recrystallization occurs locally during high-temperature high-speed forming and the subcrystalline structure disappears, the high-temperature high-speed elongation at that site rapidly decreases and becomes the starting point of fracture, greatly increasing the high-temperature high-speed forming elongation. descend.

一方、亜結晶粒組織による成形品の強度向上は、結晶粒が亜結晶粒で構成されることにより粒内マトリクスが強化されることに起因する。この場合、亜結晶粒の粒径が小さいほど、成形品の耐力が増大する傾向がある。亜結晶粒の粒径は、成形時のひずみ速度が高いほど小さくなることから、成形品の強度を高めたい場合には、高いひずみ速度で成形するほうが良い。   On the other hand, the improvement in the strength of the molded product due to the subcrystalline structure results from the fact that the intragranular matrix is strengthened by the crystal grains being composed of subcrystalline grains. In this case, the yield strength of the molded product tends to increase as the grain size of the sub-crystal grains decreases. Since the grain size of the sub-crystal grains becomes smaller as the strain rate at the time of molding becomes higher, it is better to mold at a higher strain rate in order to increase the strength of the molded product.

以下に、本発明におけるアルミニウム合金材の製造方法について説明する。本発明の合金材は基本的にアルミニウム合金製造業で通常採用されている方法により製造が可能である。即ち、本発明成分規格範囲内に溶解調整されたアルミニウム合金溶湯を通常の溶解鋳造法を適宜選択して鋳造する。ここで通常の溶解鋳造法としては、例えば半連続鋳造法(DC鋳造法)や薄板連続鋳造法(ロールキャスト法等)などを含む。   Below, the manufacturing method of the aluminum alloy material in this invention is demonstrated. The alloy material of the present invention can basically be manufactured by a method usually employed in the aluminum alloy manufacturing industry. That is, an aluminum alloy melt adjusted to be within the component specification range of the present invention is cast by appropriately selecting a normal melting casting method. Here, the normal melt casting method includes, for example, a semi-continuous casting method (DC casting method), a thin plate continuous casting method (roll casting method, etc.) and the like.

ついでこのアルミニウム合金鋳塊に均質化処理を施す。均質化処理はMn・Zr等の遷移元素を成分として含む分散粒子を、マトリクス中に均一かつ高密度に析出させるために行なわれる工程である。好ましくは350〜550℃の範囲で、1〜48時間、さらに好ましくは400〜530℃の範囲で、8〜24時間の条件で実施する。この均質化処理工程の前もしくは後で適宜面削を施した後、熱間加工・冷間加工の両方又はいずれかを実施することにより、高温高速成形用のアルミニウム合金材を製造することができる。この際、必要に応じて適宜中間焼鈍を行ってもよいし、最終焼鈍を実施してもよい。ここで、熱間加工・冷間加工とは製造する高温高速成形用のアルミニウム合金材の最終形態に応じて、通常行なわれている圧延、押出し、引き抜き、鍛造のいずれのものであっても良い。製造される高温高速成型用アルミニウム合金材の形状としては、板をはじめとして、円筒、角筒、その他複雑な断面形状を有する中空管を含む。   Next, the aluminum alloy ingot is subjected to homogenization treatment. The homogenization treatment is a step performed to deposit dispersed particles containing a transition element such as Mn / Zr as a component in the matrix uniformly and with high density. It is preferably carried out at 350 to 550 ° C. for 1 to 48 hours, more preferably at 400 to 530 ° C. for 8 to 24 hours. An aluminum alloy material for high-temperature and high-speed forming can be manufactured by carrying out hot working and / or cold working after chamfering as appropriate before or after this homogenization treatment step. . At this time, intermediate annealing may be appropriately performed as necessary, and final annealing may be performed. Here, the hot working / cold working may be any of rolling, extruding, drawing, and forging that are usually performed depending on the final form of the aluminum alloy material for high-temperature high-speed forming to be manufactured. . The shape of the aluminum alloy material for high-temperature high-speed molding produced includes a plate, a cylinder, a rectangular tube, and other hollow tubes having a complicated cross-sectional shape.

以下に、本発明を実施例に基づきさらに詳細に説明するが、本発明はこれに限定されるものではない。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited thereto.

(実施例1)
表1に示す化学成分を有するアルミニウム合金を700℃で溶解し、DC鋳造法により鋳造した。得られた鋳塊を面削後、510℃×8時間の均質化処理してから、490℃で熱間圧延を開始し280℃で板厚を5mmとして熱間圧延を終了した。その後、400℃×3時間の中間焼鈍を行ってから、板厚1mmまで冷間圧延を行った。最後にこの冷間圧延板を520℃×20秒焼鈍して再結晶組織とした後に、以下の試験に供した。
Example 1
Aluminum alloys having chemical components shown in Table 1 were melted at 700 ° C. and cast by the DC casting method. After chamfering the obtained ingot, homogenization treatment was performed at 510 ° C. for 8 hours, hot rolling was started at 490 ° C., the plate thickness was 5 mm at 280 ° C., and the hot rolling was finished. Thereafter, after intermediate annealing at 400 ° C. for 3 hours, cold rolling was performed to a plate thickness of 1 mm. Finally, this cold rolled sheet was annealed at 520 ° C. for 20 seconds to form a recrystallized structure, and then subjected to the following test.

