JP3685973B2 - Al-Mg-based Al alloy plate with excellent formability - Google Patents
Al-Mg-based Al alloy plate with excellent formability Download PDFInfo
- Publication number
- JP3685973B2 JP3685973B2 JP2000081152A JP2000081152A JP3685973B2 JP 3685973 B2 JP3685973 B2 JP 3685973B2 JP 2000081152 A JP2000081152 A JP 2000081152A JP 2000081152 A JP2000081152 A JP 2000081152A JP 3685973 B2 JP3685973 B2 JP 3685973B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- crystallized
- average
- alloy plate
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Continuous Casting (AREA)
Description
【0001】
【発明が属する技術分野】
本発明は、成形性、あるいはさらに耐食性に優れたAl−Mg系Al合金板に関し、自動車パネル等の素材として好適なAl合金板に関するものである。
【0002】
【従来の技術】
地球環境問題を背景に、燃費向上を目的とした自動車の軽量化の要求が高まってきており、自動車ボディパネル材に対しても鋼板などの鉄鋼材料に代わってアルミニウム材料の適用が検討されてきている。
自動車パネル材において、冷延鋼板にかわるAl合金板としては、Mgを比較的多量に含むAl−Mg系Al合金(5000系合金)が、強度、延性に優れるため注目されている。
【0003】
【発明が解決しようとする課題】
しかしながら、従来のようにDC鋳造、圧延によって製造した5000系合金板をドアーパネル、ルーフパネル等の複雑形状部材に適用した場合、プレス成形性が不十分であると言われている。その理由は、Al合金に不可避的に存在する不純物元素であるFe、Siの金属間化合物が晶出物として生成し、これが成形時の破壊の起点になり、成形性を劣化させるからである。
【0004】
このようなAl−Mg系合金の成形性を改善する手段としては、前記晶出物の生成原因となる不純物元素であるFe、Siの含有量を極力制限すればよい。しかしながら、これらの不純物元素を極力制限するには、高純度のAl地金を必要とするため、コスト高を招来し、実用性に乏しい。
【0005】
一方、特開平7−278716号公報には、晶出物の平均サイズを15μm 以下とすることにより、成形性を改善する技術が提案されているが、鋳造欠陥や偏析、さらには粗大晶出物やアスペクト比の大きな晶出物が不可避的に残留するため、十分な効果が得られているとは言えない。
【0006】
なお、特開平7−252572号公報には、Cuを0.5〜1.5%含有させ、不溶性化合物の最大サイズを2μm 以下とすることで成形性の向上を図る技術が提案されているが、多量のCuを添加するために耐食性が却って劣化するという問題もある。
【0007】
本発明は、かかる問題に鑑みなされたもので、高純度Al地金を用いることなく製造可能で、成形性に優れたAl−Mg系Al合金板を提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明のAl合金板は、mass%で、
Mg:3.0〜6.0%、
Si:0.1〜0.6%、
Fe:0.1〜1.0%、
あるいはさらにCu:0.4%以下
および残部Alを本質的成分としてなり、FeまたはSiを含んだ晶出物の円相当直径の平均が2μm 以下、前記晶出物の平均アスペクト比が1.8以下であり、かつ平均結晶粒径が30μm 以下である、成形性に優れたAl−Mg系Al合金板である。
【0009】
前記Al合金板の成分としては、請求項3に記載したように、さらに、Mn:1.0%以下、Cr:0.3%以下、Zr:0.3%以下、V:0.3%以下、Ti:0.03%以下
よりなる群から選択される1種以上の成分を含有することができる。
【0010】
【発明の詳細な説明】
本発明者は、従来不純物扱いされてきたFe、Siが結晶粒微細化効果を有する点に着目し、さらに前記元素を含む故に不可避的に生成した晶出物については、その形態を精緻に制御することで成形性が向上するのではないかとの着想に基づき鋭意研究した結果、本発明を完成するに至った。
【0011】
すなわち、特開平7−278716号公報に記載されているように、晶出物の平均サイズを問題にするだけでは成形性の向上に限界があり、本発明者が詳細に調査した結果、晶出物の円相当直径の平均が2μm を超え、前記晶出物の平均アスペクト比(晶出物の圧延方向の長さL1と板厚方向の長さL2との比L1/L2)が1.8を超える領域の晶出物を抑制するとともに、平均結晶粒径を30μm 以下とすることによって顕著な特性向上効果が得られることが見出された。
【0012】
晶出物の微細化については、前記公報の技術では、鋼片厚みを1〜10mmに連続鋳造し、10℃/sec以上の冷却速度にて冷却することで晶出物の微細化を図っているが、このような鋼片厚みでは、熱間圧延時に圧下率が十分に取れないので、鋳造欠陥、偏析が板材に残留するようになり、冷却速度を単純に速くするだけでは十分良好な特性が得難い。
【0013】
この点、本発明では、後述の実施例によって明らかなように、冷却速度を速めるだけでなく、鋼塊の厚さをある程度以上として、鋳塊組織の健全化を図りながら、さらに鋳塊組織での晶出物の分布の制御と圧延条件の制御によって従来不可避的に残存していた粗大な晶出物、アスペクト比の大きい晶出物を排除することに成功したものである。特に、鋳塊をある程度の厚さに鋳造し、鋳塊組織を板厚中心方向に伸びた柱状晶に制御することは晶出物の微細化、アスペクト比の低減に非常に効果的であることが見い出された。すなわち、鋳塊をある程度の厚さとすることで、粒界に晶出した晶出物を表面部から板厚中心方向に列状に並ばせることができ、これによって後工程の熱間圧延、冷間圧延によって晶出物を容易に微細に砕くことができるのである。
【0014】
上記知見によってなされた本発明のAl合金板は、mass%で、
Mg:3.0〜6.0%、
Si:0.1〜0.6%、
Fe:0.1〜1.0%、
あるいはさらにCu:0.4%以下
および残部Alを本質的成分としてなり、FeまたはSiを含んだ晶出物の円相当直径の平均(以下、平均晶出物径という。)が2μm 以下、前記晶出物の平均アスペクト比が1.8以下であり、かつ平均結晶粒径が30μm 以下とされたものである。
【0015】
まず、本発明のAl合金板の成分限定理由を説明する。
Mg:3.0〜6.0%
MgはAlマトリックス中に固溶して強度を向上させ、また延性を確保するために添加される。3.0%未満ではかかる作用が過少であり、一方6.0%を超えると熱間加工性が低下し、熱間圧延が著しく困難になるほか、固液共存域が拡大し、鋳造も困難になり、生産性が著しく低下するようになる。
【0016】
Si:0.1〜0.6%
