JPH0747807B2 - Method for producing rolled aluminum alloy plate for forming - Google Patents

Method for producing rolled aluminum alloy plate for forming

Info

Publication number
JPH0747807B2
JPH0747807B2 JP9170792A JP9170792A JPH0747807B2 JP H0747807 B2 JPH0747807 B2 JP H0747807B2 JP 9170792 A JP9170792 A JP 9170792A JP 9170792 A JP9170792 A JP 9170792A JP H0747807 B2 JPH0747807 B2 JP H0747807B2
Authority
JP
Japan
Prior art keywords
annealing
final
cold rolling
rolling
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9170792A
Other languages
Japanese (ja)
Other versions
JPH05263203A (en
Inventor
俊雄 小松原
守 松尾
Original Assignee
スカイアルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スカイアルミニウム株式会社 filed Critical スカイアルミニウム株式会社
Priority to JP9170792A priority Critical patent/JPH0747807B2/en
Publication of JPH05263203A publication Critical patent/JPH05263203A/en
Publication of JPH0747807B2 publication Critical patent/JPH0747807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は成形加工用のアルミニ
ウム合金圧延板の製造方法に関し、より詳しくは、強
度、特に塗装焼付処理後の強度および成形加工性が優れ
ていることが要求される用途、例えば自動車のボディシ
ートやパネル等の陸運車両あるいは電気機器等の部品に
用いられる成形加工用アルミニウム合金圧延板の製造方
法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rolled aluminum alloy sheet for forming work, and more specifically, to applications where strength, particularly strength after paint baking and excellent formability are required. The present invention relates to a method for producing a rolled aluminum alloy plate for forming process, which is used for a land transportation vehicle such as an automobile body sheet or panel, or a component of electric equipment.

【0002】[0002]

【従来の技術】自動車のボディシートには、従来は冷延
鋼板を使用することが多かったが、最近では車体軽量化
の要求から、アルミニウム合金圧延板を使用する検討が
進められている。またボディシート以外の自動車部品や
電気機器部品等の成形加工品においても、最近ではアル
ミニウム合金板を使用することが極めて多くなってい
る。このような用途に使用される材料としては、プレス
加工を施して使用されるところから、成形加工性が優れ
ていることが要求されるが、この成形加工性としては、
単に伸びや張出し性、絞り性が優れているのみならず、
面内異方性が小さいことも望まれる。またこのほか、自
動車等のパネル類には外観品質が優れていることも望ま
れるから、成形加工時のリューダースマークの発生もな
いことが望まれる。さらに、一般に焼付塗装を施して使
用するところから、焼付塗装後の強度が高いことが要求
される。
2. Description of the Related Art In the past, cold-rolled steel sheets were often used for automobile body sheets, but recently, in order to reduce the weight of vehicle bodies, studies have been conducted on the use of rolled aluminum alloy sheets. In addition, aluminum alloy plates have been used more and more recently in molded products such as automobile parts and electric equipment parts other than body sheets. As a material used for such an application, it is required to have excellent moldability since it is used after being subjected to press working.
Not only is it excellent in elongation, overhanging property, and drawability,
It is also desired that the in-plane anisotropy is small. In addition, it is also desired that panels for automobiles and the like have excellent appearance quality, and thus it is also desired that no Luders mark is generated during the molding process. In addition, since it is generally subjected to baking coating before use, high strength after baking coating is required.

【0003】ところで従来成形加工用のアルミニウム合
金としては、Al−Mg系のJIS5182合金O材や
JIS 5052合金O材、あるいはAl−Mg−Si
系のAA 6009合金T4処理材やAA 6010合
金T4処理材などが最も広く使用されている。
By the way, as the conventional aluminum alloy for forming, Al-Mg type JIS5182 alloy O material, JIS 5052 alloy O material, or Al-Mg-Si.
AA 6009 alloy T4 treated material and AA 6010 alloy T4 treated material are the most widely used.

【0004】[0004]

【発明が解決しようとする課題】前述のJIS 518
2合金O材やJIS 5052合金O材などのAl−M
g系合金は、リューダースマークが生じやすいところか
ら、外観品質の優れていることが要求される自動車のパ
ネル類等には不適当とされ、またAA 6009合金T
4処理材やAA 6010合金T4処理材などのAl−
Mg−Si系合金は、鋼板と同程度の強度、成形加工性
が得られてはいるが、焼付塗装後の強度が鋼板と比べて
低いのみならず、絞り成形時の異方性が大きいことが問
題となっている。
[Problems to be Solved by the Invention] The aforementioned JIS 518
Al-M such as 2 alloy O material and JIS 5052 alloy O material
Since g-based alloys are apt to cause Luders marks, they are unsuitable for automobile panels and the like, which are required to have excellent appearance quality. In addition, AA 6009 alloy T
Al- such as 4 treated materials and AA 6010 alloy T4 treated materials
Although the Mg-Si alloy has strength and formability comparable to those of steel sheets, not only the strength after baking coating is lower than that of steel sheets, but also the anisotropy during drawing is large. Is a problem.

【0005】この発明は以上の事情を背景としてなされ
たもので、強度、成形加工性に優れ、特に成形性に対す
る異方性の小さい成形加工用アルミウニム合金圧延板を
得る方法を提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method for obtaining a rolled aluminum aluminum alloy rolled sheet for forming, which has excellent strength and formability, and in particular has a small anisotropy with respect to formability. It is what

【0006】[0006]

【課題を解決するための手段】前述のような課題を解決
するため、本発明者等は鋭意実験・検討を重ねた結果、
アルミニウム合金の成分組成を適切に定めるとともに、
特に冷間圧延工程における最終の冷間圧延の前の中間焼
鈍を適切な条件で行なって組織を適切に制御し、20%
以上の最終冷間圧延の後に溶体化処理を行なうことによ
り、ランクフォード値の異方度Δrを適切に調整した圧
延板を得れば良いことを見出し、この発明をなすに至っ
た。
[Means for Solving the Problems] In order to solve the above-mentioned problems, the present inventors have conducted extensive experiments and studies, and as a result,
While appropriately defining the composition of the aluminum alloy,
In particular, in the cold rolling process, intermediate annealing before the final cold rolling is performed under appropriate conditions to appropriately control the structure, and 20%
The present inventors have found that it is sufficient to obtain a rolled plate having an anisotropic degree Δr of the Rankford value appropriately adjusted by performing solution treatment after the final cold rolling as described above, and completed the present invention.

