JP3791337B2 - Highly formable aluminum alloy plate and method for producing the same - Google Patents

Highly formable aluminum alloy plate and method for producing the same Download PDF

Info

Publication number
JP3791337B2
JP3791337B2 JP2001003248A JP2001003248A JP3791337B2 JP 3791337 B2 JP3791337 B2 JP 3791337B2 JP 2001003248 A JP2001003248 A JP 2001003248A JP 2001003248 A JP2001003248 A JP 2001003248A JP 3791337 B2 JP3791337 B2 JP 3791337B2
Authority
JP
Japan
Prior art keywords
mass
elongation
aluminum alloy
rolling
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001003248A
Other languages
Japanese (ja)
Other versions
JP2001288523A (en
Inventor
武 森山
忍 高橋
一光 水嶋
靖史 田島
雄一 玉置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP2001003248A priority Critical patent/JP3791337B2/en
Publication of JP2001288523A publication Critical patent/JP2001288523A/en
Application granted granted Critical
Publication of JP3791337B2 publication Critical patent/JP3791337B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は高成形性アルミニウム合金板およびその製造方法に係り、3方向の引張試験で引張強さが90N/mm2 以上、耐力が45N/mm2 以上で、全伸びが40%以上で局部伸びが10%以上を有するような高延性で局部伸びの優れた高成形性アルミニウム合金板およびその製造方法を提供しようとするものである。
【0002】
【従来の技術】
近年、自動車用アルミ合金板としてAl−Mg合金が研究され且つ使用され、全伸びが35%程度の材料が得られているが、Mg量を増加しても局部伸びが増加せず、また、加工硬化指数が高いため、成形途中で一旦発生したシワが取りきれず、シワ重なりが発生したりして特に非対称の深絞り成形品については鋼板に及ばないのが現状であり、従って、燃料タンクやタンクカバーについては一部で温間成形法でしか製造ができないのが現状である。
【0003】
なお純アルミ系で、引張強さや耐力を高くしようとすることも一部に考えられ、また耐力が低いAl−Fe系を採用することも一部に検討されているようである。
【0004】
【発明が解決しようとする課題】
アルミニウム合金板で鋼板並みの成形性を得るには全伸びが40%以上で、なおかつ、局部伸び10%以上で適度な強度が必要であるが一般に純度が高いと伸びが大きくなることが知られていてAl99.8質量%以上では伸びが40%を越えるようになるとしても引張強さや耐力がかなり低く、板材の取扱い時の変形問題や成形品での加工硬化がAl−Mg系に比べて小さく、成形品が変形し易い等の問題がある。
【0005】
なお、純アルミ系で引張強さや耐力を高くしようとすると、一般に強度を確保し、伸びを犠牲にしたH24材が使用されるが伸びが低いため深絞りや張り出し成形ができず、浅い絞り成形品に限定されてくるのが実状である。また、耐力が低いAl−Fe系や純アルミ系の板材では金型とのクリアランスが厳しい条件や複雑な非対称の形状を成形する場合には板材が金型のコーナーRの小さい部分等の変曲部で塑性変形し易いため、材料の流入が抑えられて局部的に板材の肉厚が減少し、絞り切れが発生し易い欠点がある。
【0006】
【課題を解決するための手段】
本発明者等は上記したような従来技術における課題を解消することについて検討を重ねた結果、全伸びが40%以上で、なおかつ局部伸びが10%以上を有し、また耐力を高めてより鋼板に近いアルミニウム板材が必要であることを確認した。またアルミニウム板の取り扱い時の変形や浅い絞り成形品の変形は材料の耐力に起因するもので、材料の伸びを大きく損なうことなく耐力を高められれば解決可能であることを見出し、更に板材の伸びを高める方法としてAl−Fe系合金でSi量を少なくコントロールすることにより、O材で全伸び40%以上局部伸び10%以上を得ることを見出し、更に材料の耐力を高める方法としてO材をスキンパス圧延する方法やレベラーロールで繰り返し曲げ加工する方法を検討したがスキンパス圧延法では耐力の向上が大きい反面、伸びの低下が著しい。また、レベラーロールによる繰り返し曲げは伸びの低下が比較的少ないものの、耐力向上が5〜10N/mmと小さく、目的を満たさない。本発明ではO材コイルを1〜5%引張り加工することにより、耐力を15〜30N/mm向上せしめ、伸びの減少を0.5〜4%に抑えて高耐力で高延性の高成形性材を得ることに成功したものであって、そのポイントは以下の如くである。
【0007】