Fe:0.1〜1.0%
Si、Feは、Mg−Si系、Al−Fe−Si系などの晶出物を生成し、結晶粒微細化効果を有するので、各々0.1%以上を添加する。一方、Si0.6%超、Fe1.0%超では、晶出物が粗大化し、これが鋳造後の圧延等によっても微細化せず、残存した粗大晶出物が破壊の起点となり、成形性を劣化させる。また、SiがMg2Si として晶出すると、Alマトリックス中に固溶するMg量が減少し、強度、靭性が劣化するようになるので、この点からもSiは0.6%以下に止められる。本発明では、Si、Feの結晶粒微細化効果を利用するため、Si、Feを積極的に添加するが、その付随的効果として、不可避的にFeを多量に含んだ安価なAl地金やスクラップ材を利用することができ、低コスト化に寄与することができる。
【0017】
Cu:0.4%以下
Cuは、成形性を向上させる作用を有するが、過剰な添加は耐食性を劣化させる。本発明では、主に耐食性の確保の見地から0.4%以下に止める。本発明では、Cuの添加量が低く、成形性の向上に寄与するCu量が少ないが、後述する特定の組織条件を満足させることによって成形性を向上させることに成功したものである。
【0018】
本発明のAl合金板は、上記Mg、Si、Fe、あるいはさらにCu、および残部Alを本質的成分としてなり、残部不可避的不純物よりなるほか、本発明のAl合金板の特性をさらに向上させる元素として下記元素群の内から1種以上を添加することができる。
【0019】
Mn:1.0%以下、Cr:0.3%以下、Zr:0.3%以下、V:0.3%以下、Ti:0.03%以下
これらの元素は、結晶粒微細化効果を有し、成形性の向上に効果がある。各元素の上限を超えると、粗大な化合物を形成し、これが破壊の起点となり、成形性を劣化させる。なおTiは鋳造時の微細化能もあり、その上限を超えると鋳塊の柱状晶形成が妨げられ、晶出物分断効果が劣化する。より好ましくは、Mn:0.6%以下、Cr:0.2%以下、Zr:0.2%以下、V:0.2%以下、Ti:0.01%以下とするのがよい。
【0020】
次に、本発明のAl合金板の組織について説明する。
本発明では、FeまたはSiを含んだ晶出物の平均晶出物径が2μm 以下、前記晶出物の平均アスペクト比が1.8以下であり、かつ平均結晶粒径が30μm 以下とされる。
【0021】
晶出物の形態は、単に平均粒子径が小さくとも、大きな粒子径、アスペクト比の晶出物があると、それが破壊の起点となるため、合金板の成形性に大きな影響を及ぼす。このため、本発明では、晶出物の形態につき、その平均晶出物径を2μm 以下、前記晶出物の平均アスペクト比を1.8以下、好ましくは1.5以下に制限する。前記平均晶出物径が2μm を超えると、破壊の起点になりやすい。また平均晶出物径が2μm 以下でもアスペクト比が1.8を超えて大きいと応力集中が生じやすくなり、そのような晶出物はやはり破壊の起点になりやすく、成形性が低下するようになる。
【0022】
また、結晶粒径も、後述の実施例から明らかなように、成形性を大きく左右することが分かった。このため、本発明では晶出物の形態のみならず結晶粒径についても制限を加える。すなわち、平均結晶粒径が30μm を超えると、成形性の劣化が顕著になるため、本発明では平均結晶粒径を30μm 以下、好ましくは20μm 以下とする。これらの組織条件によって、Cu量を少なくしても良好な成形性が確保される。
【0023】
本発明のAl−Mg系Al合金板は、鋳造後、熱間圧延、中間焼鈍、冷間圧延、最終焼鈍の工程を経て製造される。もっとも、所定の組織を得ることができるように下記の点に留意することが望ましい。
【0024】
鋳造時の凝固速度は高いほど、鋳塊での晶出物を微細にすることができるが、鋳塊における欠陥、偏析を抑えておくことが晶出物の微細化に有効であるため、鋳塊の中心部の冷却速度は高すぎないようにすることが好ましい。冷却速度が高すぎると、凝固収縮に対する溶湯の供給が不足し、欠陥が生成しやすくなる。従って、晶出物の微細化と鋳造段階での欠陥、偏析の抑制とのバランスを考慮して、鋳塊板厚中心部における冷却速度を1〜5℃/secとすることが望ましい。
【0025】
また、鋳塊幅方向における冷却速度のばらつきを±30%以内、好ましくは±20%以内に抑えることが望ましい。冷却速度の遅い部分があると、その部分が最終凝固部になり、欠陥、偏析が集中し、その部位の特性、特に後工程である圧延工程における加工特性を劣化させ、粗大晶出物やアスペクト比の大きい晶出物が残存する要因となる。
【0026】
晶出物が所定サイズに分断され、均一に分散した健全な組織を得るためには、凝固時の組織を柱状晶にすることが望ましいことが明らかになった。その理由は、凝固時の組織を柱状晶にすることで、表層部から板厚中心方向に結晶粒が細長く伸びた組織形態が得られ、これによって結晶粒界に晶出した晶出物が表層部から板厚中心方向に列状に並ぶようになり、後工程の熱間圧延、冷間圧延の際に、比較的高い圧下率で圧延を行うことにより、晶出物が効果的に微細に分断されるからである。このため、鋳塊厚みは好ましくは15mm以上、より好ましくは25mm以上とするのがよい。
【0027】
上記のような鋳塊板厚中心部の冷却速度、鋳塊厚みを実現する鋳造プロセスとしては、厚さ15〜35mmの鋳造片を製造する、双ベルト式または双ブロック式等の薄スラブ連鋳プロセスを用いることができる。また、鋳塊幅方向の冷却速度のばらつきを抑える方法としては、ベルト連鋳法では、ベルトの変形を防止する必要があり、ベルトの予熱、張力付与、ベルトコーティング剤の塗布が有効である。ベルトの予熱は、ベルト温度60℃以上、望ましくは80℃以上で実施すればよい。ベルトに付与する張力は、応力で5.0kgf/mm2以上とすることが好ましく、7.5kgf/mm2以上がより好ましい。また、コーティング剤としては、断熱性のあるものが望ましく、アルミナ系等の酸化物系離型剤が好適である。勿論、炭素型離型剤も使用可能である。
【0028】
鋳塊の熱延条件としては、鋳塊中の晶出物の微細分断化、アスペクト比低下のために、高温域で行うことが望ましいが、高すぎると部分溶融を起こす。従って、熱延開始温度としては好ましくは450℃以上590℃以下、より好ましくは500℃以上570℃以下とするのがよい。また、熱延時の圧下率増大も晶出物微細分断化、アスペクト比低下に効果的であり、トータルの圧下率を好ましくは80%以上、より好ましくは90%以上とするのがよい。
【0029】
中間焼鈍条件および冷延後の最終焼鈍に関しては特に規定されるものではなく、通常の焼鈍方法(連続焼鈍或いはバッチ焼鈍)で実施すれば良い。
【0030】
冷延条件としては、冷間圧延時の圧下率(冷延率)が増大するほど晶出物の微細分断化、アスペクト比低下に効果的である。もっとも、熱延時の圧延率を増大させる方が晶出物の微細化には効果が大きい。一方、冷延後あるいは最終焼鈍後の結晶粒微細化には冷延時の圧下が効果的である。これらの効果を勘案して、冷延時のトータルの圧下率は好ましくは60%以上、より好ましくは70%以上とするのがよい。なお、冷延中の中間焼鈍は必ずしも実施することを要しない。
【0031】
以下、実施例によって本発明をさらに説明するが、本発明はこれらの実施例によって制限的に解釈されるものではない。
【0032】
【実施例】
