JP2012107339A - Aluminum alloy sheet for automobile and manufacturing method therefor - Google Patents
Aluminum alloy sheet for automobile and manufacturing method therefor Download PDFInfo
- Publication number
- JP2012107339A JP2012107339A JP2011287228A JP2011287228A JP2012107339A JP 2012107339 A JP2012107339 A JP 2012107339A JP 2011287228 A JP2011287228 A JP 2011287228A JP 2011287228 A JP2011287228 A JP 2011287228A JP 2012107339 A JP2012107339 A JP 2012107339A
- Authority
- JP
- Japan
- Prior art keywords
- mass
- aluminum alloy
- property
- less
- formability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Metal Rolling (AREA)
Abstract
Description
本発明は、自動車用アルミニウム合金板及びその製造方法に係り、特に自動車用ボディシートなどの成形用に好適なアルミニウム合金板及びその製造方法に関する。 The present invention relates to an aluminum alloy plate for automobiles and a method for producing the same, and more particularly to an aluminum alloy plate suitable for forming automobile body sheets and the like and a method for producing the same.
従来、例えば自動車用の外板には、主として冷延鋼板が用いられている。しかし、最近になって自動車車体の軽量化に伴い、Al−Mg系、Al−Mg−Si系等のアルミニウム合金板の使用が検討されている。特にAl−Mg系合金板は、強度、成形性及び耐食性が優れることから、自動車用ボディシートとして提案されている。 Conventionally, for example, a cold-rolled steel sheet is mainly used for an outer plate for an automobile. Recently, however, the use of aluminum alloy plates such as Al—Mg and Al—Mg—Si has been studied along with the weight reduction of automobile bodies. In particular, Al—Mg alloy plates have been proposed as automobile body sheets because of their excellent strength, formability, and corrosion resistance.
これらアルミニウム合金板の製造方法として、従来、DC鋳造によってスラブを鋳造し、スラブの両面を面削後、ソーキング炉によって均質化処理を施し、熱間圧延、冷間圧延、中間焼鈍、冷間圧延、最終焼鈍を施し、所定の板厚に仕上げる方法が採用されている(特許文献1)。 As a method for producing these aluminum alloy sheets, conventionally, slabs are cast by DC casting, both sides of the slab are chamfered, and then homogenized by a soaking furnace, hot rolling, cold rolling, intermediate annealing, cold rolling. A method of performing final annealing and finishing to a predetermined plate thickness is employed (Patent Document 1).
これに対して、ベルト式鋳造機によって連続的に薄スラブを鋳造、これを直接コイルに巻き取って、冷間圧延、最終焼鈍を施し、所定の板厚に仕上げる方法が提唱されている。例えば、Mg:3.3〜3.5wt%、Mn:0.1〜0.2wt%を含み、さらにFe:0.3wt%以下、Si:0.15wt%以下のいずれか1種または2種以上を含み、残部通常の不純物とAlからなる溶湯を、双ベルト式鋳造機により1/4厚みにおける冷却速度が40〜90℃/secとなるよう厚さ5〜10mmの薄スラブを速度5〜15m/minで鋳造してロールに巻き取った後、ロール表面粗度Ra0.2〜0.7μmのロールにより冷間圧延し、焼鈍を施すことを特徴とするプレス成形性および耐応力腐食割れ性に優れたことを特徴とする自動車用アルミニウム合金板の製造方法が開示されている(特許文献2)。 On the other hand, a method has been proposed in which a thin slab is continuously cast by a belt-type casting machine, wound directly on a coil, subjected to cold rolling and final annealing, and finished to a predetermined thickness. For example, Mg: 3.3 to 3.5 wt%, Mn: 0.1 to 0.2 wt%, Fe: 0.3 wt% or less, Si: 0.15 wt% or less, any one or two Including the above, the remaining ordinary impurities and Al molten metal, a thin slab having a thickness of 5 to 10 mm to a cooling rate of 40 to 90 ° C./sec. Press formability and stress corrosion cracking resistance, characterized by casting at 15 m / min and winding on a roll, followed by cold rolling with a roll having a roll surface roughness Ra of 0.2 to 0.7 μm and annealing. A method for manufacturing an aluminum alloy sheet for automobiles, which is characterized by excellent performance, is disclosed (Patent Document 2).
しかし、この方法では、再結晶粒微細化を目的として、溶湯の化学組成として、Mn0.1〜0.2wt%が含有されており、凝固冷却速度が比較的速いため、Al−(Fe・Mn)−Siなどの金属間化合物のサイズが小さくなって成形性に優れている反面、マトリックス中のMnの固溶量が高くなりすぎるため、耐力が高く成形後のスプリングバックが大きくなるという問題がある。 However, in this method, for the purpose of recrystallized grain refinement, as the chemical composition of the molten metal, 0.1 to 0.2 wt% of Mn is contained, and since the solidification cooling rate is relatively fast, Al— (Fe · Mn ) Although the size of intermetallic compounds such as -Si is reduced and the moldability is excellent, the solid solution amount of Mn in the matrix becomes too high, so the problem is that the yield strength is high and the springback after molding becomes large. is there.
この問題を解決するため、例えば、Mg:3〜6%を含有するアルミニウム合金の連続鋳造圧延板を焼鈍処理した後、歪矯正を施し、240乃至340℃の入る所定の温度で1時間以上行い、その後徐冷するといういわゆる安定化処理も提唱されている(特許文献3)。 In order to solve this problem, for example, after annealing a continuous cast rolled sheet of aluminum alloy containing Mg: 3 to 6%, the distortion is corrected, and is performed at a predetermined temperature of 240 to 340 ° C. for 1 hour or more. A so-called stabilization process of slow cooling is also proposed (Patent Document 3).
