JP2004238657A - Method of manufacturing aluminum alloy plate for outer panel - Google Patents

Method of manufacturing aluminum alloy plate for outer panel Download PDF

Info

Publication number
JP2004238657A
JP2004238657A JP2003027206A JP2003027206A JP2004238657A JP 2004238657 A JP2004238657 A JP 2004238657A JP 2003027206 A JP2003027206 A JP 2003027206A JP 2003027206 A JP2003027206 A JP 2003027206A JP 2004238657 A JP2004238657 A JP 2004238657A
Authority
JP
Japan
Prior art keywords
aluminum alloy
rolling
temperature
hot
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003027206A
Other languages
Japanese (ja)
Inventor
Tetsuya Masuda
哲也 増田
Yasuo Takagi
康夫 高木
Kazunori Kobayashi
一徳 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2003027206A priority Critical patent/JP2004238657A/en
Publication of JP2004238657A publication Critical patent/JP2004238657A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing an Al-Mg-Si aluminum alloy plate which prevents a ridging mark in press forming and has superior press formability and bending workability, even when manufacturing the Al-Mg-Si aluminum alloy plate by using a mass productive hot-rolling line. <P>SOLUTION: The Al-Mg-Si aluminum alloy plate comprises 0.4-1.3% Si, 0.2-1.2% Mg, 0.01-0.65% Mn and 0.001-1.0% Cu, while controlling Si/Mg into 1 or more by mass ratio. The method for manufacturing the Al-Mg-Si aluminum alloy plate comprises heat-treating the Al-Mg-Si aluminum alloy ingot having the above composition for homogenization, hot-rolling it, then cold-rolling it, and further subjecting it to solution treatment and quenching treatment, wherein the above homogenization heat treatment is carried out in a temperature range of 380 to 480°C, and the hot rolling is started in the temperature range. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、プレス成形後の表面性状に優れ、かつ成形性にも優れたAl−Mg−Si系アルミニウム合金板(以下、アルミニウムを単にAlとも言う)の製造方法に関するものである。
【0002】
【従来の技術】
近年、排気ガス等による地球環境問題に対して、自動車などの輸送機の車体の軽量化による燃費の向上が追求されている。このため、特に、自動車の車体に対し、従来から使用されている鋼材に代わって、より軽量なAl−Mg−Si系(AA乃至JIS 6000系) アルミニウム合金材の適用が増加しつつある。
【0003】
このAl−Mg−Si系(以下6000系とも言う) のアルミニウム合金材の中でも、自動車のフード、フェンダー、ドア、ルーフ、トランクリッドなどのパネル構造体の、アウタパネル (外板) には、薄肉でかつ高強度アルミニウム合金板として、過剰Si型の6000系のアルミニウム合金板の使用が好ましい。
【0004】