Figure 0004996854
Figure 0004996854

まず、これらの供試材より厚さ約0.3μmの薄膜サンプルを作製して、透過型電子顕微鏡により金属間化合物の分布密度を調べて、結果を表2にまとめた。直径10〜1000nmの金属間化合物の分布密度が300,000個/mm2以上の場合に○で、これ未満の場合に×で示した。なお、比較例の合金No.10については、上記の薄膜サンプルを作成することができなかったため測定は行わなかった。 First, a thin film sample having a thickness of about 0.3 μm was prepared from these test materials, and the distribution density of intermetallic compounds was examined with a transmission electron microscope. The results are summarized in Table 2. When the distribution density of the intermetallic compound having a diameter of 10 to 1000 nm is 300,000 pieces / mm 2 or more, it is indicated by ◯, and when it is less than this, it is indicated by ×. In addition, about alloy No. 10 of the comparative example, since the said thin film sample was not able to be created, it did not measure.

Figure 0004996854
Figure 0004996854

次に、上述の供試材より、引張試験片(幅4mm×平行部長さ15mm)を作製して、500℃においてひずみ速度10-1/sの条件で高温引張試験を実施し、高温高速伸びを調べ、結果を表3にまとめた。本発明では150%以上の高温高速伸びが得られた場合に良好な高温高速成形性を有するものと判断した。
次いで、これらの冷間圧延板より300mm角のサンプルを切り出し、不活性ガスの圧力を利用して成形を行う小型のブロー成形機を用いて高温高速ブロー成形を行った。金型には一辺250mmで高さ60mmの角筒金型を使用し、サンプルを成形機にセット後に加熱して500℃の成形温度に達した後、平均の歪み速度が約10-1/sとなるように不活性ガスの昇圧速度を制御して、高さ60mmの高温高速成形を行った。成形完了後直ちにサンプルを成形機より取り外し、40℃/min以上の冷却速度で室温まで冷却後した。角筒成形品の上面中央部より圧延方向にJIS5号引張試験片を採取して引張試験を行った。その結果得られた0.2%耐力値を表3に示した。
Next, a tensile test piece (width 4 mm x parallel part length 15 mm) was prepared from the above-mentioned test material, and a high-temperature tensile test was conducted at 500 ° C under a strain rate of 10 -1 / s. The results are summarized in Table 3. In the present invention, when high temperature high speed elongation of 150% or more was obtained, it was judged that the film had good high temperature high speed moldability.
Next, a 300 mm square sample was cut out from these cold-rolled plates, and high-temperature high-speed blow molding was performed using a small blow molding machine that performs molding using the pressure of an inert gas. A square tube mold with a side of 250 mm and a height of 60 mm is used as the mold, and after setting the sample on the molding machine and heating to a molding temperature of 500 ° C, the average strain rate is about 10 -1 / s The pressurization speed of the inert gas was controlled so that a high temperature high speed molding with a height of 60 mm was performed. Immediately after molding, the sample was removed from the molding machine and cooled to room temperature at a cooling rate of 40 ° C./min or more. A tensile test was conducted by collecting a JIS No. 5 tensile test piece in the rolling direction from the center of the upper surface of the rectangular tube molded product. The resulting 0.2% proof stress values are shown in Table 3.