しかし、連続鋳造圧延板に安定化処理を施すことはコスト面から不利であるため、安定化処理を施すことなく、成形性および形状凍結性に優れたAl−Mg系合金板を製造することが課題となっていた。 However, since it is disadvantageous from the viewpoint of cost to perform the stabilization treatment on the continuously cast and rolled plate, it is possible to produce an Al-Mg alloy plate excellent in formability and shape freezing property without performing the stabilization treatment. It was an issue.
上記の課題を解決するために、本願発明では、Mg:3.0〜3.5mass%、Fe:0.05〜0.3mass%、Si:0.05〜0.15mass%を含み、さらにMn:0.1mass%未満に規制し、残部実質的に不可避的不純物とAlからなる溶湯を、双ベルト式鋳造機により1/4厚みにおける冷却速度が20〜200℃/secとなるよう厚さ5〜15mmの薄スラブを鋳造してコイルに巻き取った後、ロール粗度Ra:0.2〜0.7μmのロールにより冷延率60〜98%の冷間圧延を施し、CALにより保持温度400〜520℃で連続的に最終焼鈍を施した後、レベラーで歪矯正することを特徴とするプレス成形性、肌荒れ性および形状凍結性に優れた自動車用アルミニウム合金板の製造方法を採用した。また、上記最終焼鈍は、バッチ焼鈍炉により保持温度300〜400℃で施してもよい。 In order to solve the above problems, the present invention includes Mg: 3.0 to 3.5 mass%, Fe: 0.05 to 0.3 mass%, Si: 0.05 to 0.15 mass%, and Mn : The thickness is controlled to be less than 0.1 mass%, and the remaining substantially inevitable impurities and Al are melted to a thickness of 5 so that the cooling rate at 1/4 thickness is 20 to 200 ° C./sec by a twin belt type casting machine. After casting a thin slab of ˜15 mm and winding it on a coil, it is cold-rolled with a roll roughness Ra of 0.2 to 0.7 μm and a cold rolling rate of 60 to 98%, and a holding temperature of 400 by CAL. A method for producing an aluminum alloy plate for automobiles excellent in press formability, rough surface property and shape freezing property, characterized by performing final annealing continuously at ˜520 ° C. and then correcting the strain with a leveler, was adopted. The final annealing may be performed at a holding temperature of 300 to 400 ° C. using a batch annealing furnace.
このような製造方法を採用することにより、Mg:3.0〜3.5mass%、Fe:0.05〜0.3mass%、Si:0.05〜0.15mass%を含み、さらにMn:0.1mass%未満に規制し、残部実質的に不可避的不純物とAlからなり、板厚1/4厚さの領域における金属間化合物の円相当径の最大径が5μm以下、平均再結晶粒径が15μm以下であり、かつ表面粗度がRa0.2〜0.6μmで、耐力145MPa以下、引張強さ225MPa以上であることを特徴とするプレス成形性、肌荒れ性および形状凍結性に優れた自動車用アルミニウム合金板を提供することが可能となった。 By adopting such a production method, Mg: 3.0 to 3.5 mass%, Fe: 0.05 to 0.3 mass%, Si: 0.05 to 0.15 mass%, and Mn: 0 0.1% by mass, the balance is substantially inevitable impurities and Al, and the maximum equivalent circle diameter of the intermetallic compound in the region of 1/4 thickness is 5 μm or less, and the average recrystallized grain size is It is 15 μm or less, has a surface roughness Ra of 0.2 to 0.6 μm, a proof stress of 145 MPa or less, and a tensile strength of 225 MPa or more, and has excellent press formability, rough skin property and shape freezing property. It became possible to provide an aluminum alloy sheet.
本発明によれば、連続鋳造圧延板に安定化処理を施すことなく、成形性および形状凍結性に優れたAl−Mg系合金板を製造することができる。 ADVANTAGE OF THE INVENTION According to this invention, the Al-Mg type | system | group alloy board excellent in the moldability and the shape freezing property can be manufactured, without performing a stabilization process to a continuous cast rolling board.
本発明において合金の化学組成を限定した理由を説明する。本明細書中で化学組成を表す「%」は特に断らない限り「質量%」の意味である。 The reason why the chemical composition of the alloy is limited in the present invention will be described. In the present specification, “%” representing the chemical composition means “% by mass” unless otherwise specified.
〔Mg:3.0〜3.5%〕
Mgは固溶強化によって強度を高める元素であり、3.0%未満であるとこの効果を発現することができず、引張り強度が低下する。Mg含有量が3.5%を超えると耐力が高くなりすぎて形状凍結性が低下する。
[Mg: 3.0-3.5%]
Mg is an element that increases the strength by solid solution strengthening, and if it is less than 3.0%, this effect cannot be exhibited, and the tensile strength decreases. When the Mg content exceeds 3.5%, the yield strength becomes too high and the shape freezing property is lowered.