下記表1に示す組成のAl合金を溶製し、表2に示すように、板厚中心部の冷却速度が0.5〜30℃/secとなるように双ベルト式連続鋳造法により種々の肉厚の移動帯板(板幅1000mm)を作製し、この帯板に直ちに熱間圧延を施して肉厚1.5〜5mmの板材を得た。連鋳条件については、表2中、試料No. 1〜20および23は鋳造時のベルト予熱温度を70℃、ベルト張力を7.5kgf/mm2とし、アルミナ系離型剤をベルトに塗布した。一方、試料No. 21は双ロール連続鋳造法で板厚8mmの板を製造し、熱間圧延を行わず、冷間圧延のみを施して最終板厚1mmまで加工した。また、試料No. 22は、ベルト予熱温度を40℃、ベルト張力を2.5kgf/mm2とし、離型剤塗布なしの条件で鋳造し、直ちに熱間圧延を施したものである。
【0033】
前記熱間圧延(No. 21を除く。)は、表2に示すように、圧延開始温度を430〜570℃とし、圧下率を90〜75%とした。このようにして得た熱延板に500℃で1分間の中間焼鈍を施した後、表2に示した冷延率にて冷間圧延を行い、肉厚1mmのAl合金板を得た。この合金板に550℃で1分間の最終焼鈍を施して水焼き入れを行った。
【0034】
このようにして作製したAl合金板試料について、光学顕微鏡観察と画像解析を行うことによって晶出物の円相当直径およびアスペクト比を求めた。また、光学顕微鏡観察で切片法によって結晶粒径を測定した。また、40℃、0.5molのNaCl水溶液に100hr浸漬後の孔食発生状況を5段階評価(AA:優、A:良、B:可、C:劣、D:不可)し、耐食性を評価した。また、成形性をLDH試験によって試験片の破断時の張り出し高さを測定し、評価した。試験条件は、直径100mm、球頭のパンチを用い、潤滑油R−303Pの塗布、しわ押さえ力200kNの下で行った。これらの調査結果を表3に示す。なお、同表中、試料No. 1〜10は実施例、No. 11〜23は比較例である。
【0035】
【表1】
【0036】
【表2】
【0037】
【表3】
【0038】
表3中、試料No. 12はMgが過多のため、試料No. 22は鋳造条件が不適切であるため、熱延時に割れが生じた。試料No. 22と同成分系(成分No. 5)の試料No. 5とにつき、鋳造帯板(鋳塊)の幅方向の冷却速度(板厚中心部)を測定したところ、No. 5では幅中央部(板端から500mm位置)では3.0℃/sec、1/4幅部(板端から250mm位置)では2.5℃/secであり、幅方向の冷却速度のばらつきは小さかったが、No. 22では幅中央部が3.0℃/sec、1/4幅部が1.6℃/secであり、1/4幅部の冷却速度が幅中央部の約53%と幅方向の冷却速度のばらつきが大きかった。このため、No. 22では、1/4幅部にMg、Fe、Si等の合金元素の濃縮が起こり、このため加工性が劣化したか、あるいは融点の低下を招来して部分溶融が生じて割れが発生したものと推察された。
【0039】
また、No. 11、13〜18は、成分が発明範囲外であるため、耐食性が良好なものもあるが、概ね成形性が劣っている。もっとも、No. 15はCu含有量が0.6%と多いため、成形性は良好であるが、耐食性の劣化が著しい。また、No. 19〜21および23は発明成分を満足するが、製造条件が不適切であるため、本発明の組織条件を満足せず、やはり成形性が低下している。
【0040】
これらの比較例に対して、実施例のNo. 1〜10は、耐食性、成形性が共に優れていることが確認された。
【0041】
【発明の効果】
本発明のAl−Mg系Al合金板によれば、Mg、Si、Alのほか、所定量のFeあるいはさらにCuを本質的成分として含み、晶出物の平均晶出物径、平均アスペクト比および平均結晶粒径を所定の値以下に制限したので、優れた成形性あるいはさらに耐食性を兼ね備えることができ、これらの特性が要求される、例えば自動車パネル等の素材として好適に使用することができる。また、本発明のAl合金板は、高純度のAl地金を用いることなく製造することができるので、製造コストを低減することができ、アルミ材料のリサイクルにも資することができる。[0001]
[Technical field to which the invention belongs]
The present invention relates to an Al—Mg-based Al alloy plate excellent in formability or further corrosion resistance, and relates to an Al alloy plate suitable as a material for an automobile panel or the like.
[0002]
[Prior art]
Due to global environmental problems, demands for reducing the weight of automobiles for the purpose of improving fuel efficiency are increasing, and the application of aluminum materials instead of steel materials such as steel sheets to automobile body panel materials has been studied. Yes.
In an automobile panel material, an Al—Mg-based Al alloy (5000-based alloy) containing a relatively large amount of Mg is attracting attention as an Al alloy plate replacing a cold-rolled steel plate because of its excellent strength and ductility.
[0003]
[Problems to be solved by the invention]
However, it is said that press formability is insufficient when a 5000 series alloy plate produced by DC casting and rolling as in the prior art is applied to a complicated shape member such as a door panel or a roof panel. The reason is that an intermetallic compound of Fe and Si, which are impurity elements unavoidably present in the Al alloy, is generated as a crystallized substance, which becomes a starting point of fracture during molding and deteriorates formability.
[0004]