さらにこれらの成形品の組織が亜結晶粒組織より構成されているかどうかを調べるために、図1の模式図で示す、同じ温度・ひずみ速度条件の高温高速ブロー成形により別途成形した角筒成形品1の上面中心部2・上面コーナー部3・立ち上がり部4よりそれぞれ10×10mmのサンプルを採取し、これを以下に説明する方法で結晶粒界解析に供した。まずこれらのサンプルを板厚方向中心部まで機械研磨した後、仕上げ研磨により鏡面として、さらに電解研磨を施し成形品の板厚中心部を露出させた。その後、このサンプルを結晶粒界解析が可能である電子後方散乱回折像解析装置を具備した走査型電子顕微鏡にセットして、露出させた部分のうち200×200μmの領域の結晶粒界を解析した。解析したデータをもとにして、粒界角が15度以上の粒界を通常の結晶粒界、角度差が15度未満の粒界を亜結晶粒界として分類して、通常の結晶粒界と亜結晶粒界を合わせたすべての粒界に占める亜結晶粒界の割合を算出し、成形品の各部位についての亜結晶粒界の割合を表3にまとめた。本実施例では、高温高速成形中に形成される亜結晶粒界の割合と、高温高速成形性および成形後の強度の関係に関して蓄積した多数の試験データを基にして、サンプルを採取した3箇所の亜結晶粒界の割合の平均値が5%以上の場合に成形品が亜結晶粒組織により構成されていると判断して、表3に亜結晶粒組織である場合を○で、亜結晶組織でないものを×で示した。なお、高温高速伸びが不十分で使用した角筒金型の高さである60mmまで成形することができず、途中で破断してしまった場合には、直ちに成形を中断し同様の冷却速度で冷却後に、破断部近傍よりサンプル(10×10mm)を採取して、同様の結晶粒界解析に供して、得られた亜結晶粒界の割合を参考のため表3に記した。   Furthermore, in order to investigate whether the structure of these molded products is composed of subgrain structures, the rectangular tube molded products separately formed by high-temperature high-speed blow molding under the same temperature and strain rate conditions shown in the schematic diagram of FIG. Samples of 10 × 10 mm were collected from the upper surface central portion 2, the upper surface corner portion 3, and the rising portion 4, respectively, and subjected to grain boundary analysis by the method described below. First, these samples were mechanically polished to the center in the plate thickness direction, and then subjected to electrolytic polishing as a mirror surface by finish polishing to expose the plate thickness center of the molded product. After that, this sample was set in a scanning electron microscope equipped with an electron backscatter diffraction image analyzer capable of crystal grain boundary analysis, and the grain boundaries in the 200 × 200 μm region of the exposed portion were analyzed. . Based on the analyzed data, grain boundaries with a grain boundary angle of 15 degrees or more are classified as normal grain boundaries, and grain boundaries with an angle difference of less than 15 degrees are classified as subgrain boundaries. The ratio of the sub-crystal grain boundary in all the grain boundaries including the sub-crystal grain boundary was calculated, and the ratio of the sub-crystal grain boundary for each part of the molded product was summarized in Table 3. In this example, three locations where samples were collected based on a large number of test data accumulated on the relationship between the ratio of sub-grain boundaries formed during high-temperature high-speed forming and the relationship between high-temperature high-speed formability and strength after forming. When the average value of the sub-crystal grain boundary ratio is 5% or more, it is judged that the molded product is composed of the sub-crystal grain structure. Those which are not tissues are indicated by ×. In addition, if the high-temperature high-speed elongation is insufficient and it is impossible to mold to 60 mm, which is the height of the used square tube mold, and it breaks in the middle, the molding is immediately interrupted and the cooling rate is the same. After cooling, a sample (10 × 10 mm) was taken from the vicinity of the fracture and subjected to the same grain boundary analysis, and the ratio of the obtained subgrain boundaries was shown in Table 3 for reference.

Figure 0004996854
Figure 0004996854

本発明成分範囲内の合金材1〜8を本発明範囲内の温度(500℃)及びひずみ速度(10-1/s)で変形すると、いずれの場合も150%以上の高温高速伸びを示し、良好な高温高速成形性を有していることが明らかである。また、同様に本発明範囲内の温度およびひずみ速度条件での、角筒金型による高温高速ブロー成形では、いずれの合金材も60mm高さの成形が可能であった。さらに、本発明範囲内の冷却速度条件(40℃/min)で室温まで冷却後の組織は、いずれの合金材の場合も亜結晶粒組織となっていた。 When the alloy materials 1 to 8 within the range of the present invention are deformed at a temperature (500 ° C.) and a strain rate (10 −1 / s) within the range of the present invention, in each case, high temperature and high speed elongation of 150% or more is exhibited. It is clear that it has good high-temperature high-speed moldability. Similarly, in the high-temperature high-speed blow molding using a rectangular tube mold under the temperature and strain rate conditions within the range of the present invention, any alloy material can be molded to a height of 60 mm. Furthermore, the structure after cooling to room temperature under the cooling rate condition (40 ° C./min) within the scope of the present invention was a subgrain structure in any alloy material.

一方、比較例である合金材9はMg量が本発明の規定範囲以下であるため、十分な高温高速伸びが得られず、高温高速ブロー成形では60mmの高さに達するまでに破断してしまった。
また比較例である合金材10はMg量が本発明の規定範囲以上であり、熱間圧延性が極めて悪く、圧延時に割れが発生したため、板厚1mmの供試材を作製するに至らなかった。
また比較例の合金材11および合金材12はそれぞれ規定量共添加されるべきMn・Zrの一方の量が本発明の範囲より少ないため、Mn・Zr系の分散粒子の分布密度が30,000個/mm2未満であり、なおかつ分布が不均一であったため、分布密度が低い領域で再結晶が生じることにより亜結晶粒組織が消滅した結果、十分な高温高速伸びが得られなかった。本結果はMnとZrを共添加することの有効性を裏付けている。また高温高速ブロー成形後の結晶組織では亜結晶粒組織が全面で消失していた。この場合の0.2%耐力は、Mg量がほぼ同等でかつ成形品が亜結晶組織により成っていた本発明例合金材1の0.2%耐力に比較して15MPa程度低い。これは本発明合金材が成形後も亜結晶粒組織を維持することにより強度の向上を図っていることを裏付けている。
On the other hand, the alloy material 9 as a comparative example has an Mg amount that is less than the specified range of the present invention, so sufficient high-temperature high-speed elongation cannot be obtained, and the high-temperature high-speed blow molding breaks until reaching a height of 60 mm. It was.
In addition, the alloy material 10 as a comparative example has an Mg amount that is not less than the specified range of the present invention, the hot rolling property is extremely poor, and cracks occurred during rolling, and thus a test material having a thickness of 1 mm could not be produced. .
In addition, since the alloy material 11 and the alloy material 12 of the comparative example each have one of the amounts of Mn · Zr to be co-added in a specified amount is smaller than the range of the present invention, the distribution density of Mn · Zr-based dispersed particles is 30,000 / Since it was less than mm 2 and the distribution was non-uniform, recrystallization occurred in a region where the distribution density was low, and as a result, the subgrain structure disappeared. As a result, sufficient high-temperature and high-speed elongation could not be obtained. This result supports the effectiveness of co-addition of Mn and Zr. Further, in the crystal structure after the high-temperature high-speed blow molding, the subgrain structure disappeared on the entire surface. In this case, the 0.2% yield strength is lower by about 15 MPa than the 0.2% yield strength of the alloy material 1 of the present invention in which the Mg amount is almost the same and the molded product is made of a subcrystalline structure. This confirms that the strength of the alloy material of the present invention is improved by maintaining the subgrain structure after forming.