この過剰Si型の6000系アルミニウム合金は、基本的には、Si、Mgを必須として含み、かつSi/Mg が質量比で1 以上である組成を有する。過剰Si型6000系アルミニウム合金は優れた人工時効硬化能 (ベークハード性) を有している。このためプレス成形や曲げ加工時には低耐力化により成形性を確保するとともに、成形後のパネルの塗装焼付処理などの、比較的低温の人工時効硬化処理時の加熱により時効硬化して強度が向上し、アウタパネルとして必要な強度を確保できる利点がある。
【0005】
また、これら過剰Si型6000系アルミニウム合金材は、Mgなどの合金量が多い、他のAl−Mg 系の5000系アルミニウム合金などに比して、合金元素量が比較的少ない。このため、これら6000系アルミニウム合金材のスクラップを、アルミニウム合金溶解材 (溶解原料) として再利用する際に、元の6000系アルミニウム合金鋳塊が得やすく、リサイクル性にも優れている。
【0006】
一方、自動車のアウタパネルは、周知の通り、アルミニウム合金板に対し、プレス成形における張出成形時や曲げ成形などの成形加工が複合して行われて製作される。例えば、フードやドアなどのアウタパネルでは、張出などのプレス成形によって、アウタパネルとしての成形品形状となされ、次いで、このアウタパネル周縁部のフラットヘムなどのヘム (ヘミング) 加工によって、インナパネルとの接合が行われ、パネル構造体とされる。
【0007】
このプレス成形に伴って生じる代表的な欠陥として、リジングマークと呼ばれる表面不良がある。このリジングマークが顕著に生じた場合、特に表面が美麗であることが要求されるアウタパネルでは、外観不良となって使用できない問題となる。
【0008】
このリジングマークは、結晶学的方位の近い結晶粒が群れをなしていると、これら結晶粒群同士の境界で変形挙動が大きく異なることに起因して起こる、表面の凹凸である。このため、アルミニウム合金板の結晶粒が肌荒れを生じない程度に微細であってもプレス成形によって生じる点がやっかいである。このリジングマークは、パネル構造体の大型化や形状の複雑化、あるいは薄肉化などによりプレス成形条件が厳しくなった場合に特に生じ易い。また、プレス成形直後には比較的目立たず、そのままパネル構造体として塗装工程に進んだ後に目立ちやすくなるという問題もある。
【0009】
このリジングマークの問題に対し、従来から、過剰Si型6000系アルミニウム合金鋳塊を500 ℃以上の温度で均質化熱処理後に冷却して、350 〜450 ℃の比較的低温で熱延を開始することにより、リジングマークを防止することが公知である(例えば、特許文献1、2 参照) 。
【0010】
【特許文献1】
特許第2823797 号公報
【特許文献2】
特開平8 −232052号公報
【0011】
【発明が解決しようとする課題】
しかし、このように500 ℃以上の温度で均質化熱処理後に、低温の熱延開始温度まで冷却する場合、この冷却の際の冷却速度が遅いと、MgSi 系化合物が析出、粗大化するため、溶体化および焼入れ処理を高温、長時間化する必要が生じ、生産性を著しく低下させる問題がある。
【0012】
近年、生産効率の点から、鋳塊は例えば500mmt以上に大型化している。この大型化した鋳塊ほど、均質化熱処理後に熱延開始温度まで急冷するに際し、その冷却速度および熱延開始温度を安定して制御することは、実際の製造設備上あるいは製造工程上の制約もあって、非常に困難なものとなる。したがって、実際の製造工程では、均質化熱処理後に低温の熱延開始温度まで冷却する場合、その冷却速度は必然的に遅いものとならざるを得ない。このため、現実には、前記比較的低温での熱延開始だけでは、最終製品の材料特性が不安定となったり、溶体化および焼入れ処理時の生産性の低下を招き、リジングマーク防止に効果的な方法とは言い難い。
【0013】
本発明はこの様な事情に着目してなされたものであって、その目的は、量産的な熱延ラインによって、Al−Mg−Si系アルミニウム合金板を製造する場合にでも、プレス成形時のリジングマークを防止し、プレス成形性や曲げ加工性にも優れたAl−Mg−Si系アルミニウム合金板の製造方法を提供しようとするものである。
【0014】
【課題を解決するための手段】
この目的を達成するために、本発明の成形後の表面性状に優れたアウタパネル用アルミニウム合金板の製造方法の要旨は、Si:0.4〜1.3%、Mg:0.2〜1.2%、Mn:0.01 〜0.65% 、Cu:0.001〜1.0%を含み、かつSi/Mg が質量比で1 以上であるAl−Mg−Si系アルミニウム合金鋳塊を均質化熱処理後に熱間圧延し、更に冷間圧延した後に溶体化および焼入れ処理するアルミニウム合金板の製造方法であって、前記均質化熱処理を380 〜480 ℃の温度範囲で行なうとともに、この温度範囲で熱間圧延を開始することである。
【0015】
なお、本発明で言うアルミニウム合金板とは、冷間圧延後、調質処理 (溶体化および焼入れ処理) を施した後の板 (圧延板) を言う。言い換えると、調質処理後 (板製造後) からプレス成形されるまでの任意の期間におけるアルミニウム合金板を言う。
【0016】
本発明者らは、検討の結果、従来は鋳塊偏析の除去や合金組織の均質化のために、500 ℃以上の温度が必要と認識されていた鋳塊の均質化熱処理につき、均質化熱処理を380 〜480 ℃の比較的低温で行なっても、上記成分組成の範囲であれば、アルミニウム合金鋳塊の均質化は可能であることを知見した。
【0017】