As a means for improving the formability of such an Al—Mg alloy, it is only necessary to limit the contents of Fe and Si, which are impurity elements that cause generation of the crystallized substance, as much as possible. However, in order to limit these impurity elements as much as possible, high-purity Al ingots are required, resulting in high costs and poor practicality.
[0005]
On the other hand, Japanese Patent Application Laid-Open No. 7-278716 proposes a technique for improving the formability by setting the average size of crystallized material to 15 μm or less. However, casting defects, segregation, and coarse crystallized material are proposed. In addition, a crystallized product having a large aspect ratio inevitably remains, so that a sufficient effect cannot be obtained.
[0006]
Japanese Patent Laid-Open No. 7-252572 has proposed a technique for improving moldability by containing 0.5 to 1.5% of Cu and setting the maximum size of the insoluble compound to 2 μm or less. Further, since a large amount of Cu is added, there is a problem that the corrosion resistance is deteriorated.
[0007]
The present invention has been made in view of such problems, and an object thereof is to provide an Al—Mg-based Al alloy plate that can be manufactured without using a high-purity Al metal and has excellent formability.
[0008]
[Means for Solving the Problems]
The Al alloy plate of the present invention is mass%,
Mg: 3.0-6.0%,
Si: 0.1 to 0.6%,
Fe: 0.1 to 1.0%,
Alternatively, Cu: 0.4% or less and the balance Al are essential components. The average equivalent circle diameter of the crystallized product containing Fe or Si is 2 μm or less, and the average aspect ratio of the crystallized product is 1.8. This is an Al—Mg-based Al alloy plate excellent in formability and having an average crystal grain size of 30 μm or less.
[0009]
As the components of the Al alloy plate, as described in claim 3, Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.3% or less, V: 0.3% Hereinafter, one or more kinds of components selected from the group consisting of Ti: 0.03% or less can be contained.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
The present inventor pays attention to the fact that Fe and Si, which have been treated as impurities in the past, have the effect of refining crystal grains, and in addition, the form of crystallized crystals inevitably generated because of the inclusion of the elements is precisely controlled. As a result of earnest research based on the idea that the moldability may be improved, the present invention has been completed.
[0011]
That is, as described in Japanese Patent Application Laid-Open No. 7-278716, there is a limit to improving the moldability only by considering the average size of the crystallized product. The average equivalent circle diameter of the product exceeds 2 μm, and the average aspect ratio of the crystallized product (ratio L1 / L2 of the length L1 in the rolling direction and the length L2 in the thickness direction of the crystallized product) is 1.8. It has been found that a remarkable effect of improving the characteristics can be obtained by suppressing the crystallized material in a region exceeding 20 nm and making the average crystal grain size 30 μm or less.