さらに比較例の合金材13・14・15・17はそれぞれMn、Zr、Si・Fe、Cr・V・Scの添加量が本発明範囲よりも多いために鋳造時に粗大な金属間化合物が生成して、これが高温高速変形時に破断の起点となるため高温高速伸びが著しく低く、良好な高温高速成形性が得られない。またそれゆえ高温ブロー成形にでは高さ60mmの成形は不可であった。
比較例の合金材16はFe・Si量が本発明の範囲よりも少ないために高温高速成形伸びが不十分であった。
Further, the alloy materials 13, 14, 15, and 17 of the comparative examples each have a larger amount of Mn, Zr, Si · Fe, Cr · V · Sc than the scope of the present invention, so that a coarse intermetallic compound is produced during casting. Thus, since this becomes the starting point of fracture at high temperature and high speed deformation, the high temperature and high speed elongation is remarkably low, and good high temperature and high speed moldability cannot be obtained. Therefore, it is impossible to mold 60 mm in high temperature blow molding.
The alloy material 16 of the comparative example had insufficient high-temperature high-speed forming elongation because the amount of Fe · Si was less than the range of the present invention.

(実施例2)
実施例1で作製した表1に示す本発明例合金材1の板厚1mmの供試材より引張試験片(圧延引張幅4mm、平行部長さ15mm)を作製し、表4に示す温度・ひずみ速度条件で150%の高温高速変形を与えた。その後直ちに表4に示す冷却速度で室温まで冷却した。この高温高速変形後の引張試験片の平行部中心領域より、結晶粒界解析用のサンプル(10mm×4mm)を採取して、実施例1で説明した方法により板厚方向中心面における結晶粒界解析を行ない、全結晶粒界に占める亜結晶粒界の割合を算出して、結果を表4にまとめた。実施例1の場合と同様に亜結晶粒界の割合が5%以上の場合を、組織が亜結晶粒より構成されていると判断した。なお、高温高速変形時に伸びが150%未満で破断した場合には、直ちに試験を中断して、サンプルを取り外して表4記載の冷却速度で室温まで冷却し、破断部近傍から結晶粒界解析用のサンプルを採取して、同様の方法で結晶粒界解析を実施した。
(Example 2)
Tensile specimens (rolling tension width 4 mm, parallel part length 15 mm) were prepared from the specimen material of the present invention alloy material 1 shown in Table 1 having a thickness of 1 mm shown in Table 1, and the temperature and strain shown in Table 4 were obtained. A high-speed high-speed deformation of 150% was given under the speed condition. Immediately after that, it was cooled to room temperature at the cooling rate shown in Table 4. A sample (10 mm × 4 mm) for grain boundary analysis was taken from the central region of the parallel part of the tensile test piece after this high-temperature and high-speed deformation, and the grain boundary at the center plane in the plate thickness direction was obtained by the method described in Example 1. Analysis was performed to calculate the ratio of sub-grain boundaries to the total grain boundaries, and the results are summarized in Table 4. As in the case of Example 1, when the ratio of the sub-crystal grain boundary was 5% or more, it was judged that the structure was composed of sub-crystal grains. If the elongation breaks at less than 150% during high-temperature and high-speed deformation, the test is immediately stopped, the sample is removed, cooled to room temperature at the cooling rate shown in Table 4, and used for grain boundary analysis from the vicinity of the fracture. The sample was collected and the grain boundary analysis was performed by the same method.

Figure 0004996854
Figure 0004996854

本発明成分範囲内の合金材1を本発明の範囲内の温度とひずみ速度で成形した場合の条件1〜9では、150%の高温高速伸びが得られ、この範囲内の条件で良好な高温高速成形性が得られることが明らかである。さらに変形後直ちに、本発明の範囲内の冷却速度で室温まで冷却後に結晶粒界解析を行なった結果、いずれの場合も本サンプルが亜結晶粒界組織より成っていた。   In conditions 1 to 9 when the alloy material 1 within the range of the present invention is formed at a temperature and strain rate within the range of the present invention, 150% high-temperature and high-speed elongation is obtained. It is clear that high speed moldability can be obtained. Further, immediately after the deformation, the grain boundary analysis was performed after cooling to room temperature at a cooling rate within the range of the present invention. As a result, in all cases, this sample was composed of a subgrain boundary structure.