〔Fe:0.05〜0.3%〕
Feは鋳造時にAl−Fe−Si系などの金属間化合物の微細粒子として晶出し、冷間圧延後の焼鈍の際に再結晶の核生成サイトとして機能する。したがって、これら金属間化合物の粒子個数が多いほど生成する再結晶核が多くなり、その結果、多数の微細な再結晶粒が形成される。また、金属間化合物の微細粒子は、生成した再結晶粒の粒界をピン止めして結晶粒の合体による成長を抑制し、微細な再結晶粒を安定に維持する。この効果を発現するにはFe含有量を0.05%以上とする必要がある。ただし、Fe含有量が0.3%を超えると晶出する金属間化合物が粗大化する傾向が強くなり、成形時にこの金属間化合物を起点としてボイドを形成し成形性が劣る。したがって、Fe含有量は0.05〜0.3%に限定する。好ましい範囲は0.05〜0.25%である。
[Fe: 0.05 to 0.3%]
Fe crystallizes as fine particles of an intermetallic compound such as Al-Fe-Si during casting, and functions as a recrystallization nucleation site during annealing after cold rolling. Therefore, the larger the number of particles of these intermetallic compounds, the more recrystallized nuclei that are generated. As a result, a large number of fine recrystallized grains are formed. In addition, the fine particles of the intermetallic compound pin the grain boundaries of the generated recrystallized grains, suppress the growth due to the coalescence of the crystal grains, and stably maintain the fine recrystallized grains. In order to exhibit this effect, the Fe content needs to be 0.05% or more. However, if the Fe content exceeds 0.3%, the tendency of the intermetallic compound to crystallize becomes strong, and voids are formed starting from this intermetallic compound during molding, resulting in poor moldability. Therefore, the Fe content is limited to 0.05 to 0.3%. A preferable range is 0.05 to 0.25%.
〔Si:0.05〜0.15%〕
Siは鋳造時にAl−Fe−Si系などの金属間化合物の微細粒子として晶出し、冷間圧延後の焼鈍の際に再結晶の核生成サイトとして機能する。したがって、これら金属間化合物の粒子個数が多いほど生成する再結晶核が多くなり、その結果、多数の微細な再結晶粒が形成される。また、金属間化合物の微細粒子は、生成した再結晶粒の粒界をピン止めして結晶粒の合体による成長を抑制し、微細な再結晶粒を安定に維持する。この効果を発現するにはSi含有量を0.05%以上とする必要がある。ただし、Si含有量が0.15%を超えると晶出する金属間化合物が粗大化する傾向が強くなり、成形時にこの金属間化合物を起点としてボイドを形成し成形性が劣る。したがって、Si含有量は0.05〜0.15%に限定する。好ましい範囲は0.05〜0.1%である。
[Si: 0.05 to 0.15%]
Si crystallizes as fine particles of an intermetallic compound such as Al-Fe-Si during casting, and functions as a recrystallization nucleation site during annealing after cold rolling. Therefore, the larger the number of particles of these intermetallic compounds, the more recrystallized nuclei that are generated. As a result, a large number of fine recrystallized grains are formed. In addition, the fine particles of the intermetallic compound pin the grain boundaries of the generated recrystallized grains, suppress the growth due to the coalescence of the crystal grains, and stably maintain the fine recrystallized grains. In order to exhibit this effect, the Si content needs to be 0.05% or more. However, if the Si content exceeds 0.15%, the tendency of the intermetallic compound to crystallize becomes strong, and voids are formed starting from this intermetallic compound during molding, resulting in poor moldability. Therefore, the Si content is limited to 0.05 to 0.15%. A preferable range is 0.05 to 0.1%.
〔Mn:0.1%未満〕
Mn含有量が0.1%以上の場合、鋳造時の凝固冷却速度が高いため、マトリックス中のMn固溶量が大きくなり、最終板における耐力が高くなりすぎて形状凍結性が低下する。更に上限を制限して0.08%未満とすることが好ましく、0.06%未満とすることがより好ましい。
[Mn: less than 0.1%]
When the Mn content is 0.1% or more, the solidification cooling rate at the time of casting is high, so the Mn solid solution amount in the matrix becomes large, the yield strength in the final plate becomes too high, and the shape freezing property decreases. Further, the upper limit is preferably limited to less than 0.08%, more preferably less than 0.06%.
〔任意成分のTi:0.001〜0.1%〕
本発明においては、鋳造塊の結晶粒を微細化するためにTiを0.001〜0.1%の範囲で含有することが好ましい。この効果を発現するにはTi含有量を0.001%以上とする必要がある。ただし、Ti含有量が0.1%を超えるとTiAl3等の粗大な金属間化合物が生成し、成形時にボイドを形成し成形性が低下する。Ti含有量のさらに好ましい範囲は、0.001〜0.05%である。TiはAl−10%Tiなどの母合金で添加してもよいし、Al−5%Ti−1%B、Al−10%Ti−1%Bなどの結晶粒微細化剤(ロッドハードナー)として添加してもよい。
[Ti of optional component: 0.001 to 0.1%]
In the present invention, it is preferable to contain Ti in the range of 0.001 to 0.1% in order to refine the crystal grains of the cast ingot. In order to exhibit this effect, the Ti content needs to be 0.001% or more. However, if the Ti content exceeds 0.1%, coarse intermetallic compounds such as TiAl 3 are generated, voids are formed during molding, and moldability is lowered. A more preferable range of the Ti content is 0.001 to 0.05%. Ti may be added as a master alloy such as Al-10% Ti, or as a grain refiner (rod hardener) such as Al-5% Ti-1% B, Al-10% Ti-1% B. It may be added.