[0012]
Regarding the refinement of the crystallized material, in the technique of the above publication, the steel product thickness is continuously cast to 1 to 10 mm, and the crystallized product is refined by cooling at a cooling rate of 10 ° C./sec or more. However, with such a steel slab thickness, the rolling reduction rate cannot be sufficiently obtained during hot rolling, so casting defects and segregation remain in the plate material, and it is good enough by simply increasing the cooling rate. It is hard to get.
[0013]
In this regard, in the present invention, as will be apparent from the examples described later, not only the cooling rate is increased, but also the thickness of the steel ingot is increased to a certain level, while the ingot structure is soundened, and the ingot structure is further increased. By controlling the distribution of the crystallized product and the rolling conditions, the present invention succeeded in eliminating the coarse crystallized product and the crystallized product having a large aspect ratio that were inevitably left. In particular, casting the ingot to a certain thickness and controlling the ingot structure to a columnar crystal extending in the direction of the center of the plate thickness is very effective in refining the crystallized material and reducing the aspect ratio. Was found. In other words, by setting the ingot to a certain thickness, the crystallized crystals crystallized at the grain boundaries can be arranged in a line from the surface portion toward the center of the plate thickness, thereby enabling the subsequent hot rolling and cooling. The crystallized product can be easily and finely crushed by hot rolling.
[0014]
The Al alloy plate of the present invention made by the above knowledge is mass%,
Mg: 3.0-6.0%,
Si: 0.1 to 0.6%,
Fe: 0.1 to 1.0%,
Alternatively, Cu: 0.4% or less and the balance Al are essential components, and the average equivalent circle diameter (hereinafter referred to as the average crystallite diameter) of the crystallized product containing Fe or Si is 2 μm or less, The crystallized product has an average aspect ratio of 1.8 or less and an average crystal grain size of 30 μm or less.
[0015]
First, the reasons for limiting the components of the Al alloy plate of the present invention will be described.
Mg: 3.0-6.0%
Mg is added in order to improve the strength by solid solution in the Al matrix and to secure ductility. If it is less than 3.0%, the effect is too small. On the other hand, if it exceeds 6.0%, hot workability is reduced, hot rolling becomes extremely difficult, the solid-liquid coexistence area is expanded, and casting is difficult. As a result, productivity is significantly reduced.
[0016]
Si: 0.1-0.6%
Fe: 0.1 to 1.0%
Si and Fe generate crystallized substances such as Mg-Si and Al-Fe-Si, and have an effect of refining crystal grains. Therefore, 0.1% or more of each is added. On the other hand, when Si exceeds 0.6% and Fe exceeds 1.0%, the crystallization is coarsened, and this does not become fine due to rolling or the like after casting. The remaining coarse crystallization is the starting point of fracture, and the formability is reduced. Deteriorate. Further, when Si crystallizes as Mg 2 Si, the amount of Mg dissolved in the Al matrix decreases, and the strength and toughness deteriorate. Therefore, from this point, Si can be kept at 0.6% or less. . In the present invention, Si and Fe are positively added in order to utilize the Si and Fe crystal grain refining effect. However, as an incidental effect, an inexpensive Al ingot containing a large amount of Fe is inevitable. Scrap material can be used, which can contribute to cost reduction.
[0017]
Cu: 0.4% or less Cu has an effect of improving moldability, but excessive addition deteriorates corrosion resistance. In the present invention, it is limited to 0.4% or less mainly from the viewpoint of ensuring corrosion resistance. In the present invention, the amount of Cu added is low and the amount of Cu that contributes to the improvement of the formability is small. However, the present invention succeeds in improving the formability by satisfying specific structure conditions described later.
[0018]
The Al alloy plate of the present invention is composed of the above Mg, Si, Fe, or even Cu and the balance Al, and is composed of the balance inevitable impurities, and further improves the characteristics of the Al alloy plate of the present invention. As mentioned above, one or more of the following element groups can be added.
[0019]
Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.3% or less, V: 0.3% or less, Ti: 0.03% or less These elements have a crystal grain refining effect. Effective in improving moldability. When the upper limit of each element is exceeded, a coarse compound is formed, which becomes a starting point of destruction and deteriorates moldability. In addition, Ti also has the refinement | miniaturization ability at the time of casting, and when the upper limit is exceeded, columnar crystal formation of an ingot will be prevented and the crystallized substance dividing effect will deteriorate. More preferably, Mn: 0.6% or less, Cr: 0.2% or less, Zr: 0.2% or less, V: 0.2% or less, Ti: 0.01% or less.
[0020]
Next, the structure of the Al alloy plate of the present invention will be described.
In the present invention, the average crystallite size of the crystallized product containing Fe or Si is 2 μm or less, the average aspect ratio of the crystallized product is 1.8 or less, and the average crystal grain size is 30 μm or less. .
[0021]
As for the form of the crystallized material, even if the average particle size is small, if there is a crystallized material having a large particle size and aspect ratio, it becomes a starting point of fracture, and thus has a great influence on the formability of the alloy plate. For this reason, in the present invention, the average crystallite diameter is limited to 2 μm or less, and the average aspect ratio of the crystallized product is limited to 1.8 or less, preferably 1.5 or less. When the average crystallized substance diameter exceeds 2 μm, it tends to be a starting point of fracture. Also, even if the average crystallite diameter is 2 μm or less, stress concentration tends to occur when the aspect ratio exceeds 1.8, so that such a crystallized substance is likely to be a starting point of fracture and the formability is lowered. Become.