一方、成分的には本発明の範囲内にある合金材1を、本発明の範囲外の条件で高温高速成形した比較例である条件10〜13について以下に説明する。条件10では変形の温度が本発明範囲より低くいために、高温高速伸びが低く、良好な高温高速成形性が得られない。一方、条件11は変形温度が本発明範囲より高く、亜結晶粒組織の安定化に寄与するMn・Zr系の分散粒子が再固溶して、変形中に再結晶が生じて高温高速伸びが大幅に低下した。さらに条件12ではひずみ速度が高すぎるために、亜結晶組織が形成されず高温高速成形伸びが低い。条件13では150%の高温高速伸びがあったが、高温高速変形後の冷却速度が本発明の範囲より低いため、冷却中に再結晶が生じて、高温高速成形中に形成された亜結晶組織が消滅してしまって、亜結晶組織による強度向上は得られなかった。   On the other hand, conditions 10 to 13 which are comparative examples in which the alloy material 1 that is componentally within the scope of the present invention is formed at a high temperature and high speed under conditions outside the scope of the present invention will be described below. Under condition 10, since the deformation temperature is lower than the range of the present invention, the high-temperature high-speed elongation is low and good high-temperature high-speed moldability cannot be obtained. On the other hand, in condition 11, the deformation temperature is higher than the range of the present invention, and the Mn / Zr-based dispersed particles contributing to the stabilization of the subgrain structure re-dissolve, and recrystallization occurs during deformation, resulting in high temperature and high speed elongation. Decreased significantly. Furthermore, under condition 12, the strain rate is too high, so a subcrystalline structure is not formed, and the high-temperature high-speed forming elongation is low. Under condition 13, there was 150% high-temperature high-speed elongation, but the cooling rate after high-temperature high-speed deformation was lower than the scope of the present invention, so recrystallization occurred during cooling, and the subcrystalline structure formed during high-temperature high-speed molding Disappeared, and the strength improvement due to the subcrystalline structure was not obtained.

実施例1における角筒成形品からの結晶粒界解析用サンプル採取部位を示す模式図である。FIG. 3 is a schematic diagram showing a sample collection site for crystal grain boundary analysis from a rectangular tube molded product in Example 1.

符号の説明Explanation of symbols

1 角筒成形品
2 上面中心部
3 上面コーナー部
4 立ち上がり部
DESCRIPTION OF SYMBOLS 1 Square tube molded product 2 Upper surface center part 3 Upper surface corner part 4 Rising part

Claims (11)