〔任意成分としてのB:0.0005〜0.01%〕
本発明においては、鋳造塊の結晶粒を微細化するためにBを0.0005〜0.01%の範囲で含有することが好ましい。Bの効果はTiと共存することで、溶湯中にαAl結晶粒生成の起点となる核(TiBx)を生成させることである。B含有量のさらに好ましい範囲は、0.0005〜0.005%の範囲である。BはAl−5%Bなどの母合金で添加してもよいし、Al−5%Ti−1%B、Al−10%Ti−1%Bなどの結晶粒微細化剤(ロッドハードナー)として添加してもよい。
[B as an optional component: 0.0005 to 0.01%]
In the present invention, it is preferable to contain B in the range of 0.0005 to 0.01% in order to refine the crystal grains of the cast ingot. The effect of B is to co-exist with Ti and to generate nuclei (TiBx) that are the starting points of αAl crystal grain generation in the molten metal. A more preferable range of the B content is in the range of 0.0005 to 0.005%. B may be added as a master alloy such as Al-5% B, or as a grain refiner (rod hardener) such as Al-5% Ti-1% B, Al-10% Ti-1% B. It may be added.
本発明によるアルミニウム合金板の製造法については以下に説明する方法に限定されるものではないが、鋳造条件、最終焼鈍条件があり、これらの意義及び限定理由を以下に説明する。 Although the manufacturing method of the aluminum alloy plate by this invention is not limited to the method demonstrated below, there exist casting conditions and final annealing conditions, These significance and the reason for limitation are demonstrated below.
〔薄スラブの鋳造条件〕
双ベルト鋳造法とは、上下に対峙し水冷されている回転ベルト間に溶湯を注湯してベルト面からの冷却で溶湯を凝固させてスラブとし、ベルトの反注湯側より該スラブを連続して引き出してコイル状に巻き取る連続鋳造方法である。
[Thin slab casting conditions]
In the double belt casting method, molten metal is poured between rotating belts facing each other up and down, and the molten metal is solidified by cooling from the belt surface to form a slab. Then, it is a continuous casting method that is drawn out and wound up in a coil shape.
本発明においては、鋳造するスラブの厚さは5〜15mmが好ましい。薄スラブ厚さが5mm未満であると、単位時間当たりに鋳造機を通過するアルミニウム量が小さくなりすぎて、鋳造が困難になる。逆に厚さが15mmを超えると、ロールによる巻取りができなくなるため、スラブ厚さの範囲を5〜15mmに限定する。この厚さであるとスラブ鋳造時の1/4厚みにおける凝固冷却速度が20〜200℃/secとなり、金属間化合物の円相当径の最大径を5μm以下に制御することが可能である。 In the present invention, the thickness of the slab to be cast is preferably 5 to 15 mm. When the thickness of the thin slab is less than 5 mm, the amount of aluminum passing through the casting machine per unit time becomes too small and casting becomes difficult. On the contrary, if the thickness exceeds 15 mm, winding with a roll becomes impossible, so the slab thickness range is limited to 5 to 15 mm. With this thickness, the solidification cooling rate at a quarter thickness during slab casting is 20 to 200 ° C./sec, and the maximum equivalent circle diameter of the intermetallic compound can be controlled to 5 μm or less.
〔冷間圧延ロール表面粗度Ra0.2〜0.7μm〕
さらに冷間圧延ロール表面の粗度をRa0.2〜0.7μmと限定した理由は、最終焼鈍板の面粗度を調整するためである。冷間圧延工程によってロール表面の形状が圧延板表面に転写されるため、最終焼鈍板の表面粗度は、Ra0.2〜0.6μmとなる。最終焼鈍板の面粗度が、Ra0.2〜0.6μmの範囲内であれば、最終板の表面形状が成形時に使用する低粘性潤滑油を均一に保持するミクロプールの役目を果たし、プレス成形性に優れた板となる。なお、冷間圧延ロール表面の粗度はRa0.3〜0.7μmであることが好ましく、この場合、最終焼鈍板の面粗度はRa0.3〜0.6μmである。冷間圧延ロール表面の粗度はRa0.4〜0.7μmであることが更に好ましく、この場合、最終焼鈍板の面粗度はRa0.4〜0.6μmである。
[Cold rolling roll surface roughness Ra 0.2-0.7 μm]
Furthermore, the reason for limiting the roughness of the surface of the cold rolling roll to Ra 0.2 to 0.7 μm is to adjust the surface roughness of the final annealed plate. Since the shape of the roll surface is transferred to the rolled plate surface by the cold rolling process, the surface roughness of the final annealed plate is Ra 0.2 to 0.6 μm. If the surface roughness of the final annealed plate is within the range of Ra 0.2 to 0.6 μm, the surface shape of the final plate serves as a micropool that uniformly holds the low-viscosity lubricant used during molding, and press A plate with excellent formability. In addition, it is preferable that the roughness of the surface of a cold rolling roll is Ra0.3-0.7 micrometer, and the surface roughness of the final annealing board is Ra0.3-0.6 micrometer in this case. The roughness of the surface of the cold rolling roll is more preferably Ra 0.4 to 0.7 μm. In this case, the surface roughness of the final annealed plate is Ra 0.4 to 0.6 μm.
〔金属間化合物の円相当径の最大径5μm以下〕
本発明によるアルミニウム合金板の厚み1/4の領域における金属組織中の金属間化合物については、円相当径の最大径5μm以下に限定する。このように非常に微細な金属間化合物がマトリックス中に分散されることにより、アルミニウム板成形中の転位の動きが抑制され、Mgによる固溶強化により引張り強さが高くなるとともに、成形性に優れた板となる。
[The maximum equivalent circle diameter of intermetallic compounds is 5 μm or less]
About the intermetallic compound in the metal structure in the area | region of thickness 1/4 of the aluminum alloy plate by this invention, it is limited to 5 micrometers or less of the maximum diameter of a circle equivalent diameter. In this way, the dispersion of very fine intermetallic compounds in the matrix suppresses the movement of dislocations during the formation of aluminum plates, increases the tensile strength by solid solution strengthening with Mg, and excels in formability. It becomes a plate.