(1)Fe:1.0〜2.0質量%と、Ti:0.005〜0.10質量%もしくはTi:0.005〜0.10質量%およびB:0.0005〜0.002質量%を含有し、残部がAlおよび不可避不純物からなり、該不純物中のSiを0.10質量%以下、Cuを0.03質量%以下に規制したアルミニウム合金板で、3方向の引張試験で引張強さが90N/mm以上、耐力45N/mm以上で、全伸び40%以上であり、かつ局部伸びが10%以上を有することを特徴とした高成形性アルミニウム合金板。
【0008】
(2)Fe:1.0〜2.0質量%と、Mg:0.05〜0.3質量%またはMn:0.05〜0.6質量%の何れか1種または2種と、Ti:0.005〜0.10質量%もしくはTi:0.005〜0.10質量%およびB:0.0005〜0.002質量%を含有し、残部がAlおよび不可避不純物からなり、該不純物中のSiを0.10質量%以下、Cuを0.03質量%以下に規制したアルミニウム合金板で、3方向の引張試験で引張強さが100N/mm以上、耐力55N/mm以上で、全伸び40%以上であり、かつ局部伸びが10%以上を有することを特徴とした高成形性アルミニウム合金板。
【0009】
(3)Fe:1.0〜2.0質量%と、Ti:0.005〜0.10質量%もしくはTi:0.005〜0.10質量%およびB:0.0005〜0.002質量%を含有し、残部がAlおよび不可避不純物からなり、該不純物中のSiを0.10質量%以下、Cuを0.03質量%以下に規制したアルミニウム合金鋳塊を450〜620℃で均熱処理し、300℃以上の温度で熱間圧延を施した後冷間圧延および300℃以上での中間焼鈍を経た上で最終冷間圧延を圧延率60〜90%で施すか、または前記熱間圧延を施した後直ちに最終冷間圧延を圧延率60〜90%で施した後、300℃温度以上の温度で最終焼鈍し、1〜5%の永久伸びを付与して耐力を向上させ、3方向の引張試験で引張強さが90N/mm以上、耐力45N/mm以上で、全伸び40%以上であり、かつ局部伸び10%以上を有せしめたことを特徴とする高成形性アルミニウム合金板の製造方法。
【0010】
(4)Fe:1.0〜2.0質量%と、Mg:0.05〜0.3質量%またはMn:0.05〜0.6質量%の何れか1種または2種と、Ti:0.005〜0.10質量%もしくはTi:0.005〜0.10質量%およびB:0.0005〜0.002質量%を含有し、残部がAlおよび不可避不純物からなり、該不純物中のSiを0.10質量%以下、Cuを0.03質量%以下に規制したアルミニウム合金鋳塊を450〜620℃で均熱処理し、300℃以上の温度で熱間圧延を施した後冷間圧延および300℃以上での中間焼鈍を経た上で最終冷間圧延を圧延率60〜90%で施すか、または前記熱間圧延を施した後直ちに最終冷間圧延を圧延率60〜90%で施した後、300℃温度以上の温度で最終焼鈍し、1〜5%の永久伸びを付与して耐力を向上させ、3方向の引張試験で引張強さが100N/mm以上、耐力55N/mm以上で全伸び40%以上であり、かつ、局部伸びが10%以上を有せしめたことを特徴とする高成形性アルミニウム合金板の製造方法
【0011】
上記したような本発明における成分限定理由は以下の如くである。
・Fe:Feは強度および伸びを付与する重要な元素で1.0質量%未満ではその効果が少なく、2質量%を越えると耐食性を損なうので1.0〜2.0質量%とする。
・Si:不純物としてのSiは鋳造時にFeやMnと化合して、Al−Fe−Si系晶出物となり、局部伸びを阻害するので0.10質量%以下とする。
・Cu:不純物としてのCuは強度を付与する元素であるがFe量が高い場合に耐食性を損なうので0.03質量%以下とする。
・MgおよびMn:強度付与元素である。特にMgは固溶して強度を付与する元素であり、0.05質量%未満ではその効果が小さく、0.3質量%を越えると加工硬化度が大きくなって局部伸びや全伸びが低下するので0.05〜0.3質量%とする。
・TiもしくはTiおよびB:鋳塊の鋳造組織を微細化し鋳造割れを防止するために、Ti単独、またはTiとBを複合添加する。Ti単独の場合0.005〜0.10質量%、もしくはTiとBを複合添加する場合Ti:0.005〜0.10質量%およびB:0.0005〜0.002質量%である。
・他の不純物は、Znは0.3質量%以下、Zn以外の他の不純物は各々0.1質量%以下とする。
【0012】
また本発明における鋳造から引張矯正までの製造工程については以下の如くである。
(鋳造)
鋳造法は特に限定されず、常法によって鋳塊を作れば良く、DC鋳造法(半連続鋳造法)でも連続鋳造法でも良い。
(均熱処理)
均熱処理は熱間圧延のための熱処理で、450℃未満ではAl−Fe化合物の均質化が不十分であり、一方620℃以上ではコストアップとなるので450〜620℃とする。
(熱間圧延)
常法によって300℃以上の再結晶温度以上で圧延を行う。
(冷間圧延)
最終焼鈍前の冷延加工率は塑性加工異方性を小さくするために重要で60%未満では再結晶粒が粗大となり、耐力の低下と成形加工時の肌荒れを生じ易くなる。また冷延加工率が90%を越えると塑性加工異方性が大きくなり、圧延方向に対して45°方向の伸びが大きく、絞り加工時の耳率が大きくなるので60〜90%とする。冷延加工率が90%を越える場合は冷延途中で中間焼鈍を施すことによってこの目標を達成できる。
(最終焼鈍)
O材焼鈍するために行うものでバッチ焼鈍では300℃以上の温度で0.5〜3Hrで十分に再結晶させる。
なお、連続焼鈍では350℃以上の温度で1〜60秒の加熱を行って十分に再結晶させる。
(引張矯正)
本発明の重要な工程でテンションレベラー等で永久伸びを与えて耐力向上をはかるもので永久伸び量が1%未満では耐力の向上が小さく、一方5%を越えると全伸びを低減するので1〜5%とする。ここでテンションレベラーとは、コイル状態で連続的に永久伸びを生ずるように引張りながら、レベラーロールで繰り返し曲げにより歪み矯正をする設備をいう。
【0013】
【発明の実施の形態】
本発明によるものの具体的な実施態様について説明すると、先ず本発明者等が採用した発明例合金およびその比較例合金は次の表1に示す如くである。
【0014】
【表1】