Mg:2.0〜8.0mass%、Mn:0.05〜1.0mass%、Zr:0.01〜0.3mass%、Si:0.06〜0.4mass%、Fe:0.06〜0.4mass%を含有し、残部がAl及び不可避不純物よりなる高温高速成形用アルミニウム合金材であって、
Mn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子が300,000個/mm 2 以上の分布密度で存在していることを特徴とする高温高速成形用アルミニウム合金材
Mg: 2.0-8.0mass%, Mn: 0.05-1.0mass%, Zr: 0.01-0.3mass%, Si: 0.06-0.4mass%, Fe: 0.06-0.4mass%, the balance from Al and inevitable impurities a high temperature high-speed molding aluminum alloy material Do that,
An aluminum alloy material for high-temperature high-speed forming, characterized in that intermetallic compound particles having a diameter of 10 to 1000 nm are present as Mn and Zr-based precipitates at a distribution density of 300,000 particles / mm 2 or more .
Mg:2.0〜8.0mass%、Mn:0.05〜1.0mass%、Zr:0.01〜0.3mass%、Si:0.06〜0.4mass%、Fe:0.06〜0.4mass%を含有し、さらに、Cr:0.05〜0.5mass%、V:0.01〜0.1mass%、Sc:0.01〜0.4mass%、Ti:0.001〜0.1mass%、B:0.0001〜0.05mass%、Be:0.0001〜0.01mass%のうち1種又は2種以上を含有し、残部がAl及び不可避不純物よりなる高温高速成形用アルミニウム合金材であって、
Mn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子が300,000個/mm 2 以上の分布密度で存在していることを特徴とする高温高速成形用アルミニウム合金材
Mg: 2.0 to 8.0 mass%, Mn: 0.05 to 1.0 mass%, Zr: 0.01 to 0.3 mass%, Si: 0.06 to 0.4 mass%, Fe: 0.06 to 0.4 mass%, further Cr: 0.05 to 0.5 mass%, V: 0.01 to 0.1 mass%, Sc: 0.01 to 0.4 mass%, Ti: 0.001 to 0.1 mass%, B: 0.0001 to 0.05 mass%, Be: 0.0001 to 0.01 mass% containing the balance a Atsushi Ko high speed molding aluminum alloy material ing of Al and unavoidable impurities,
An aluminum alloy material for high-temperature high-speed forming, characterized in that intermetallic compound particles having a diameter of 10 to 1000 nm are present as Mn and Zr-based precipitates at a distribution density of 300,000 particles / mm 2 or more .
Mg:2.0〜8.0mass%、Mn:0.05〜1.0mass%、Zr:0.01〜0.3mass%、Si:0.06〜0.4mass%、Fe:0.06〜0.4mass%、Cu:0.05〜1.0mass%を含有し、残部がAl及び不可避不純物よりなる高温高速成形用アルミニウム合金材であって、
Mn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子が300,000個/mm 2 以上の分布密度で存在していることを特徴とする高温高速成形用アルミニウム合金材
Mg: 2.0-8.0mass%, Mn: 0.05-1.0mass%, Zr: 0.01-0.3mass%, Si: 0.06-0.4mass%, Fe: 0.06-0.4mass%, Cu: 0.05-1.0mass% the balance an aluminum alloy material for a Atsushi Ko high speed molding ing of Al and unavoidable impurities,
An aluminum alloy material for high-temperature high-speed forming, characterized in that intermetallic compound particles having a diameter of 10 to 1000 nm are present as Mn and Zr-based precipitates at a distribution density of 300,000 particles / mm 2 or more .
Mg:2.0〜8.0mass%、Mn:0.05〜1.0mass%、Zr:0.01〜0.3mass%、Si:0.06〜0.4mass%、Fe:0.06〜0.4mass%、Cu:0.05〜1.0mass%を含有し、さらに、Cr:0.05〜0.5mass%、V:0.01〜0.1mass%、Sc:0.01〜0.4mass%、Ti:0.001〜0.1mass%、B:0.0001〜0.05mass%、Be:0.0001〜0.01mass%のうち1種又は2種以上を含有し、残部がAl及び不可避不純物よりなる高温高速成形用アルミニウム合金材であって、
Mn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子が300,000個/mm 2 以上の分布密度で存在していることを特徴とする高温高速成形用アルミニウム合金材
Mg: 2.0-8.0mass%, Mn: 0.05-1.0mass%, Zr: 0.01-0.3mass%, Si: 0.06-0.4mass%, Fe: 0.06-0.4mass%, Cu: 0.05-1.0mass% Furthermore, Cr: 0.05-0.5 mass%, V: 0.01-0.1 mass%, Sc: 0.01-0.4 mass%, Ti: 0.001-0.1 mass%, B: 0.0001-0.05 mass%, Be: 0.0001-0.01 mass% one or comprise two or more, the balance being a high-temperature high-speed molding aluminum alloy material ing of Al and unavoidable impurities out of,
An aluminum alloy material for high-temperature high-speed forming, characterized in that intermetallic compound particles having a diameter of 10 to 1000 nm are present as Mn and Zr-based precipitates at a distribution density of 300,000 particles / mm 2 or more .
200〜550℃の温度、10-2〜10/secの歪速度における成形後に直ちに20℃/分以上の冷却速度で室温まで冷却を行う高温高速成形に用いられることを特徴とする請求項1〜のいずれか1項に記載の高温高速成形用アルミニウム合金材。 It is used for high-temperature high-speed molding in which cooling is performed to room temperature at a cooling rate of 20 ° C / min or more immediately after molding at a temperature of 200 to 550 ° C and a strain rate of 10 -2 to 10 / sec. 5. The aluminum alloy material for high-temperature high-speed forming according to any one of 4 above. Mg:2.0〜8.0mass%、Mn:0.05〜1.0mass%、Zr:0.01〜0.3mass%、Si:0.06〜0.4mass%、Fe:0.06〜0.4mass%を含有し、残部がAl及び不可避不純物よりなるアルミニウム合金鋳塊に、350〜550℃、1〜48時間で均質化処理を行う工程と、前記均質化処理を経た合金鋳塊に熱間加工・冷間加工の両方又はいずれかを行う工程とを少なくとも含む工程によって、前記アルミニウム合金材中にMn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子を300,000個/mm2以上の分布密度で存在させることを特徴とする高温高速成形用アルミニウム合金材の製造方法。 Mg: 2.0-8.0mass%, Mn: 0.05-1.0mass%, Zr: 0.01-0.3mass%, Si: 0.06-0.4mass%, Fe: 0.06-0.4mass%, the balance from Al and inevitable impurities A step of homogenizing the aluminum alloy ingot to be formed at 350 to 550 ° C. for 1 to 48 hours, and a step of performing hot working and / or cold working on the alloy ingot subjected to the homogenizing treatment. At a high temperature and high speed characterized in that intermetallic compound particles having a diameter of 10 to 1000 nm are present as a Mn and Zr-based precipitate in the aluminum alloy material at a distribution density of 300,000 particles / mm 2 or more in the aluminum alloy material. Manufacturing method of aluminum alloy material for forming. Mg:2.0〜8.0mass%、Mn:0.05〜1.0mass%、Zr:0.01〜0.3mass%、Si:0.06〜0.4mass%、Fe:0.06〜0.4mass%を含有し、さらに、Cr:0.05〜0.5mass%、V:0.01〜0.1mass%、Sc:0.01〜0.4mass%、Ti:0.001〜0.1mass%、B:0.0001〜0.05mass%、Be:0.0001〜0.01mass%のうち1種又は2種以上を含有し、残部がAl及び不可避不純物よりなるアルミニウム合金鋳塊に、350〜550℃、1〜48時間で均質化処理を行う工程と、前記均質化処理を経た合金鋳塊に熱間加工・冷間加工の両方又はいずれかを行う工程とを少なくとも含む工程によって、前記アルミニウム合金材中にMn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子を300,000個/mm2以上の分布密度で存在させることを特徴とする高温高速成形用アルミニウム合金材の製造方法。 