〔平均再結晶粒径15μm以下〕
最終焼鈍板の板厚1/4厚さの領域における平均再結晶粒径は、15μm以下に限定する。これを超えると、材料変形時に結晶粒界に生じる段差が大きくなりすぎて、変形後のオレンジピールが顕著となり、肌荒れ性が低下する。
[Average recrystallized grain size of 15 μm or less]
The average recrystallized grain size in the region of the thickness 1/4 of the final annealed plate is limited to 15 μm or less. If it exceeds this, the level | step difference which arises in a crystal grain boundary at the time of material deformation | transformation will become large too much, the orange peel after a deformation | transformation will become remarkable, and rough skin property will fall.
〔冷延率60%〜98%の限定理由〕
冷間圧延時における圧下率は60%〜98%であることが好ましく、圧延による塑性加工により発生する転位はこれら微細な晶出物の周囲に蓄積されることにより、最終焼鈍時の微細な再結晶組織を得るために必要となる。冷間圧延時における圧下率が60%未満である場合、転位の蓄積が十分ではなく微細な再結晶組織が得られない。冷間圧延時における圧下率が98%を超えると圧延時の耳割れが顕著になり歩留まりが低下する。さらに好ましい冷延率は70%〜96%の範囲である。
[Reason for limiting cold rolling rate of 60% to 98%]
The rolling reduction during cold rolling is preferably 60% to 98%, and the dislocations generated by plastic working by rolling are accumulated around these fine crystals, so that the fine re- Necessary for obtaining a crystal structure. When the rolling reduction during cold rolling is less than 60%, the accumulation of dislocations is not sufficient and a fine recrystallized structure cannot be obtained. If the rolling reduction during cold rolling exceeds 98%, the ear cracks during rolling become remarkable and the yield decreases. A more preferable cold rolling rate is in the range of 70% to 96%.
〔連続焼鈍炉による最終焼鈍条件〕
連続焼鈍炉による最終焼鈍の温度は400〜520℃に限定する。400℃未満の場合、再結晶に必要なエネルギーが不足するため、微細な再結晶組織を得ることができない。保持温度が520℃を超えると、再結晶粒の成長が顕著となり、平均再結晶粒径が15μmを超えてしまい、成形性及び肌荒れ性が低下する。
[Final annealing conditions with continuous annealing furnace]
The temperature of the final annealing by a continuous annealing furnace is limited to 400-520 degreeC. When the temperature is lower than 400 ° C., the energy required for recrystallization is insufficient, so that a fine recrystallization structure cannot be obtained. When the holding temperature exceeds 520 ° C., the growth of recrystallized grains becomes remarkable, the average recrystallized grain size exceeds 15 μm, and the moldability and the rough skin property deteriorate.
連続焼鈍の保持時間は5min以内とすることが好ましい。連続焼鈍の保持時間が5minを超えると、再結晶粒の成長が顕著となり、平均再結晶粒径が15μmを超えてしまい、成形性及び肌荒れ性が低下する。 The holding time for continuous annealing is preferably within 5 minutes. When the holding time of continuous annealing exceeds 5 min, the growth of recrystallized grains becomes remarkable, the average recrystallized grain size exceeds 15 μm, and the formability and rough skin property are deteriorated.
連続焼鈍処理時の昇温速度及び冷却速度は、昇温速度については100℃/min以上とすることが好ましい。連続焼鈍処理時の昇温速度が100℃/min未満の場合、微細な再結晶組織が得られず、成形性及び肌荒れ性が低下する。 The heating rate and cooling rate during the continuous annealing treatment are preferably 100 ° C./min or more for the heating rate. When the rate of temperature increase during the continuous annealing treatment is less than 100 ° C./min, a fine recrystallized structure cannot be obtained, and the formability and the rough skin property are lowered.
〔バッチ炉による最終焼鈍条件〕
バッチ炉による最終焼鈍の温度は300〜400℃に限定する。300℃未満の場合、再結晶に必要なエネルギーが不足するため、微細な再結晶組織を得ることができない。保持温度が400℃を超えると、再結晶の成長が顕著となり、再結晶粒の平均粒径が15μmを超えてしまい、成形性及び肌荒れ性が低下する。
[Final annealing conditions in a batch furnace]
The temperature of final annealing by a batch furnace is limited to 300-400 degreeC. When the temperature is lower than 300 ° C., the energy required for recrystallization is insufficient, so that a fine recrystallization structure cannot be obtained. If the holding temperature exceeds 400 ° C., the growth of recrystallization becomes remarkable, the average grain size of the recrystallized grains exceeds 15 μm, and the moldability and the rough skin property deteriorate.
バッチ炉による最終焼鈍の保持時間は特に限定はしないが、1〜8時間が好ましい。1時間未満では、コイルが均一に昇温されない可能性がある。保持時間が8時間を超えると、再結晶粒の平均粒径が15μmを超えてしまい、成形性及び肌荒れ性が低下する。 Although the holding time of the final annealing by a batch furnace is not specifically limited, 1-8 hours are preferable. If it is less than 1 hour, the coil may not be heated uniformly. When holding time exceeds 8 hours, the average particle diameter of a recrystallized grain will exceed 15 micrometers, and a moldability and skin roughening property will fall.