Figure 0003791337
【0015】
また上記したような各合金に対する製造条件を要約して示すと、次の表2に示す如くである。
【0016】
【表2】
Figure 0003791337
【0017】
上記したような製造例および比較例について説明すると、表2に示されたような製造 No.1〜6によるものは何れもその組成および製造プロセスの何れもが本発明で規定する条件を満足した本発明例であり、これらのものは表2に示すように引張強さ90N/mm2 以上、耐力45N/mm2 、全伸び40%以上を有し、局部伸びも10%以上で耐食性も良好である高耐力で高延性の優れた高成形性材料である。ここで全伸びとは、板の引張試験(JIS5号試験片使用)において引張開始から板破断時までの全伸び値を標点距離(初期長さ)で徐した値(%)をいう。局部伸びとは、板の引張試験(JIS5号試験片使用)において最大荷重時から板破断時までの伸び値を標点距離(初期長さ)で徐した値(%)をいう。引張強さは3方向の引張試験によるもので、3方向とは圧延方向、圧延方向に直角な方向、圧延方向に対して45°方向を指し、一番低い値を示すものである。
【0018】
これに対し製造No.7〜11のものは何れも比較例であって、製造No.7は組成が本発明で規定する範囲を満たすが製造プロセスで最終引張矯正量が規定より小さく、耐力が低め本発明の強度範囲を満たさない例である。また、製造No.8,9,10,11は製造プロセスが本発明で規定する範囲を満たすが組成範囲を満たさない比較例でNo.8はSi量が多めでAl−Fe−Si系化合物の生成により全伸びおよび局部伸びが低く、本発明で規定する範囲を満たしていない。さらに、No.10はCu量が多めで製品の耐食性が劣り、使用上問題となる。また製造No.9はSi量が多めでFe量も少ないのでNo.8よりも全伸びおよび局部伸びが共に低い。No.11はFe量が少なく、局部伸びが不足しており、引張強さおよび耐力が共に本発明で規定する範囲を満たしていない。なお、No.12は組成が範囲内であるが製造プロセスにおいて、引張矯正量が大きすぎ、全伸び低めとなって本発明で規定する範囲を満たしていない。
【0019】
また自動車の燃料タンクの如く逆鞍型の複雑形状の容器で、全体をとおして幅が60〜80cmで左部分の寸法が深さ20〜25cm×長さ30〜40cm、中央部分の寸法が深さ10〜15cm×長さ30〜40cm、右部分の寸法が深さ15〜20cmの大型の容器を、上記各製造 No.1〜12と同じ条件で製造した板を用いてプレス加工したところ、製造 No.1〜6の条件のものは破断することなく成形ができた。一方製造 No.7〜12の条件のものはプレス金型の肩部で破断が生じた。
【0020】
即ち、このような結果によるときは組成が本発明の条件を満すと共に製造プロセスも本発明の要件を満足することによって本発明の目的を的確に達成し得るものであることが確認される。
【0021】
【発明の効果】
上記したような本発明によれば引張強さ90N/mm2 以上、耐力45N/mm2 以上、全伸び40%以上で局部伸び10%以上と特に耐力と伸びが優れたアルミニウム合金板を得ることができる。このような本発明によるアルミニウム合金板を非対称の深絞り成形部品や難形状成形部品に使用することにより、鋼板でしか出来なかった成形部材をアルミ化でき、軽量化、リサイクル性に大きく寄与することが可能となるものであって、工業的にその効果の大きい発明である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a high-formability aluminum alloy sheet and a method for producing the same, and has a tensile strength of 90 N / mm 2 or more, a proof stress of 45 N / mm 2 or more, and a total elongation of 40% or more. It is an object of the present invention to provide a highly formable aluminum alloy plate having a high ductility and an excellent local elongation, and a method for producing the same.
[0002]
[Prior art]
In recent years, Al-Mg alloy has been studied and used as an aluminum alloy plate for automobiles, and a material having a total elongation of about 35% has been obtained. However, even if the amount of Mg is increased, the local elongation does not increase, Since the work hardening index is high, wrinkles once generated during molding cannot be removed, and wrinkle overlap occurs, and in particular, asymmetric deep-drawn molded products do not reach steel sheets. In some cases, the tank cover can be manufactured only by the warm forming method.
[0003]
In addition, it may be considered that the tensile strength and the proof stress are to be increased in a pure aluminum system, and the use of an Al—Fe system having a low proof stress is also considered in part.
[0004]
[Problems to be solved by the invention]
In order to obtain the same formability as a steel plate with an aluminum alloy plate, the total elongation is 40% or more and the local elongation is 10% or more, and an appropriate strength is required. However, it is generally known that if the purity is high, the elongation increases. Even if Al exceeds 99.8% by mass , even if the elongation exceeds 40%, the tensile strength and proof stress are considerably low. There is a problem that the molded product is easily deformed.
[0005]
In addition, when trying to increase tensile strength and yield strength with pure aluminum, generally H24 material that secures strength and sacrifices elongation is used, but because of low elongation, deep drawing and overhanging cannot be performed, shallow drawing The actual situation is limited to products. Also, in the case of Al-Fe or pure aluminum plate material with low proof stress, when the clearance from the mold is severe or when a complicated asymmetric shape is formed, the plate material is inflected such as a portion with a small corner R of the mold. Since the plastic deformation is easy at the portion, the inflow of the material is suppressed, the thickness of the plate material is locally reduced, and there is a drawback that drawing out is likely to occur.
[0006]
[Means for Solving the Problems]