Mg: 2.0 to 8.0 mass%, Mn: 0.05 to 1.0 mass%, Zr: 0.01 to 0.3 mass%, Si: 0.06 to 0.4 mass%, Fe: 0.06 to 0.4 mass%, further Cr: 0.05 to 0.5 mass%, V: 0.01-0.1mass%, Sc: 0.01-0.4mass%, Ti: 0.001-0.1mass%, B: 0.0001-0.05mass%, Be: 0.0001-0.01mass% Aluminum alloy ingot containing Al and inevitable impurities, and a process of homogenizing at 350 to 550 ° C. for 1 to 48 hours, and hot working on the alloy ingot that has undergone the homogenization treatment Distribution of 300,000 particles / mm 2 or more of intermetallic compound particles having a diameter of 10 to 1000 nm as Mn and Zr-based precipitates in the aluminum alloy material by a process including at least a process of performing either or both of cold working A method for producing an aluminum alloy material for high-temperature high-speed forming, characterized by being present in a density. Mg:2.0〜8.0mass%、Mn:0.05〜1.0mass%、Zr:0.01〜0.3mass%、Si:0.06〜0.4mass%、Fe:0.06〜0.4mass%、Cu:0.05〜1.0mass%を含有し、残部がAl及び不可避不純物よりなるアルミニウム合金鋳塊に、350〜550℃、1〜48時間で均質化処理を行う工程と、前記均質化処理を経た合金鋳塊に熱間加工・冷間加工の両方又はいずれかを行う工程とを少なくとも含む工程によって、前記アルミニウム合金材中にMn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子を300,000個/mm2以上の分布密度で存在させることを特徴とする高温高速成形用アルミニウム合金材の製造方法。 Mg: 2.0-8.0mass%, Mn: 0.05-1.0mass%, Zr: 0.01-0.3mass%, Si: 0.06-0.4mass%, Fe: 0.06-0.4mass%, Cu: 0.05-1.0mass% , A process of homogenizing the aluminum alloy ingot consisting of Al and inevitable impurities at 350 to 550 ° C. for 1 to 48 hours, and hot working / cold working to the alloy ingot after the homogenizing treatment In the aluminum alloy material, there exist at least 300,000 particles / mm 2 of intermetallic compound particles having a diameter of 10 to 1000 nm as precipitates of Mn and Zr in the aluminum alloy material. A method for producing an aluminum alloy material for high-temperature high-speed forming, characterized in that: Mg:2.0〜8.0mass%、Mn:0.05〜1.0mass%、Zr:0.01〜0.3mass%、Si:0.06〜0.4mass%、Fe:0.06〜0.4mass%、Cu:0.05〜1.0mass%を含有し、さらに、Cr:0.05〜0.5mass%、V:0.01〜0.1mass%、Sc:0.01〜0.4mass%、Ti:0.001〜0.1mass%、B:0.0001〜0.05mass%、Be:0.0001〜0.01mass%のうち1種又は2種以上を含有し、残部がAl及び不可避不純物よりなるアルミニウム合金鋳塊に、350〜550℃、1〜48時間で均質化処理を行う工程と、前記均質化処理を経た合金鋳塊に熱間加工・冷間加工の両方又はいずれかを行う工程とを少なくとも含む工程によって、前記アルミニウム合金材中にMn及びZr系の析出物として直径10〜1000nmの金属間化合物粒子を300,000個/mm2以上の分布密度で存在させることを特徴とする高温高速成形用アルミニウム合金材の製造方法。 Mg: 2.0-8.0mass%, Mn: 0.05-1.0mass%, Zr: 0.01-0.3mass%, Si: 0.06-0.4mass%, Fe: 0.06-0.4mass%, Cu: 0.05-1.0mass% Furthermore, Cr: 0.05-0.5 mass%, V: 0.01-0.1 mass%, Sc: 0.01-0.4 mass%, Ti: 0.001-0.1 mass%, B: 0.0001-0.05 mass%, Be: 0.0001-0.01 mass% The aluminum alloy ingot containing 1 type or 2 types among them and the remainder consisting of Al and inevitable impurities is subjected to a homogenization process at 350 to 550 ° C. for 1 to 48 hours and the homogenization process. By performing a process including at least one of hot working and / or cold working on the alloy ingot, intermetallic compound particles having a diameter of 10 to 1000 nm as Mn and Zr-based precipitates in the aluminum alloy material. A method for producing an aluminum alloy material for high-temperature, high-speed forming, characterized by having a distribution density of 300,000 pieces / mm 2 or more. 前記高温高速成形用アルミニウム合金材は、200〜550℃の温度、10-2〜10/secの歪速度における成形後に直ちに20℃/分以上の冷却速度で室温まで冷却を行う高温高速成形に用いられることを特徴とする請求項6〜9のいずれか1項に記載の高温高速成形用アルミニウム合金材の製造方法。 The aluminum alloy material for high-temperature high-speed forming is used for high-temperature high-speed forming that cools to room temperature at a cooling rate of 20 ° C./min or more immediately after forming at a temperature of 200 to 550 ° C. and a strain rate of 10 −2 to 10 / sec. The method for producing an aluminum alloy material for high-temperature and high-speed forming according to any one of claims 6 to 9 . 請求項1〜のいずれか1項に記載の高温高速成形用アルミニウム合金材を、200〜550℃の温度、10-2〜10/secの歪速度で高温高速成形し、直ちに20℃/分以上の冷却速度で室温まで冷却することにより、金属組織を亜結晶粒組織とすることを特徴とするアルミニウム合金成形品の製造方法。
The aluminum alloy material for high temperature and high speed forming according to any one of claims 1 to 5 is formed at a high temperature and high speed at a temperature of 200 to 550 ° C and a strain rate of 10 -2 to 10 / sec, and immediately 20 ° C / min. A method for producing an aluminum alloy molded article, wherein the metal structure is changed to a subgrain structure by cooling to room temperature at the above cooling rate.
JP2006005415A 2006-01-12 2006-01-12 Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product Expired - Fee Related JP4996854B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006005415A JP4996854B2 (en) 2006-01-12 2006-01-12 Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
EP07706623A EP1975263A4 (en) 2006-01-12 2007-01-11 Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms
PCT/JP2007/050276 WO2007080938A1 (en) 2006-01-12 2007-01-11 Aluminum alloys for high-temperature and high-speed forming, processes for production thereof, and process for production of aluminum alloy forms
US12/171,380 US8500926B2 (en) 2006-01-12 2008-07-11 Aluminum alloy material for high-temperature/high-speed molding, method of producing the same, and method of producing a molded article of an aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006005415A JP4996854B2 (en) 2006-01-12 2006-01-12 Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product