〔レベラーによる歪矯正〕
最終焼鈍後は、板が熱歪によって変形しているため、コイル又は板の状態でレベラーロールでの繰り返し曲げ等の矯正加工が施され、形状が矯正され平坦度が回復する。この歪矯正によって、所定の引張り強さ、耐力を得ることが可能となり、成形性、肌荒れ性及び形状凍結性に優れたアルミニウム合金板とすることができる。
[Strain correction by leveler]
After the final annealing, since the plate is deformed by thermal strain, correction processing such as repeated bending with a leveler roll is performed in a coil or plate state, the shape is corrected, and the flatness is restored. By this distortion correction, it becomes possible to obtain predetermined tensile strength and yield strength, and it is possible to obtain an aluminum alloy plate excellent in formability, rough skin property, and shape freezing property.
以下、発明にかかる実施例について比較例と対比して説明する。表1に示す化学組成(合金A、B、C、D、E、F、I)の溶湯を脱ガス鎮静後、双ベルト鋳造機により10mm厚さの薄スラブを連続的に鋳造して直接コイルに巻き取った。同様に表1に示す化学組成(合金G)の溶湯を脱ガス鎮静後、DC鋳造法により、(幅)1000mm×(厚さ)500mm×(長さ)4000mmのスラブを鋳造して、両面を面削後、ソーキング炉にて450℃×8時間の均質化処理を施し、熱間圧延を行って、6mm厚さの熱間圧延板としてコイルに巻き取った。同様に表1に示す化学組成(合金H)の溶湯を脱ガス鎮静後、双ロール鋳造機により6mm厚さの薄スラブを連続的に鋳造して直接コイルに巻き取った。 Examples according to the present invention will be described below in comparison with comparative examples. After degassing the molten metal of the chemical composition shown in Table 1 (alloys A, B, C, D, E, F, I), a 10 mm thick thin slab is continuously cast by a twin belt casting machine and directly coiled Rolled up. Similarly, after degassing the molten metal having the chemical composition (alloy G) shown in Table 1, a slab of (width) 1000 mm × (thickness) 500 mm × (length) 4000 mm is cast by DC casting, After chamfering, homogenization was performed at 450 ° C. for 8 hours in a soaking furnace, hot rolling was performed, and the coil was wound as a 6 mm thick hot rolled plate. Similarly, after degassing the molten metal having the chemical composition shown in Table 1 (alloy H), a 6 mm thick thin slab was continuously cast by a twin roll casting machine and directly wound on a coil.
次にこれら薄スラブ、熱間圧延板を所定の表面粗さ(Ra0.6μm、1.0μm)に仕上げた冷間圧延ロールで冷間圧延して厚さ1mmの板を形成し、次いでこれらの板をCALに通して保持温度460℃で連続焼鈍処理した。さらにこの最終焼鈍板の熱歪を除去するため、レベラーに通して歪矯正を行った後、切断して試験材を得た。なお、表2は、実施例、比較例について各製造工程における試験材の製造条件を示している。 Next, these thin slabs and hot-rolled plates are cold-rolled with a cold-rolling roll finished to a predetermined surface roughness (Ra 0.6 μm, 1.0 μm) to form a plate having a thickness of 1 mm. The plate was passed through CAL and continuously annealed at a holding temperature of 460 ° C. Further, in order to remove the thermal strain of the final annealed plate, the strain was corrected through a leveler, and then cut to obtain a test material. In addition, Table 2 has shown the manufacturing conditions of the test material in each manufacturing process about an Example and a comparative example.
次に、この試験材の再結晶粒径、金属間化合物の円相当径の最大径、表面粗度、0.2%耐力(0.2%YS)、引張り強度(UTS)、伸び(EL)、張出し高さについて測定を行った。 Next, the recrystallized grain size of this test material, the maximum equivalent circle diameter of the intermetallic compound, surface roughness, 0.2% proof stress (0.2% YS), tensile strength (UTS), and elongation (EL) The overhang height was measured.
試験材の再結晶粒径(D)は、クロスカット法で測定した。試験材を切り出して樹脂に埋め込み研磨して、ホウフッ酸水溶液中でアルマイト処理を行って試験材断面の表面に陽極酸化皮膜を施した。偏光顕微鏡を用いて試験材断面の結晶粒写真(200倍)を撮影し、縦横方向に3本ずつ線を引いて、その線とクロスする結晶粒界の数(n)をカウントし、線の全長(L)を(n−1)で割ることにより求めた粒径の平均値(D)を試験材の平均再結晶粒径とした。また、金属間化合物の円相当径の最大径は、画像解析装置(商品名:ルーゼックス)を用いて測定した。
D=L/(n−1)
The recrystallized grain size (D) of the test material was measured by a cross cut method. The test material was cut out, embedded and polished in a resin, anodized in an aqueous borofluoric acid solution, and an anodized film was applied to the surface of the cross section of the test material. Take a crystal grain photograph (200x) of the cross section of the test material using a polarizing microscope, draw three lines in the vertical and horizontal directions, count the number (n) of crystal grain boundaries that cross the line, The average value (D) of the particle sizes obtained by dividing the total length (L) by (n-1) was taken as the average recrystallized particle size of the test material. The maximum equivalent circle diameter of the intermetallic compound was measured using an image analyzer (trade name: Luzex).
D = L / (n-1)
試験材の表面粗度は、表面粗さ計を用いて、JISB0601に準じて測定し、測定方向は圧延方向に対して垂直方向とし、測定領域を4mm、カットオフを0.8mmとしたときの平均粗さRaとした。なお、ロール表面粗さは、試験材の表面粗度と同様、表面粗さ計を用いて、JISB0601に準じて測定し、測定方向はロール横方向とし、測定領域を4mm、カットオフを0.8mmとしたときの平均粗さRaとした。 The surface roughness of the test material is measured according to JISB0601 using a surface roughness meter, the measurement direction is the direction perpendicular to the rolling direction, the measurement area is 4 mm, and the cutoff is 0.8 mm. The average roughness Ra was set. The roll surface roughness was measured in accordance with JISB0601, using a surface roughness meter, similarly to the surface roughness of the test material, the measurement direction was the roll lateral direction, the measurement area was 4 mm, and the cut-off was 0.00. The average roughness Ra was set to 8 mm.
張出し高さは、以下の金型を用い、破断時の限界成形高さを示している。
(ポンチ:100mmφ、肩R:50mm、ダイ:105mmφ、肩R:4mm)
The overhang height indicates the limit molding height at break using the following molds.
(Punch: 100mmφ, shoulder R: 50mm, die: 105mmφ, shoulder R: 4mm)
肌荒れ性は、引張試験後の試験片破断箇所付近の表面状態を目視で観察することにより、3段階評価(○:優れる、△:やや劣る、×:劣る)した。 The skin roughness was evaluated in three stages (O: excellent, Δ: slightly inferior, x: inferior) by visually observing the surface state in the vicinity of the fractured portion of the test piece after the tensile test.
以上により測定した実施例、比較例の結果を表3に示す。 Table 3 shows the results of Examples and Comparative Examples measured as described above.
実施例1、2は、適度なMg含有量であり、Mn含有量も0.1%未満に抑えられているため、耐力が145MPa以下であって形状凍結性に優れ、微細な再結晶粒を有しており肌荒れ性に優れ、しかも微細な金属間化合物を有し、表面が適度な表面粗さ0.35、0.41μmを示すことから張出し高さが29mm以上であり成形性に優れている。 In Examples 1 and 2, since the Mg content is moderate and the Mn content is also suppressed to less than 0.1%, the yield strength is 145 MPa or less, the shape freezing property is excellent, and fine recrystallized grains are used. It has excellent skin roughness, has a fine intermetallic compound, and the surface shows an appropriate surface roughness of 0.35, 0.41 μm, so the overhang height is 29 mm or more and excellent in moldability. Yes.
これに対し、比較例1は、Mg含有量3.75%と高いため、0.2%耐力が高くなりすぎて形状凍結性が低下している。比較例2は、Mg含有量2.5%と低いため、引張強さ、伸びがいずれも不足している。 On the other hand, in Comparative Example 1, since the Mg content is as high as 3.75%, the 0.2% proof stress is too high and the shape freezing property is lowered. Since Comparative Example 2 has a low Mg content of 2.5%, both the tensile strength and the elongation are insufficient.
比較例3は、適度なMg含有量であるが、Mn含有量0.2%と高いため、0.2%耐力が高くなりすぎて形状凍結性が低下している。 Although the comparative example 3 is moderate Mg content, since Mn content is as high as 0.2%, 0.2% yield strength becomes too high and shape freezing property is falling.
比較例4は、Mg含有量4.0%、Mn含有量0.3%と共に高いため、0.2%耐力が高くなりすぎて形状凍結性が低下している。 Since the comparative example 4 is high with Mg content of 4.0% and Mn content of 0.3%, the 0.2% proof stress is too high and the shape freezing property is lowered.
比較例5は、DC鋳造法によるスラブ鋳造時の凝固冷却速度が低いため、金属間化合物の最大径が大きくなりすぎ、再結晶粒径も大きくなりすぎて、引張り強さが低下し、肌荒れ性が低下している。 In Comparative Example 5, since the solidification cooling rate at the time of slab casting by the DC casting method is low, the maximum diameter of the intermetallic compound is too large, the recrystallized grain size is too large, the tensile strength is reduced, and the rough surface is rough. Has fallen.
比較例6は、双ロール法による鋳造圧延板の凝固冷却速度が高いため、最終焼鈍時に再結晶粒の核となる金属間化合物の数、再結晶粒の粒界の動きを妨げるいわゆるピン止め効果を有する金属間化合物の数が不足するため、再結晶粒径が大きくなりすぎて、引張り強度、伸びが不足しており、肌荒れ性が低下している。 In Comparative Example 6, since the solidification cooling rate of the cast and rolled plate by the twin roll method is high, the number of intermetallic compounds that become the core of the recrystallized grains during the final annealing, the so-called pinning effect that hinders the movement of the grain boundaries of the recrystallized grains Insufficient number of intermetallic compounds having, the recrystallized grain size becomes too large, the tensile strength and elongation are insufficient, and the rough skin property is lowered.
比較例7は、冷間圧延ロールの表面粗さがRa1.0μmであり、試験材の表面粗さがRa0.8μmであるため、張出し高さ28mmであり成形性が低下している。 In Comparative Example 7, since the surface roughness of the cold rolling roll is Ra 1.0 μm and the surface roughness of the test material is Ra 0.8 μm, the overhang height is 28 mm and the formability is lowered.
