JPH10219412A - Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming - Google Patents

Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming

Info

Publication number
JPH10219412A
JPH10219412A JP2155097A JP2155097A JPH10219412A JP H10219412 A JPH10219412 A JP H10219412A JP 2155097 A JP2155097 A JP 2155097A JP 2155097 A JP2155097 A JP 2155097A JP H10219412 A JPH10219412 A JP H10219412A
Authority
JP
Japan
Prior art keywords
final
aluminum alloy
sheet
heat treatment
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2155097A
Other languages
Japanese (ja)
Inventor
Shoshi Koga
詔司 古賀
Osamu Takezoe
修 竹添
Satoshi Fujiwara
悟志 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Alcoa Yuso Kizai KK
Original Assignee
Shinko Alcoa Yuso Kizai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinko Alcoa Yuso Kizai KK filed Critical Shinko Alcoa Yuso Kizai KK
Priority to JP2155097A priority Critical patent/JPH10219412A/en
Publication of JPH10219412A publication Critical patent/JPH10219412A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the occurrence of stretcher strain marks of type A at the time of final forming and to obtain the rolled Al alloy sheet of 5000 series by subjecting an Al alloy, having a composition containing specific amounts of Mg, Mn, Fe, and Ti, to final cold rolling at specific draft and then to final heat treatment under respectively specified heating and cooling conditions and specifying the average crystalline grain size in the surface and inner part of the resultant sheet. SOLUTION: An ingot of an Al alloy, having a composition consisting of, by mass, 4-5% Mg, 0.2-0.4% Mn, 0.5-0.35% Fe, 0.01-0.05% Ti, and the balance Al and containing, if necessary, 0.1-0.2% Cu, is subjected to soaking treatment and hot rolling by the ordinary methods, and further, cold rolling is performed, while applying, if necessary, intermediate heat treatment, to prescribed sheet thickness. The draft at the final cold rolling of this alloy sheet is regulated to 8-20%. Then, the alloy sheet is heated at 500-560 deg.C for <=10sec and cooled down to 100 deg.C at <=100 deg.C/sec cooling rate to undergo final heat treatment, by which the average crystalline grain size in the surface and inner part of the sheet can be regulated to 20-50μm.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム合金圧延
板の製造方法に関し、さらに詳しくは、最終成形加工時
に発生し易いAタイプのストレッチャーストレインマー
クの発生を抑制した5000系(Al−Mg系)アルミ
ニウム合金圧延板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a rolled aluminum alloy sheet, and more particularly, to a 5000 series (Al-Mg series) in which the generation of an A type stretcher strain mark, which is liable to occur at the time of final forming, is suppressed. The present invention relates to a method for producing a rolled aluminum alloy sheet.

【0002】[0002]

【従来技術】自動車ボディパネルや内装部品用など、成
形加工により最終製品化されるアルミニウム合金板に
は、成形加工性や、強度などの要求特性とともに、成形
加工後の外観に優れていることが重要視される。
2. Description of the Related Art Aluminum alloy sheets, which are to be finalized by molding, such as for automobile body panels and interior parts, are required to have excellent properties such as formability and strength as well as appearance after molding. It is important.

【0003】特に、自動車ボディパネル(フードアウタ
ー、フードインナー、フロントフェンダー、ドア等の外
板)には、従来の冷延鋼板と同等のプレス成形性や高強
度、燐酸塩処理などの塗装下地処理性が要求されるた
め、アルミニウム合金板としてはAl−Mg−Cu系合
金が使用されている。しかし、最近ではコストダウンの
要求から、より廉価なアルミニウム合金が求められてい
る。
In particular, for automotive body panels (outer plates such as hood outer, hood inner, front fender, door, etc.), the same press formability and high strength as those of conventional cold-rolled steel sheets, and a paint base treatment such as phosphate treatment. Therefore, an Al-Mg-Cu alloy is used as the aluminum alloy plate. However, recently, inexpensive aluminum alloys have been demanded for cost reduction.

【0004】このため、これらの要求に対応するアルミ
ニウム合金板として、Al−2.5 %Mgをベースとする
JISのA5052、Al−4.5 %Mgをベースとする
JISのA5182等の5000系のアルミニウム合金
の使用が検討されている。
[0004] Therefore, aluminum alloy plates meeting these requirements include 5,000 aluminum alloys such as JIS A5052 based on Al-2.5% Mg and JIS A5182 based on Al-4.5% Mg. Use is being considered.

【0005】通常、これら成形加工用の5000系のア
ルミニウム合金圧延板は、溶解鋳造にて鋳塊した後、均
質化熱処理(均熱処理)および熱間圧延を行い、更に必
要により中間熱処理をしつつ、冷間圧延を行って所定の
最終板厚とし、材料メーカーから加工メーカーに出荷さ
れ、加工メーカーで最終製品に成形加工されるのが一般
的である。この最終的に行われる成形加工としては、例
えば、自動車ボディパネルでは、絞り加工、張出し加工
が主で、アルミニウム合金圧延板の有すべき成形性とし
て重要である。しかし、自動車ボディパネルでは、この
他に、最終成形加工として、引張、曲げ、剪断、および
しごき等の加工も施されるため、これらの成形性も合わ
せて有することもアルミニウム合金圧延板にとって重要
なことととなる。
[0005] Normally, these 5000 series rolled aluminum alloy sheets for forming are formed by ingot melting, then subjected to homogenizing heat treatment (soaking heat treatment) and hot rolling, and if necessary, to intermediate heat treatment. In general, cold rolling is performed to obtain a predetermined final thickness, which is then shipped from a material maker to a processing maker, and is then formed into a final product by the processing maker. As the final forming process, for example, in the case of an automobile body panel, a drawing process and an overhanging process are mainly performed, and are important as the required formability of a rolled aluminum alloy plate. However, in the case of an automobile body panel, in addition to the above, processing such as tension, bending, shearing, and ironing is performed as a final forming process. It will be.

【0006】ところで、前記工程中において、5000
系のアルミニウム合金圧延板が、最終製品に成形加工さ
れる際、ストレッチャーストレインマーク(以下SSマ
ークと言う)と称される不均一変形が発生し、これが成
形加工品の表面に火炎状の縞模様をもたらすため、成形
加工後の製品の外観や美観を著しく損ね、商品価値を失
わせることがある。
Incidentally, during the above process, 5000
When a rolled aluminum alloy sheet is formed into a final product, non-uniform deformation called stretcher strain mark (hereinafter referred to as SS mark) occurs, which causes flame-like stripes on the surface of the formed product. Because of the pattern, the appearance and aesthetics of the product after the molding process are significantly impaired, and the commercial value may be lost.

【0007】このSSマークには、引張試験時の応力歪
み曲線形状で示したときに、降伏点伸びで表されるAタ
イプと、降伏後に鋸歯状で表されるBタイプとがある。
この内、特にAタイプのSSマークが、自動車ボディパ
ネルなどにおいては問題となる。このAタイプのSSマ
ークが発生した場合、研削・研磨等の手直し工程が多く
なって製作コストの増大を招き、SSマークが顕著な場
合、手直しもできず製品に使用できないことがある。
[0007] The SS marks include an A type represented by elongation at the yield point and a B type represented by a saw-tooth shape after the yield when expressed in a stress-strain curve shape at the time of a tensile test.
Of these, the A type SS mark is particularly problematic in automobile body panels and the like. When the A-type SS mark is generated, the number of reworking steps such as grinding and polishing is increased and the production cost is increased. When the SS mark is remarkable, the reworking cannot be performed and the product cannot be used in some cases.

【0008】特に5000系のアルミニウム合金は、他
のアルミニウム合金に比して、Mn、Fe、Cr等の強
化元素の添加量が多いため、SSマークが発生しやす
い。これら強化元素が拡散により移動し、多くの原子が
転位に固着されやすいからである。この状態で最終製品
への成形加工などの変形を加えると、固着原子から転位
は開放されるが、一度にこの現象が生じると、同一滑り
面上で集中的に転位の運動が生じるので、肉眼でも確認
できる程度の滑り線が発生する。これが、AタイプのS
Sマークであり、力学的に結晶粒が微細なほど顕著に生
じる。
[0008] In particular, a 5000 series aluminum alloy is more likely to generate an SS mark because it contains a larger amount of reinforcing elements such as Mn, Fe, and Cr than other aluminum alloys. This is because these reinforcing elements move by diffusion and many atoms are easily fixed to dislocations. In this state, if deformation such as molding to the final product is applied, dislocations are released from the sticking atoms, but once this phenomenon occurs, dislocation movement occurs intensively on the same sliding surface, However, a slip line that can be confirmed is generated. This is the A type S
This is an S mark, and the more the crystal grains are mechanically fine, the more remarkably generated.

【0009】また、通常、成形加工用の5000系のア
ルミニウム合金圧延板の製造方法では、アルミニウム合
金圧延板の結晶粒は必然的に小さくなり、より一層SS
マークが発生しやすくなる。
[0009] Further, in the method of manufacturing a 5000 series rolled aluminum alloy plate for forming work, the crystal grains of the rolled aluminum alloy plate are necessarily reduced in size, and the SS grains are further reduced.
Marks are likely to occur.

【0010】この自動車ボディー用の5000系のアル
ミニウム合金薄板のSSマークの抑制に関しては、従来
から種々の技術が提案されている。例えば、特公昭59−
39500 号には、5000系のアルミニウム合金板を、5
〜25%の冷間加工後450 〜550 ℃で30〜120 秒の高温短
時間焼鈍を行い、その後80〜1000℃/min の平均冷却速
度で100 ℃以下まで冷却する技術が開示されている。
Various techniques have been proposed for suppressing the SS mark on a 5000 series aluminum alloy thin plate for an automobile body. For example,
No. 39500 uses 5000 series aluminum alloy sheets,
There is disclosed a technique of performing high-temperature short-time annealing at 450 to 550 ° C. for 30 to 120 seconds after cold working of 2525%, and then cooling to 100 ° C. or less at an average cooling rate of 80 to 1000 ° C./min.

【0011】また、特公昭59−39501 号にも、前記特公
昭59−39500 号のアルミニウム合金の低耐力と軽圧下の
冷間圧延の煩雑性を改善すべく、5000系のアルミニ
ウム合金板を、25%以上の冷間加工後、400 〜550 ℃で
15〜120 秒の高温短時間焼鈍を行い、その後80〜1000℃
/min の平均冷却速度で100 ℃以下まで冷却した後、特
定半径のロールを有するレベラーにより繰り返し曲げ変
形を行う技術が開示されている。
In order to improve the low yield strength of the aluminum alloy of Japanese Patent Publication No. 59-39500 and the complexity of cold rolling under light pressure, Japanese Patent Publication No. 59-39501 discloses a 5000 series aluminum alloy sheet. After cold working of 25% or more, at 400-550 ° C
Perform high-temperature short-time annealing for 15-120 seconds, then 80-1000 ° C
A technique is disclosed in which after being cooled to 100 ° C. or less at an average cooling rate of / min, bending deformation is repeatedly performed by a leveler having a roll having a specific radius.

【0012】この、特公昭59−39501 号と同様の方法と
して、特開平4 −276050号にも、5000系のアルミニ
ウム合金板を、25%以上の冷間加工後、400 〜550 ℃で
120秒以下の高温短時間焼鈍を行い、その後80℃/min
以上の平均冷却速度で100 ℃以下まで冷却した後、続い
て特定量の歪み量をローラーレベラー等により与える整
直・矯正加工する技術が開示されている。
As a method similar to that of Japanese Patent Publication No. 59-39501, Japanese Patent Application Laid-Open No. 4-276050 also discloses that a 5000 series aluminum alloy plate is subjected to cold working of 25% or more at 400 to 550 ° C.
High-temperature short-time annealing for 120 seconds or less, then 80 ° C / min
There is disclosed a technique of performing straightening and straightening processing after cooling to 100 ° C. or less at the above average cooling rate and subsequently giving a specified amount of distortion by a roller leveler or the like.

【0013】また、特開平4 −147952号には、5000
系のアルミニウム合金薄板を、30〜80%の最終冷間加工
後、450 〜550 ℃で連続焼鈍炉を使用した溶体化処理を
施し、溶体化処理温度により、平均結晶粒径を10〜50μ
m の間の特定範囲の粒径とする技術が開示されている。
[0013] Japanese Patent Application Laid-Open No. Hei 4-147852 discloses 5000
After the final cold working of 30 to 80%, the aluminum alloy sheet is subjected to solution treatment using a continuous annealing furnace at 450 to 550 ° C, and the average crystal grain size is 10 to 50μ depending on the solution treatment temperature.
Techniques have been disclosed for providing a specific range of particle sizes between m.

【0014】更に、特開平2 −122054号、特開平2 −29
0953号、特開平3 −173752号には、食缶等の絞り缶(D
R缶)用の5000系のアルミニウム合金薄板のSSマ
ークの抑制技術として、40%以上の最終冷間加工後、15
0 〜250 ℃で安定化焼鈍する技術が開示されている。
Further, Japanese Patent Application Laid-Open Nos. 2-122504 and 2-29
No. 0953 and Japanese Patent Application Laid-Open No. H3-173752 describe squeezed cans (D
As a technology for suppressing the SS mark of 5000 series aluminum alloy sheet for R can), after final cold working of 40% or more, 15
A technique for stabilizing annealing at 0 to 250 ° C. is disclosed.

【0015】[0015]

【発明が解決しようとする課題】しかし、まず、特公昭
59−39500 号、特公昭59−39501 号、特開平4 −276050
号、特開平4 −147952号等の、最終冷間加工後の連続焼
鈍によりSSマークを抑制する技術の場合、特公昭59−
39501 号に開示されている通り、耐力が低くなるととも
に、高温短時間焼鈍とはいうものの、焼鈍(加熱)時間
が長く、50μm を越える結晶粒の粗大化が顕著となり、
SSマーク発生の抑制効果はあるものの、最終成形加工
時に肌あれを生じやすくなる。
[Problems to be solved by the invention]
No. 59-39500, JP-B-59-39501, JP-A-4-276050
And Japanese Patent Application Laid-Open No. 4-47952, the technology of suppressing the SS mark by continuous annealing after the final cold working is disclosed in
As disclosed in Japanese Patent No. 39501, the yield strength is low, and although high-temperature short-time annealing is performed, the annealing (heating) time is long, and the crystal grains exceeding 50 μm are remarkably coarsened.
Although it has the effect of suppressing the generation of SS marks, the surface is likely to be roughened at the time of final molding.

【0016】また、特公昭59−39501 号、特開平4 −27
6050号等の、冷間圧延後に高温短時間焼鈍を行い、更に
その後、テンションレベラーやストレッチャーによるロ
ール矯正乃至引張矯正処理により、繰り返し曲げ変形や
歪みを与える技術では、5000系のアルミニウム合金
薄板の最終成形加工性そのものが低下する。
Also, Japanese Patent Publication No. 59-39501, Japanese Patent Laid-Open No. 4-27
No. 6050, etc., perform high-temperature short-time annealing after cold rolling, and then apply roll bending or tension straightening treatment with a tension leveler or stretcher to repeatedly apply bending deformation or strain. The final moldability itself decreases.

【0017】更に、特開平2 −122054号、特開平2 −29
0953号、特開平3 −173752号等は、絞り比が2.0に近
い深絞り加工を施される食缶等の絞り缶(DR缶)用を
意図しており、この成形性を確保するための強度をかせ
ぐため、40%以上の最終冷間加工後、150 〜250 ℃で安
定化焼鈍している。この結果、冷間加工率が高いため結
晶粒が微細になりやすく、また焼鈍温度も低いため結晶
粒は微細なままで、SSマーク発生の抑制効果はない。
Further, Japanese Patent Application Laid-Open Nos. 2-122504 and 2-29
No. 0953, JP-A-3-17752 and the like are intended for drawn cans (DR cans) such as food cans subjected to deep drawing with a drawing ratio close to 2.0, and ensure this formability. After the final cold working of 40% or more, the steel is annealed at 150-250 ° C in order to gain strength. As a result, the crystal grains are likely to be fine due to a high cold working rate, and the crystal grains are still fine due to a low annealing temperature, and there is no effect of suppressing the generation of SS marks.

【0018】したがって本発明は、これら従来の問題に
鑑み、特に自動車ボディパネル用としての、絞り加工、
張出し加工等の最終成形加工性に優れることは勿論、最
終成形加工時に発生し易いAタイプのストレッチャース
トレインマークの発生を抑制し、成形加工後の外観性が
優れたた5000系(Al−Mg系)アルミニウム合金
圧延板の製造方法を提供することを目的とする。
[0018] Accordingly, the present invention has been made in view of these conventional problems, and in particular, drawing,
The 5000 series (Al-Mg), which not only has excellent final formability such as overhanging processing, but also suppresses the generation of A-type stretcher strain marks, which are likely to occur during final forming, and has excellent appearance after forming. System) It is an object of the present invention to provide a method for manufacturing a rolled aluminum alloy sheet.

【0019】[0019]

【問題を解決するための手段】この目的達成のための手
段として、本発明では、質量%で、Mg:4 〜5 %、M
n:0.2 〜0.4 %、Fe:0.15〜 0.35 %、Ti:0.01
〜0.05%を含有し、残部Alおよび不可避的不純物から
なるアルミニウム合金鋳塊を、常法により、均熱処理お
よび熱間圧延を行い、更に中間熱処理を必要により施し
つつ冷間圧延を行って所定の最終板厚とすることを含
み、最終冷間圧延の圧延率を8 〜20%とし、その後500
〜560 ℃の温度で10秒以下の時間加熱した後、100 ℃の
温度までを100 ℃/sec 以上の冷却速度で冷却する最終
熱処理を行って、板表面および内部の平均結晶粒径を20
〜50μm とし、最終成形加工時のAタイプのストレッチ
ャーストレインマークの発生を抑制する。
[Means for Solving the Problems] As means for achieving this object, in the present invention, Mg: 4 to 5% by mass, M:
n: 0.2 to 0.4%, Fe: 0.15 to 0.35%, Ti: 0.01
The ingot of aluminum alloy containing about 0.05% and the balance of Al and inevitable impurities is subjected to a soaking treatment and a hot rolling by a conventional method, and then to a cold rolling while performing an intermediate heat treatment as necessary. The final cold rolling rate is set to 8 to 20%, including the final sheet thickness.
After heating at a temperature of up to 560 ° C. for 10 seconds or less, a final heat treatment of cooling to a temperature of 100 ° C. at a cooling rate of 100 ° C./sec or more is performed to reduce the average crystal grain size on the plate surface and inside to 20 ° C.
To 50 μm to suppress the generation of A-type stretcher strain marks during the final molding process.

【0020】本発明においては、冷間圧延ないし焼鈍後
の、前記従来技術のテンションレベラーやストレッチャ
ーによるロール矯正乃至引張矯正が、最終成形加工性を
阻害することに鑑み、冷間圧延ないし焼鈍後に、これら
の加工や処理をされずに最終成形加工されることが好ま
しい。
In the present invention, in view of the fact that the roll correction or the tension correction by the tension leveler or the stretcher of the prior art described above after the cold rolling or annealing impairs the final formability, it is preferable to perform the cold rolling or annealing after the cold rolling or annealing. It is preferable that final processing be performed without performing these processings or treatments.

【0021】また、特に自動車ボディパネル用途の場
合、アルミニウム合金圧延板は、冷延鋼板やZnめっき
鋼板と同じライン(条件)にて塗装下地としての燐酸塩
処理されるが、この際、アルミニウム合金圧延板は冷延
鋼板やZnめっき鋼板よりも燐酸塩処理性(燐酸塩の付
着性)が劣る。したがって、このような場合には、アル
ミニウム合金圧延板の燐酸塩処理性を向上させる必要が
ある。このためには、アルミニウム合金に、燐酸塩処理
性向上元素として、更にCuを含むことが好ましい。そ
の他、燐酸塩処理性を向上させるために、アルミニウム
合金圧延板の表面に鋼板と同様のZnないしZn合金め
っきを施しても良い。
In addition, particularly in the case of an automobile body panel, a rolled aluminum alloy sheet is subjected to a phosphate treatment as a coating base on the same line (condition) as a cold-rolled steel sheet or a Zn-plated steel sheet. The rolled sheet is inferior in phosphatability (phosphate adhesion) to the cold-rolled steel sheet or the Zn-plated steel sheet. Therefore, in such a case, it is necessary to improve the phosphatability of the rolled aluminum alloy sheet. For this purpose, it is preferable that the aluminum alloy further contains Cu as a phosphating property improving element. In addition, in order to improve the phosphatability, the surface of the rolled aluminum alloy plate may be plated with Zn or a Zn alloy similar to the steel plate.

【0022】[0022]

【発明の実施の形態】以下に、本発明におけるアルミニ
ウム合金の化学成分の限定理由について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The reasons for limiting the chemical components of the aluminum alloy according to the present invention will be described below.

【0023】Mgは、本発明におけるアルミニウム合金
の基本合金成分であり、固溶・析出硬化して、強度、成
形性、塗装下地としての燐酸塩(りん酸亜鉛)の処理性
の向上に有効な元素である。含有量が4 %未満ではこの
ような効果が乏しく、一方、5 %を越えて含有すると、
圧延性が低下する。したがって、Mg含有量は4 〜5%
の範囲とする。
Mg is a basic alloying component of the aluminum alloy in the present invention, and is effective for improving strength, formability, and processability of phosphate (zinc phosphate) as a coating base by solid solution / precipitation hardening. Element. If the content is less than 4%, such effects are poor, while if the content exceeds 5%,
Rollability decreases. Therefore, the Mg content is 4-5%
Range.

【0024】Mnは、結晶粒を微細にし、組織を安定さ
せ、強度や塗装下地としての燐酸塩(りん酸亜鉛)の処
理性の向上に有効な元素である。含有量が0.2 %未満で
は、これらの効果が十分に得られず、0.4 %を超えると
結晶粒が微細になりすぎ、SSマークが発生し易くな
る。したがって、Mn含有量は0.2 〜0.4 %の範囲とす
る。
Mn is an element that is effective for making crystal grains fine, stabilizing the structure, and improving strength and processability of phosphate (zinc phosphate) as a coating base. If the content is less than 0.2%, these effects cannot be sufficiently obtained. If the content exceeds 0.4%, the crystal grains become too fine, and the SS mark is easily generated. Therefore, the Mn content is in the range of 0.2 to 0.4%.

【0025】Feは、Mnと同様に、結晶粒を微細に
し、組織を安定させ、強度や塗装下地としての燐酸塩
(りん酸亜鉛)の処理性の向上に有効な元素である。含
有量が0.15%未満では、これらの効果が十分に得られ
ず、一方、 0.35 %を越えて過多に含有すると、Mnと
同様に、結晶粒が微細になりすぎ、SSマークが発生し
易くなる。したがって、Fe含有量は0.15〜 0.35 %の
範囲とする。
Fe, like Mn, is an element effective for refining crystal grains, stabilizing the structure, and improving strength and processability of phosphate (zinc phosphate) as a coating base. If the content is less than 0.15%, these effects cannot be sufficiently obtained. On the other hand, if the content exceeds 0.35%, the crystal grains become too fine similarly to Mn, and the SS mark is easily generated. . Therefore, the Fe content is in the range of 0.15 to 0.35%.

【0026】Tiは、鋳塊の結晶粒を微細にし、組織を
安定させ、強度の向上に有効な元素である。Tiが0.01
%未満の含有量ではこのような優れた効果を得ることが
できない。しかし、一方、Tiの0.05%を越える過剰な
含有は、巨大生成物を生じて成形性を害すると共に、結
晶粒が微細になりすぎ、SSマークが発生し易くなる。
したがって、Ti含有量は0.01〜0.05%の範囲とする。
Ti is an element that is effective for making the crystal grains of the ingot fine, stabilizing the structure, and improving the strength. Ti is 0.01
If the content is less than 10%, such excellent effects cannot be obtained. However, on the other hand, an excessive content of more than 0.05% of Ti causes a giant product and impairs the formability, and the crystal grains become too fine, so that an SS mark is easily generated.
Therefore, the Ti content is in the range of 0.01 to 0.05%.

【0027】Cuは、燐酸塩の処理性、特にりん酸亜鉛
の付き周り性の向上に有効な元素であり、この特性向上
が必要な場合に選択的に含有される。含有量が0.1 %未
満ではこの効果がなく、0.2 %を超えるとその効果は飽
和し、むしろ耐食性が低下する。したがって、積極的に
含有する場合のCu含有量は0.1 〜0.2 %の範囲とす
る。
Cu is an element effective for improving the processing property of the phosphate, particularly the throwing power of zinc phosphate, and is selectively contained when the property improvement is required. If the content is less than 0.1%, this effect is not obtained, and if it exceeds 0.2%, the effect is saturated, and the corrosion resistance is rather lowered. Therefore, the Cu content when it is positively contained is in the range of 0.1 to 0.2%.

【0028】その他、Si、Zn、Zrなどの不純物
は、各々0.15%までは本発明のアルミニウム合金圧延板
の特性に悪影響を与えることがないので、これ以下の含
有は許容される。
In addition, since impurities such as Si, Zn, and Zr do not adversely affect the properties of the rolled aluminum alloy sheet of the present invention up to 0.15%, the contents of less than 0.15% are permissible.

【0029】本発明では、上記アルミニウム合金成分の
特定の他、最終熱処理後のアルミニウム合金板の表面お
よび内部の平均結晶粒径を20〜50μm とする必要があ
る。平均結晶粒径が20μm 未満では、本発明製造方法を
適用しても、最終成形加工時に発生し易いAタイプのS
Sマークの発生を抑制できず、成形加工品の表面に火炎
状の縞模様が発生し、外観を著しく損なうことになる。
また、平均結晶粒径が50μm を越えると、最終成形加工
時に肌あれを生じやすくなり、やはり外観を著しく損な
う。したがって、平均結晶粒径はアルミニウム合金板の
表面および内部とも、要は板厚方向乃至長手方向全域に
渡って、20〜50μm の範囲とする。なお、平均結晶粒径
の測定方法は、ASTME112にもとづき測定する。
In the present invention, the average crystal grain size on the surface and inside of the aluminum alloy plate after the final heat treatment needs to be 20 to 50 μm, in addition to specifying the aluminum alloy component. When the average crystal grain size is less than 20 μm, even if the production method of the present invention is applied, A type S
The generation of the S mark cannot be suppressed, and a flame-like stripe pattern is generated on the surface of the molded product, which significantly impairs the appearance.
On the other hand, when the average crystal grain size exceeds 50 μm, the surface is apt to be roughened at the time of final molding, and the appearance is also significantly impaired. Therefore, the average crystal grain size is in the range of 20 to 50 μm over the entire area from the thickness direction to the longitudinal direction, both on the surface and inside of the aluminum alloy plate. The average crystal grain size is measured based on ASTME112.

【0030】次に、本発明における製造条件の限定理由
について説明する。本発明では、前記化学成分からなる
アルミニウム合金を、溶解鋳造にて鋳塊としたのち、均
質化熱処理および熱間圧延を行い、更に必要により中間
熱処理をしつつ、冷間圧延を行って所定の最終板厚とす
る。そして、冷間圧延後に、500 〜560 ℃の温度に10秒
以内加熱後100 ℃の温度までを100 ℃/sec以上の冷
却速度で冷却する最終熱処理を行って、板表面および内
部の平均結晶粒径を20〜50μm ととする。
Next, the reasons for limiting the manufacturing conditions in the present invention will be described. In the present invention, after the aluminum alloy comprising the chemical components is formed into an ingot by melting and casting, it is subjected to a homogenizing heat treatment and a hot rolling, and further to an intermediate heat treatment as necessary, and then to a cold rolling. The final plate thickness. Then, after cold rolling, a final heat treatment of heating to a temperature of 500 to 560 ° C. within 10 seconds and then cooling to a temperature of 100 ° C. at a cooling rate of 100 ° C./sec or more is performed. The diameter is 20 to 50 μm.

【0031】こうした製造方法において、上記溶解鋳
造、均質化熱処理、熱間圧延、中間熱処理、冷間圧延
は、常法に従って行われれば良い。例えば、鋳塊の溶解
鋳造法は、連続鋳造圧延法、半連続鋳造法(DC鋳造
法)が適宜選択される。
In such a production method, the melting casting, the homogenizing heat treatment, the hot rolling, the intermediate heat treatment, and the cold rolling may be performed according to a conventional method. For example, a continuous casting and rolling method and a semi-continuous casting method (DC casting method) are appropriately selected as a method for melting and casting an ingot.

【0032】また、均質化熱処理は、鋳塊の鋳造の際の
内部応力を除去し、偏析を軽減して組織を均一化するた
め、本発明の5000系のアルミニウム合金では、例え
ば、500 〜530 ℃で、2 〜10時間行われることが好まし
い。
The homogenizing heat treatment removes internal stress during casting of the ingot, reduces segregation and homogenizes the structure. For example, in the case of the 5000-series aluminum alloy of the present invention, for example, 500 to 530 Preferably, it is carried out at a temperature of 2 to 10 hours.

【0033】熱間圧延は、均質化熱処理後のスラブを47
0 〜500 ℃に加熱し、粗圧延機および仕上げ圧延機によ
り、400 〜600mm 厚みのスラブを2 〜8mm 程度の板厚ま
で圧延する。熱間圧延後の板は、そのまま、あるいは必
要により、バッチ炉、連続焼鈍炉等で熱処理を行った
後、冷間圧延される。
In the hot rolling, the slab after the homogenization heat treatment is
The slab having a thickness of 400 to 600 mm is rolled to a thickness of about 2 to 8 mm by a rough rolling mill and a finishing rolling mill. The sheet after hot rolling is subjected to a heat treatment as it is or, if necessary, in a batch furnace, a continuous annealing furnace or the like, and then cold-rolled.

【0034】冷間圧延は一回、あるいはそれ以上行われ
て、所定の最終製品板厚とする。冷間圧延と冷間圧延と
の間に行う中間焼鈍は必要により行われ、通常はバッチ
炉などで、加工硬化した組織の加工性の回復のため、30
0 〜400 ℃で2 〜3hr 保持され、完全焼きなまし材とさ
れる。
The cold rolling is performed once or more to obtain a predetermined final product sheet thickness. Intermediate annealing performed between cold rolling and cold rolling is performed as necessary, and is usually performed in a batch furnace or the like to recover the workability of the work-hardened structure.
It is kept at 0 to 400 ° C for 2 to 3 hours to be a completely annealed material.

【0035】しかし、本発明では、この中間焼鈍を、高
温で短時間の連続焼鈍により行うことが好ましい。具体
的には、410 〜510 ℃で10sec 以下の保持時間で、連続
焼鈍することにより、加工性の回復とともに、SSマー
クの発生を抑制することができる。410 ℃未満では、こ
のSSマーク発生の抑制効果が得られず、一方、510℃
を越えると、結晶粒径の粗大化が起こり、結晶粒径が50
μm を越えて最終成形加工時に肌あれを生じやすくな
り、外観を著しく損なう可能性がある。また、10sec を
越える保持時間は、生産効率を低下させるとともに経済
的ではない。
However, in the present invention, the intermediate annealing is preferably carried out by continuous annealing at a high temperature for a short time. More specifically, by performing continuous annealing at 410 to 510 ° C. for a holding time of 10 seconds or less, workability can be recovered and generation of SS marks can be suppressed. If the temperature is lower than 410 ° C, the effect of suppressing the generation of the SS mark cannot be obtained.
If the diameter exceeds 50, the crystal grain size becomes coarse and the crystal grain size becomes 50
When the thickness exceeds μm, roughening is likely to occur at the time of final molding, and the appearance may be significantly impaired. A holding time of more than 10 seconds reduces production efficiency and is not economical.

【0036】この中間焼鈍後に、後述する最終冷間圧延
および最終熱処理を行う。ここで、本発明で対象として
いる5000系合金は、本来SSマーク抑制のために
は、Fe、Mn、Ti等の元素を極力低く抑えるべきと
ころである。しかし本発明の5000系合金は、逆に、
むしろ積極的にかつ多量に、これらの元素を含有してい
るため、再結晶粒径の微細化しやすい。したがって再結
晶粒径の過度の微細化を防止し、安定した再結晶粒を得
るためには、最終冷間圧延および最終熱処理の冷却条件
が極めて重要となってくる。
After the intermediate annealing, final cold rolling and final heat treatment described below are performed. Here, in the 5000 series alloy targeted in the present invention, elements such as Fe, Mn, and Ti should be suppressed as low as possible in order to suppress SS marks. However, the 5000 series alloy of the present invention, on the contrary,
Rather, since these elements are contained positively and in large amounts, the recrystallized grain size is easily reduced. Therefore, in order to prevent excessive refining of the recrystallized grain size and obtain stable recrystallized grains, the cooling conditions of the final cold rolling and the final heat treatment are extremely important.

【0037】即ち、最終冷間圧延の冷間圧延率は、8 〜
20%とする必要がある。最終熱処理前の冷間圧延は、最
終熱処理による再結晶粒の安定化とSSマーク抑制効果
に大きく影響する。冷間圧延率が8 %未満では、再結晶
粒径の50μm を越える粗大化が顕著となり、SSマーク
発生の抑制効果はあるものの、最終成形加工時に肌あれ
を生じやすくなり、外観を著しく損なう可能性がある。
また、冷間圧延率が20%を越えると、最終成形加工性の
向上や肌あれ防止には効果があるものの、再結晶粒径が
20μm 未満に過度に微細化して、最終成形加工時にSS
マークの発生が顕著になる。
That is, the cold rolling reduction of the final cold rolling is 8 to
Must be 20%. Cold rolling before the final heat treatment greatly affects the stabilization of recrystallized grains and the SS mark suppression effect by the final heat treatment. If the cold rolling reduction is less than 8%, coarsening of the recrystallized grain size exceeding 50 μm becomes remarkable, and although there is an effect of suppressing the generation of SS marks, the surface is likely to be roughened at the time of final molding and the appearance may be significantly impaired. There is.
If the cold rolling ratio exceeds 20%, the recrystallization grain size is improved, although it is effective for improving the final formability and preventing skin roughness.
Excessive miniaturization to less than 20μm, SS
Marks are significantly generated.

【0038】最終冷間圧延後の最終熱処理は、合金成分
を固溶ないし組織を再結晶させ、SSマーク発生の抑制
や最終成形加工性の向上のために必須の手段である。具
体的な条件は、再結晶温度(500 〜560 ℃の温度範囲)
まで急速に加熱し、最大10sec 以下に保持後、再結晶温
度から100 ℃までの温度範囲を100 ℃/sec 以上の温度
で冷却を行うことが必要である。100 ℃/sec 未満の冷
却速度では、再結晶粒径が20μm 未満に過度に微細化し
て、最終成形加工時にSSマークの発生が顕著になる。
また、保持時間が10sec を越えると、再結晶粒径の50μ
m を越える粗大化が顕著となり、SSマーク発生の抑制
効果はあるものの、最終成形加工時に肌あれを生じやす
くなる。また、熱処理の生産性を低下させるとともに経
済的ではない。
[0038] The final heat treatment after the final cold rolling is an essential means for dissolving the alloy components or recrystallizing the structure, suppressing the SS mark generation and improving the final formability. Specific conditions are recrystallization temperature (temperature range of 500 to 560 ° C)
It is necessary to rapidly heat the mixture to a maximum of 10 seconds or less and then cool it at a temperature of 100 ° C./sec or more in the temperature range from the recrystallization temperature to 100 ° C. At a cooling rate of less than 100 ° C./sec, the recrystallized grain size becomes excessively fine to less than 20 μm, and the generation of SS marks becomes remarkable at the time of final molding.
If the retention time exceeds 10 sec, the recrystallized
The coarsening exceeding m becomes remarkable, and although there is an effect of suppressing the generation of SS marks, the surface is likely to be roughened at the time of final molding. In addition, the productivity of the heat treatment is reduced, and it is not economical.

【0039】なお、再結晶温度までの急速加熱の速度
は、再結晶の均一化の点から、20℃/sec 以上の速度が
好ましいが、10℃/sec 以上の速度であれば、その効果
は維持される。
The rate of rapid heating up to the recrystallization temperature is preferably 20 ° C./sec or more from the viewpoint of uniform recrystallization, but if the rate is 10 ° C./sec or more, the effect is not significant. Will be maintained.

【0040】[0040]

【実施例】【Example】

〔実施例1〕次に、以上説明した本発明について、実施
例を挙げて更に説明する。
[Embodiment 1] Next, the present invention described above will be further described with reference to embodiments.

【0041】表1に示す化学成分からなるアルミニウム
合金鋳塊を、DC鋳造にて製作し、510 ℃×4hr の均質
化熱処理後、板厚3.5mm まで熱間圧延を行い、365 ℃×
4hrsの荒焼鈍を行った後に、板厚1.45〜1.05mmまで冷間
圧延を行った。その後450 ℃×0 秒の中間焼鈍を行い、
さらに板厚1mm まで最終冷間圧延(圧延率30〜5 %)を
行った。その後、最終焼鈍として、各々表2に示す各条
件にて最終熱処理を実施した。
An aluminum alloy ingot composed of the chemical components shown in Table 1 was produced by DC casting, and after homogenizing heat treatment at 510 ° C. × 4 hours, hot-rolled to a plate thickness of 3.5 mm, and heated to 365 ° C. ×
After rough annealing for 4 hrs, cold rolling was performed to a sheet thickness of 1.45 to 1.05 mm. After that, intermediate annealing at 450 ° C x 0 seconds is performed.
Furthermore, final cold rolling (rolling ratio 30 to 5%) was performed to a thickness of 1 mm. Thereafter, as final annealing, final heat treatment was performed under the respective conditions shown in Table 2.

【0042】以上のようにして得られたアルミニウム合
金圧延板の機械的性質、平均結晶粒径を測定し、また、
成形加工時のSSマーク発生の状態と、肌荒れ発生の状
態を評価した。その結果を表3に示す。表3の合金No.
は表1のNo. に、製造プロセスのNo. は表2のNo. に各
々対応している。
The mechanical properties and average crystal grain size of the rolled aluminum alloy sheet obtained as described above were measured.
The state of the occurrence of the SS mark and the state of the occurrence of the rough surface during the molding were evaluated. Table 3 shows the results. Alloy No. in Table 3
No. in Table 1 corresponds to No. in the manufacturing process, and No. in the manufacturing process corresponds to No. in Table 2.

【0043】尚、表3中において、アルミニウム合金圧
延板の機械的性質を調べるための引張試験はJIS5号
試験片を用い、圧延方向に平行な方向について行った。
但し、AタイプのSSマーク評価の目安となる降伏伸び
については、圧延方向に直角な方向について評価した。
また、結晶粒径については、板表面および圧延方向に平
行な断面から試料を切り出しミクロ研磨後写真撮影し、
目視にて測定した。更に、AタイプのSSマークは、エ
リクセン試験機により、120 φブランク、50mmφ球頭ポ
ンチ、ビード付きダイスを用い、試験片に0.1 〜3 %程
度の軽度の歪みを付与し、板表面の歪み模様発生の有無
にて評価した。この評価方法は、実際の自動車パネル
(外板)への成形時のSSマーク発生状況と良く対応し
ている点で優れている。更に、肌荒れについては、R=0.
5tの180 °曲げを行い外観より判断した。
In Table 3, the tensile test for examining the mechanical properties of the rolled aluminum alloy plate was performed using a JIS No. 5 test piece in a direction parallel to the rolling direction.
However, the yield elongation, which is a standard for evaluating the A type SS mark, was evaluated in a direction perpendicular to the rolling direction.
Regarding the crystal grain size, a sample was cut out from the plate surface and a cross section parallel to the rolling direction and photographed after micro polishing,
It was measured visually. In addition, the A type SS mark uses an Erichsen tester to apply a slight strain of about 0.1 to 3% to the test piece using a 120 φ blank, 50 mm φ ball-head punch, and a die with a bead. Evaluation was made based on the occurrence or non-occurrence. This evaluation method is excellent in that it corresponds well with the actual situation of the occurrence of the SS mark at the time of molding into an actual automobile panel (outer panel). Further, for rough skin, R = 0.
A 180 degree bending of 5t was performed, and the appearance was judged.

【0044】表3において、比較例の各供試材は、アル
ミニウム合金成分が表1の本発明内(No.1、4)にも係わ
らず、製造方法が表2の通り、D;最終冷間圧延率が本
発明下限8 %を下回り、E;最終冷間圧延率が本発明上
限20%を上回り、F;最終熱処理温度が本発明下限500
℃を下回り、G;最終熱処理の冷却速度が本発明下限10
0 ℃/secを下回り、H;最終熱処理温度が本発明下限50
0 ℃を下回るとともに、加熱時間が本発明上限10秒を上
回り、更に冷却速度が本発明下限100 ℃/secを下回る、
など本発明製造方法からはずれている。
In Table 3, each of the test materials of Comparative Examples was prepared according to the production method shown in Table 2 even though the aluminum alloy component was within the present invention in Table 1 (Nos. 1 and 4). E: the final cold rolling rate exceeds the upper limit of the present invention of 20%, and F: the final heat treatment temperature is lower than the lower limit of the present invention.
C, the cooling rate of the final heat treatment is lower than the lower limit of the present invention.
Below 0 ° C / sec, H;
Below 0 ° C, the heating time exceeds the upper limit of the present invention of 10 seconds, and the cooling rate is lower than the lower limit of the present invention of 100 ° C / sec.
It deviates from the manufacturing method of the present invention.

【0045】したがって、表3のアルミニウム合金圧延
板の特性評価において、E〜Hは降伏伸びが高く、Aタ
イプのSSマークが発生している。また、Dは平均結晶
粒径が粗く、SSマークの発生はないものの肌荒れが発
生し、やはり実用に供せないものとなっている。これに
対し、各本発明例は、いずれも機械的性質は高い水準に
あり、特に自動車ボディパネル用としての、絞り加工、
張出し加工等の最終成形加工性に優れるとともに、平均
結晶粒径が範囲内で、成形加工時のSSマークや肌荒れ
発生も無い。
Therefore, in the evaluation of the properties of the rolled aluminum alloy sheet in Table 3, E to H have a high yield elongation and A type SS marks are generated. D has a coarse average crystal grain size and does not have any SS mark, but has a rough surface and cannot be put to practical use. On the other hand, each of the examples of the present invention has a high level of mechanical properties, and is particularly suitable for an automobile body panel.
It is excellent in final forming workability such as overhanging processing, and has an average crystal grain size within the range, and there is no occurrence of SS mark or rough surface during forming processing.

【0046】〔実施例2〕表1に示す化学成分からなる
アルミニウム合金鋳塊を、DC鋳造にて制作し、510 ℃
×4hrsの均質化熱処理後、板厚3.5mm まで熱間圧延を行
い、365 ℃×4hrsの荒焼鈍を行った後に、板厚1mm まで
冷間圧延(圧延率15%)を行った。その後、最終焼鈍と
して、表2のNo.Bの本発明条件にて最終熱処理を実施し
た。
Example 2 An aluminum alloy ingot having the chemical components shown in Table 1 was produced by DC casting at 510 ° C.
After the homogenizing heat treatment of × 4 hrs, hot rolling was performed to a thickness of 3.5 mm, rough annealing was performed at 365 ° C. × 4 hrs, and then cold rolling was performed (rolling ratio: 15%) to a thickness of 1 mm. Thereafter, as final annealing, a final heat treatment was performed under No. B conditions of the present invention in Table 2.

【0047】以上のようにして得られたアルミニウム合
金圧延板の機械的性質、平均結晶粒径を測定し、また、
成形加工時のSSマーク発生の状態と、肌荒れ発生の状
態を評価した。その結果を表4に示す。表4の合金No.
は表1のNo. に各々対応している。尚評価方法は、実施
例と同様であるが、耐食性は、アノード電解法による粒
界腐食感受性で調査した。
The mechanical properties and average crystal grain size of the rolled aluminum alloy sheet obtained as described above were measured.
The state of the occurrence of the SS mark and the state of the occurrence of the rough surface during the molding were evaluated. Table 4 shows the results. Alloy No. in Table 4
Corresponds to the Nos. In Table 1, respectively. The evaluation method was the same as that in the examples, but the corrosion resistance was investigated by the intergranular corrosion susceptibility by the anodic electrolytic method.

【0048】表4から明らかな通り、比較例の各供試材
は、製造条件が表2の本発明Bの方法であるにも係わら
ず、アルミニウム合金成分が表1の通り、No.5;Feと
Mn量が本発明の下限量0.15%、0.2 %を下回り、No.
6;Mg量が本発明の上限5 %を上回り、No.7;Mg量
が本発明の下限4 %を下回り、No.8;FeとMn量が本
発明の上限量0.35%、0.4 %を上回り、No.9;Cu量が
本発明の上限量0.2 %を上回り、No.10 ;MnとMg量
が本発明の下限量0.2 %、4 %を下回るとともに、不純
物としてのCr量も本発明の上限量を越えている。
As is clear from Table 4, the test materials of the comparative examples had aluminum alloy components of No. 5 and No. 5 as shown in Table 1, although the production conditions were the method of the present invention B in Table 2. When the amounts of Fe and Mn are less than the lower limits of 0.15% and 0.2% of the present invention,
6; Mg content exceeds the upper limit of 5% of the present invention; No. 7: Mg content falls below the lower limit of 4% of the present invention; No. 8: Fe and Mn content of the upper limit of 0.35% and 0.4% of the present invention. No. 9; Cu content exceeds the upper limit of 0.2% of the present invention, No. 10; Mn and Mg contents are lower than the lower limit of 0.2% and 4% of the present invention, and the Cr content as an impurity is also higher than that of the present invention. Exceeds the upper limit.

【0049】そのため、No.5、No.8は平均結晶粒径が大
きくなり、No.6は降伏伸びが高くSSマークが発生して
おり、No.7やNo.10 は引張強さや耐力が劣り、No.9は耐
食性が劣り、実用に供せないものとなっている。これに
対し、各本発明例は、いずれも機械的性質が優れ、特に
自動車ボディパネル用としての、絞り加工、張出し加工
等の最終成形加工性に優れるとともに耐食性も高い水準
にある。また、平均結晶粒径が範囲内で、成形加工時の
SSマークや肌荒れ発生も無い。
Therefore, No. 5 and No. 8 have a large average crystal grain size, No. 6 has a high yield elongation and SS marks are generated, and No. 7 and No. 10 have a tensile strength and proof stress. Inferior, No. 9 is inferior in corrosion resistance and cannot be put to practical use. On the other hand, each of the examples of the present invention has excellent mechanical properties, and particularly has excellent levels of corrosion resistance as well as excellent final formability such as drawing and overhanging for automobile body panels. Further, when the average crystal grain size is within the range, there is no occurrence of SS mark or rough surface during molding.

【0050】[0050]

【表1】 [Table 1]

【0051】[0051]

【表2】 [Table 2]

【0052】[0052]

【表3】 [Table 3]

【0053】[0053]

【表4】 [Table 4]

【0054】[0054]

【発明の効果】本発明によれば、特に自動車ボディパネ
ル用としての、絞り加工、張出し加工等の最終成形加工
性に優れ、更には、最終成形加工時に発生し易いAタイ
プのストレッチャーストレインマークの発生を抑制し、
成形加工後の外観性が優れたた5000系(Al−Mg
系)アルミニウム合金圧延板の製造方法を提供すること
が出来、その結果、自動車パネルのアルミ化を促進する
点で工業的な価値は大きい。
According to the present invention, an A-type stretcher strain mark which is excellent in final forming workability such as drawing and overhanging, especially for an automobile body panel, and which is easily generated at the time of final forming. To suppress the occurrence of
5000 series (Al-Mg) with excellent appearance after forming
System) It is possible to provide a method for producing a rolled aluminum alloy plate, and as a result, the industrial value is great in promoting the aluminization of automobile panels.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 685 C22F 1/00 685Z 686 686A 691 691B 691C 692 692A 692B 694 694A ──────────────────────────────────────────────────の Continuation of front page (51) Int.Cl. 6 Identification symbol FI C22F 1/00 685 C22F 1/00 685Z 686 686A 691 691B 691C 692 692A 692B 694 694A

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 質量%で、Mg:4 〜5 %、Mn:0.2
〜0.4 %、Fe:0.15〜 0.35 %、Ti:0.01〜0.05%
を含有し、残部Alおよび不可避的不純物からなるアル
ミニウム合金鋳塊を、常法により、均質化熱処理および
熱間圧延を行い、更に中間熱処理を必要により施しつつ
冷間圧延を行って所定の最終板厚とすることを含み、最
終冷間圧延の圧延率を8 〜20%とし、その後500 〜560
℃の温度で10秒以下加熱した後、100 ℃の温度までを10
0 ℃/sec 以上の冷却速度で冷却する最終熱処理を行っ
て、板表面および内部の平均結晶粒径を20〜50μm と
し、最終成形加工時のAタイプのストレッチャーストレ
インマークの発生を抑制したことを特徴とする成形加工
後の外観性が優れたアルミニウム合金圧延板の製造方
法。
(1) In terms of mass%, Mg: 4 to 5%, Mn: 0.2
0.4%, Fe: 0.15 to 0.35%, Ti: 0.01 to 0.05%
, The aluminum alloy ingot consisting of the balance Al and unavoidable impurities is subjected to a homogenizing heat treatment and a hot rolling by a conventional method, and then to a predetermined final sheet by performing a cold rolling while applying an intermediate heat treatment as necessary. Thickness, including the final cold rolling reduction of 8-20%, and then 500-560
After heating at a temperature of 100 ° C for 10 seconds or less,
A final heat treatment of cooling at a cooling rate of 0 ° C./sec or more is performed to set the average crystal grain size on the surface and inside of the plate to 20 to 50 μm, thereby suppressing the generation of the A-type stretcher strain mark at the time of final forming. A method for producing a rolled aluminum alloy sheet having excellent appearance after forming.
【請求項2】 前記アルミニウム合金鋳塊が更に、C
u:0.1 〜0.2 %を含有する請求項1に記載の成形加工
後の外観性が優れたアルミニウム合金圧延板の製造方
法。
2. The method according to claim 2, wherein the aluminum alloy ingot further comprises C
The method for producing a rolled aluminum alloy sheet having excellent appearance after forming according to claim 1, wherein u: 0.1 to 0.2% is contained.
【請求項3】 前記アルミニウム合金圧延板の用途が、
自動車ボディパネル用である請求項1または2に記載の
成形加工後の外観性が優れたアルミニウム合金圧延板の
製造方法。
3. The use of the rolled aluminum alloy sheet is as follows:
The method for producing an aluminum alloy rolled sheet having excellent appearance after forming according to claim 1 or 2, which is for an automobile body panel.
【請求項4】 前記最終冷間圧延後にレベラー加工やス
トレッチ加工されずに最終成形加工される請求項1乃至
3のいずれか1項に記載の成形加工後の外観性が優れた
アルミニウム合金圧延板の製造方法。
4. The rolled aluminum alloy sheet having excellent appearance after forming according to any one of claims 1 to 3, wherein final forming is performed without leveling or stretching after the final cold rolling. Manufacturing method.
JP2155097A 1997-02-04 1997-02-04 Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming Pending JPH10219412A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2155097A JPH10219412A (en) 1997-02-04 1997-02-04 Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2155097A JPH10219412A (en) 1997-02-04 1997-02-04 Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming

Publications (1)

Publication Number Publication Date
JPH10219412A true JPH10219412A (en) 1998-08-18

Family

ID=12058115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2155097A Pending JPH10219412A (en) 1997-02-04 1997-02-04 Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming

Country Status (1)

Country Link
JP (1) JPH10219412A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846277B2 (en) 2003-04-08 2010-12-07 Hydro Aluminium Deutschland Gmbh Planar, rolled semi-finished product of aluminum alloys
EP2738273A1 (en) * 2011-07-25 2014-06-04 Nippon Light Metal, Co. Ltd. Aluminum alloy plate and method for manufacturing same
CN104498846A (en) * 2014-12-26 2015-04-08 西安交通大学 Method for preparing semi-solid metal blank
EP2888382B1 (en) 2012-08-22 2016-11-23 Hydro Aluminium Rolled Products GmbH Aluminium alloy strip which is resistant to intercrystalline corrosion and method for producing same
WO2019021899A1 (en) * 2017-07-26 2019-01-31 株式会社Uacj Aluminum alloy plate and method for producing same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846277B2 (en) 2003-04-08 2010-12-07 Hydro Aluminium Deutschland Gmbh Planar, rolled semi-finished product of aluminum alloys
EP2738273A1 (en) * 2011-07-25 2014-06-04 Nippon Light Metal, Co. Ltd. Aluminum alloy plate and method for manufacturing same
EP2738273A4 (en) * 2011-07-25 2015-04-29 Nippon Light Metal Co Aluminum alloy plate and method for manufacturing same
EP2888382B1 (en) 2012-08-22 2016-11-23 Hydro Aluminium Rolled Products GmbH Aluminium alloy strip which is resistant to intercrystalline corrosion and method for producing same
US10550456B2 (en) 2012-08-22 2020-02-04 Hydro Aluminium Rolled Products Gmbh Intercrystalline corrosion-resistant aluminium alloy strip, and method for the production thereof
CN104498846A (en) * 2014-12-26 2015-04-08 西安交通大学 Method for preparing semi-solid metal blank
WO2019021899A1 (en) * 2017-07-26 2019-01-31 株式会社Uacj Aluminum alloy plate and method for producing same

Similar Documents

Publication Publication Date Title
US4645544A (en) Process for producing cold rolled aluminum alloy sheet
EP3245309B1 (en) Highly formable automotive aluminum sheet with reduced or no surface roping and a method of preparation
JP2823797B2 (en) Manufacturing method of aluminum alloy sheet for forming
EP3485055B1 (en) Method of making 6xxx aluminium sheets
WO2020120267A1 (en) Method of making 6xxx aluminium sheets with high surface quality
WO2019025227A1 (en) 6xxxx-series rolled sheet product with improved formability
JPH0747807B2 (en) Method for producing rolled aluminum alloy plate for forming
JPH07197219A (en) Production of aluminum alloy sheet for forming
CN110621797A (en) Method for producing rolled sheet product of Al-Si-Mg alloy having excellent formability
JP2007254825A (en) Method for manufacturing aluminum alloy sheet superior in bendability
JP3590685B2 (en) Manufacturing method of aluminum alloy sheet for automobile outer panel
JP2003226926A (en) Aluminum alloy sheet having excellent bending workability and production method thereof
JP2844411B2 (en) Aluminum alloy sheet for superplastic forming capable of cold preforming and method for producing the same
EP3765647B1 (en) Method of manufacturing an almgsi alloy sheet product
JP3791337B2 (en) Highly formable aluminum alloy plate and method for producing the same
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP2003321754A (en) Method for manufacturing aluminum alloy sheet with excellent bendability
JPH10219412A (en) Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming
JPH07305131A (en) Aluminum alloy sheet for super plastic forming capable of cold preforming and its production
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JP3278119B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability
JP2003247040A (en) Aluminum alloy sheet having excellent flat hem workability and production method thereof
JPH05306440A (en) Manufacture of aluminum alloy sheet for forming excellent baking hardenability
JPH05125504A (en) Manufacture of baking hardenability aluminum alloy plate for forming
JP2003328095A (en) Production method for aluminum alloy plate for forming

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040921

A02 Decision of refusal

Effective date: 20050301

Free format text: JAPANESE INTERMEDIATE CODE: A02