As a result of repeated studies on solving the problems in the prior art as described above, the present inventors have found that the total elongation is 40% or more, the local elongation is 10% or more, and the proof stress is increased to further increase the proof stress. It was confirmed that an aluminum plate material close to is necessary. We also found that deformation during handling of aluminum plates and shallow drawn products are due to the strength of the material, and can be solved if the strength can be increased without significantly reducing the elongation of the material. As a method of increasing the amount of Si by controlling the amount of Si with an Al-Fe-based alloy, it has been found that a total elongation of 40% or more and a local elongation of 10% or more can be obtained with the O material. A method of rolling and a method of repeatedly bending with a leveler roll have been studied. The skin pass rolling method has a great improvement in yield strength, but the elongation is remarkably reduced. Moreover, although the repeated bending by the leveler roll has a relatively small decrease in elongation, the yield strength improvement is as small as 5 to 10 N / mm 2 and does not satisfy the purpose. In the present invention, the O material coil is stretched by 1 to 5%, thereby improving the yield strength by 15 to 30 N / mm 2 and suppressing the decrease in elongation to 0.5 to 4%. The material was successfully obtained, and the points are as follows.
[0007]
(1) Fe: 1.0-2.0 mass%, Ti: 0.005-0.10 mass % or Ti: 0.005-0.10 mass% and B: 0.0005-0.002 mass % , With the balance consisting of Al and inevitable impurities, Si in the impurities regulated to 0.10 % by mass or less and Cu to 0.03 % by mass or less, and tensile in a three-way tensile test A high formability aluminum alloy plate characterized by having a strength of 90 N / mm 2 or more, a proof stress of 45 N / mm 2 or more, a total elongation of 40% or more, and a local elongation of 10% or more.
[0008]
(2) Fe: and 1.0 to 2.0 wt%, Mg: 0.05 to 0.3 mass% or Mn: 1 and two or one of 0.05 to 0.6 wt%, Ti : 0.005 to 0.10 mass% or Ti: 0.005 to 0.10 wt% and B: 0.0005 to 0.002 containing mass%, the balance being Al and inevitable impurities, said impurities in 0.10 wt% of Si below, an aluminum alloy plate to restrict the Cu below 0.03 wt%, is 100 N / mm 2 or more tensile strength in the three directions of the tensile test, in yield strength 55N / mm 2 or more, A high formability aluminum alloy sheet characterized by having a total elongation of 40% or more and a local elongation of 10% or more.
[0009]
(3) Fe: 1.0-2.0 mass%, Ti: 0.005-0.10 mass % or Ti: 0.005-0.10 mass% and B: 0.0005-0.002 mass Of aluminum alloy ingots, the balance of which is made up of Al and inevitable impurities, and in which Si is regulated to 0.10 % by mass or less and Cu is controlled to 0.03 % by mass or less at 450 to 620 ° C. Then, after hot rolling at a temperature of 300 ° C. or higher, after cold rolling and intermediate annealing at 300 ° C. or higher , the final cold rolling is performed at a rolling rate of 60 to 90%, or the hot rolling Immediately after the final cold rolling is performed at a rolling rate of 60 to 90% , the final annealing is performed at a temperature of 300 ° C. or higher, and a permanent elongation of 1 to 5% is imparted to improve the yield strength, and the three directions tensile tensile strength test 90 N / mm 2 or more, proof stress 45 / In mm 2 or more, the total elongation is 40% or more, and high moldability method for producing an aluminum alloy sheet, characterized in that it allowed have a local elongation of 10% or more.
[0010]
(4) Fe: and 1.0 to 2.0 wt%, Mg: 0.05 to 0.3 mass% or Mn: 1 and two or one of 0.05 to 0.6 wt%, Ti : 0.005 to 0.10 mass% or Ti: 0.005 to 0.10 wt% and B: 0.0005 to 0.002 containing mass%, the balance being Al and inevitable impurities, said impurities in The aluminum alloy ingot in which the Si content is regulated to 0.10 % by mass or less and the Cu content to 0.03 % by mass or less is soaked at 450 to 620 ° C. and hot-rolled at a temperature of 300 ° C. or more and then cold. After rolling and intermediate annealing at 300 ° C. or higher , the final cold rolling is performed at a rolling rate of 60 to 90%, or immediately after the hot rolling is performed, the final cold rolling is performed at a rolling rate of 60 to 90%. after applying, 300 ° C. temperature or higher at the final annealing, 1-5% of the permanent To improve strength and impart elongation, tensile strength at three directions of the tensile test 100 N / mm 2 or more, a total elongation of 40% or more in strength 55N / mm 2 or more, and, the local elongation is 10% or more A method for producing a highly formable aluminum alloy sheet, characterized by comprising:
[0011]
The reasons for limiting the components in the present invention as described above are as follows.
Fe: Fe is an important element that imparts strength and elongation. If it is less than 1.0 % by mass , its effect is small, and if it exceeds 2 % by mass , corrosion resistance is impaired, so 1.0 to 2.0 % by mass .
· Si: The Si as impurities combine with Fe and Mn during casting, it is Al-Fe-Si based crystallized substances, and 0.10 mass% or less because inhibiting local elongation.
Cu: Cu as an impurity is an element that imparts strength, but when the amount of Fe is high, corrosion resistance is impaired, so 0.03 % by mass or less.
Mg and Mn: Strength imparting elements. In particular, Mg is an element that provides a strength by solid solution. If the content is less than 0.05 % by mass , the effect is small, and if it exceeds 0.3 % by mass, the degree of work hardening increases and the local elongation and total elongation decrease. Therefore, it is set to 0.05 to 0.3 % by mass .
Ti or Ti and B: In order to refine the cast structure of the ingot and prevent casting cracks, Ti alone or a combination of Ti and B is added. In the case of Ti alone, 0.005 to 0.10 % by mass , or in the case where Ti and B are added in combination, Ti: 0.005 to 0.10 % by mass and B: 0.0005 to 0.002 % by mass .
-As for other impurities, Zn is 0.3 mass% or less, and other impurities other than Zn are 0.1 mass% or less.
[0012]
The manufacturing process from casting to tension correction in the present invention is as follows.
(casting)
The casting method is not particularly limited, and an ingot may be formed by a conventional method, and may be a DC casting method (semi-continuous casting method) or a continuous casting method.
(Soaking)
The soaking is a heat treatment for hot rolling. If the temperature is lower than 450 ° C., the homogenization of the Al—Fe compound is insufficient. On the other hand, if the temperature is higher than 620 ° C., the cost increases.
(Hot rolling)
Rolling is performed at a recrystallization temperature of 300 ° C. or higher by a conventional method.
(Cold rolling)
The cold rolling ratio before final annealing is important for reducing the plastic working anisotropy. If it is less than 60%, the recrystallized grains become coarse, and the yield strength is lowered and the skin becomes rough during forming. On the other hand, when the cold rolling ratio exceeds 90%, the plastic processing anisotropy increases, the elongation in the direction of 45 ° with respect to the rolling direction increases, and the ear ratio at the time of drawing increases. When the cold rolling rate exceeds 90%, this target can be achieved by performing intermediate annealing in the middle of cold rolling.
(Final annealing)
This is performed for annealing the O material, and in batch annealing, the crystal is sufficiently recrystallized at a temperature of 300 ° C. or higher at 0.5 to 3 hours.
In continuous annealing, heating is performed at a temperature of 350 ° C. or higher for 1 to 60 seconds to sufficiently recrystallize.
(Tension correction)
In the important process of the present invention, the tension leveler or the like gives permanent elongation to improve the yield strength. If the amount of permanent elongation is less than 1%, the improvement in the yield strength is small, while if it exceeds 5%, the total elongation is reduced. 5%. Here, the tension leveler refers to equipment that corrects distortion by repeatedly bending with a leveler roll while pulling continuously to produce permanent elongation in a coil state.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
The specific embodiments of the present invention will be described. First, the invention example alloys and the comparative example alloys adopted by the present inventors are as shown in Table 1 below.
[0014]
[Table 1]
Figure 0003791337
[0015]
In addition, the manufacturing conditions for each alloy as described above are summarized as shown in Table 2 below.
[0016]
[Table 2]
Figure 0003791337
[0017]