【0007】具体的には、請求項1の発明の成形加工用
アルミニウム合金板の製造方法は、Mg0.1〜1.5
%、Si0.3〜2.5%を含有し、さらに必要に応じ
てMn0.05〜0.6%、Cr0.05〜0.3%、
Zr0.05〜0.3%のうちの1種または2種以上を
含有し、残部がAlおよび不可避的不純物よりなる合金
を鋳造し、450〜570℃の範囲内の温度で均質化処
理した後、熱間圧延を行ない、さらに中途に1回もしく
は2回以上の中間焼鈍を挟んで冷間圧延を行ない、かつ
冷間圧延の中途の中間焼鈍のうち、最終の中間焼鈍を、
100℃/分以上の加熱速度で350〜580℃の範囲
内の温度に加熱して保持なしもしくは5分以下の保持を
行なう条件で施し、しかもその最終の中間焼鈍の後の最
終板厚までの冷間圧延を20%以上の圧延率で行ない、
さらにその最終冷間圧延の後、350〜580℃の範囲
内の温度で120分以内加熱する溶体化処理を行ない、
引続き100℃/分以上の冷却速度で急速冷却して、ラ
ンクフォード値の異方度Δrが0.2未満の圧延板を得
ることを特徴とするものである。
Specifically, the method for producing an aluminum alloy sheet for forming according to the first aspect of the present invention is Mg 0.1 to 1.5.
%, Si 0.3 to 2.5%, and if necessary, Mn 0.05 to 0.6%, Cr 0.05 to 0.3%,
After casting an alloy containing one or more of Zr of 0.05 to 0.3% and the balance of Al and unavoidable impurities, after homogenizing at a temperature in the range of 450 to 570 ° C. , Hot rolling is performed, cold rolling is performed with intermediate annealing once or twice or more in the middle, and final intermediate annealing is performed among intermediate annealing in the middle of cold rolling.
It is heated at a heating rate of 100 ° C./min or more to a temperature in the range of 350 to 580 ° C. and is not held or is held for 5 minutes or less, and further, up to the final plate thickness after the final intermediate annealing. Cold rolling at a rolling rate of 20% or more,
Further, after the final cold rolling, a solution treatment of heating at a temperature within a range of 350 to 580 ° C. for 120 minutes or less is performed,
Subsequently, rapid cooling is performed at a cooling rate of 100 ° C./min or more to obtain a rolled sheet having a Rankford value anisotropy Δr of less than 0.2.

【0008】また請求項2の発明の成形加工用アルミニ
ウム合金圧延板の製造方法は、請求項1において規定す
る各成分元素のほか、さらにCu0.1〜1.5%、Z
n0.1〜2.0%のうちの1種または2種を含有する
アルミニウム合金を用い、請求項1と同様な製造プロセ
スを適用するものである。
According to the second aspect of the present invention, in the method for producing a rolled aluminum alloy plate for forming, in addition to the respective component elements defined in the first aspect, Cu 0.1 to 1.5%, Z
An aluminum alloy containing one or two of n0.1 to 2.0% is used, and a manufacturing process similar to that of claim 1 is applied.

【0009】ここでランクフォード値の異方度Δrと
は、圧延方向に対して0°の方向のランクフォード値r
0 、45°方向のランクフォード値r45、90°方向の
ランクフォード値r90から、次式Δr=|(r0
90)/2−r45|によって求められる値である。なお
0 、r45、r90は、それぞれ圧延方向に対し0°、4
5°、90°の方向のJIS5号引張試験片を採取し、
15%引張時点で求めたランクフォード値を意味する。
The Anisotropy Δr of the Rankford value is the Rankford value r in the direction of 0 ° with respect to the rolling direction.
0, from 45 ° direction of the Lankford value r 45, 90 ° direction of the Lankford value r 90, the following equation Δr = | (r 0 +
r 90 ) / 2−r 45 |. Note that r 0 , r 45 , and r 90 are 0 ° and 4 ° with respect to the rolling direction, respectively.
Taking JIS No. 5 tensile test pieces in the directions of 5 ° and 90 °,
It means the Rankford value obtained at the time of 15% tension.

【0010】[0010]

【作用】先ずこの発明において使用するアルミニウム合
金の成分組成の限定理由を説明する。
First, the reasons for limiting the composition of the aluminum alloy used in the present invention will be explained.

【0011】Mg:Mgはこの発明で基本となる合金成
分であり、Siと共存してMgSiを生成し、析出硬
化により強度の向上に寄与する。Mgが0.1%未満で
は充分な強度が得られず、一方1.5%を越えれば伸
び、成形性が低下するから、Mg量は0.1〜1.5%
の範囲内とした。
Mg: Mg is an alloy component which is the basis of the present invention, and coexists with Si to form Mg 2 Si, which contributes to the improvement of strength by precipitation hardening. If the Mg content is less than 0.1%, sufficient strength cannot be obtained, while if it exceeds 1.5%, elongation and moldability deteriorate, so the Mg content is 0.1-1.5%.
Within the range of.

【0012】Si:Siもこの発明で基本となる成分元
素であり、Mgと共存してMgSiを生成し、析出硬
化により強度の向上に寄与する。また添加したSiの一
部は金属Si粒子としてAl合金中に存在し、成形加工
性、特に伸び、曲げ性を向上させる。Si量が0.3%
未満では上記効果が充分に得られず、Si量が2.5%
を越えれば伸び、成形性が劣化するから、Si量は0.
3〜2.5%とした。なお強度向上のためには、Si量
は、Mg量に対してMgSiを生成するような化学量
論組成よりも過剰であって、金属Si粒子を生成させる
ようなSi量であることが重要である。そこで特に強度
向上のためには、Si量は、 Si(%)>6×Mg(%)+0.4 を満たすような量とすることが望ましい。
Si: Si is also a basic component element in the present invention, and coexists with Mg to form Mg 2 Si, which contributes to the improvement of strength by precipitation hardening. Moreover, a part of the added Si is present in the Al alloy as metallic Si particles, and improves the formability, particularly the elongation and bendability. Si amount is 0.3%
If less than the above, the above effect cannot be sufficiently obtained, and the Si content is 2.5%
If it exceeds 1.0, elongation and moldability deteriorate, so the Si content is less than 0.
It was set to 3 to 2.5%. In order to improve the strength, the amount of Si is excessive with respect to the amount of Mg as compared with the stoichiometric composition that produces Mg 2 Si, and is the amount of Si that produces metallic Si particles. is important. Therefore, in order to improve the strength in particular, it is desirable that the amount of Si be such that Si (%)> 6 × Mg (%) + 0.4.

【0013】Cu,Zn:これらは強度向上に寄与する
から、請求項2の発明の場合にいずれか一方もしくは双
方が添加される。これらのうちCuは、特に塗装焼付後
の強度の向上に寄与する。またZnは、強度向上のほか
耐食性向上に寄与し、特にマトリックスの腐食電位を下
げることによって孔食を防止する効果がある。Cuが
0.1%未満、またZnが0.1%未満ではそれぞれの
効果が充分に得られず、一方Cuが1.5%を越えれば
成形性および耐食性を低下させ、またZnが2.0%を
越えれば耐食性を低下させるとともに、室温での経時変
化により成形性を低下させるから、Cuは0.1〜1.
5%、Znは0.1〜2.0%の範囲内とした。
Cu and Zn: Since these contribute to the improvement of strength, either or both of them are added in the case of the invention of claim 2. Of these, Cu particularly contributes to the improvement of strength after baking. In addition, Zn contributes not only to the improvement of strength but also to the improvement of corrosion resistance, and has an effect of preventing pitting corrosion by lowering the corrosion potential of the matrix. If Cu is less than 0.1% and Zn is less than 0.1%, the respective effects cannot be sufficiently obtained, while if Cu exceeds 1.5%, formability and corrosion resistance are deteriorated, and Zn is 2. If it exceeds 0%, the corrosion resistance is lowered and, at the same time, the formability is lowered due to aging at room temperature.
5% and Zn were within the range of 0.1 to 2.0%.