[0022]
It was also found that the crystal grain size greatly affected the moldability, as is clear from the examples described later. Therefore, in the present invention, not only the crystallized form but also the crystal grain size is limited. That is, when the average crystal grain size exceeds 30 μm, the deterioration of the moldability becomes remarkable. Therefore, in the present invention, the average crystal grain size is set to 30 μm or less, preferably 20 μm or less. These form conditions ensure good moldability even if the amount of Cu is reduced.
[0023]
The Al—Mg-based Al alloy sheet of the present invention is manufactured through processes of hot rolling, intermediate annealing, cold rolling, and final annealing after casting. However, it is desirable to pay attention to the following points so that a predetermined organization can be obtained.
[0024]
The higher the solidification rate at the time of casting, the finer the crystallized material in the ingot. However, it is effective for minimizing the crystallized material to suppress defects and segregation in the ingot. It is preferable that the cooling rate at the center of the mass is not too high. When the cooling rate is too high, supply of the molten metal for solidification shrinkage is insufficient, and defects are likely to be generated. Therefore, in consideration of the balance between the refinement of the crystallized material and the suppression of defects and segregation in the casting stage, it is desirable to set the cooling rate at the ingot plate thickness center to 1 to 5 ° C./sec.
[0025]
Further, it is desirable to suppress the variation in the cooling rate in the ingot width direction within ± 30%, preferably within ± 20%. If there is a part with a slow cooling rate, that part becomes the final solidified part, where defects and segregation are concentrated, degrading the properties of that part, particularly the processing characteristics in the subsequent rolling process, resulting in coarse crystals and aspect. It becomes a factor which a crystallized substance with a large ratio remains.
[0026]
In order to obtain a sound structure in which the crystallized material is divided into a predetermined size and is uniformly dispersed, it has become clear that the structure at the time of solidification is preferably a columnar crystal. The reason is that by making the structure during solidification into columnar crystals, a structure form in which the crystal grains are elongated in the direction of the center of the plate thickness from the surface layer portion is obtained. In order to make the crystallized material finer effectively by rolling at a relatively high reduction ratio in the subsequent hot rolling and cold rolling. It is because it is divided. For this reason, the ingot thickness is preferably 15 mm or more, more preferably 25 mm or more.
[0027]
As a casting process for realizing the cooling rate and ingot thickness of the ingot plate thickness center as described above, a thin slab continuous casting such as a twin belt type or twin block type for producing a cast piece having a thickness of 15 to 35 mm. A process can be used. Further, as a method of suppressing the variation in the cooling rate in the ingot width direction, in the belt continuous casting method, it is necessary to prevent deformation of the belt, and preheating of the belt, application of tension, and application of a belt coating agent are effective. The preheating of the belt may be performed at a belt temperature of 60 ° C. or higher, desirably 80 ° C. or higher. Tension applied to the belt is preferably in the stress at 5.0 kgf / mm 2 or more, 7.5 kgf / mm 2 or more is more preferable. Moreover, as a coating agent, a thing with heat insulation is desirable, and oxide type mold release agents, such as an alumina type, are suitable. Of course, a carbon mold release agent can also be used.
[0028]
As the hot rolling condition of the ingot, it is desirable to carry out in a high temperature range for fine fragmentation of crystallized material in the ingot and reduction of the aspect ratio, but if it is too high, partial melting occurs. Accordingly, the hot rolling start temperature is preferably 450 ° C. or higher and 590 ° C. or lower, more preferably 500 ° C. or higher and 570 ° C. or lower. Further, an increase in the rolling reduction during hot rolling is effective for fine crystallization and reduction of the aspect ratio, and the total rolling reduction is preferably 80% or more, more preferably 90% or more.
[0029]
The intermediate annealing conditions and the final annealing after cold rolling are not particularly specified, and may be performed by a normal annealing method (continuous annealing or batch annealing).
[0030]
As the cold rolling conditions, as the rolling reduction (cold rolling ratio) during cold rolling increases, the crystallized material is more finely divided and the aspect ratio is reduced. However, increasing the rolling rate during hot rolling has a greater effect on the refinement of the crystallized matter. On the other hand, reduction during cold rolling is effective for crystal grain refinement after cold rolling or after final annealing. Taking these effects into consideration, the total rolling reduction during cold rolling is preferably 60% or more, more preferably 70% or more. Note that the intermediate annealing during the cold rolling is not necessarily performed.
[0031]
EXAMPLES Hereinafter, although an Example demonstrates this invention further, this invention is not restrictively interpreted by these Examples.
[0032]
【Example】
An aluminum alloy having the composition shown in Table 1 below is melted, and as shown in Table 2, various methods are employed by the twin belt type continuous casting method so that the cooling rate at the center of the plate thickness is 0.5 to 30 ° C./sec. A thick moving strip (plate width 1000 mm) was prepared, and this strip was immediately hot-rolled to obtain a plate having a thickness of 1.5 to 5 mm. Regarding the continuous casting conditions, in Table 2, for Sample Nos. 1 to 20 and 23, the belt preheating temperature during casting was 70 ° C., the belt tension was 7.5 kgf / mm 2 , and an alumina release agent was applied to the belt. . On the other hand, Sample No. 21 produced a plate having a thickness of 8 mm by a twin roll continuous casting method, and processed it to a final thickness of 1 mm by performing only cold rolling without performing hot rolling. Sample No. 22 was cast at a belt preheating temperature of 40 ° C. and a belt tension of 2.5 kgf / mm 2 , with no release agent applied, and immediately hot-rolled.
[0033]
As shown in Table 2, the hot rolling (excluding No. 21) was performed at a rolling start temperature of 430 to 570 ° C. and a rolling reduction of 90 to 75%. The hot-rolled sheet thus obtained was subjected to intermediate annealing at 500 ° C. for 1 minute, and then cold-rolled at the cold rolling rate shown in Table 2 to obtain an Al alloy sheet having a thickness of 1 mm. This alloy plate was subjected to final annealing at 550 ° C. for 1 minute and water quenching was performed.
[0034]
The Al alloy plate sample thus produced was subjected to observation with an optical microscope and image analysis to determine the equivalent circle diameter and aspect ratio of the crystallized product. In addition, the crystal grain size was measured by the section method by observation with an optical microscope. In addition, pitting corrosion after 100 hours immersion in 0.5 mol NaCl aqueous solution at 40 ° C. was evaluated in five stages (AA: excellent, A: good, B: acceptable, C: inferior, D: not possible), and corrosion resistance was evaluated. did. Further, the formability was evaluated by measuring the overhang height when the test piece was broken by the LDH test. The test conditions were 100 mm in diameter and using a ball-head punch, the application of lubricating oil R-303P, and a wrinkle holding force of 200 kN. Table 3 shows the results of these investigations. In the table, sample Nos. 1 to 10 are examples, and Nos. 11 to 23 are comparative examples.
[0035]
[Table 1]
[0036]
[Table 2]
[0037]
[Table 3]
[0038]
In Table 3, Sample No. 12 was excessive in Mg, and Sample No. 22 was not suitable for casting, so cracking occurred during hot rolling. For sample No. 22 and sample No. 5 of the same component system (component No. 5), the cooling rate in the width direction of the cast strip (ingot) was measured. The width central part (500 mm position from the end of the plate) was 3.0 ° C / sec, and the quarter width section (position 250 mm from the end of the plate) was 2.5 ° C / sec. The variation in the cooling rate in the width direction was small. However, in No. 22, the width center part is 3.0 ° C./sec, the 1/4 width part is 1.6 ° C./sec, and the cooling speed of the 1/4 width part is about 53% of the width center part. The variation in the cooling rate in the direction was large. For this reason, in No. 22, the concentration of alloy elements such as Mg, Fe, and Si occurs in the ¼ width portion, so that the workability is deteriorated or the melting point is lowered and partial melting occurs. It was inferred that cracking occurred.
[0039]
Nos. 11 and 13 to 18 have good corrosion resistance because the components are outside the scope of the invention, but generally have poor moldability. However, since No. 15 has a high Cu content of 0.6%, the moldability is good, but the corrosion resistance is remarkably deteriorated. Nos. 19 to 21 and 23 satisfy the components of the invention, but the manufacturing conditions are inappropriate. Therefore, the structural conditions of the present invention are not satisfied, and the moldability is also lowered.
[0040]
In contrast to these comparative examples, it was confirmed that Nos. 1 to 10 of the examples were excellent in both corrosion resistance and moldability.
[0041]
【The invention's effect】
According to the Al-Mg-based Al alloy plate of the present invention, Mg, Si, Al, in addition to a predetermined amount of Fe or further Cu as an essential component, the average crystallite diameter, average aspect ratio and Since the average crystal grain size is limited to a predetermined value or less, it can have excellent moldability or further corrosion resistance, and can be suitably used as a material for, for example, an automobile panel, which requires these characteristics. Moreover, since the Al alloy plate of the present invention can be manufactured without using high-purity Al metal, the manufacturing cost can be reduced and the aluminum material can be recycled.
Claims (3)
Mg:3.0〜6.0%、
Si:0.1〜0.6%、
Fe:0.1〜1.0%
および残部Alを本質的成分としてなり、FeまたはSiを含んだ晶出物の円相当直径の平均が2μm 以下、前記晶出物の平均アスペクト比が1.8以下であり、かつ平均結晶粒径が30μm 以下である、成形性に優れたAl−Mg系Al合金板。mass%
Mg: 3.0-6.0%,
Si: 0.1 to 0.6%,
Fe: 0.1 to 1.0%
And the balance Al is an essential component, and the average equivalent circle diameter of the crystallized product containing Fe or Si is 2 μm or less, the average aspect ratio of the crystallized product is 1.8 or less, and the average crystal grain size An Al—Mg-based Al alloy plate excellent in formability, having a thickness of 30 μm or less.
Mg:3.0〜6.0%、
Si:0.1〜0.6%、
Fe:0.1〜1.0%、
Cu:0.4%以下
および残部Alを本質的成分としてなり、FeまたはSiを含んだ晶出物の円相当直径の平均が2μm 以下、前記晶出物の平均アスペクト比が1.8以下であり、かつ平均結晶粒径が30μm 以下である、成形性に優れたAl−Mg系Al合金板。mass%
Mg: 3.0-6.0%,
Si: 0.1 to 0.6%,
Fe: 0.1 to 1.0%,
Cu: 0.4% or less and the balance Al as an essential component, the average of the equivalent circle diameter of the crystallized product containing Fe or Si is 2 μm or less, and the average aspect ratio of the crystallized product is 1.8 or less An Al—Mg-based Al alloy plate having excellent formability and having an average crystal grain size of 30 μm or less.
Mn:1.0%以下、
Cr:0.3%以下、
Zr:0.3%以下、
V:0.3%以下、
Ti:0.03%以下
よりなる群から選択される1種以上の成分を含有する請求項1または2に記載したAl−Mg系Al合金板。further,
Mn: 1.0% or less,
Cr: 0.3% or less,
Zr: 0.3% or less,
V: 0.3% or less,
3. The Al—Mg-based Al alloy plate according to claim 1, comprising at least one component selected from the group consisting of Ti and 0.03% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000081152A JP3685973B2 (en) | 2000-03-23 | 2000-03-23 | Al-Mg-based Al alloy plate with excellent formability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000081152A JP3685973B2 (en) | 2000-03-23 | 2000-03-23 | Al-Mg-based Al alloy plate with excellent formability |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001262263A JP2001262263A (en) | 2001-09-26 |
JP3685973B2 true JP3685973B2 (en) | 2005-08-24 |
Family
ID=18598125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000081152A Expired - Lifetime JP3685973B2 (en) | 2000-03-23 | 2000-03-23 | Al-Mg-based Al alloy plate with excellent formability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3685973B2 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE602004005529T2 (en) * | 2003-05-20 | 2007-10-25 | Aleris Aluminum Duffel Bvba | Wrought aluminum alloy |
JP4534573B2 (en) * | 2004-04-23 | 2010-09-01 | 日本軽金属株式会社 | Al-Mg alloy plate excellent in high-temperature high-speed formability and manufacturing method thereof |
CA2588046C (en) | 2004-07-30 | 2014-09-30 | Nippon Light Metal Co., Ltd. | Aluminum alloy sheet and method for manufacturing the same |
JP5220310B2 (en) * | 2006-12-26 | 2013-06-26 | 日本軽金属株式会社 | Aluminum alloy plate for automobile and manufacturing method thereof |
CA2706198C (en) | 2008-02-06 | 2016-06-21 | Nippon Light Metal Co., Ltd. | Aluminum alloy sheet for motor vehicle and process for producing the same |
JP2012107339A (en) * | 2011-12-28 | 2012-06-07 | Nippon Light Metal Co Ltd | Aluminum alloy sheet for automobile and manufacturing method therefor |
FR3008427B1 (en) | 2013-07-11 | 2015-08-21 | Constellium France | ALUMINUM ALLOY SHEET FOR AUTOMOBILE BODY STRUCTURE |
JP6444779B2 (en) * | 2015-03-09 | 2018-12-26 | 株式会社神戸製鋼所 | Aluminum alloy automobile roof panels and aluminum alloy sheets for automobile roof panels |
CN106636777A (en) * | 2016-12-20 | 2017-05-10 | 四川欣意迈科技有限公司 | Oil-gas pipe section made of rare-earth aluminum alloy and making method thereof |
-
2000
- 2000-03-23 JP JP2000081152A patent/JP3685973B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2001262263A (en) | 2001-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100993840B1 (en) | Magnesium alloy panel having high strength and manufacturing method thereof | |
JP2008024964A (en) | High-strength aluminum alloy sheet and producing method therefor | |
JP2007538146A (en) | Forged magnesium alloy having excellent formability and method for producing the same | |
JP7318274B2 (en) | Al-Mg-Si-based aluminum alloy cold-rolled sheet and its manufacturing method, and Al-Mg-Si-based aluminum alloy cold-rolled sheet for forming and its manufacturing method | |
WO2007102290A1 (en) | Process for manufacturing cast aluminum alloy plate | |
JP6176393B2 (en) | High-strength aluminum alloy plate with excellent bending workability and shape freezing property | |
JP2001262264A (en) | Al-Mg-Si SERIES Al ALLOY SHEET EXCELLENT IN TOUGHNESS AND BENDABILITY | |
JP4541934B2 (en) | Manufacturing method of forming aluminum alloy sheet | |
WO2009098732A1 (en) | Aluminum alloy sheet for motor vehicle and process for producing the same | |
CA2551599A1 (en) | Manufacturing method for al-mg-si aluminum alloy sheets with excellent bake hardenability | |
JP3685973B2 (en) | Al-Mg-based Al alloy plate with excellent formability | |
TWI700377B (en) | Aluminum alloy plate for battery cover for forming integral explosion-proof valve and manufacturing method thereof | |
JP5059505B2 (en) | Aluminum alloy cold-rolled sheet that can be formed with high strength | |
JP4701998B2 (en) | Aluminum alloy foil excellent in strength and rough skin resistance and method for producing the same | |
JP4955969B2 (en) | Manufacturing method of forming aluminum alloy sheet | |
JP5416795B2 (en) | Aluminum alloy sheet for forming | |
CN111254324A (en) | Al-Mg-Si alloy plate and manufacturing method thereof | |
JP5220310B2 (en) | Aluminum alloy plate for automobile and manufacturing method thereof | |
WO2008078399A1 (en) | Method of producing aluminum alloy sheet | |
JP2001032031A (en) | Aluminum alloy sheet for structural material, excellent in stress corrosion cracking resistance | |
JP3749627B2 (en) | Al alloy plate with excellent press formability | |
KR101170453B1 (en) | The method for preparing of Al-Mg-Mn alloy strip using twin roll cast and Al-Mg-Mn alloy strip | |
JP2004076155A (en) | Aluminum alloy sheet having excellent seizure softening resistance | |
JP2001020027A (en) | Al-Mg-Si-Cu ALLOY SHEET EXCELLENT IN CORROSION RESISTANCE AND FORMABILITY, AND ITS MANUFACTURE | |
JP2012107339A (en) | Aluminum alloy sheet for automobile and manufacturing method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20040401 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20050414 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20050531 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20050601 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3685973 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080610 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090610 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100610 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100610 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110610 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120610 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130610 Year of fee payment: 8 |
|
EXPY | Cancellation because of completion of term |