Explaining the production examples and comparative examples as described above, the compositions and production processes of the production Nos. 1 to 6 as shown in Table 2 all satisfied the conditions defined in the present invention. Examples of the present invention, as shown in Table 2, these have a tensile strength of 90 N / mm 2 or more, a proof stress of 45 N / mm 2 , a total elongation of 40% or more, a local elongation of 10% or more, and good corrosion resistance. It is a high formability material with high yield strength and excellent ductility. Here, the total elongation refers to a value (%) obtained by grading the total elongation value from the start of tension to the time of breaking of the plate by the gauge distance (initial length) in the plate tensile test (use of JIS No. 5 test piece). The local elongation refers to a value (%) obtained by slowing the elongation value from the maximum load to the plate breakage by the gauge distance (initial length) in the tensile test of the plate (use of JIS No. 5 test piece). Tensile strength is based on a tensile test in three directions. The three directions indicate a rolling direction, a direction perpendicular to the rolling direction, and a 45 ° direction with respect to the rolling direction, and the lowest value.
[0018]
On the other hand, the production No. 7 to 11 are all comparative examples. 7 is an example in which the composition satisfies the range specified in the present invention, but the final tensile straightening amount is smaller than specified in the manufacturing process, the proof stress is low , and the strength range of the present invention is not satisfied. In addition, production No. Nos. 8, 9, 10, and 11 are comparative examples in which the manufacturing process satisfies the range specified in the present invention but does not satisfy the composition range. No. 8 has a large amount of Si, and the total elongation and local elongation are low due to the formation of an Al- Fe-Si compound, and does not satisfy the range defined in the present invention . Furthermore, no. No. 10 has a large amount of Cu and the corrosion resistance of the product is inferior, which causes problems in use. Production No. No. 9 has a larger amount of Si and a smaller amount of Fe. The total elongation and local elongation are both lower than 8. No. No. 11 has a small amount of Fe, lacks local elongation, and both the tensile strength and the proof stress do not satisfy the range defined in the present invention . In addition, No. No. 12 has a composition within the range, but in the manufacturing process, the tensile straightening amount is too large, and the total elongation is low , which does not satisfy the range defined in the present invention .
[0019]
In addition, it is a container with an upside down shape, like a fuel tank of an automobile. The overall width is 60 to 80 cm, the left part is 20 to 25 cm deep, the length is 30 to 40 cm, and the central part is deep. When a large container having a length of 10 to 15 cm and a length of 30 to 40 cm and a right portion having a depth of 15 to 20 cm is pressed using a plate manufactured under the same conditions as the above-mentioned production Nos. 1 to 12, Production under the conditions of production Nos. 1 to 6 could be formed without breaking. On the other hand, in the conditions of production Nos. 7 to 12, breakage occurred at the shoulder of the press die.
[0020]
That is, according to such results, it is confirmed that the object of the present invention can be accurately achieved by satisfying the requirements of the present invention as well as the composition satisfying the conditions of the present invention.
[0021]
【The invention's effect】
According to the present invention as described above, it is possible to obtain an aluminum alloy plate having particularly excellent proof stress and elongation, such as a tensile strength of 90 N / mm 2 or more, a proof stress of 45 N / mm 2 or more, a total elongation of 40% or more, and a local elongation of 10% or more. Can do. By using such an aluminum alloy plate according to the present invention for asymmetric deep-drawn molded parts and difficult-shaped molded parts, molded members that could only be made with steel sheets can be made into aluminium, contributing greatly to weight reduction and recyclability. This is an invention that is industrially highly effective.

Claims (4)

Fe:1.0〜2.0質量%と、Ti:0.005〜0.10質量%もしくはTi:0.005〜0.10質量%およびB:0.0005〜0.002質量%を含有し、残部がAlおよび不可避不純物からなり、該不純物中のSiを0.10質量%以下、Cuを0.03質量%以下に規制したアルミニウム合金板で、3方向の引張試験で引張強さが90N/mm以上、耐力45N/mm以上で、全伸び40%以上であり、かつ局部伸びが10%以上を有することを特徴とした高成形性アルミニウム合金板。Fe: 1.0-2.0 % by mass, Ti: 0.005-0.10 % by mass or Ti: 0.005-0.10 % by mass and B: 0.0005-0.002 % by mass And the balance is made of aluminum and unavoidable impurities, and the aluminum alloy plate in which the Si content is regulated to 0.10 % by mass or less and Cu is controlled to 0.03 % by mass or less. A high-formability aluminum alloy sheet characterized by having 90 N / mm 2 or more, a proof stress of 45 N / mm 2 or more, a total elongation of 40% or more, and a local elongation of 10% or more. Fe:1.0〜2.0質量%と、Mg:0.05〜0.3質量%またはMn:0.05〜0.6質量%の何れか1種または2種と、Ti:0.005〜0.10質量%もしくはTi:0.005〜0.10質量%およびB:0.0005〜0.002質量%を含有し、残部がAlおよび不可避不純物からなり、該不純物中のSiを0.10質量%以下、Cuを0.03質量%以下に規制したアルミニウム合金板で、3方向の引張試験で引張強さが100N/mm以上、耐力55N/mm以上で、全伸び40%以上であり、かつ局部伸びが10%以上を有することを特徴とした高成形性アルミニウム合金板。Fe: 1.0 to 2.0 % by mass , Mg: 0.05 to 0.3 % by mass, or Mn: 0.05 to 0.6 % by mass , or one or two of them : Ti: 0.0. 005 % to 0.10 % by mass or Ti: 0.005 % to 0.10 % by mass and B: 0.0005 % to 0.002 % by mass , with the balance being made of Al and inevitable impurities, 0.10 wt% or less, an aluminum alloy plate to restrict the Cu below 0.03 wt%, is 100 N / mm 2 or more tensile strength in the three directions of the tensile test, in yield strength 55N / mm 2 or more, the total elongation 40 % High-formability aluminum alloy sheet characterized by having a local elongation of 10% or more. Fe:1.0〜2.0質量%と、Ti:0.005〜0.10質量%もしくはTi:0.005〜0.10質量%およびB:0.0005〜0.002質量%を含有し、残部がAlおよび不可避不純物からなり、該不純物中のSiを0.10質量%以下、Cuを0.03質量%以下に規制したアルミニウム合金鋳塊を450〜620℃で均熱処理し、300℃以上の温度で熱間圧延を施した後冷間圧延および300℃以上での中間焼鈍を経た上で最終冷間圧延を圧延率60〜90%で施すか、または前記熱間圧延を施した後直ちに最終冷間圧延を圧延率60〜90%で施した後、300℃温度以上の温度で最終焼鈍し、1〜5%の永久伸びを付与して耐力を向上させ、3方向の引張試験で引張強さが90N/mm以上、耐力45N/mm以上で、全伸び40%以上であり、かつ局部伸び10%以上を有せしめたことを特徴とする高成形性アルミニウム合金板の製造方法。Fe: 1.0-2.0 % by mass, Ti: 0.005-0.10 % by mass or Ti: 0.005-0.10 % by mass and B: 0.0005-0.002 % by mass And an aluminum alloy ingot in which the balance is made of Al and inevitable impurities, and Si in the impurities is regulated to 0.10 mass% or less and Cu is regulated to 0.03 mass% or less, is soaked at 450 to 620 ° C., 300 After hot rolling at a temperature of ℃ or higher, after cold rolling and intermediate annealing at 300 ℃ or higher , the final cold rolling is performed at a rolling rate of 60 to 90%, or the hot rolling is performed. Immediately after the final cold rolling is performed at a rolling rate of 60 to 90%, final annealing is performed at a temperature of 300 ° C. or higher, and a permanent elongation of 1 to 5% is imparted to improve the yield strength, and a three-way tensile test. in a tensile strength of 90N / mm 2 or more, strength 45N / m 2 or more, the total elongation is 40% or more, and high moldability method for producing an aluminum alloy sheet, characterized in that it allowed have a local elongation of 10% or more. Fe:1.0〜2.0質量%と、Mg:0.05〜0.3質量%またはMn:0.05〜0.6質量%の何れか1種または2種と、Ti:0.005〜0.10質量%もしくはTi:0.005〜0.10質量%およびB:0.0005〜0.002質量%を含有し、残部がAlおよび不可避不純物からなり、該不純物中のSiを0.10質量%以下、Cuを0.03質量%以下に規制したアルミニウム合金鋳塊を450〜620℃で均熱処理し、300℃以上の温度で熱間圧延を施した後冷間圧延および300℃以上での中間焼鈍を経た上で最終冷間圧延を圧延率60〜90%で施すか、または前記熱間圧延を施した後直ちに最終冷間圧延を圧延率60〜90%で施した後、300℃温度以上の温度で最終焼鈍し、1〜5%の永久伸びを付与して耐力を向上させ、3方向の引張試験で引張強さが100N/mm以上、耐力55N/mm以上で全伸び40%以上であり、かつ、局部伸びが10%以上を有せしめたことを特徴とする高成形性アルミニウム合金板の製造方法Fe: 1.0 to 2.0 % by mass , Mg: 0.05 to 0.3 % by mass, or Mn: 0.05 to 0.6 % by mass , or one or two of them : Ti: 0.0. 005 % to 0.10 % by mass or Ti: 0.005 % to 0.10 % by mass and B: 0.0005 % to 0.002 % by mass , with the balance being made of Al and inevitable impurities, An aluminum alloy ingot with 0.10 % by mass or less and Cu controlled to 0.03 % by mass or less is soaked at 450 to 620 ° C. , hot-rolled at a temperature of 300 ° C. or higher, and then cold-rolled and 300 After undergoing intermediate annealing at a temperature of ℃ or higher and then performing the final cold rolling at a rolling rate of 60 to 90%, or immediately after applying the final cold rolling at a rolling rate of 60 to 90% after the hot rolling. , final annealing, 1-5% of the permanent elongation at 300 ° C. temperature or higher Applied to improve yield strength, tensile strength in three directions of the tensile test 100 N / mm 2 or more, yield strength 55N / mm 2 or more in total elongation of 40% or more and local elongation is allowed have a 10% or more A method for producing a highly formable aluminum alloy plate , characterized in that:
JP2001003248A 2000-02-01 2001-01-11 Highly formable aluminum alloy plate and method for producing the same Expired - Lifetime JP3791337B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001003248A JP3791337B2 (en) 2000-02-01 2001-01-11 Highly formable aluminum alloy plate and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2000-23739 2000-02-01
JP2000023739 2000-02-01
JP2001003248A JP3791337B2 (en) 2000-02-01 2001-01-11 Highly formable aluminum alloy plate and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001288523A JP2001288523A (en) 2001-10-19
JP3791337B2 true JP3791337B2 (en) 2006-06-28