Publications (2)

Publication Number Publication Date
JP2007186748A JP2007186748A (en) 2007-07-26
JP4996854B2 true JP4996854B2 (en) 2012-08-08

Family

ID=38342113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006005415A Expired - Fee Related JP4996854B2 (en) 2006-01-12 2006-01-12 Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product

Country Status (1)

Country Link
JP (1) JP4996854B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3643801A4 (en) * 2017-06-21 2020-11-11 Obshchestvo S Ogranichennoy Otvetstvennost'yu "Obedinennaya Kompaniya Rusal Inzhenerno-Tekhnologicheskiy Tsentr" Aluminium-based alloy
CA3050947C (en) * 2018-05-21 2022-01-11 Viktor Khrist'yanovich MANN Aluminum alloy for additive technologies
BR112021005581A2 (en) * 2019-12-27 2022-07-26 Obshchestvo S Ogranichennoy Otvetstvennostyu ¿Obedinennaya Kompaniya Rusal Inzhenerno Tekh Tsentr¿ ALUMINUM ALLOY

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259441A (en) * 1997-03-19 1998-09-29 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
JP4534573B2 (en) * 2004-04-23 2010-09-01 日本軽金属株式会社 Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2007186748A (en) 2007-07-26

Similar Documents

Publication Publication Date Title
JP5335056B2 (en) Aluminum alloy wire for bolt, bolt and method for producing the same
US8500926B2 (en) Aluminum alloy material for high-temperature/high-speed molding, method of producing the same, and method of producing a molded article of an aluminum alloy
JP6022882B2 (en) High strength aluminum alloy extruded material and manufacturing method thereof
JP5530216B2 (en) Magnesium alloy forging with excellent mechanical properties and method for producing the same
WO2009096622A1 (en) Magnesium alloy panel having high strength and manufacturing method thereof
JP3684313B2 (en) High-strength, high-toughness aluminum alloy forgings for automotive suspension parts
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP5204793B2 (en) High strength aluminum alloy extruded material with excellent stress corrosion cracking resistance
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP5215710B2 (en) Magnesium alloy with excellent creep characteristics at high temperature and method for producing the same
JP2006249480A (en) Aluminum alloy sheet to be formed
JP4856597B2 (en) Magnesium alloy excellent in strength and elongation at high temperature and method for producing the same
JP4099395B2 (en) Method for producing high-strength aluminum alloy foil
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
JP4996854B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP5111966B2 (en) Method for manufacturing aluminum alloy panel
JP2008190022A (en) Al-Mg-Si-BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME
JP6719219B2 (en) High strength aluminum alloy sheet excellent in formability and method for producing the same
JP7318274B2 (en) Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method
EP0846781B1 (en) Process of forming an aluminium sheet with excellent high speed superplastic formability
JP5036090B2 (en) Copper alloy hot forged product and method for producing copper alloy hot forged product
JP5802114B2 (en) Aluminum alloy wire for bolt, bolt and method for producing aluminum alloy wire for bolt
JP6857535B2 (en) High-strength aluminum alloy plate with excellent formability, bendability and dent resistance and its manufacturing method
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JP3983454B2 (en) Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120508

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120514

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4996854

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150518

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees