JP5802114B2 - Aluminum alloy wire for bolt, bolt and method for producing aluminum alloy wire for bolt - Google Patents

Aluminum alloy wire for bolt, bolt and method for producing aluminum alloy wire for bolt Download PDF

Info

Publication number
JP5802114B2
JP5802114B2 JP2011250529A JP2011250529A JP5802114B2 JP 5802114 B2 JP5802114 B2 JP 5802114B2 JP 2011250529 A JP2011250529 A JP 2011250529A JP 2011250529 A JP2011250529 A JP 2011250529A JP 5802114 B2 JP5802114 B2 JP 5802114B2
Authority
JP
Japan
Prior art keywords
bolt
aluminum alloy
alloy wire
wire
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011250529A
Other languages
Japanese (ja)
Other versions
JP2013104123A (en
Inventor
義幸 高木
義幸 高木
西川 太一郎
太一郎 西川
博昭 高井
博昭 高井
保広 赤祖父
保広 赤祖父
真一 北村
真一 北村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Sumitomo Electric Toyama Co Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Sumitomo Electric Toyama Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd, Sumitomo Electric Toyama Co Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2011250529A priority Critical patent/JP5802114B2/en
Publication of JP2013104123A publication Critical patent/JP2013104123A/en
Application granted granted Critical
Publication of JP5802114B2 publication Critical patent/JP5802114B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Conductive Materials (AREA)

Description

本発明は、ボルト用アルミニウム合金線とボルト、並びにそれらの製造方法に関するものである。特に、ボルト製造時の加工性に優れ、かつ十分な強度を備えるボルトが得られるボルト用アルミニウム合金線に関する。   The present invention relates to aluminum alloy wires and bolts for bolts, and methods for producing them. In particular, the present invention relates to an aluminum alloy wire for bolts that is excellent in workability at the time of bolt manufacture and from which a bolt having sufficient strength can be obtained.

アルミニウム合金ボルトの材料としてA6056が知られている。その他、特許文献1に記載のアルミニウム合金線棒材も知られている。この合金線棒材は、6000系の組成で圧延組織を有し、所定の微細な平均結晶粒径を備える。そして、このアルミニウム合金線棒材は、ボルト成形性に優れ、さらに適切な熱処理及び加工を施すことで、所定の引張強さを得ることができる。   A6056 is known as a material for aluminum alloy bolts. In addition, an aluminum alloy wire rod described in Patent Document 1 is also known. This alloy wire rod has a rolled structure with a composition of 6000 series, and has a predetermined fine average crystal grain size. And this aluminum alloy wire rod material is excellent in bolt moldability, and can give predetermined tensile strength by performing a further appropriate heat treatment and processing.

特開2011-1602号公報JP 2011-1602

しかし、A6056は成形性が劣り、鋳造・圧延時に発生する疵などが原因となり、ボルト加工時に割れが発生したり、微小な亀裂が起因となり粒界腐食が発生してしまう。また、A6056からなるボルトは、人工時効硬化を行っても、十分な強度を得ることができない。   However, A6056 is inferior in formability and is caused by flaws generated during casting and rolling, causing cracks during bolt processing and intergranular corrosion due to minute cracks. Also, the bolt made of A6056 cannot obtain sufficient strength even after artificial age hardening.

一方、特許文献1に記載のアルミニウム合金線棒材は、A6056の成形性を改善でき、ボルトとした場合に強度も得られるとされているが、成形性を確保しつつ、ボルトに成形した後により一層高い強度が得られるアルミニウム合金線の開発が望まれている。特に、高温環境下でボルトを使用した際に、強度の低下が小さく、なお高強度を維持できるボルト用のアルミニウム合金線の開発が期待されている。   On the other hand, the aluminum alloy wire rod described in Patent Document 1 can improve the formability of A6056, and it is said that strength is also obtained when it is used as a bolt, but after forming into a bolt while ensuring formability. Therefore, it is desired to develop an aluminum alloy wire that can obtain higher strength. In particular, when a bolt is used in a high-temperature environment, the development of an aluminum alloy wire for a bolt that is small in strength reduction and can maintain high strength is expected.

本発明は、上記の事情に鑑みてなされたもので、その目的の一つは、ボルトに成形する際に十分な成形性を備え、かつボルトとして高い強度を備えるボルト用アルミニウム合金線とその製造方法を提供することにある。   The present invention has been made in view of the above circumstances, and one of its purposes is to provide an aluminum alloy wire for bolts having sufficient formability when being formed into a bolt and having high strength as a bolt and its manufacture. It is to provide a method.

また、本発明の他の目的は、さらに耐熱性に優れるボルト用アルミニウム合金線とその製造方法を提供することにある。   Another object of the present invention is to provide an aluminum alloy wire for bolts that is further excellent in heat resistance and a method for producing the same.

さらに、本発明の別の目的は、上記のアルミニウム合金線を用いて得られるボルトとその製造方法を提供することにある。   Furthermore, another object of the present invention is to provide a bolt obtained by using the aluminum alloy wire and a method for producing the same.

本発明者らは、6000系のアルミニウム合金の組成を基本とし、さらなる成形性と強度の向上を目指して鋭意検討を行った結果、所定量のSrを含有させることが有効であるとの知見を得て本発明を完成するに至った。   Based on the composition of the 6000 series aluminum alloy, the present inventors have made extensive studies aiming to further improve the formability and strength, and as a result, have found that it is effective to contain a predetermined amount of Sr. As a result, the present invention has been completed.

本発明のボルト用アルミニウム合金線は、質量%で、Si:0.60〜1.5%、Fe:0.02〜0.40%、Cu:0.50〜1.2%、Mn:0.50〜1.1%、Mg:0.70〜1.3%、Cr:0.30%以下(0%を含む)、Zn:0.005〜0.50%、Ti:0.01〜0.20%、Zr:0.05〜0.20%、Sr:0.005〜0.05%を含み、残部がAl及び不可避的不純物からなる。この組成を第一組成ということがある。   The aluminum alloy wire for bolts of the present invention is, by mass, Si: 0.60 to 1.5%, Fe: 0.02 to 0.40%, Cu: 0.50 to 1.2%, Mn: 0.50 to 1.1%, Mg: 0.70 to 1.3%, Cr : 0.30% or less (including 0%), Zn: 0.005 to 0.50%, Ti: 0.01 to 0.20%, Zr: 0.05 to 0.20%, Sr: 0.005 to 0.05%, with the balance being Al and inevitable impurities . This composition is sometimes referred to as the first composition.

この組成の合金線とすることにより、ボルトに成形する際の成形性に優れ、成形後は十分な強度のボルトを得ることができる。特に、所定量のSrを含有することで、鋳造時・圧延時の疵の発生を抑制し、成形時に割れなどの発生を低減することができる。この合金線により、引張強さ:380MPa以上、0.2%耐力:350MPa以上、伸び:6%以上のボルトを得ることができる。   By using an alloy wire having this composition, it is excellent in formability when forming into a bolt, and a bolt having sufficient strength can be obtained after forming. In particular, by containing a predetermined amount of Sr, generation of flaws during casting and rolling can be suppressed, and generation of cracks and the like during molding can be reduced. With this alloy wire, a bolt having a tensile strength of 380 MPa or more, 0.2% proof stress: 350 MPa or more, and elongation: 6% or more can be obtained.

本発明のボルト用アルミニウム合金線の一形態として、質量%で、Sr:0.005〜0.03%を含有し、Zrの含有量とSrの含有量の比率Zr/Srが3〜50であることが挙げられる。   As one form of the aluminum alloy wire for bolts of the present invention, Sr: 0.005 to 0.03% is contained by mass%, and the ratio Zr / Sr of the Zr content to the Sr content is 3 to 50. It is done.

上記第一組成からSrの含有量を限定し、さらにZrとSrを所定の比率で含有することで、アルミニウム合金線の耐熱性を保持しつつ、十分な成形性を確保することができる。Zrはアルミニウム合金線の耐熱性を向上するために必要な元素であるが、Zrを含有すると鋳込み温度が高くなり、結晶粒を微細化することが難しい。一方、SrをZrに対して所定の比率となるように含有すれば、結晶粒の粗大化を効果的に抑制できる。また、Srはアルミニウム合金線に含有させると、強度が向上するものの脆性になる傾向があるが、所定量のZrの存在下でSrを含有させると、脆化が抑制され、成形性が確保される。   By limiting the Sr content from the first composition and further containing Zr and Sr in a predetermined ratio, sufficient formability can be secured while maintaining the heat resistance of the aluminum alloy wire. Zr is an element necessary for improving the heat resistance of the aluminum alloy wire. However, if Zr is contained, the casting temperature becomes high and it is difficult to refine the crystal grains. On the other hand, if Sr is contained at a predetermined ratio with respect to Zr, the coarsening of crystal grains can be effectively suppressed. Further, when Sr is contained in an aluminum alloy wire, it tends to be brittle although the strength is improved. However, when Sr is contained in the presence of a predetermined amount of Zr, embrittlement is suppressed and formability is ensured. The

本発明のボルト用アルミニウム合金線の一形態として、質量%で、Si:0.80〜1.4%、Fe:0.05〜0.30%、Cu:0.50〜1.2%、Mn:0.50〜1.1%、Mg:0.80〜1.3%、Cr:0.01〜0.30%、Zn:0.05〜0.25%、Ti:0.01〜0.10%、Zr:0.10〜0.20%、Sr:0.005〜0.03%を含むことが挙げられる。この組成を第二組成ということがある。   As one form of the aluminum alloy wire for bolts of the present invention, in mass%, Si: 0.80 to 1.4%, Fe: 0.05 to 0.30%, Cu: 0.50 to 1.2%, Mn: 0.50 to 1.1%, Mg: 0.80 to 1.3 %, Cr: 0.01 to 0.30%, Zn: 0.05 to 0.25%, Ti: 0.01 to 0.10%, Zr: 0.10 to 0.20%, Sr: 0.005 to 0.03%. This composition is sometimes referred to as a second composition.

第一組成に対して上記の元素の含有量を限定することで、さらに機械的特性に優れたボルトを得ることができる。具体的には、引張強さ:400MPa以上、0.2%耐力:360MPa以上、伸び:6%以上のボルトを得ることができる。   By limiting the content of the above elements with respect to the first composition, a bolt having further excellent mechanical properties can be obtained. Specifically, a bolt having a tensile strength of 400 MPa or more, 0.2% proof stress: 360 MPa or more, and elongation: 6% or more can be obtained.

第二組成を有する本発明のボルト用アルミニウム合金線の一形態として、質量%で、Cu:0.80〜1.2%、Mn:0.70〜1.1%、Cr:0.05〜0.30%を含むことが挙げられる。この組成を第三組成ということがある。   As one form of the aluminum alloy wire for bolts of this invention which has a 2nd composition, it is mentioned that Cu: 0.80-1.2%, Mn: 0.70-1.1%, Cr: 0.05-0.30% is contained by the mass%. This composition is sometimes referred to as a third composition.

第二組成に対して上記の元素の含有量をさらに限定することで、より一層機械的特性に優れたボルトを得ることができる。具体的には、引張強さ:430MPa以上、0.2%耐力:370MPa以上、伸び:6%以上で、耐熱性に優れたボルトを得ることができる。   By further limiting the content of the above elements with respect to the second composition, it is possible to obtain a bolt having further excellent mechanical characteristics. Specifically, a bolt having excellent heat resistance can be obtained with tensile strength: 430 MPa or more, 0.2% proof stress: 370 MPa or more, and elongation: 6% or more.

本発明のボルト用アルミニウム合金線の一形態として、Mg2Siを含み、Mg2Siの含有量と、MnとCrの合計含有量との比率Mg2Si/(Mn+Cr)が1.0〜2.1であることが挙げられる。 As a form of bolt aluminum alloy wire of the present invention, include Mg 2 Si, and the content of Mg 2 Si, the ratio Mg 2 Si / (Mn + Cr ) between the total content of Mn and Cr is at 1.0-2.1 Can be mentioned.

SiとMgの含有量によっても、得られるボルトの強度に差が出る。アルミニウム合金中において、SiとMgの少なくとも一部は溶体化処理及び時効処理によりMg2Siとして析出し、ボルトの強度が向上する。このMg2Siの含有量と、CrとMnの合計量との比率を規定することで、高い機械的特性と耐熱性を備えるボルトを得ることができる。なお、この比率Mg2Si/(Mn+Cr)は、鋳造材の段階で1.0〜2.1になっており、その後、鋳造材を圧延・伸線した伸線材、或いは伸線材から成形されたボルトの各段階においても実質的に維持される。 Depending on the Si and Mg contents, there is a difference in the strength of the bolts obtained. In the aluminum alloy, at least part of Si and Mg is precipitated as Mg 2 Si by solution treatment and aging treatment, and the strength of the bolt is improved. By defining the ratio between the Mg 2 Si content and the total amount of Cr and Mn, a bolt having high mechanical properties and heat resistance can be obtained. This ratio Mg 2 Si / ( Mn + Cr ) is 1.0 to 2.1 at the stage of the cast material, and then each stage of the bolt formed from the drawn or rolled wire or the drawn material. Is substantially maintained.

本発明のボルト用アルミニウム合金線の製造方法は、次の工程を備える。
鋳造工程:質量%で、Si:0.60〜1.5%、Fe:0.02〜0.40%、Cu:0.50〜1.2%、Mn:0.50〜1.1%、Mg:0.70〜1.3%、Cr:0.30%以下(0%を含む)、Zn:0.005〜0.50%、Ti:0.01〜0.20%、Zr:0.05〜0.20%、Sr:0.005〜0.05%を含み、残部がAl及び不可避的不純物からなる組成の鋳造材を得る。
圧延工程:上記鋳造材を圧延して圧延材とする。
伸線工程:上記圧延材を伸線して所定の線径の伸線材とする。
中間軟化工程:上記伸線工程の途中の線材に対して250〜500℃で0.5〜40時間の軟化処理を行う。
The manufacturing method of the aluminum alloy wire for bolts of this invention comprises the following process.
Casting process:% by mass, Si: 0.60 to 1.5%, Fe: 0.02 to 0.40%, Cu: 0.50 to 1.2%, Mn: 0.50 to 1.1%, Mg: 0.70 to 1.3%, Cr: 0.30% or less (0% Zn: 0.005 to 0.50%, Ti: 0.01 to 0.20%, Zr: 0.05 to 0.20%, Sr: 0.005 to 0.05%, with the balance being Al and inevitable impurities.
Rolling process: The cast material is rolled into a rolled material.
Wire drawing step: The rolled material is drawn into a wire drawing material having a predetermined wire diameter.
Intermediate softening step: The wire rod in the middle of the wire drawing step is subjected to a softening treatment at 250 to 500 ° C for 0.5 to 40 hours.

この方法によれば、ボルトの製造に好適なアルミニウム合金線を得ることができる。特に、生産性と機械的特性に優れたボルトの素材となるアルミニウム合金線を得ることができる。   According to this method, an aluminum alloy wire suitable for the manufacture of bolts can be obtained. In particular, it is possible to obtain an aluminum alloy wire that is a bolt material excellent in productivity and mechanical properties.

本発明のボルトは、アルミニウム合金からなるボルトであって、前記アルミニウム合金が、質量%で、Si:0.60〜1.5%、Fe:0.02〜0.40%、Cu:0.50〜1.2%、Mn:0.50〜1.1%、Mg:0.70〜1.3%、Cr:0.30%以下(0%を含む)、Zn:0.005〜0.50%、Ti:0.01〜0.20%、Zr:0.05〜0.20%、Sr:0.005〜0.05%を含み、残部がAl及び不可避的不純物からなる。そして、引張強さ:380MPa以上、0.2%耐力:350MPa以上、伸び:6%以上である。   The bolt of the present invention is a bolt made of an aluminum alloy, and the aluminum alloy is, in mass%, Si: 0.60 to 1.5%, Fe: 0.02 to 0.40%, Cu: 0.50 to 1.2%, Mn: 0.50 to 1.1. %, Mg: 0.70 to 1.3%, Cr: 0.30% or less (including 0%), Zn: 0.005 to 0.50%, Ti: 0.01 to 0.20%, Zr: 0.05 to 0.20%, Sr: 0.005 to 0.05% The balance consists of Al and inevitable impurities. And, tensile strength: 380 MPa or more, 0.2% proof stress: 350 MPa or more, elongation: 6% or more.

上記の組成の素材を用いてボルトとすることで、引張強さ、0.2%耐力、伸びといった機械的特性に優れるボルトとすることができる。   By using a material having the above composition as a bolt, a bolt having excellent mechanical properties such as tensile strength, 0.2% proof stress, and elongation can be obtained.

本発明のボルトの製造方法は、次の工程を備える。
切断工程:上述した本発明のアルミニウム合金線を所定長に切断する。
ヘッダ工程:切断されたボルト用アルミニウム合金線をヘッダ加工してボルトの頭部を成形する。
転造工程:切断されたボルト用アルミニウム合金線を転造してボルトのねじ部を成形する。
熱処理工程:ボルト用アルミニウム合金線からボルトを製造するまでの過程における対象物に溶体化処理及び時効処理を行う。
The bolt manufacturing method of the present invention includes the following steps.
Cutting step: The above-described aluminum alloy wire of the present invention is cut into a predetermined length.
Header process: The aluminum alloy wire for the cut bolt is subjected to header processing to form the head of the bolt.
Rolling step: The cut aluminum alloy wire for the bolt is rolled to form a thread portion of the bolt.
Heat treatment step: Solution treatment and aging treatment are performed on the object in the process from the manufacture of bolts to the bolt aluminum alloy wire.

この方法によれば、ボルトの成形中に割れなどが発生し難く、生産性良くボルトを製造することができる。また、得られたボルトは、引張強さなどの機械的強度に優れる。さらに、本発明アルミニウム合金線の組成によっては、耐熱性にも優れるボルトを得ることができる。   According to this method, it is difficult for cracks to occur during the molding of the bolt, and the bolt can be manufactured with high productivity. Further, the obtained bolt is excellent in mechanical strength such as tensile strength. Furthermore, depending on the composition of the aluminum alloy wire of the present invention, a bolt having excellent heat resistance can be obtained.

上述した所定の第一組成を有する本発明のアルミニウム合金線、同合金線の製造方法、ボルト、及びボルトの製造方法は、ボルト成形時の加工性に優れ、かつ機械的特性に優れたボルトを得ることができる。   The aluminum alloy wire of the present invention having the predetermined first composition described above, the method of manufacturing the alloy wire, the bolt, and the method of manufacturing the bolt are bolts excellent in workability at the time of bolt forming and excellent in mechanical properties. Can be obtained.

以下、本発明の実施の形態を説明する。なお、以下の説明において、アルミニウム合金線の組成は、全て質量%で示される。   Embodiments of the present invention will be described below. In the following description, the composition of the aluminum alloy wire is shown by mass%.

[アルミニウム合金線]
〔組成〕
(Si:0.60〜1.5%)
Siは、Mgと共に一部がマトリックスに固溶し、アルミニウム合金線を固溶強化する。また、Siは同合金線の人工時効時に時効析出物などを形成して強度を向上させ、ボルトに求められる所定の機械的特性を得るために必要な元素である。Si含有量の下限値を0.60%とすることで、固溶強化や時効硬化の効果を適切に発現させることができ、所定の強度のボルトを得ることができる。また、上限値を1.5%とすることで、鋳造材から線材への加工性やボルトへの成形性が阻害されず、かつ割れの起点となる粗大な晶出物や析出物の形成を抑制し、ボルトの高強度化に資することができる。より好ましいSiの含有量は0.80〜1.4%である。この範囲とすることで、一層機械的強度に優れるボルトを得易い。
[Aluminum alloy wire]
〔composition〕
(Si: 0.60-1.5%)
Si partially dissolves in the matrix together with Mg, strengthening the aluminum alloy wire. Moreover, Si is an element necessary for improving the strength by forming an aging precipitate or the like during artificial aging of the alloy wire and obtaining predetermined mechanical characteristics required for the bolt. By setting the lower limit of the Si content to 0.60%, the effects of solid solution strengthening and age hardening can be appropriately expressed, and a bolt having a predetermined strength can be obtained. In addition, by setting the upper limit to 1.5%, the workability from casting to wire and formability to bolts are not hindered, and the formation of coarse crystals and precipitates that become the starting point of cracking is suppressed. , Can contribute to increasing the strength of the bolt. A more preferable Si content is 0.80 to 1.4%. By setting it within this range, it is easy to obtain a bolt having further excellent mechanical strength.

(Fe:0.02〜0.40%)
Feは、アルカリ土類金属元素(例えばMgやSr)の存在下で、鋳造時にTiを含む結晶微細化剤の効果を促進するために必要である。Fe含有量の下限値を0.02%とすることで、合金における結晶粒の微細化に有効に寄与する。一方、上限値を0.40%とすることで、合金組織における粒界にFe系の晶出物が生成し、合金の塑性加工性が低下することを抑制できる。より好ましいFeの含有量は0.05〜0.30%、さらに好ましい含有量は0.05〜0.25%である。この範囲とすることで、一層機械的強度に優れるボルトを得易い。
(Fe: 0.02-0.40%)
Fe is necessary to promote the effect of the crystal refining agent containing Ti during casting in the presence of an alkaline earth metal element (for example, Mg or Sr). By making the lower limit of the Fe content 0.02%, it contributes effectively to the refinement of crystal grains in the alloy. On the other hand, by setting the upper limit value to 0.40%, it is possible to suppress the formation of Fe-based crystallized grains at the grain boundaries in the alloy structure and the deterioration of the plastic workability of the alloy. A more preferable Fe content is 0.05 to 0.30%, and a still more preferable content is 0.05 to 0.25%. By setting it within this range, it is easy to obtain a bolt having further excellent mechanical strength.

(Cu:0.50〜1.2%)
Cuは、Mg、Siと共に強度の向上に寄与する。Cu含有量の下限値を0.50%とすることで、その効果が得られ易い。一方、上限値を1.2%とすることでボルトへの成形性を確保し易い。より好ましいCuの含有量は、0.80〜1.2%である。この範囲とすることで、一層機械的強度に優れ、耐熱性が良好なボルトを得易い。
(Cu: 0.50-1.2%)
Cu contributes to strength improvement together with Mg and Si. By setting the lower limit of the Cu content to 0.50%, the effect can be easily obtained. On the other hand, by setting the upper limit value to 1.2%, it is easy to ensure the formability to the bolt. A more preferable Cu content is 0.80 to 1.2%. By setting it as this range, it is easy to obtain a bolt having further excellent mechanical strength and good heat resistance.

(Mn:0.50〜1.1%)
Mnは、一部がマトリックスに固溶し、アルミニウム合金線を固溶強化する。また、Mnは、Al-Mn系の分散粒子を形成し、この線材組織の結晶粒を微細化でき、強度、成形性、耐食性などを向上できる。Mn含有量の下限値を0.50%とすることで、アルミニウム合金線を固溶強化し、ボルトとして十分な強度が得られ易い。また、上限値を1.1%とすることで、割れの起点となる粗大な晶出物や析出物の形成を抑制し、ボルトの高強度化に資することができる。より好ましいMnの含有量は0.70〜1.1%である。この範囲とすることで、一層機械的強度に優れ、耐熱性が良好なボルトを得易い。
(Mn: 0.50-1.1%)
Mn partially dissolves in the matrix and strengthens the aluminum alloy wire by solid solution. Further, Mn forms Al-Mn-based dispersed particles, the crystal grains of the wire structure can be refined, and the strength, formability, corrosion resistance, and the like can be improved. By setting the lower limit of the Mn content to 0.50%, the aluminum alloy wire is strengthened by solid solution, and sufficient strength as a bolt can be easily obtained. Further, by setting the upper limit value to 1.1%, it is possible to suppress the formation of coarse crystallized substances and precipitates that are the starting points of cracks, and to contribute to increasing the strength of the bolt. A more preferable content of Mn is 0.70 to 1.1%. By setting it as this range, it is easy to obtain a bolt having further excellent mechanical strength and good heat resistance.

(Mg:0.70〜1.3%)
Mgは、アルミニウム合金線を固溶強化し、人工時効時に、Siと共に強度向上に寄与する時効析出物を形成して、ボルトに要求される機械的特性を満たすために必要な元素である。Mg含有量の下限値を0.70%とすることで、十分な固溶強化機能や時効硬化機能を発揮することができる。上限値を1.3%とすることで、割れの起点となる粗大な晶出物や析出物の形成を抑制し、ボルトの高強度化に資することができる。より好ましいMgの含有量は、0.80〜1.3%である。この範囲とすることで、一層機械的強度に優れ、耐熱性が良好なボルトを得易い。
(Mg: 0.70 to 1.3%)
Mg is an element necessary for satisfying the mechanical properties required for bolts by solid solution strengthening of aluminum alloy wires and forming aging precipitates that contribute to strength improvement together with Si during artificial aging. By setting the lower limit of the Mg content to 0.70%, a sufficient solid solution strengthening function and age hardening function can be exhibited. By setting the upper limit to 1.3%, it is possible to suppress the formation of coarse crystallized substances and precipitates that are the starting points of cracks, and to contribute to increasing the strength of the bolt. A more preferable Mg content is 0.80 to 1.3%. By setting it as this range, it is easy to obtain a bolt having further excellent mechanical strength and good heat resistance.

(Cr:0.30%以下(0%を含む))
Crは、Mn、Zrと同様に分散粒子を形成するため、アルミニウム合金線の熱処理時の結晶粒の粗大化を防止して、結晶粒を微細化させる効果がある。結晶粒を微細化させることで、ボルトの強度やボルトへの成形性の向上に寄与する。また、Crには耐食性を向上させる効果もある。Cr含有量の上限値を0.30%とすることで、結晶粒の粗大化を抑止し、結晶粒の微細化効果を適切に発現させる。Crは含有していなくても構わないが、好ましい含有量の下限値は0.01%であり、さらに好ましくは0.05%である。Crを0.01%以上含有することで、ボルトとした際に強度を得やすい。また、Crを0.05%以上含有することで、強度のみならず耐熱性にも優れたボルトとすることができる。
(Cr: 0.30% or less (including 0%))
Since Cr forms dispersed particles in the same manner as Mn and Zr, it has the effect of preventing the crystal grains from becoming coarse during the heat treatment of the aluminum alloy wire and miniaturizing the crystal grains. By making the crystal grains finer, it contributes to improving the strength of the bolt and the formability to the bolt. Cr also has the effect of improving corrosion resistance. By setting the upper limit of the Cr content to 0.30%, the coarsening of the crystal grains is suppressed and the effect of refining the crystal grains is appropriately expressed. Cr may not be contained, but the lower limit of the preferable content is 0.01%, and more preferably 0.05%. By containing 0.01% or more of Cr, it is easy to obtain strength when used as a bolt. Further, by containing 0.05% or more of Cr, a bolt excellent in not only strength but also heat resistance can be obtained.

(Zn:0.005〜0.50%)
Znは、アルミニウム母相に固溶し合金の強度を向上させる機能を有する。Znの含有量の下限値を0.005%とすることで、強度向上効果を適切に発揮させることができる。また、上限値を0.50%とするとことで、適切な耐食性を確保することができる。より好ましいZnの含有量は0.05〜0.25%である。この範囲とすることで、ボルトの成形に必要な靭性を確保し易く、一層機械的強度に優れ、加工性、耐熱性、耐食性が良好なボルトを得易い。
(Zn: 0.005-0.50%)
Zn has a function of improving the strength of the alloy by dissolving in the aluminum matrix. By setting the lower limit of the Zn content to 0.005%, the effect of improving the strength can be appropriately exhibited. Moreover, appropriate corrosion resistance can be ensured by setting the upper limit to 0.50%. A more preferable Zn content is 0.05 to 0.25%. By setting it within this range, it is easy to ensure the toughness necessary for forming the bolt, and it is easy to obtain a bolt having further excellent mechanical strength, excellent workability, heat resistance, and corrosion resistance.

(Ti:0.01〜0.20%)
Tiは、鋳造材の結晶組織を微細にしたり、鋳造材中の柱状晶の割合を抑え、等軸晶の割合を増加させる効果がある。従って、Tiを含有することにより、鋳造材の圧延加工性や伸線加工性、さらにはボルトへの成形性を向上できる。また、結晶組織が微細化されることで、塑性加工時に疵が生じ難いため疵が少なく、表面状態が優れた塑性加工材を得ることができる。Ti含有量の下限値を0.01%とすることで、結晶粒の微細化効果が得られ易い。Tiの含有量が多いほど、結晶粒の微細化、微細化に伴う疵の低減に効果があるが、0.20%程度でこの効果が飽和する傾向にあり、粗大な金属間化合物の生成も抑制できる。そのため、Ti含有量の上限値は0.20%とする。より好ましいTi含有量は0.01〜0.10%である。この範囲とすることで、一層機械的強度に優れたボルトを得易い。また、TiはTiB2として溶湯中に混合されることがあり、BもTiと同様に結晶組織を微細にして強度を向上させる効果がある。そのため、Bの含有も50ppm(質量比)以下程度は許容される。
(Ti: 0.01-0.20%)
Ti has the effect of making the crystal structure of the cast material fine, suppressing the ratio of columnar crystals in the cast material, and increasing the ratio of equiaxed crystals. Therefore, by containing Ti, it is possible to improve the rolling workability and wire drawing workability of the cast material, and further the formability to the bolt. In addition, since the crystal structure is made finer, it is difficult for wrinkles to occur during plastic processing, so that a plastic working material with less wrinkles and an excellent surface state can be obtained. By making the lower limit of the Ti content 0.01%, the effect of crystal grain refinement can be easily obtained. The higher the Ti content, the more effective the refinement of crystal grains and the reduction of wrinkles associated with the refinement, but this effect tends to saturate at about 0.20%, and the formation of coarse intermetallic compounds can also be suppressed. . Therefore, the upper limit of Ti content is 0.20%. A more preferable Ti content is 0.01 to 0.10%. By setting it within this range, it is easy to obtain a bolt having further excellent mechanical strength. Further, Ti may be mixed in the molten metal as TiB 2 , and B also has the effect of improving the strength by making the crystal structure finer like Ti. Therefore, the content of B is allowed to be about 50 ppm (mass ratio) or less.

(Zr:0.05〜0.20%)
Zrは、Mnと同様にそれぞれの元素を含有した分散粒子を形成し、アルミニウム合金線の熱処理時の結晶粒の粗大化を防止して、結晶粒を微細化させる作用がある。それに伴い、ボルトの強度やボルトへの成形性の向上に寄与する。また、Zrはアルミニウム合金線の耐熱性を向上するためにも必要な元素である。Zr含有量の下限値を0.05%とすることで、強度やボルトへの成形性向上効果を適切に得ることができる。上限値を0.20%とすることで、結晶粒の粗大化を効果的に抑制できる。好ましいZrの含有量は0.10〜0.20%である。この範囲とすることで、一層機械的強度に優れ、耐熱性が良好なボルトを得易い。
(Zr: 0.05-0.20%)
Zr, like Mn, forms dispersed particles containing the respective elements, and has the effect of preventing the crystal grains from becoming coarse during the heat treatment of the aluminum alloy wire and making the crystal grains finer. Along with this, it contributes to the improvement of bolt strength and formability to bolts. Zr is an element necessary for improving the heat resistance of the aluminum alloy wire. By setting the lower limit of the Zr content to 0.05%, it is possible to appropriately obtain the effect of improving the strength and the formability to the bolt. By setting the upper limit to 0.20%, it is possible to effectively suppress the coarsening of crystal grains. A preferable Zr content is 0.10 to 0.20%. By setting it as this range, it is easy to obtain a bolt having further excellent mechanical strength and good heat resistance.

(Sr:0.005〜0.05%)
Srも鋳造材の結晶組織を微細化する機能があり、得られたボルトの強度向上に寄与する。特に、Zrの存在下でSrを含有すると、アルミニウム合金線が脆化することなく、強度の向上を図ることができる。Sr含有量の下限値を0.005%とすることで、ボルトの強度向上効果を得易い。上限値を0.05%とすることで、アルミニウム合金線の脆化を効果的に抑制し、十分な強度を得ることができる。より好ましいSrの含有量は、0.005〜0.03%である。この範囲とすることで、一層機械的強度に優れ、耐熱性が良好なボルトを得易い。
(Sr: 0.005-0.05%)
Sr also has the function of refining the crystal structure of the cast material and contributes to improving the strength of the obtained bolt. In particular, when Sr is contained in the presence of Zr, the strength can be improved without the aluminum alloy wire becoming brittle. By setting the lower limit of the Sr content to 0.005%, it is easy to obtain an effect of improving the bolt strength. By setting the upper limit to 0.05%, embrittlement of the aluminum alloy wire can be effectively suppressed and sufficient strength can be obtained. A more preferable content of Sr is 0.005 to 0.03%. By setting it as this range, it is easy to obtain a bolt having further excellent mechanical strength and good heat resistance.

(Zr/Sr:3〜50)
上述したように、Zrは耐熱性を向上させるために必要な元素であるが、これが含有されると合金の融点が上がり、鋳込み温度が高くなって凝固が難しくなる。ビレット鋳造などでは比較的問題にならないが、連続鋳造の場合、溶湯の凝固時に外引けが生じると鋳造材の外表面が変形する現象が起き易い。この変形箇所は、鋳造材が鋳型と接触しなくなることで冷却が遅くなり、鋳造材内部の熱により融点以上の温度に再上昇して再溶融現象が起こり、結晶粒の粗大化や、鋳造材の表面性状の悪化を招く。その結果、この結晶粒の粗大化箇所や表面性状の悪化箇所が起点となって、鋳造後の圧延や伸線加工で疵となり易い。一方、Srはアルミニウム合金の強度を向上させる機能を有するが脆化も招き易い。ZrとSrの比率を所定の範囲に規定することで、Zrの含有による再溶融の発生やSrの含有による脆化を効果的に抑制することができる。この比率の下限値を3とすることで、Srに対して適量のZnが含有されているといえ、脆化を効果的に抑制して強度の向上に寄与することができる。比率の上限値を50とすることで、Znに対して適量のSrが含有されているといえ、再溶融に伴う不具合を解消し易い。より好ましい比率の範囲は5〜20程度である。この範囲とすることで、一層機械的強度に優れ、耐熱性が良好なボルトを得易い。この比率の限定は、本発明において必須ではない。
(Zr / Sr: 3-50)
As described above, Zr is an element necessary for improving the heat resistance, but if it is contained, the melting point of the alloy increases, the casting temperature becomes high, and solidification becomes difficult. Although it is not a problem in billet casting or the like, in the case of continuous casting, a phenomenon in which the outer surface of the cast material is deformed easily occurs when an outer shrinkage occurs during solidification of the molten metal. This deformed part is slow to cool because the cast material does not come into contact with the mold, re-raises to a temperature higher than the melting point due to the heat inside the cast material, a remelt phenomenon occurs, the crystal grains become coarse, the cast material The surface properties of the resin are deteriorated. As a result, the coarsened portion of the crystal grains and the deteriorated portion of the surface properties are the starting points, and are easily wrinkled by rolling or wire drawing after casting. On the other hand, Sr has a function of improving the strength of the aluminum alloy, but easily causes embrittlement. By defining the ratio of Zr and Sr within a predetermined range, occurrence of remelting due to the inclusion of Zr and embrittlement due to the inclusion of Sr can be effectively suppressed. By setting the lower limit of this ratio to 3, it can be said that an appropriate amount of Zn is contained with respect to Sr, which can effectively suppress embrittlement and contribute to the improvement of strength. By setting the upper limit of the ratio to 50, it can be said that an appropriate amount of Sr is contained with respect to Zn, and it is easy to eliminate the problems associated with remelting. A more preferable range of the ratio is about 5 to 20. By setting it as this range, it is easy to obtain a bolt having further excellent mechanical strength and good heat resistance. This limitation of the ratio is not essential in the present invention.

(Mg2Si/(Mn+Cr):1.0〜2.1)
SiとMgの一部は、アルミニウム合金のマトリックス中に固溶されて強度向上に寄与し、残部はMg2Siとして含有される。一方、CrとMnはいずれも分散粒子を形成して、組織の粗大化を抑制して強度の向上に寄与する機能を有する。このMg2Siの含有量と、CrとMnの合計量との比率を規定することで、高い機械的特性と耐熱性を備えるボルトを得ることができる。その理由は定かではないが、Mg2SiとMn,Crが相互作用することにより、高温保持時の時効進行による強度低下を抑制していると思われ、Mg2Si量に見合ったMn,Crを添加することで耐熱性が向上すると思われる。この比率は1.4〜2.0程度、特に1.5〜1.8程度が好ましい。また、アルミニウム合金に対し、人工時効後に加工が入った状態の場合は、Mn,Crが転位の移動を抑制し、加工硬化で強度が向上した部分の強度低下を抑制しているのではないかと考えられる。このMg2Siの含有量は、MgとSiの添加量から計算した値を用いる。具体的には、下記の式1によりMg2Siの含有量が求められる。この計算値は、溶体化処理及び時効処理を施してMg2Siを析出させた材料のMg2Siの含有量を示している。CrとMnの合計量は、0.55〜1.5%程度、さらには0.70〜1.4%程度、特に0.75〜1.3%程度が好ましい。この比率の限定は、本発明において必須ではない。
{Mg含有量[質量%]/(Mgの原子量×2)}×(Mg2Siの分子量) …式1
(Mg 2 Si / ( Mn + Cr ) : 1.0 to 2.1)
A part of Si and Mg is dissolved in the matrix of the aluminum alloy and contributes to strength improvement, and the remainder is contained as Mg 2 Si. On the other hand, both Cr and Mn have the function of forming dispersed particles and suppressing the coarsening of the structure to contribute to the improvement of strength. By defining the ratio between the Mg 2 Si content and the total amount of Cr and Mn, a bolt having high mechanical properties and heat resistance can be obtained. The reason is not clear, but the interaction between Mg 2 Si and Mn, Cr seems to suppress the decrease in strength due to the progress of aging during high temperature holding, and Mn, Cr commensurate with the amount of Mg 2 Si. It seems that heat resistance is improved by adding. This ratio is preferably about 1.4 to 2.0, particularly about 1.5 to 1.8. In addition, when aluminum alloy is processed after artificial aging, Mn and Cr suppress the movement of dislocations, and may suppress the strength reduction of the part where the strength is improved by work hardening. Conceivable. As the content of Mg 2 Si, a value calculated from the added amounts of Mg and Si is used. Specifically, the content of Mg 2 Si is obtained by the following formula 1. The calculated value indicates the content of Mg 2 Si of solution treated and aged to precipitate Mg 2 Si material. The total amount of Cr and Mn is preferably about 0.55 to 1.5%, more preferably about 0.70 to 1.4%, and particularly preferably about 0.75 to 1.3%. This limitation of the ratio is not essential in the present invention.
{Mg content [mass%] / (Mg atomic weight x 2)} x (Mg 2 Si molecular weight)

〔線径〕
本発明のアルミニウム合金線の線径は、特に限定されないが、例えば12mm〜3mm程度が選択できる。このような線径のアルミニウム合金線とすることで、自動車部品の締め付けなどに適したサイズのボルトを製造することができる。
〔Wire diameter〕
Although the wire diameter of the aluminum alloy wire of the present invention is not particularly limited, for example, about 12 mm to 3 mm can be selected. By using an aluminum alloy wire having such a wire diameter, a bolt having a size suitable for fastening automobile parts can be manufactured.

[アルミニウム合金線の製造方法]
アルミニウム合金線は、代表的には、鋳造、圧延、伸線及び中間軟化を経て製造される。各工程の詳細は次の通りである。
[Method of manufacturing aluminum alloy wire]
An aluminum alloy wire is typically manufactured through casting, rolling, wire drawing, and intermediate softening. Details of each step are as follows.

〔鋳造〕
上述した組成の鋳造材を鋳造する。鋳造は、連続鋳造が好適である。本発明製造方法では、アルミニウム合金を所定の組成とすることで、連続鋳造によっても表面性状に優れ、疵の少ない鋳造材とすることができる。このような鋳造材を用いることで、圧延時や伸線時に割れや疵が発生することを低減することができ、表面性状に優れる圧延材や伸線材とすることができる。特に、本発明の製造方法では、従来のように伸線途中の皮剥数を多くしたり、皮剥量を多くしたり、探傷器の感度を高めたりしなくても、表面状態に優れる伸線材を得ることができる。従って、本発明製造方法は、歩留まりがよく、表面状態に優れるアルミニウム合金線を生産性よく製造することができる。連続鋳造方法としては、ベルトアンドホイール方式が好ましい。
〔casting〕
A cast material having the composition described above is cast. Casting is preferably continuous casting. In the production method of the present invention, by making the aluminum alloy have a predetermined composition, it is possible to obtain a cast material having excellent surface properties and less wrinkles even by continuous casting. By using such a cast material, it is possible to reduce the occurrence of cracks and wrinkles during rolling or wire drawing, and it is possible to obtain a rolled material or wire drawing material having excellent surface properties. In particular, in the production method of the present invention, a wire drawing material having an excellent surface state can be obtained without increasing the number of peeling during drawing, increasing the amount of peeling, or increasing the sensitivity of the flaw detector as in the prior art. Can be obtained. Therefore, the production method of the present invention can produce an aluminum alloy wire having a good yield and an excellent surface state with high productivity. As the continuous casting method, a belt and wheel method is preferable.

鋳造時の冷却は、5℃/sec以上で行うことが好ましく、より好ましくは、8℃/sec以上、更に好ましくは20℃/sec以上である。冷却速度を5℃/sec以上とすることで、結晶粒が粗大化することを防止して、微細な組織の鋳造材としたり、単位断面積あたりの等軸晶の割合が高い鋳造材とすることができる。また、冷却過程にある溶湯のどの位置においても冷却速度が5℃/sec以上であること、つまり全体が均一的に冷却されることが好ましい。例えば、水冷銅鋳型や強制水冷機構などを有する連続鋳造機を用いると、上述のような冷却速度による急冷凝固を実現できる。   Cooling during casting is preferably performed at 5 ° C./sec or more, more preferably 8 ° C./sec or more, and further preferably 20 ° C./sec or more. By setting the cooling rate to 5 ° C / sec or more, the crystal grains are prevented from coarsening, so that the casting material has a fine structure or the ratio of equiaxed crystals per unit cross-sectional area is high. be able to. Further, it is preferable that the cooling rate is 5 ° C./sec or more at any position of the molten metal in the cooling process, that is, the whole is cooled uniformly. For example, when a continuous casting machine having a water-cooled copper mold or a forced water cooling mechanism is used, rapid solidification at the cooling rate as described above can be realized.

〔圧延〕
鋳造材は、圧延加工されて圧延材とされる。この圧延は熱間又は温間で行うことが好ましい。また、圧延は鋳造に連続して行うことが好ましい。圧延を鋳造に連続して行うと、鋳造材に蓄積される熱を利用して熱間圧延を容易に行えて、エネルギー効率がよい上に、バッチ式の鋳造方法と比較して、鋳造圧延材の生産性に優れる。例えば、ベルトとホイールを組み合わせた鋳造機とこの鋳造機に連なる圧延機を用いて行う。このような装置としては、プロペルチ式連続鋳造圧延機が挙げられる。
〔rolling〕
The cast material is rolled into a rolled material. This rolling is preferably performed hot or warm. Moreover, it is preferable to perform rolling continuously with casting. When rolling is continuously performed for casting, heat rolling can be easily performed using heat accumulated in the casting material, and energy efficiency is good. Excellent productivity. For example, a casting machine combining a belt and a wheel and a rolling mill connected to the casting machine are used. An example of such an apparatus is a Properti type continuous casting and rolling mill.

〔伸線〕
圧延材は伸線されて所定の線径に加工される。この伸線は冷間で行うことが好ましい。伸線前の圧延材の表面状態に応じて、皮剥加工を行ってもよい。
[Drawing]
The rolled material is drawn and processed into a predetermined wire diameter. This wire drawing is preferably performed cold. Depending on the surface state of the rolled material before drawing, stripping may be performed.

〔中間軟化〕
上記伸線の途中の線材に対して、軟化処理を行う。この中間軟化処理は、処理後の線材の伸びが10%以上となるような条件にて行う。この中間軟化処理は、結晶組織の微細化、及び加工硬化によって高めた線材の強度を極端に低下させることなく軟化して、線材の靭性を高めるために行う。
[Intermediate softening]
A softening process is performed on the wire in the middle of the wire drawing. This intermediate softening treatment is performed under conditions such that the elongation of the wire after the treatment is 10% or more. This intermediate softening treatment is performed in order to increase the toughness of the wire by softening without extremely reducing the strength of the wire that has been increased by refinement of the crystal structure and work hardening.

軟化処理は、バッチ処理が好適に利用できる。軟化処理中の雰囲気は、処理中の熱により線材の表面に酸化膜が生成されることを抑制するために、非酸化性雰囲気が好ましい。例えば、真空雰囲気(減圧雰囲気)、窒素(N2)やアルゴン(Ar)などの不活性ガス雰囲気、水素含有ガス(例えば、水素(H2)のみ、N2、Ar、ヘリウム(He)といった不活性ガスと水素(H2)との混合ガスなど)や炭酸ガス含有ガス(例えば、一酸化炭素(CO)と二酸化炭素(CO2)との混合ガスなど)といった還元ガス雰囲気が挙げられる。 As the softening treatment, a batch treatment can be suitably used. The atmosphere during the softening treatment is preferably a non-oxidizing atmosphere in order to suppress the formation of an oxide film on the surface of the wire due to the heat during the treatment. For example, a vacuum atmosphere (reduced pressure atmosphere), an inert gas atmosphere such as nitrogen (N 2 ) or argon (Ar), a hydrogen-containing gas (for example, hydrogen (H 2 ) only, an inert gas such as N 2 , Ar, helium (He), etc. A reducing gas atmosphere such as a mixed gas of active gas and hydrogen (H 2 ) and a carbon dioxide-containing gas (for example, a mixed gas of carbon monoxide (CO) and carbon dioxide (CO 2 )).

軟化処理は、加熱温度を250℃以上とすることで、線材の伸びを10%以上にすることができる。バッチ処理の場合、好ましい条件は、加熱温度:250℃以上500℃以下、保持時間:0.5時間以上、より好ましくは1時間以上である。加熱温度が250℃未満、保持時間が0.5時間未満では軟化処理の効果が乏しく、加熱温度が500℃超では、結晶粒及び晶析出物が粗大化し、加工性が低下し易い。特に加熱温度は300℃以上450℃以下、保持時間は2時間以上40時間以下とすることが望ましい。さらに好ましい加熱温度は380〜420℃であり、保持時間は24時間以下、特に保持時間は15時間以下である。   The softening treatment can increase the elongation of the wire to 10% or more by setting the heating temperature to 250 ° C. or higher. In the case of batch processing, preferable conditions are heating temperature: 250 ° C. or higher and 500 ° C. or lower, holding time: 0.5 hour or longer, more preferably 1 hour or longer. When the heating temperature is less than 250 ° C. and the holding time is less than 0.5 hour, the effect of the softening treatment is poor, and when the heating temperature exceeds 500 ° C., the crystal grains and crystal precipitates are coarsened and the workability is liable to be lowered. In particular, the heating temperature is preferably 300 ° C. or higher and 450 ° C. or lower, and the holding time is preferably 2 hours or longer and 40 hours or shorter. A more preferable heating temperature is 380 to 420 ° C., and the holding time is 24 hours or less, particularly the holding time is 15 hours or less.

〔その他〕
さらに、最終伸線後にも軟化処理(最終軟化処理)を行っても良い。この最終軟化処理も300℃以上で、1時間以上行うことが好適である。最終軟化処理により、ボルト加工時の成形性を向上できる。
[ボルト]
〔組成〕
ボルトの組成は、上述したアルミニウム合金線と同様である。
[Others]
Further, a softening process (final softening process) may be performed after the final wire drawing. This final softening treatment is also preferably performed at 300 ° C. or higher for 1 hour or longer. The final softening treatment can improve the formability during bolt processing.
[bolt]
〔composition〕
The composition of the bolt is the same as that of the aluminum alloy wire described above.

〔機械的特性〕
第一組成のアルミニウム合金線によれば、ボルト成形後の特性として、引張強さ:380MPa以上、0.2%耐力:350MPa以上、伸び:6%以上を得ることができる。また、第二組成のアルミニウム合金線によれば、ボルト成形後の特性として、引張強さ:400MPa以上、0.2%耐力:360MPa以上、伸び:6%以上を得ることができる。さらに、第三組成のアルミニウム合金線によれば、ボルト成形後の特性として、引張強さ:430MPa以上、0.2%耐力:370MPa以上、伸び:6%以上を得ることができる。
(Mechanical properties)
According to the aluminum alloy wire of the first composition, the tensile strength: 380 MPa or more, 0.2% proof stress: 350 MPa or more, and elongation: 6% or more can be obtained as the characteristics after bolt forming. Moreover, according to the aluminum alloy wire of the second composition, the tensile strength: 400 MPa or more, 0.2% proof stress: 360 MPa or more, and elongation: 6% or more can be obtained as the characteristics after bolt forming. Furthermore, according to the aluminum alloy wire of the third composition, the tensile strength: 430 MPa or more, 0.2% proof stress: 370 MPa or more, and elongation: 6% or more can be obtained after the bolt forming.

これらの特性は、いずれも最終伸線後のアルミニウム合金線に対してボルト加工を行い、その加工に際して溶体化処理及び時効処理を行った後の特性である。いずれの特性もJIS B1051に準拠して、製品であるボルトを試験片とする引張試験により測定することができる。   These characteristics are characteristics after performing bolt processing on the aluminum alloy wire after the final wire drawing, and performing solution treatment and aging treatment at the time of the processing. All of the characteristics can be measured by a tensile test using a bolt as a product according to JIS B1051.

[ボルトの製造方法]
ボルトは、代表的には、上記アルミニウム合金線の切断、ヘッダ加工、転造、及び溶体化処理と時効処理を経て製造される。各工程の詳細は次の通りである。
[Bolt manufacturing method]
The bolt is typically manufactured through cutting of the aluminum alloy wire, header processing, rolling, solution treatment, and aging treatment. Details of each step are as follows.

〔切断〕
切断は、上記アルミニウム合金線をボルトの加工に適した長さに切断する。得られる切断片の長さは、製造するボルトのサイズに応じて適宜選択すればよい。
[Cut]
The cutting is performed by cutting the aluminum alloy wire into a length suitable for processing the bolt. What is necessary is just to select the length of the cut piece obtained suitably according to the size of the volt | bolt to manufacture.

〔ヘッダ加工〕
ヘッダ加工は、切断工程で得られた切断片の端部を鍛造して、ボルトの頭部を成形する。この加工条件には公知の条件が適用できる。
[Header processing]
In the header processing, the end of the cut piece obtained in the cutting process is forged to form the head of the bolt. Known conditions can be applied to the processing conditions.

〔転造〕
転造加工は、切断工程で得られた切断片にねじ部を成形する。この加工条件には公知の条件が適用できる。通常、ヘッダ加工を行った後に転造が行われる。
[Rolling]
In the rolling process, a thread portion is formed on the cut piece obtained in the cutting step. Known conditions can be applied to the processing conditions. Usually, rolling is performed after header processing.

〔溶体化+時効〕
溶体化処理と時効処理は、ボルトへの加工対象に対して施すことで、合金中に析出物を生成し、加工対象の強度を向上させる。この溶体化と時効を行う手順は、次のパターンがある。
(1)切断→ヘッダ加工→溶体化+時効→転造
(2)切断→中間鍛造→溶体化+時効→ヘッダ加工→転造
(3)切断→ヘッダ加工→転造→溶体化+時効
[Solution + Aging]
The solution treatment and the aging treatment are performed on the workpiece to be bolted, thereby generating precipitates in the alloy and improving the strength of the workpiece. The procedure for solution and aging has the following pattern.
(1) Cutting → Header processing → Solution + Aging → Rolling (2) Cutting → Intermediate forging → Solution + Aging → Header processing → Rolling (3) Cutting → Header processing → Rolling → Solution + Aging

上記のうち、パターン(1)は、最終工程で転造を行うことで、ねじ部の寸法精度が高い。また、転造によってねじ部となる箇所に塑性加工を加えることにより、素材を加工硬化させ、ボルトの強度を若干高めることができる。   Among the above, the pattern (1) has high dimensional accuracy of the threaded portion by rolling in the final process. In addition, by applying plastic working to a portion that becomes a screw portion by rolling, the material can be work-hardened and the strength of the bolt can be slightly increased.

パターン(2)は、時効後に塑性加工を行うことにより、素材を加工硬化し、強度を高めることができる。   The pattern (2) can work and harden the material and increase the strength by performing plastic working after aging.

パターン(3)は、時効前に塑性加工を行うので、加工性が比較的低い材料でもねじに加工することができる。   Since the pattern (3) is subjected to plastic working before aging, a material having relatively low workability can be processed into a screw.

いずれのパターンであっても、溶体化処理の条件は、520〜560℃で1〜5時間、時効処理の条件は、160〜180℃で4〜30時間程度が好適である。この溶体化処理と時効処理によってもMg2Siの析出状態を制御することにより機械的特性を調整できる。 In any pattern, the solution treatment conditions are preferably 520 to 560 ° C. for 1 to 5 hours, and the aging treatment conditions are preferably 160 to 180 ° C. and about 4 to 30 hours. The mechanical properties can also be adjusted by controlling the precipitation state of Mg 2 Si by this solution treatment and aging treatment.

<試験例1>
鋳造→圧延→伸線→中間軟化→伸線の工程によりアルミニウム合金線を作製する。その作製過程において、鋳造材・伸線材の表面性状の評価を行い、さらに得られたアルミニウム合金線をボルトに加工して、成形時の割れや耐熱性について評価すると共に、ボルトの機械的特性を評価した。試料の組成を表1に、評価結果を表2に示す。表1、表2において、比較例2はA6056相当材である。
<Test Example 1>
An aluminum alloy wire is produced by a process of casting → rolling → drawing → intermediate softening → drawing. During the production process, the surface properties of the cast material and wire drawing material are evaluated, and the resulting aluminum alloy wire is processed into bolts to evaluate cracking and heat resistance during molding, and the mechanical properties of the bolts are also evaluated. evaluated. The composition of the sample is shown in Table 1, and the evaluation results are shown in Table 2. In Tables 1 and 2, Comparative Example 2 is an A6056 equivalent material.

《合金線の作製》
まず、ベースとなる純アルミニウムを溶解し、その溶湯に添加元素を所定の濃度となるように投入する。成分調整したアルミニウム合金の溶湯は、適宜、水素ガス除去処理や、異物除去処理を行う。このアルミニウム合金溶湯をベルト-ホイール式の連続鋳造圧延機により鋳造と熱間圧延を行い、φ9.5mmのワイヤロッドを作製する。鋳造時における冷却速度は、5℃/sec以上とする。また、水冷銅鋳型を用いて、冷却過程にある溶湯のどの位置においても冷却速度が5℃/sec以上となるようにした。組織微細化のためのTiとBは、Al-3%Ti-1%B(質量%)のワイヤを用意し、鋳型内に溶湯とワイヤが同時に供給されるようにして鋳造を行うことで添加した。続いて、このワイヤロッドを冷間にてφ8.3mmまで伸線した後、400℃×5時間の中間軟化処理をバッチ処理にて行い、さらにその軟化処理材をφ7.05mmまで伸線する。そして、得られた合金線に350℃×5時間の最終軟化処理をバッチ処理にて行い、アルミニウム合金線とする。なお、いずれの試料も、Siを化学量論組成よりも過剰に添加しているため、表1中のMg2Siの含有量は、下記の式1により演算で求めた。
{Mg含有量[質量%]/(Mgの原子量×2) }×(Mg2Siの分子量) …式1
<Production of alloy wire>
First, pure aluminum as a base is melted, and an additive element is introduced into the molten metal so as to have a predetermined concentration. The molten aluminum alloy whose components are adjusted is appropriately subjected to a hydrogen gas removal treatment or a foreign matter removal treatment. This aluminum alloy melt is cast and hot-rolled by a belt-wheel type continuous casting and rolling machine to produce a φ9.5 mm wire rod. The cooling rate during casting is 5 ° C / sec or more. In addition, a water-cooled copper mold was used so that the cooling rate was 5 ° C./sec or more at any position of the molten metal in the cooling process. Ti and B for microstructure refinement are added by preparing Al-3% Ti-1% B (mass%) wire and casting so that the molten metal and wire are simultaneously supplied into the mold. did. Subsequently, the wire rod is cold-drawn to φ8.3 mm, followed by batch softening at 400 ° C. for 5 hours, and the softened material is drawn to φ7.05 mm. And the final softening process of 350 degreeC x 5 hours is performed by batch processing to the obtained alloy wire, and it is set as an aluminum alloy wire. In each sample, since Si was added in excess of the stoichiometric composition, the content of Mg 2 Si in Table 1 was calculated by the following formula 1.
{Mg content [% by mass] / (Mg atomic weight x 2)} x (Mg 2 Si molecular weight)

《再溶融部分の評価》
得られた鋳造材を適宜サンプリングして外観を観察し、凝固時の再溶融に伴って生じた再溶融部分の数を調べる。再溶融部分の評価は、比較例2を基準として、再溶融部分の数が減少した試料を○、同等の試料を△、増加した試料を×とした。
<< Evaluation of remelted part >>
The obtained cast material is appropriately sampled and the appearance is observed, and the number of remelted portions generated along with remelting during solidification is examined. The evaluation of the remelted portion was based on Comparative Example 2, with the sample having the number of remelted portions decreased, ◯ for an equivalent sample, and × for the increased sample.

《探傷数の評価》
連続鋳造圧延により得られた圧延材を11.7mmまで伸線加工した段階で皮剥ぎダイスにより厚さ0.2mmの皮剥ぎを行う。なお、皮剥は行わなくてもよい。この皮剥ぎにより、再溶融以外の原因、例えば熱間圧延や、その後の伸線加工において発生する比較的小さな疵を除去することができる。探傷数の評価は、まず、上記の皮剥ぎ材に対して、伸線機に備えるオンラインの渦流型探傷器を用いて表面の疵の個数を観察し、探傷カウント部にマーキングを行う。そして、比較例1の探傷数を100として、その相対数で評価を行う。
<< Evaluation of the number of flaw detection >>
The rolled material obtained by continuous casting and rolling is stripped to a thickness of 11.7 mm and stripped to a thickness of 0.2 mm with a stripping die. Note that skinning may not be performed. By this skinning, it is possible to remove causes other than remelting, for example, relatively small wrinkles generated in hot rolling and subsequent wire drawing. Evaluation of the number of flaw detection is performed by first observing the number of wrinkles on the surface of the above stripping material using an on-line eddy current flaw detector provided in a wire drawing machine and marking the flaw detection count section. Then, assuming that the number of flaw detection in Comparative Example 1 is 100, the relative number is used for evaluation.

《ボルトの作製》
得られたアルミニウム合金線からボルトを作製する。本例では、M8ボルトのT6処理材と、T6処理材に冷間加工(中間鍛造)を加えたT9処理材を作製した。各ボルトの製造過程は次の通りである。いずれも溶体化処理は550℃×2時間、時効処理は175℃×8時間とした。なお、比較例1〜7については、T9処理材を作製していない。
<Production of bolt>
A bolt is produced from the obtained aluminum alloy wire. In this example, an M8 bolt T6 treated material and a T9 treated material obtained by adding cold working (intermediate forging) to the T6 treated material were produced. The manufacturing process of each bolt is as follows. In either case, the solution treatment was 550 ° C. × 2 hours, and the aging treatment was 175 ° C. × 8 hours. In Comparative Examples 1 to 7, no T9 treatment material was produced.

T6処理材
切断→ヘッダ加工→溶体化処理→時効処理→転造
T9処理材
切断→中間鍛造→溶体化処理→時効処理→ヘッダ加工→転造
T6 treatment material Cutting → Header processing → Solution treatment → Aging treatment → Rolling
T9 treated material Cutting → Intermediate forging → Solution treatment → Aging treatment → Header processing → Rolling

《ボルトの割れの評価》
得られたボルト500個中の割れの発生率で評価する。この割れの有無は、ヘッダ加工時又は転造時などに生じた割れを目視にて観察して判断する。この評価は、比較例2を基準として、比較例2と同等なら△、20%以上改善されていたら○、20%以上劣っていたら×とする。例えば、比較例2の割れの発生数が10個であったとすると、試料の割れの発生数が8個以下であれば、20%以上改善されたことになり、12個以上であれば、20%以上劣っていることになる。
<Evaluation of bolt cracking>
Evaluation is based on the occurrence rate of cracks in 500 bolts obtained. The presence or absence of this crack is judged by visually observing a crack generated during header processing or rolling. This evaluation is based on the comparative example 2 as △, if it is equivalent to the comparative example 2, △ if it is improved by 20% or more, ◯ if it is inferior by 20% or more. For example, if the number of occurrences of cracks in Comparative Example 2 was 10, if the number of occurrences of cracks in the sample was 8 or less, it was improved by 20% or more. % Is inferior.

《耐熱性試験》
作製したボルトを150℃で1000時間保持した後、室温で引張試験を行い、この熱処理前の引張強さに対する熱処理後の引張強さの低下率で耐熱性を評価した。比較例2を基準として、上記低下率が同等なら○、20%以上改善されたら◎とした。20%以上の改善とは、例えば比較例2の低下率が10%であるとしたとき、試料の低下率が8%以下となることである。
<Heat resistance test>
The produced bolt was held at 150 ° C. for 1000 hours and then subjected to a tensile test at room temperature. The heat resistance was evaluated by the rate of decrease in tensile strength after heat treatment relative to the tensile strength before heat treatment. On the basis of Comparative Example 2, it was rated as ○ if the above-mentioned decrease rate was the same, and ◎ if improved by 20% or more. The improvement of 20% or more means that, for example, when the decrease rate of Comparative Example 2 is 10%, the decrease rate of the sample is 8% or less.

《機械的特性の評価》
ボルトを試料として常温にて引張試験を行い、引張強さ、0.2%耐力、及び伸びを評価した。この引張試験はJIS B1051に準拠して行う。但し、上述したT9処理材については、引張強さと0.2%耐力のみを表2に示している。
<< Evaluation of mechanical properties >>
Tensile tests were conducted at room temperature using bolts as samples to evaluate tensile strength, 0.2% proof stress, and elongation. This tensile test is performed in accordance with JIS B1051. However, only the tensile strength and 0.2% proof stress are shown in Table 2 for the T9 treated material described above.

Figure 0005802114
Figure 0005802114

Figure 0005802114
Figure 0005802114

《考察》
表1と表2に示すように、Srを0.005質量%以上含有する本発明1〜14は、再溶融、探傷数、割れのいずれの評価も良好である。また、これらのT6処理材は、引張強さ:380MPa以上、0.2%耐力:350MPa以上、伸び:6%以上を備えており、T9処理材は、引張強さ:460MPa以上、0.2%耐力:440MPa以上で、耐熱性も備えている。また、第二組成を有する本発明2、9は引張強さ:400MPa以上、0.2%耐力:360MPa以上、伸び:6%以上を備えている。さらに、第三組成を有する本発明4、6〜8、10、12のT6処理材は、引張強さ:430MPa以上、0.2%耐力:370MPa以上、伸び:6%以上を備えている。特に、第三組成を有し、Zr/Srが3〜50で、Mg2Si/(Mn+Cr)が1.0〜2.1である本発明4、6、7、8、10、12のT9処理材は、引張強さ:510MPa以上、0.2%耐力:500MPa以上を備え、良好な耐熱性をも有している。中でも、Zr/Srが3以上40未満である本発明4、6、7、8、12、とりわけZr/Srが5以上15以下である本発明4、6、7、12のT9処理材は、高い耐熱性をも有している。一方、第一組成を満たさない比較例は、いずれも再溶融、探傷数或いはボルトへの成形性の点で改善効果が不十分か若しくは劣り、耐熱性も20%以上改善されたものが存在しない。
<Discussion>
As shown in Tables 1 and 2, the present inventions 1 to 14 containing 0.005% by mass or more of Sr are good in any evaluation of remelting, flaw detection number, and cracking. These T6 treated materials have tensile strength: 380 MPa or more, 0.2% proof stress: 350 MPa or more, elongation: 6% or more, and T9 treated materials have tensile strength: 460 MPa or more, 0.2% proof stress: 440 MPa. As described above, it also has heat resistance. In addition, the present inventions 2 and 9 having the second composition are provided with tensile strength: 400 MPa or more, 0.2% proof stress: 360 MPa or more, and elongation: 6% or more. Further, the T6 treated material of the present invention 4, 6-8, 10, 12 having the third composition has a tensile strength: 430 MPa or more, 0.2% proof stress: 370 MPa or more, and elongation: 6% or more. In particular, the T9 treatment material of the present invention 4, 6, 7, 8, 10, 12 having a third composition, Zr / Sr of 3 to 50, and Mg 2 Si / ( Mn + Cr ) of 1.0 to 2.1, Tensile strength: 510MPa or more, 0.2% proof stress: 500MPa or more, and good heat resistance. Among them, the present invention 4, 6, 7, 8, 12 wherein Zr / Sr is 3 or more and less than 40, especially the T9 treatment material of the present invention 4, 6, 7, 12 wherein Zr / Sr is 5 or more and 15 or less, It also has high heat resistance. On the other hand, none of the comparative examples not satisfying the first composition has an insufficient or inferior improvement effect in terms of remelting, the number of flaw detections or formability to bolts, and no heat resistance is improved by 20% or more. .

なお、本発明は、上述した実施の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲で適宜変更することが可能である。   Note that the present invention is not limited to the above-described embodiment, and can be modified as appropriate without departing from the gist of the present invention.

本発明のアルミニウム合金線及びその製造方法は、ボルトの素線或いはその製造に利用でき、本発明のボルト及びその製造方法は、自動車部品の締付用ボルト或いはその製造に好適に利用できる。   The aluminum alloy wire of the present invention and the method for manufacturing the same can be used for a bolt wire or the manufacturing thereof, and the bolt of the present invention and the method for manufacturing the same can be suitably used for a bolt for tightening automobile parts or the manufacturing thereof.

Claims (6)

質量%で、
Si:0.60〜1.5%
Fe:0.02〜0.40%
Cu:0.50〜1.2%
Mn:0.50〜1.1%
Mg:0.70〜1.3%
Cr:0.30%以下(0%を含む)
Zn:0.005〜0.50%
Ti:0.01〜0.20%
Zr:0.05〜0.20%
Sr:0.005〜0.05%
を含み、残部がAl及び不可避的不純物からなるボルト用アルミニウム合金線。
% By mass
Si: 0.60 to 1.5%
Fe: 0.02-0.40%
Cu: 0.50-1.2%
Mn: 0.50 to 1.1%
Mg: 0.70 to 1.3%
Cr: 0.30% or less (including 0%)
Zn: 0.005-0.50%
Ti: 0.01-0.20%
Zr: 0.05-0.20%
Sr: 0.005-0.05%
Hints, Rubo aluminum alloy wire belt, such a balance is Al and inevitable impurities.
質量%で、Sr:0.005〜0.03%
Zrの含有量とSrの含有量の比率Zr/Srが3〜50である請求項1に記載のボルト用アルミニウム合金線。
In mass%, Sr: 0.005-0.03%
Zr content and bolt aluminum alloy wire according ratio Zr / Sr content is 3 to 50 der Ru請 Motomeko 1 Sr.
質量%で、
Si:0.80〜1.4%
Fe:0.05〜0.30%
Cu:0.50〜1.2%
Mn:0.50〜1.1%
Mg:0.80〜1.3%
Cr:0.01〜0.30%
Zn:0.05〜0.25%
Ti:0.01〜0.10%
Zr:0.10〜0.20%
Sr:0.005〜0.03%
を含む請求項1又は請求項2に記載のボルト用アルミニウム合金線。
% By mass
Si: 0.80 to 1.4%
Fe: 0.05-0.30%
Cu: 0.50-1.2%
Mn: 0.50 to 1.1%
Mg: 0.80 to 1.3%
Cr: 0.01-0.30%
Zn: 0.05-0.25%
Ti: 0.01-0.10%
Zr: 0.10 to 0.20%
Sr: 0.005-0.03%
The including請 Motomeko 1 or claim 2 volts for aluminum alloy wire according to.
質量%で、
Cu:0.80〜1.2%
Mn:0.70〜1.1%
Cr:0.05〜0.30%
を含む請求項3に記載のボルト用アルミニウム合金線。
% By mass
Cu: 0.80-1.2%
Mn: 0.70 to 1.1%
Cr: 0.05-0.30%
Bolt aluminum alloy wire according to including請 Motomeko 3.
質量%で、
Si:0.60〜1.5%
Fe:0.02〜0.40%
Cu:0.50〜1.2%
Mn:0.50〜1.1%
Mg:0.70〜1.3%
Cr:0.30%以下(0%を含む)
Zn:0.005〜0.50%
Ti:0.01〜0.20%
Zr:0.05〜0.20%
Sr:0.005〜0.05%
を含み、残部がAl及び不可避的不純物からなる鋳造材を得る工程と、
この鋳造材を圧延して圧延材とする工程と、
前記圧延材を伸線して所定の線径の伸線材とする工程と、
前記伸線工程の途中の線材に対して250〜500℃で0.5〜40時間の軟化処理を行う工程とを備えるボルト用アルミニウム合金線の製造方法。
% By mass
Si: 0.60 to 1.5%
Fe: 0.02-0.40%
Cu: 0.50-1.2%
Mn: 0.50 to 1.1%
Mg: 0.70 to 1.3%
Cr: 0.30% or less (including 0%)
Zn: 0.005-0.50%
Ti: 0.01-0.20%
Zr: 0.05-0.20%
Sr: 0.005-0.05%
A step of obtaining a cast material, the balance of which is made of Al and inevitable impurities,
Rolling the cast material into a rolled material;
Drawing the rolled material into a drawn material having a predetermined wire diameter;
Method for producing Rubo belt for aluminum alloy wire and a step of performing a softening treatment from 0.5 to 40 hours at 250 to 500 ° C. relative to the middle of the wire of the wire drawing step.
アルミニウム合金からなるボルトであって、
前記アルミニウム合金が、質量%で以下の元素を含み、残部がAl及び不可避的不純物からなり、
Si:0.60〜1.5%
Fe:0.02〜0.40%
Cu:0.50〜1.2%
Mn:0.50〜1.1%
Mg:0.70〜1.3%
Cr:0.30%以下(0%を含む)
Zn:0.005〜0.50%
Ti:0.01〜0.20%
Zr:0.05〜0.20%
Sr:0.005〜0.05%
引張強さ:380MPa以上、
0.2%耐力:350MPa以上、
伸び:6%以上
であるボルト。
A bolt made of an aluminum alloy,
The aluminum alloy contains the following elements in mass%, the balance consists of Al and inevitable impurities,
Si: 0.60 to 1.5%
Fe: 0.02-0.40%
Cu: 0.50-1.2%
Mn: 0.50 to 1.1%
Mg: 0.70 to 1.3%
Cr: 0.30% or less (including 0%)
Zn: 0.005-0.50%
Ti: 0.01-0.20%
Zr: 0.05-0.20%
Sr: 0.005-0.05%
Tensile strength: 380MPa or more,
0.2% proof stress: 350MPa or more,
Growth: 6% or more der Rubo belt.
JP2011250529A 2011-11-16 2011-11-16 Aluminum alloy wire for bolt, bolt and method for producing aluminum alloy wire for bolt Active JP5802114B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011250529A JP5802114B2 (en) 2011-11-16 2011-11-16 Aluminum alloy wire for bolt, bolt and method for producing aluminum alloy wire for bolt

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011250529A JP5802114B2 (en) 2011-11-16 2011-11-16 Aluminum alloy wire for bolt, bolt and method for producing aluminum alloy wire for bolt

Publications (2)

Publication Number Publication Date
JP2013104123A JP2013104123A (en) 2013-05-30
JP5802114B2 true JP5802114B2 (en) 2015-10-28

Family

ID=48623900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011250529A Active JP5802114B2 (en) 2011-11-16 2011-11-16 Aluminum alloy wire for bolt, bolt and method for producing aluminum alloy wire for bolt

Country Status (1)

Country Link
JP (1) JP5802114B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104451278B (en) * 2013-09-23 2017-06-06 比亚迪股份有限公司 A kind of pack alloy and preparation method thereof
JP6420553B2 (en) * 2014-03-03 2018-11-07 住友電気工業株式会社 Aluminum alloy, aluminum alloy wire, aluminum alloy wire manufacturing method, aluminum alloy member manufacturing method, and aluminum alloy member
CN105803269B (en) * 2016-05-03 2017-10-03 贵州航天风华精密设备有限公司 A kind of high-strength aluminum alloy and its manufacture craft
KR20240013741A (en) * 2021-05-27 2024-01-30 스미토모덴키고교가부시키가이샤 Aluminum alloy, aluminum alloy wire, and method for manufacturing aluminum alloy wire

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3939414B2 (en) * 1997-12-12 2007-07-04 古河スカイ株式会社 High-strength aluminum alloy screw and manufacturing method thereof
JP5421613B2 (en) * 2009-02-20 2014-02-19 株式会社神戸製鋼所 High strength aluminum alloy wire rod excellent in softening resistance and manufacturing method thereof
JP5385025B2 (en) * 2009-06-18 2014-01-08 株式会社神戸製鋼所 Aluminum alloy wire rod for high-strength bolt excellent in formability and manufacturing method thereof, high-strength flange bolt and manufacturing method thereof
JP5495183B2 (en) * 2010-03-15 2014-05-21 日産自動車株式会社 Aluminum alloy and high strength bolt made of aluminum alloy
JP5335056B2 (en) * 2011-11-16 2013-11-06 住友電気工業株式会社 Aluminum alloy wire for bolt, bolt and method for producing the same

Also Published As

Publication number Publication date
JP2013104123A (en) 2013-05-30

Similar Documents

Publication Publication Date Title
JP5335056B2 (en) Aluminum alloy wire for bolt, bolt and method for producing the same
JP5287062B2 (en) Low specific gravity titanium alloy, golf club head, and method for manufacturing low specific gravity titanium alloy parts
JP5863626B2 (en) Aluminum alloy forging and method for producing the same
JP5276341B2 (en) Aluminum alloy material for high pressure gas containers with excellent hydrogen embrittlement resistance
US10913242B2 (en) Titanium material for hot rolling
JP2012207302A (en) METHOD FOR MANUFACTURING EXTRUDED MATERIAL OF HEAT TREATMENT TYPE Al-Zn-Mg-BASED ALUMINUM ALLOY
WO2016161565A1 (en) Formable magnesium based wrought alloys
WO2014163087A1 (en) Titanium cast piece for hot rolling use, and method for producing same
JP2013104122A5 (en)
JP2011144396A (en) High strength aluminum alloy extruded material having excellent stress corrosion cracking resistance
JP2016222959A (en) High-strength aluminum alloy sheet
JP5802114B2 (en) Aluminum alloy wire for bolt, bolt and method for producing aluminum alloy wire for bolt
JP5275321B2 (en) Manufacturing method of plastic products made of aluminum alloy
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP5555154B2 (en) Copper alloy for electrical and electronic parts and method for producing the same
US11186899B2 (en) Magnesium-zinc-manganese-tin-yttrium alloy and method for making the same
JP2013177686A (en) Method for producing plastic worked article made of aluminum alloy
WO2019155553A1 (en) Titanium alloy material
JP4996854B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP2013234389A (en) Aluminum alloy wire for bolt, bolt and methods of manufacturing the same
JP2024518681A (en) Materials for manufacturing high strength fasteners and methods for manufacturing same
JP2012082469A (en) Aluminum alloy
JP2018024922A (en) Al ALLOY CASTING AND PRODUCTION METHOD THEREOF
JPH0696756B2 (en) Of heat-treating Al-Cu based aluminum alloy ingot for processing and method of manufacturing extruded material using the same
JP2009041113A (en) Automobile component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140819

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20150601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150713

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150828

R150 Certificate of patent or registration of utility model

Ref document number: 5802114

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250