Family

ID=26584620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001003248A Expired - Lifetime JP3791337B2 (en) 2000-02-01 2001-01-11 Highly formable aluminum alloy plate and method for producing the same

Country Status (1)

Country Link
JP (1) JP3791337B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5291956B2 (en) * 2008-03-10 2013-09-18 住友軽金属工業株式会社 Aluminum alloy plate excellent in square tube deep drawing formability and manufacturing method thereof
JP5276368B2 (en) * 2008-07-01 2013-08-28 住友軽金属工業株式会社 Aluminum alloy plate with excellent corrosion resistance and formability
JP5927614B2 (en) * 2012-08-29 2016-06-01 株式会社神戸製鋼所 Aluminum hard foil for battery current collector
JP5927615B2 (en) * 2012-09-27 2016-06-01 株式会社神戸製鋼所 Aluminum alloy foil for lithium battery exterior and its manufacturing method
JP6857535B2 (en) * 2017-04-03 2021-04-14 日本軽金属株式会社 High-strength aluminum alloy plate with excellent formability, bendability and dent resistance and its manufacturing method
JP6780664B2 (en) * 2017-12-05 2020-11-04 日本軽金属株式会社 Aluminum alloy plate for battery lid for molding of integrated circular explosion-proof valve and its manufacturing method
JP6780680B2 (en) * 2018-08-23 2020-11-04 日本軽金属株式会社 Aluminum alloy plate for battery lid for integrated explosion-proof valve molding and its manufacturing method
JP6614292B1 (en) * 2018-08-23 2019-12-04 日本軽金属株式会社 Aluminum alloy plate for battery lid for integral explosion-proof valve molding and manufacturing method thereof
JP6780679B2 (en) * 2018-08-23 2020-11-04 日本軽金属株式会社 Aluminum alloy plate for battery lid for integrated explosion-proof valve molding and its manufacturing method

Also Published As

Publication number Publication date
JP2001288523A (en) 2001-10-19

Similar Documents

Publication Publication Date Title
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
US20070217943A1 (en) Al-Mg Alloy Sheet with Excellent Formability at High Temperatures and High Speeds and Method of Production of Same
WO1995022634A1 (en) Method of manufacturing aluminum alloy plate for molding
WO2009098732A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
WO2018206696A1 (en) Method of manufacturing an al-si-mg alloy rolled sheet product with excellent formability
JPH05263203A (en) Production of rolled sheet of aluminum alloy for forming
JP3590685B2 (en) Manufacturing method of aluminum alloy sheet for automobile outer panel
JP3791337B2 (en) Highly formable aluminum alloy plate and method for producing the same
JP5220310B2 (en) Aluminum alloy plate for automobile and manufacturing method thereof
JPH0726342A (en) Aluminum alloy sheet for superplastic forming, capable of cold preforming, and its production
JP2921820B2 (en) Aluminum alloy sheet for superplastic forming capable of cold preforming and method for producing the same
CN113474479A (en) Method for producing a plate or strip from an aluminium alloy and plate, strip or shaped part produced thereby
JP4819233B2 (en) Aluminum alloy plate with excellent formability
JP3867569B2 (en) Aluminum foil for containers and manufacturing method thereof
JP4237326B2 (en) Method for producing aluminum alloy sheet excellent in formability and corrosion resistance
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JPH0447019B2 (en)
JPH09272938A (en) Aluminum foil and its production
JP2012107339A (en) Aluminum alloy sheet for automobile and manufacturing method therefor
JPH05345963A (en) Manufacture of high formability aluminum alloy sheet
JPH0718389A (en) Production of al-mg series alloy sheet for forming
JP4180868B2 (en) Magnesium sheet for extending excellent in formability and manufacturing method thereof
JPH10219412A (en) Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming
JP3587993B2 (en) Manufacturing method of aluminum alloy sheet for deep drawing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050908

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20051012

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20051014

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060314

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100414

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110414

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120414

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130414

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140414

Year of fee payment: 8