【0014】Mn,Cr,Zr:これらはいずれも結晶
粒を微細化し、成形加工時のフローラインを低減するに
効果があり、必要に応じてこれらのうち1種または2種
以上が添加される。それぞれ0.05%未満では充分な
効果が得られず、Mnが0.6%を、Crが0.3%
を、Zrが0.3%を越えれば粗大な金属間化合物が生
成されて成形性が劣化するから、Mnは0.05〜0.
6%、Crは0.05〜0.3%、Zrは0.05〜
0.3%の範囲内とした。
Mn, Cr, Zr: All of them are effective in making the crystal grains finer and reducing the flow line at the time of molding, and one or more of these are added if necessary. . If less than 0.05%, sufficient effects cannot be obtained, and Mn is 0.6% and Cr is 0.3%.
However, if Zr exceeds 0.3%, a coarse intermetallic compound is generated and the formability deteriorates. Therefore, Mn is 0.05 to 0.
6%, Cr 0.05-0.3%, Zr 0.05-
Within the range of 0.3%.

【0015】以上の各成分元素のほかは、基本的にはA
lおよび不可避的不純物とすれば良いが、通常のアルミ
ニウム合金においては微量のBeや少量のTiを添加す
ることがあり、この発明の場合もこれらの添加は次のよ
うな理由により許容される。
Basically, in addition to the above constituent elements, A
Although it may be 1 and unavoidable impurities, a small amount of Be or a small amount of Ti may be added to an ordinary aluminum alloy, and in the case of the present invention, addition of these is allowed for the following reason.

【0016】Be:Beは緻密な酸化被膜を生成してア
ルミニウム表面を保護する作用を有する。従来の一般的
なAl−Mg系合金では、溶湯の酸化防止のために微量
のBeを添加することが多かったが、この発明の場合、
Beの添加は溶湯の酸化防止のみならず、中間焼鈍時や
最終焼鈍時の板表面の酸化層を少なくするにも効果があ
り、それによって耐食性、特に耐糸錆性が飛躍的に向上
する。Be量が0.0001%未満では上記の効果が充
分に得られず、一方0.01%を越えても上記の効果は
飽和し、経済性を損なうだけであるから、Beを添加す
る場合のBe量は0.0001〜0.01%の範囲内と
することが好ましい。
Be: Be has a function of forming a dense oxide film and protecting the aluminum surface. In the conventional general Al-Mg-based alloy, a small amount of Be was often added to prevent the oxidation of the molten metal, but in the case of the present invention,
The addition of Be is effective not only for preventing the oxidation of the molten metal, but also for reducing the oxide layer on the surface of the plate during the intermediate annealing and the final annealing, thereby dramatically improving the corrosion resistance, particularly the yarn rust resistance. If the amount of Be is less than 0.0001%, the above-mentioned effect cannot be sufficiently obtained, while if it exceeds 0.01%, the above-mentioned effect is saturated and the economical efficiency is only impaired. The Be amount is preferably in the range of 0.0001 to 0.01%.

【0017】Ti:Tiは従来から鋳塊組織の微細化の
ために添加されることが多く、またその場合TiはBと
ともに添加することが多い。しかしながらTiは鋳塊組
織の微細化のみならず、耐食性の向上にも有効であり、
この発明の場合にもむしろ耐食性向上のためにTiを添
加することが許容される。Ti量が0.05%未満では
耐食性向上の効果が充分に得られず、一方Tiが1.0
%を越えれば粗大な金属間化合物を生成して圧延性、成
形性を劣化させるから、Tiを添加する場合のTi量は
0.05〜1.0%の範囲内とすることが適当である。
なお耐食性向上を目的としてTiを添加する場合、Ti
と同時にBを添加することは不要であるばかりでなく、
むしろBの添加によってTiがTiBとして固定され
て、耐食性向上の効果が得られなくなってしまう。した
がってBは全く添加しないか、または結晶粒微細化のた
めにBを添加するとしてもBを50ppm 以下とすること
が好ましい。
Ti: Ti has been conventionally added to refine the ingot structure, and Ti is often added together with B in this case. However, Ti is effective not only for refining the ingot structure but also for improving corrosion resistance,
Even in the case of the present invention, it is allowed to add Ti to improve the corrosion resistance. If the amount of Ti is less than 0.05%, the effect of improving corrosion resistance cannot be sufficiently obtained, while Ti is 1.0
%, A coarse intermetallic compound is formed and rollability and formability are deteriorated. Therefore, when Ti is added, the amount of Ti is preferably in the range of 0.05 to 1.0%. .
If Ti is added for the purpose of improving corrosion resistance, Ti
Not only is it unnecessary to add B at the same time,
Rather, the addition of B fixes Ti as TiB 2 and the effect of improving corrosion resistance cannot be obtained. Therefore, it is preferable that B is not added at all, or even if B is added for the purpose of refining the crystal grains, B is 50 ppm or less.

【0018】次にこの発明の製造方法における各プロセ
スについて説明する。
Next, each process in the manufacturing method of the present invention will be described.

【0019】先ず前述のような成分組成のアルミニウム
合金の溶湯を常法にしたがって溶製し、半連続鋳造法
(DC鋳造法)によって鋳造する。得られた鋳塊に対し
ては均質化処理を行なう。この均質化処理は、鋳塊の不
均質を解消して成形性を向上させるばかりでなく、後の
溶体化処理による再結晶粒を安定化させるに有効であ
る。均質化処理の温度が450℃未満では上述の効果が
充分に得られず、一方570℃を越えれば共晶融解のお
それがあるから、均質化処理温度は450〜570℃の
範囲内とする。均質化処理の時間は特に限定しないが、
通常は0.5〜48時間の範囲内とすることが好まし
い。
First, a molten aluminum alloy having the above-described composition is melted by a conventional method and cast by a semi-continuous casting method (DC casting method). The obtained ingot is homogenized. This homogenization treatment is effective not only for eliminating the inhomogeneity of the ingot to improve the formability but also for stabilizing the recrystallized grains by the subsequent solution treatment. If the homogenization temperature is lower than 450 ° C, the above-mentioned effects cannot be sufficiently obtained, while if it exceeds 570 ° C, eutectic melting may occur. Therefore, the homogenization temperature is in the range of 450 to 570 ° C. Homogenization time is not particularly limited,
Usually, it is preferably within the range of 0.5 to 48 hours.

【0020】均質化処理後は、常法に従って熱間圧延を
行なって所要の板厚の熱延板とし、さらにその熱延板に
対して冷間圧延を施す。この冷間圧延の中途において
は、1回または2回以上の中間焼鈍を施すが、この発明
の場合には、次に説明するように、特に最終の冷間圧延
の前の中間焼鈍(最終の中間焼鈍)の条件が特に重要で
ある。
After the homogenizing treatment, hot rolling is performed according to a conventional method to obtain a hot rolled sheet having a required sheet thickness, and the hot rolled sheet is cold rolled. In the middle of the cold rolling, the intermediate annealing is performed once or twice or more. In the case of the present invention, as described below, the intermediate annealing before the final cold rolling (final annealing) is performed. The conditions of intermediate annealing) are particularly important.

【0021】すなわち最終の中間焼鈍は、ランクフォー
ド値(r値)の異方度Δrに大きな影響を及ぼす。成形
性を向上させるためには、単にr値そのものを大きくす
るだけでは不充分であって、面内異方性を少なくするこ
と、すなわち前述の式で表わされるΔrの値をできるだ
け小さくすることが重要であり、そのために組織制御を
行なう必要がある。従来一般のアルミニウム合金圧延板
の製造においては、中間焼鈍は単に冷間圧延性を向上さ
せることのみを目的としてなされており、そのためこの
発明で対象としている系の如く冷間圧延性が比較的良好
な合金では中間焼鈍を行なわないことが多い。しかるに
本発明者等が鋭意実験・検討を重ねた結果、積極的に中
間焼鈍を施すとともに、特にその中間焼鈍を100℃/
分以上の急速加熱の条件で行なって特殊な再結晶集合組
織を得、さらにその後20%以上の圧延率で最終冷間圧
延を行ない、溶体化処理を施すことによって、r値の異
方度Δrの小さい圧延板が得られることを見出したので
ある。
That is, the final intermediate annealing has a great influence on the anisotropy Δr of the Rankford value (r value). In order to improve the moldability, it is not enough to simply increase the r value itself, and it is necessary to reduce the in-plane anisotropy, that is, to reduce the value of Δr represented by the above equation as much as possible. It is important and therefore requires organizational control. In the production of conventional general aluminum alloy rolled sheets, the intermediate annealing is performed only for the purpose of merely improving the cold rolling property, and therefore the cold rolling property is relatively good as in the system targeted by the present invention. In many cases, intermediate annealing is not performed on such alloys. However, as a result of intensive experiments and studies by the present inventors, the intermediate annealing was positively performed, and the intermediate annealing was performed at 100 ° C. /
Min. Or more rapid heating to obtain a special recrystallized texture, and then the final cold rolling is performed at a rolling rate of 20% or more, and solution treatment is performed to obtain the anisotropy Δr of the r value. It was found that a rolled plate having a small size can be obtained.

【0022】さらに具体的に最終の中間焼鈍について説
明すれば、一般にアルミニウムにおける圧延集合組織は
S方位と称される(123)(634)に近い方位とな
っている。このような組織の圧延板を焼鈍によって再結
晶させれば、R方位と称されるS方位に近い方位と、成
形性、特に深絞り性を大きく低下させるキューブ方位
(Cube Texture)と称される(100)(001)方位
が形成される。ところが、連続焼鈍の如き急速加熱によ
って再結晶させ、さらにその後20%以上の冷間圧延を
行なってから溶体化処理を施すことによって、成形性を
阻害するキューブ方位の形成を阻止し得ることを見出し
た。一般にキューブ方位の結晶粒の量を定量的に測定す
る方法としてはX線回折法が広く用いられており、その
X線回折法のうちでも簡便な手段として逆極点積分強度
測定法がある。この方法によって標準サンプル(純アル
ミ粉末)と比較した(200)積分強度比が5を越えれ
ば、成形性とりわけ深絞り性が著しく低下することが経
験的に知られている。そしてr値は集合組織と大きな相
関関係があり、例えば前述の(100)(001)方位
が強く形成されれば、圧延方向に平行な試験片でのr値
(すなわちr0 )は大きくなるが、圧延方向に対し45
°の方向の試験片でのr値(すなわちr45)は極めて小
さくなり、その結果Δrが大きくなり、成形性を著しく
阻害することが判明した。そしてΔrの値が0.2より
小さければ従来の一般的な成形加工用アルミニウム合金
圧延板と比較して面内異方性が少なく、成形性が優れて
いるということができ、したがってこの発明ではΔrを
0.2未満と規定した。
More specifically, the final intermediate annealing will be described. In general, the rolling texture in aluminum has an orientation close to (123) (634), which is called S orientation. When a rolled plate having such a structure is recrystallized by annealing, it is called an R direction, which is close to the S direction, and a cube direction (Cube Texture) that greatly reduces formability, particularly deep drawability. The (100) (001) orientation is formed. However, it was found that the formation of cube orientation, which hinders formability, can be prevented by recrystallizing by rapid heating such as continuous annealing, and then performing cold treatment at 20% or more and then performing solution treatment. It was Generally, the X-ray diffraction method is widely used as a method for quantitatively measuring the amount of crystal grains in the cube orientation, and the reverse pole integral intensity measurement method is a simple means among the X-ray diffraction methods. It is empirically known that if the (200) integrated strength ratio compared with the standard sample (pure aluminum powder) exceeds 5 by this method, the formability, particularly the deep drawability, is significantly reduced. The r value has a large correlation with the texture, and for example, if the (100) (001) orientation is strongly formed, the r value (that is, r 0 ) in the test piece parallel to the rolling direction becomes large. , 45 to the rolling direction
It was found that the r value (that is, r 45 ) of the test piece in the direction of ° became extremely small, resulting in a large Δr, which markedly hindered the formability. When the value of Δr is less than 0.2, it can be said that the in-plane anisotropy is small and the formability is excellent as compared with the conventional general aluminum alloy rolling plate for forming and processing. Therefore, in the present invention, Δr was defined as less than 0.2.