Claims (4)
4. The method for producing an aluminum alloy plate for automobiles having excellent press formability, rough surface property and shape freezing property according to claim 3, wherein the final annealing is performed at a holding temperature of 300 to 400 [deg.] C. by a batch annealing furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011287228A JP2012107339A (en) | 2011-12-28 | 2011-12-28 | Aluminum alloy sheet for automobile and manufacturing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011287228A JP2012107339A (en) | 2011-12-28 | 2011-12-28 | Aluminum alloy sheet for automobile and manufacturing method therefor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006350698A Division JP5220310B2 (en) | 2006-12-26 | 2006-12-26 | Aluminum alloy plate for automobile and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012107339A true JP2012107339A (en) | 2012-06-07 |
Family
ID=46493228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011287228A Pending JP2012107339A (en) | 2011-12-28 | 2011-12-28 | Aluminum alloy sheet for automobile and manufacturing method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012107339A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101694831B1 (en) * | 2016-03-25 | 2017-01-11 | 조일알미늄(주) | Aluminium alloy composition for car body and method of casting |
CN111014288A (en) * | 2019-11-27 | 2020-04-17 | 西安庄信新材料科技有限公司 | Titanium plate rolling method |
CN114101609A (en) * | 2020-08-26 | 2022-03-01 | 宝山钢铁股份有限公司 | Jet casting and rolling high-performance 6XXX aluminum alloy thin strip and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001262263A (en) * | 2000-03-23 | 2001-09-26 | Kobe Steel Ltd | Al-Mg SERIES Al ALLOY SHEET EXCELLENT IN FORMABILITY |
WO2006011242A1 (en) * | 2004-07-30 | 2006-02-02 | Nippon Light Metal Co., Ltd. | Aluminum alloy sheet and method for manufacturing the same |
-
2011
- 2011-12-28 JP JP2011287228A patent/JP2012107339A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001262263A (en) * | 2000-03-23 | 2001-09-26 | Kobe Steel Ltd | Al-Mg SERIES Al ALLOY SHEET EXCELLENT IN FORMABILITY |
WO2006011242A1 (en) * | 2004-07-30 | 2006-02-02 | Nippon Light Metal Co., Ltd. | Aluminum alloy sheet and method for manufacturing the same |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101694831B1 (en) * | 2016-03-25 | 2017-01-11 | 조일알미늄(주) | Aluminium alloy composition for car body and method of casting |
CN111014288A (en) * | 2019-11-27 | 2020-04-17 | 西安庄信新材料科技有限公司 | Titanium plate rolling method |
CN114101609A (en) * | 2020-08-26 | 2022-03-01 | 宝山钢铁股份有限公司 | Jet casting and rolling high-performance 6XXX aluminum alloy thin strip and preparation method thereof |
CN114101609B (en) * | 2020-08-26 | 2023-01-20 | 宝山钢铁股份有限公司 | Spray casting and rolling 6XXX aluminum alloy thin strip and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4901757B2 (en) | Aluminum alloy plate and manufacturing method thereof | |
US9695495B2 (en) | Process for producing an aluminum alloy sheet for motor vehicle | |
JP2008024964A (en) | High-strength aluminum alloy sheet and producing method therefor | |
US20070217943A1 (en) | Al-Mg Alloy Sheet with Excellent Formability at High Temperatures and High Speeds and Method of Production of Same | |
JP2009221567A (en) | Aluminum alloy sheet for positive pressure coated can lid, and method for producing the same | |
WO2013140826A1 (en) | Aluminum alloy sheet having excellent press formability and shape fixability, and method for manufacturing same | |
JP4740941B2 (en) | Method for producing aluminum alloy plate | |
JP2008303449A (en) | Aluminum alloy sheet for forming, and method for producing aluminum alloy sheet for forming | |
JP2008223075A (en) | Hot rolling omission type aluminum alloy sheet and its manufacturing method | |
WO2015155911A1 (en) | High-strength aluminum alloy plate having exceptional bendability and shape fixability, and method for manufacturing same | |
JP5220310B2 (en) | Aluminum alloy plate for automobile and manufacturing method thereof | |
JP6719219B2 (en) | High strength aluminum alloy sheet excellent in formability and method for producing the same | |
JP4701998B2 (en) | Aluminum alloy foil excellent in strength and rough skin resistance and method for producing the same | |
JPH07252571A (en) | Automobile aluminum alloy sheet and its production | |
JP5813358B2 (en) | Highly formable Al-Mg-Si alloy plate and method for producing the same | |
JP5050577B2 (en) | Aluminum alloy plate for forming process excellent in deep drawability and bake-proof softening property and method for producing the same | |
JP2012107339A (en) | Aluminum alloy sheet for automobile and manufacturing method therefor | |
JP3791337B2 (en) | Highly formable aluminum alloy plate and method for producing the same | |
JP5233568B2 (en) | Aluminum alloy plate excellent in heat resistance and formability and manufacturing method thereof | |
JP3685973B2 (en) | Al-Mg-based Al alloy plate with excellent formability | |
JP5412714B2 (en) | Manufacturing method of aluminum alloy plate excellent in heat resistance, manufacturing method of aluminum alloy plate excellent in heat resistance and deep drawability | |
JP2004076155A (en) | Aluminum alloy sheet having excellent seizure softening resistance | |
JP2018178138A (en) | High strength aluminum alloy sheet excellent in moldability, flexure processability and dent resistance, and manufacturing method therefor | |
JP2011144410A (en) | METHOD FOR MANUFACTURING HIGHLY FORMABLE Al-Mg-Si-BASED ALLOY SHEET | |
JP2002322530A (en) | Aluminum foil for container and production method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20120216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20130702 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20131029 |