【0023】ここで、最終の中間焼鈍における加熱速度
(昇温速度)が100℃/分未満では、r値の異方度Δ
rを小さくする効果が得られずに、Δrが0.2以上と
なってしまい、また再結晶粒が粗大化し、成形加工によ
ってオレンジピールが生じて外観品質を損なうおそれも
ある。また最終の中間焼鈍の加熱温度が350℃未満で
は、r値の異方度Δrを小さくする効果が得られず、一
方580℃を越えれば、共晶融解のおそれがあるばかり
でなく、再結晶粒が粗大化するとともに、表面酸化層の
厚みが増大して耐糸錆性が劣化してしまうおそれがあ
る。さらに、最終の中間焼鈍における加熱時間が5分を
越えても、再結晶粒が粗大化したり、また表面酸化層の
厚みが増大したりする。したがって最終の中間焼鈍は、
100℃/分以上で加熱して350〜580℃の範囲内
の温度で5分以内の加熱とすることが必要である。なお
加熱温度は、より確実かつ充分にΔrの値を小さくする
ためには、450°を越え580°以下とすることが望
ましい。
Here, if the heating rate (temperature rising rate) in the final intermediate annealing is less than 100 ° C./min, the anisotropy Δ of the r value is Δ.
There is a possibility that the effect of reducing r cannot be obtained, Δr becomes 0.2 or more, recrystallized grains become coarse, and orange peel occurs due to the molding process, and the appearance quality is impaired. Further, if the heating temperature of the final intermediate annealing is less than 350 ° C, the effect of reducing the anisotropy Δr of the r value cannot be obtained. On the other hand, if it exceeds 580 ° C, there is a possibility of eutectic melting and recrystallization As the particles become coarser, the thickness of the surface oxide layer may increase and the yarn rust resistance may deteriorate. Furthermore, even if the heating time in the final intermediate annealing exceeds 5 minutes, the recrystallized grains become coarse and the thickness of the surface oxide layer increases. Therefore, the final intermediate annealing is
It is necessary to heat at 100 ° C./min or more and to heat at a temperature in the range of 350 to 580 ° C. for 5 minutes or less. The heating temperature is preferably more than 450 ° and 580 ° or less in order to more reliably and sufficiently reduce the value of Δr.

【0024】上述のようにして最終の中間焼鈍を行なっ
た後、最終板厚(製品板厚)とするために最終の冷間圧
延を施す。この最終の冷間圧延は、その後の溶体化処理
による再結晶粒を安定化し、成形性を向上させるために
必要であり、少なくとも20%以上の圧延率で行なう必
要がある。圧延率20%未満の冷間圧延では、再結晶粒
が不安定となり、結晶粒が粗大化して成形性が低下す
る。
After the final intermediate annealing is performed as described above, final cold rolling is performed to obtain the final plate thickness (product plate thickness). This final cold rolling is necessary to stabilize the recrystallized grains by the subsequent solution heat treatment and improve the formability, and it is necessary to perform it at a rolling rate of at least 20% or more. In cold rolling with a rolling ratio of less than 20%, the recrystallized grains become unstable, and the crystal grains become coarse, resulting in poor formability.

【0025】最終の冷間圧延の後、溶体化処理を行な
う。この溶体化処理は、再結晶させて結晶粒を微細化、
安定化させ、良好な成形性を得るために必須の処理であ
るが、この溶体化処理によって均一微細な結晶粒を安定
して得るためには、前述のような最終の中間焼鈍と最終
の冷間圧延の条件が極めて重要である。この溶体化処理
は、350〜580℃の温度で120分以内加熱する条
件で行なう必要がある。溶体化処理温度が350℃未満
では再結晶せず、成形性が低下し、また580℃を越え
れば共晶融解のおそれがあるばかりでなく、再結晶粒が
粗大化して成形後に肌荒れが発生し、外観品質の不良を
招くとともに、成形性も劣化し、さらには表面酸化層の
厚みが増大し、耐糸錆性が低下する。また溶体化処理の
時間が120分を越えても表面酸化層の厚みが増大し、
耐糸錆性が低下する。このような溶体化処理後の冷却
は、100℃/分以上の冷却速度で行なえば良く、その
ためには強制空冷、水焼入れ等を適用することができ
る。
After the final cold rolling, solution treatment is performed. This solution treatment is recrystallized to refine the crystal grains,
This is an essential process for stabilizing and obtaining good formability, but in order to obtain uniformly fine crystal grains stably by this solution treatment, the final intermediate annealing and final cooling as described above are required. The conditions of hot rolling are extremely important. This solution treatment must be performed under the condition of heating at a temperature of 350 to 580 ° C. for 120 minutes or less. If the solution heat treatment temperature is less than 350 ° C, recrystallization does not occur and the formability decreases, and if it exceeds 580 ° C, not only the eutectic melt may occur, but also the recrystallized grains become coarse and rough skin occurs after molding. The appearance quality is deteriorated, the moldability is deteriorated, the thickness of the surface oxidation layer is increased, and the yarn rust resistance is reduced. Further, the thickness of the surface oxide layer increases even if the solution treatment time exceeds 120 minutes,
Thread rust resistance decreases. Cooling after such solution treatment may be performed at a cooling rate of 100 ° C./min or more, and for that purpose, forced air cooling, water quenching, etc. can be applied.

【0026】なおここで、溶体化処理後の冷却を強制空
冷や水焼入れで行なった場合、板に反り等の変形が発生
しやすい。このような変形を解消するため、溶体化処理
−冷却後にスキンパス、レベリングあるいはストレッチ
等の軽度の冷間加工による矯正を行なっても良い。但
し、このような矯正によって成形性が低下してしまうお
それがあるから、その場合には成形性を回復させるた
め、図1、図2に示すような範囲内の温度、加熱速度、
保持時間、冷却速度で歪除去焼鈍を行なうことが望まし
い。
If the cooling after the solution treatment is performed by forced air cooling or water quenching, the plate is likely to be deformed such as warped. In order to eliminate such deformation, straightening may be performed by mild cold working such as skin pass, leveling or stretching after solution treatment-cooling. However, since there is a possibility that the formability is lowered by such correction, in this case, in order to recover the formability, the temperature, the heating rate, and the temperature within the ranges shown in FIGS.
It is desirable to perform strain relief annealing at a holding time and a cooling rate.

【0027】なおまた、前述の冷間圧延工程において
は、その中途で2回以上の中間焼鈍を行なっても良い。
すなわち前述のような条件の最終の中間焼鈍の前の冷間
圧延中にも、必要に応じて冷間圧延性改善のために中間
焼鈍を行なっても良い。このような、最終の中間焼鈍よ
り前の段階の中間焼鈍の条件は特に限定しないが、バッ
チ焼鈍の場合は250〜450℃の範囲内の温度に0.
5〜24時間保持の条件とするのが一般的であり、また
連続焼鈍の場合は350〜580℃の温度に加熱して保
持なしもしくは5分以内の保持とするのが一般的であ
る。ここでバッチ焼鈍の場合、加熱保持温度が250℃
未満では冷間圧延性が改善されず、450℃を越えれば
再結晶粒が粗大化するとともに表面酸化層の厚みが増大
し、また保持時間が0.5時間未満では冷間圧延性が改
善されず、24時間を越えれば経済性を損なうだけでな
く、表面酸化層の厚みが増大してしまう。一方連続焼鈍
の場合、加熱到達温度が350℃未満では冷間圧延性が
改善されず、580℃を越えれば共晶融解のおそれがあ
るばかりでなく、再結晶粒が粗大化するとともに表面酸
化層の厚みが増大し、また保持時間が5分を越えれば再
結晶粒が粗大化するとともに表面酸化層の厚みが増大し
てしまう。
In the cold rolling process, the intermediate annealing may be performed twice or more in the middle of the cold rolling process.
That is, during the cold rolling before the final intermediate annealing under the above-described conditions, the intermediate annealing may be performed as necessary to improve the cold rolling property. The conditions of the intermediate annealing in the stage before the final intermediate annealing are not particularly limited, but in the case of batch annealing, the temperature is within the range of 250 to 450 ° C.
Generally, the condition of holding for 5 to 24 hours is used, and in the case of continuous annealing, it is general to heat to a temperature of 350 to 580 ° C. for no holding or holding for 5 minutes or less. In the case of batch annealing, the heating and holding temperature is 250 ° C.
If it is less than 450 ° C, the cold rolling property is not improved. If it exceeds 450 ° C, the recrystallized grains are coarsened and the thickness of the surface oxide layer is increased, and if the holding time is less than 0.5 hours, the cold rolling property is improved. If the time exceeds 24 hours, not only the economy is impaired, but also the thickness of the surface oxide layer increases. On the other hand, in the case of continuous annealing, if the temperature reached by heating is lower than 350 ° C, the cold rolling property is not improved, and if it exceeds 580 ° C, not only the eutectic melting may occur, but also the recrystallized grains become coarse and the surface oxide layer is formed. If the holding time exceeds 5 minutes, the recrystallized grains become coarse and the thickness of the surface oxide layer increases.

【0028】また、前述の説明では鋳造方法として半連
続鋳造法(DC鋳造法)を用いた場合について説明した
が、場合によっては一対の冷却ロール間に溶湯を供給し
て薄板を直接鋳造する連続鋳造圧延法(薄板連続鋳造
法)を適用しても良い。またこのように連続鋳造圧延法
を適用した場合には、鋳造時の冷却速度が速いため、均
質化処理を行なわなくても再結晶粒の安定化は達成する
ことができるから、均質化処理は省くことが可能であ
り、また直接薄板が鋳造されるところから、熱間圧延も
省くことが可能である。
In the above description, the case where the semi-continuous casting method (DC casting method) is used as the casting method has been described. However, in some cases, continuous casting in which a molten metal is supplied between a pair of cooling rolls to directly cast a thin plate The casting and rolling method (thin plate continuous casting method) may be applied. Further, when the continuous casting and rolling method is applied in this way, the cooling rate during casting is high, and therefore stabilization of the recrystallized grains can be achieved without performing the homogenizing treatment. It is possible to omit, and hot rolling can be omitted because the thin plate is directly cast.

【0029】以上のようにして、最終の中間焼鈍を急速
加熱による適切な条件で行ない、その後の最終冷間圧延
を20%以上の圧延率で行なってからさらに適切な溶体
化処理を行なうことによってランクフォード値の異方度
Δrが0.2以下で面内異方性が少なく、成形性が著し
く優れた圧延板を得ることができるのである。
As described above, the final intermediate annealing is performed under appropriate conditions by rapid heating, and the subsequent final cold rolling is performed at a rolling rate of 20% or more, and then an appropriate solution treatment is performed. It is possible to obtain a rolled plate having an anisotropy Δr of the Rankford value of 0.2 or less and little in-plane anisotropy and remarkably excellent formability.

【0030】[0030]

【実施例】表1の合金番号No.1〜No.5に示す各合金
を常法に従ってDC鋳造し、得られた鋳塊に対して50
0℃×10時間の均質化処理を施した後、常法に従って
板厚5mmとなるまで熱間圧延した。次いで冷間圧延(一
次冷間圧延)を行ない、表2中に示す板厚(中間焼鈍時
の板厚)まで圧延した段階で、同じく表2中に示す種々
の条件で中間焼鈍を行ない、さらに表2中に示す冷延率
(最終冷延率)で最終冷間圧延(2次冷間圧延)を行な
ってから溶体化処理を行なった。なお溶体化処理は塩浴
中で行ない、その後水焼入れ(冷却速度約800℃/
秒)した。
[Example] Alloy number No. in Table 1 1-No. Each alloy shown in 5 was DC-cast according to a conventional method, and the obtained ingot was 50
After homogenizing treatment at 0 ° C. for 10 hours, hot rolling was performed according to a conventional method until the plate thickness became 5 mm. Then, cold rolling (primary cold rolling) was performed, and at the stage of rolling to the plate thickness (plate thickness at the time of intermediate annealing) shown in Table 2, intermediate annealing was also performed under various conditions shown in Table 2, and The final cold rolling (secondary cold rolling) was performed at the cold rolling rate (final cold rolling rate) shown in Table 2, and then the solution treatment was performed. The solution treatment is carried out in a salt bath, followed by water quenching (cooling rate approx. 800 ° C /
Second)

【0031】得られた各圧延板について、機械的性質と
して降伏強さ(YS)、引張強さ(TS)、および伸び
(EL)を調べるとともに、r値の異方度Δrを求め、
さらに成形性として張り出し試験値、限界絞り比(LD
R)、曲げ試験値、耳率を調べ、またX線回折により
(200)方位の逆極点積分強度比を調べた。その結果
を表3に示す。なおここで機械的性質および成形性は、
いずれも溶体化処理後、2週間室温時効させた後に測定
した。また機械的性質はいずれも圧延方向に0°の試験
片、45°の試験片、90°の試験片について測定し
て、その平均値を表3中に示した。さらに成形性のう
ち、張り出し試験は、100mm径の球頭ポンチを用い、
塩ビフィルムを貼った状態で実施した。耳率は、62mm
径のブランク材を32mm径のポンチで絞った場合の耳率
を測定した。さらにLDRは、50mm径のポンチを使用
し、ジョンソンワックスで潤滑して絞り加工を行なって
測定した。さらに曲げ試験値は、180°曲げ最小半径
を調べた。逆極点積分強度比は、集合組織を持たない純
アルミ粉末(ランダムサンプル)を標準サンプルとして
用い、試料との(200)積分強度比を調べた。
For each of the obtained rolled plates, the mechanical properties such as yield strength (YS), tensile strength (TS), and elongation (EL) were examined, and the anisotropic value Δr of r value was calculated.
Further, as a formability, an overhang test value, a limit drawing ratio (LD
R), bending test value, ear ratio, and the inverse pole integral intensity ratio in the (200) direction by X-ray diffraction. The results are shown in Table 3. The mechanical properties and moldability here are
In each case, after solution treatment, aging was performed for 2 weeks at room temperature, and then the measurement was performed. The mechanical properties were measured on the test piece of 0 °, the test piece of 45 ° and the test piece of 90 ° in the rolling direction, and the average values are shown in Table 3. Among the moldability, the overhang test uses a ball head punch with a diameter of 100 mm.
It was carried out with a vinyl chloride film attached. Ear rate is 62 mm
The ear rate when a blank material having a diameter of 32 mm was squeezed with a punch having a diameter of 32 mm was measured. Further, the LDR was measured by using a punch having a diameter of 50 mm, lubricating it with Johnson wax, and drawing. Further, as the bending test value, the 180 ° bending minimum radius was examined. As the inverse pole integral intensity ratio, pure aluminum powder (random sample) having no texture was used as a standard sample, and the (200) integral intensity ratio with the sample was examined.

【0032】[0032]

【表1】 [Table 1]

【0033】[0033]

【表2】 [Table 2]

【0034】[0034]

【表3】 [Table 3]

【0035】表3から明らかなように、この発明の方法
により得られた圧延板(製造番号No.1,No.7,No.
9,No.11)は、いずれも強度および成形性が優れ、
特に異方度Δrが0.2よりも格段に小さい値となっ
て、面内異方性が極めて少ない。一方比較法による製造
番号No.2,No.4は、中間焼鈍の加熱速度が遅かった
もの、同じく比較法による製造番号No.3,No.8,N
o.10は中間焼鈍の加熱温度が低かったもの、同じく
比較法による製造番号No.5,No.12は中間焼鈍を行
なわなかったもの、同じく比較法によるNo.6は最終の
冷間圧延率が20%に満たなかったものであるが、これ
らの比較法の場合はいずれもΔrが0.2以上となり、
面内異方性が大きいことが判る。
As is apparent from Table 3, the rolled plates (Production No. 1, No. 7, No. 7) obtained by the method of the present invention.
9, No. 11) has excellent strength and moldability,
In particular, the anisotropy Δr is a value significantly smaller than 0.2, and the in-plane anisotropy is extremely small. On the other hand, the serial number by the comparison method No. 2, No. No. 4 has a slow heating rate in the intermediate annealing, and is also manufactured by the comparative method. 3, No. 8, N
o. No. 10 had a low heating temperature in the intermediate annealing, and was also manufactured by the comparative method. 5, No. No. 12 which was not subjected to the intermediate annealing, was also No. 12 by the comparative method. No. 6 had a final cold rolling rate of less than 20%, but in each of these comparative methods, Δr was 0.2 or more,
It can be seen that the in-plane anisotropy is large.

【0036】[0036]

【発明の効果】この発明の方法によれば、強度および成
形性に優れ、特に面内異方性が極めて少ない成形加工用
アルミニウム合金圧延板を得ることができ、そのため大
きな成形加工度が要求される成形部品や複雑形状を有す
る成形部品などに使用される素材の製造に最適であり、
自動車ボディシートなどの陸運車両の部品や電気機器用
部品等の素材の製造に利用することができる。
According to the method of the present invention, it is possible to obtain an aluminum alloy rolled sheet for forming which is excellent in strength and formability, and particularly has very little in-plane anisotropy. Therefore, a large forming degree is required. Ideal for manufacturing materials used for molded parts and molded parts with complex shapes,
It can be used for manufacturing materials such as parts of land transportation vehicles such as automobile body sheets and parts for electric devices.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の製造方法で得られた圧延板に対して
さらに矯正加工を行なった後に歪回復処理を施す場合の
加熱温度と加熱速度、冷却速度の最適範囲を示す説明図
である。
FIG. 1 is an explanatory view showing an optimum range of a heating temperature, a heating rate, and a cooling rate when a strain recovery treatment is performed after further performing a straightening process on a rolled plate obtained by the manufacturing method of the present invention.

【図2】同じく歪回復処理を施す場合の加熱温度と保持
時間との関係を示す説明図である。
FIG. 2 is an explanatory diagram showing a relationship between a heating temperature and a holding time when a strain recovery process is similarly performed.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 Mg0.1〜1.5%(wt%、以下同
じ)、Si0.3〜2.5%を含有し、さらに必要に応
じてMn0.05〜0.6%、Cr0.05〜0.3
%、Zr0.05〜0.3%のうちの1種または2種以
上を含有し、残部がAlおよび不可避的不純物よりなる
合金を鋳造し、450〜570℃の範囲内の温度で均質
化処理した後、熱間圧延を行ない、さらに中途に1回も
しくは2回以上の中間焼鈍を挟んで冷間圧延を行ない、
かつ冷間圧延の中途の中間焼鈍のうち、最終の中間焼鈍
を、100℃/分以上の加熱速度で350〜580℃の
範囲内の温度に加熱して保持なしもしくは5分以下の保
持を行なう条件で施し、しかもその最終の中間焼鈍の後
の最終板厚までの冷間圧延を20%以上の圧延率で行な
い、さらにその最終冷間圧延の後、350〜580℃の
範囲内の温度で120分以内加熱する溶体化処理を行な
い、引続き100℃/分以上の冷却速度で急速冷却し
て、ランクフォード値の異方度Δrが0.2未満の圧延
板を得ることを特徴とする、成形加工用アルミニウム合
金圧延板の製造方法。
1. Mg 0.1 to 1.5% (wt%, the same applies hereinafter), Si 0.3 to 2.5%, and if necessary, Mn 0.05 to 0.6% and Cr 0.05. ~ 0.3
%, Zr 0.05 to 0.3%, one or more of them, and the balance is cast from an alloy consisting of Al and inevitable impurities, and homogenized at a temperature in the range of 450 to 570 ° C. After that, hot rolling is performed, and cold rolling is performed with intermediate annealing once or twice or more in the middle.
And, among the intermediate annealing in the middle of cold rolling, the final intermediate annealing is heated to a temperature in the range of 350 to 580 ° C. at a heating rate of 100 ° C./min or more to perform no holding or holding for 5 minutes or less. Cold rolling to a final plate thickness after the final intermediate annealing at a rolling rate of 20% or more, and after the final cold rolling, at a temperature in the range of 350 to 580 ° C. Characterized in that a solution treatment of heating within 120 minutes is carried out, followed by rapid cooling at a cooling rate of 100 ° C./min or more to obtain a rolled plate having a Rankford anisotropy Δr of less than 0.2. Manufacturing method of rolled aluminum alloy sheet for forming.
【請求項2】 Mg0.1〜1.5%、Si0.3〜
2.5%を含有し、かつCu0.1〜1.5%、Zn
0.1〜2.0%のうちの1種または2種を含有し、さ
らに必要に応じてMn0.05〜0.6%、Cr0.0
5〜0.3%、Zr0.05〜0.3%のうちの1種ま
たは2種以上を含有し、残部がAlおよび不可避的不純
物よりなる合金を鋳造し、450〜570℃の範囲内の
温度で均質化処理した後、熱間圧延を行ない、さらに中
途に1回もしくは2回以上の中間焼鈍を挟んで冷間圧延
を行ない、かつ冷間圧延の中途の中間焼鈍のうち、最終
の中間焼鈍を、100℃/分以上の加熱速度で350〜
580℃の範囲内の温度に加熱して保持なしもしくは5
分以下の保持を行なう条件で施し、しかもその最終の中
間焼鈍の後の最終板厚までの冷間圧延を20%以上の圧
延率で行ない、さらにその最終冷間圧延の後、350〜
580℃の範囲内の温度で120分以内加熱する溶体化
処理を行ない、引続き100℃/分以上の冷却速度で急
速冷却して、ランクフォード値の異方度Δrが0.2未
満の圧延板を得ることを特徴とする、成形加工用アルミ
ニウム合金圧延板の製造方法。
2. Mg 0.1-1.5%, Si 0.3-
Containing 2.5%, and Cu 0.1-1.5%, Zn
It contains one or two of 0.1 to 2.0%, and if necessary, Mn 0.05 to 0.6%, Cr 0.0
5 to 0.3%, Zr 0.05 to 0.3%, one or more of them are contained, and the balance is cast from an alloy consisting of Al and unavoidable impurities. After homogenizing at temperature, hot rolling is performed, and then cold rolling is performed with one or more intermediate annealings in between, and the final intermediate of the intermediate annealing in the middle of cold rolling. Annealing is performed at a heating rate of 100 ° C./min or more from 350 to
No heating or heating to a temperature in the range of 580 ° C or 5
It is carried out under the condition of holding for less than a minute, and cold rolling to the final plate thickness after the final intermediate annealing is performed at a rolling ratio of 20% or more, and further after the final cold rolling, 350 to
Solution-rolled by heating for 120 minutes at a temperature in the range of 580 ° C., followed by rapid cooling at a cooling rate of 100 ° C./min or more, and a rolled plate having a Rankford anisotropy Δr of less than 0.2. A method for producing a rolled aluminum alloy plate for forming, which comprises:
JP9170792A 1992-03-17 1992-03-17 Method for producing rolled aluminum alloy plate for forming Expired - Lifetime JPH0747807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9170792A JPH0747807B2 (en) 1992-03-17 1992-03-17 Method for producing rolled aluminum alloy plate for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9170792A JPH0747807B2 (en) 1992-03-17 1992-03-17 Method for producing rolled aluminum alloy plate for forming

Publications (2)

Publication Number Publication Date
JPH05263203A JPH05263203A (en) 1993-10-12
JPH0747807B2 true JPH0747807B2 (en) 1995-05-24

Family

ID=14033990

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9170792A Expired - Lifetime JPH0747807B2 (en) 1992-03-17 1992-03-17 Method for producing rolled aluminum alloy plate for forming

Country Status (1)

Country Link
JP (1) JPH0747807B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5616189A (en) * 1993-07-28 1997-04-01 Alcan International Limited Aluminum alloys and process for making aluminum alloy sheet
JP3905143B2 (en) * 1995-05-31 2007-04-18 株式会社神戸製鋼所 Aluminum alloy plate excellent in press formability and method for producing the same
JPH10102179A (en) * 1996-10-01 1998-04-21 Nippon Steel Corp Aluminum alloy sheet excellent in press formability and baking finish hardenability, and its production
KR100213678B1 (en) * 1997-03-27 1999-08-02 Korea Machinery & Metal Inst Manufacturing method of al-mg-si alloy with excellent high forming and high strength
KR100213679B1 (en) * 1997-03-27 1999-08-02 Korea Machinery & Metal Inst Manufacturing method of al-mg-si alloy with excellent high forming and high strength
DE69938224T2 (en) * 1998-09-10 2009-03-05 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe AL-MG-SI ALLOY SHEET
JP4057199B2 (en) * 1998-09-10 2008-03-05 株式会社神戸製鋼所 Al-Mg-Si alloy plate
US6652678B1 (en) * 1999-03-01 2003-11-25 Alcan International Limited AA6000 aluminum sheet method
JP2010222710A (en) * 2000-03-27 2010-10-07 Nippon Steel Corp Aluminum alloy for automotive body having excellent formability and method for producing the same
JP4819233B2 (en) * 2000-08-30 2011-11-24 新日本製鐵株式会社 Aluminum alloy plate with excellent formability
WO2002079533A1 (en) * 2001-03-28 2002-10-10 Sumitomo Light Metal Industries, Ltd. Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
AT411269B (en) * 2001-11-05 2003-11-25 Salzburger Aluminium Ag ALUMINUM-SILICON ALLOYS WITH IMPROVED MECHANICAL PROPERTIES
JP5113318B2 (en) * 2004-04-13 2013-01-09 古河スカイ株式会社 Aluminum alloy plate for forming and method for producing the same
JP5354954B2 (en) * 2007-06-11 2013-11-27 住友軽金属工業株式会社 Aluminum alloy plate for press forming
KR101249521B1 (en) * 2011-01-20 2013-04-01 한국생산기술연구원 Aluminium based alloy and method of manufacturing the same
WO2014135367A1 (en) 2013-03-07 2014-09-12 Aleris Aluminum Duffel Bvba Method of manufacturing an al-mg-si alloy rolled sheet product with excellent formability
JP6301095B2 (en) * 2013-09-27 2018-03-28 株式会社Uacj Al-Mg-Si aluminum alloy plate for automobile panel and method for producing the same
JP6433380B2 (en) 2014-06-27 2018-12-05 株式会社神戸製鋼所 Aluminum alloy rolled material
JP6768568B2 (en) * 2017-03-16 2020-10-14 株式会社神戸製鋼所 Aluminum alloy plate with excellent press formability, rigging mark property, and BH property
CN109402537B (en) * 2018-12-25 2021-03-23 西南铝业(集团)有限责任公司 Aluminum alloy ingot and aluminum alloy homogenization process

Also Published As

Publication number Publication date
JPH05263203A (en) 1993-10-12

Similar Documents

Publication Publication Date Title
JPH0747807B2 (en) Method for producing rolled aluminum alloy plate for forming
US4614552A (en) Aluminum alloy sheet product
JPH07228956A (en) Production of aluminum alloy sheet for forming work
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JPH07197219A (en) Production of aluminum alloy sheet for forming
WO2018206696A1 (en) Method of manufacturing an al-si-mg alloy rolled sheet product with excellent formability
JP4602195B2 (en) Method for producing aluminum alloy sheet for forming
JPH076022B2 (en) Aluminum alloy for glitter disk wheels
JP2844411B2 (en) Aluminum alloy sheet for superplastic forming capable of cold preforming and method for producing the same
JP6581347B2 (en) Method for producing aluminum alloy plate
JP2005139494A (en) Aluminum alloy sheet for forming, and its production method
JPH0931616A (en) Aluminum-magnesium-silicon alloy sheet excellent in formability and its production
JP2003321754A (en) Method for manufacturing aluminum alloy sheet with excellent bendability
JP2003221637A (en) Aluminum alloy plate for fabrication and its manufacturing process
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP2678404B2 (en) Manufacturing method of aluminum alloy sheet for forming
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP3278119B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability
US20200216938A1 (en) 6xxxx-series rolled sheet product with improved formability
JP3260227B2 (en) Al-Mg-Si based alloy sheet excellent in formability and bake hardenability by controlling crystal grains and method for producing the same
JPH10219412A (en) Manufacture of rolled aluminum alloy sheet excellent in external appearance characteristic after forming
JP3208234B2 (en) Aluminum alloy sheet for forming process excellent in formability and method for producing the same
JP2513559B2 (en) Manufacturing method of aluminum alloy plate with excellent mold galling resistance, scratch resistance and corrosion resistance

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19951121

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080524

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090524

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100524

Year of fee payment: 15

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110524

Year of fee payment: 16

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120524

Year of fee payment: 17

EXPY Cancellation because of completion of term