また、均質化熱処理を380 〜480 ℃の比較的低温で行なうことで、前記した高温均質化熱処理からの急冷が不要となり、比較的低温での熱間圧延の開始が容易に行なえ、低温での熱間圧延のリジングマーク防止効果を最大限に発揮できる。そして、ロット間の熱間圧延開始温度の変動が少なく、最終製品の材料特性が安定する。更に、均質化熱処理の低温化により、熱エネルギーが少なくて済むことによる省エネルギーという付随的な効果もある。
【0018】
【発明の実施の形態】
本発明製造方法について以下に詳しく説明する。
先ず、溶解、鋳造工程は、本発明の特定6000系組成の範囲内に溶解調整されたアルミニウム合金溶湯を、連続鋳造圧延法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。
【0019】
鋳塊の均質化熱処理は、380 〜480 ℃の比較的低温の温度範囲で行なう。この均質化熱処理温度が480 ℃を越えた場合、前記した従来技術と大差なくなり、380 〜480 ℃の比較的低温の熱延開始温度とするために、冷却する必要が生じる。この際、前記した通り、大型化した鋳塊ほど、均質化熱処理後に熱延開始温度まで急冷するに際し、その冷却速度および熱延開始温度を安定して制御することは、実際の製造設備上あるいは製造工程上の制約もあって、非常に困難なものとなる。したがって、実際の製造工程では、均質化熱処理後に低温の熱延開始温度まで冷却する場合、その冷却速度は必然的に遅いものとならざるを得ない。このため、最終製品の材料特性が不安定となったり、溶体化および焼入れ処理時の生産性の低下を招く結果となる。
【0020】
一方、均質化熱処理温度が380 ℃未満の場合、上記本発明成分組成の範囲であっても、アルミニウム合金鋳塊が十分に均質化されず、プレス成形性が劣る、あるいはヘム加工性が劣るなど成形性が著しく低下する。
【0021】
本発明では、均質化熱処理と熱延開始温度とが、共に380 〜480 ℃の比較的低温である。このため、均質化熱処理後に熱間粗圧延を開始するに際し、均質化熱処理と熱延開始温度とを略同じとすれば、均質化熱処理後の6000系アルミニウム合金鋳塊の強制的な冷却は不要である。但し、工程上の理由などで、比較的高めとした上記均質化熱処理温度から、比較的低めとした上記熱延開始温度まで、放冷、空冷、急冷などの強制冷却されることを許容する。なお、均質化熱処理後のアルミニウム合金鋳塊を一旦室温まで冷却し、380 〜480 ℃の熱延開始温度まで再加熱して熱延を開始する必要は無い。
【0022】
均質化熱処理後の熱間圧延は、大型化した鋳塊の大量生産型工程では、先ずリバース式などの粗圧延機によって、複数回のパスによって粗圧延される。そして、この熱間粗圧延に続く熱間仕上げ圧延では、タンデム式の仕上げ圧延機などによって、直列に配列される複数の圧延機を通過する間に、アルミニウム合金板は複数回のパス (圧延) を受けて仕上げ圧延される。
【0023】
このような工程の場合、上記粗圧延の際に、プレス成形後のパネル構造体表面のリジングマークや肌荒れを抑制するために、前記した通り、常法とは異なり、熱間粗圧延の開始温度を380 〜480 ℃の比較的低い温度とする。
【0024】
熱間粗圧延の開始温度をこのように比較的低い温度とすることで、熱間粗圧延の終了時の組織を均一な加工組織 (未再結晶組織) とできる。このため、続く熱間仕上げ圧延の終了時においても、この均一な加工組織が保持される結果、冷間圧延後の溶体化処理において均一な再結晶組織が得られ、プレス成形時のリジングマークが防止乃至抑制される。これは、熱間粗圧延の無い (熱間粗圧延と仕上げ圧延の分化が無い) 熱間圧延でも同様であり、本発明では、このような熱間粗圧延が無い熱延の場合にも、熱間粗圧延開始温度を熱間圧延開始温度として適用される。
【0025】
熱間圧延の開始温度が480 ℃を越える比較的高い温度となった場合、従来の高温開始温度での熱延と大差なくなり、熱間圧延上がりで、再結晶組織、あるいは加工組織に再結晶組織が混在する不均一な加工組織となって、プレス成形時のリジングマークが防止乃至抑制できない。一方、熱間圧延の開始温度が380 ℃未満では、熱間圧延自体が困難となる。
【0026】
なお、熱間粗圧延の際に、更に確実に、リジングマークを防止するためには、熱間粗圧延1 パス当たりの加工率を50% 以下と比較的小さくすることが好ましい。熱間粗圧延1 パス当たりの加工率が50% を越えた場合、300 〜450 ℃の比較的低い温度で、熱間粗圧延を開始しても、熱間粗圧延上がりで、再結晶組織、あるいは加工組織に再結晶組織が混在する不均一な加工組織となりやすい。
【0027】
このように、熱間粗圧延の開始温度を上記比較的低い温度とするとともに、熱間粗圧延1 パス当たりの加工率を小さくすることで、熱間粗圧延の終了時の組織をより均一な加工組織 (未再結晶組織) とできる。
【0028】
この熱間仕上げ圧延においては圧延の終了温度を200 〜300 ℃とすることが好ましい。仕上げ圧延の終了温度が300 ℃を越えた場合、熱間圧延終了時に再結晶化が進んだ組織となり、熱間圧延板を実質的に加工組織とすることができず、プレス成形後のリジングマークや肌荒れを抑制できない可能性がある。一方、仕上げ圧延の終了温度が200 ℃未満では、熱間圧延自体が困難となる。なお、前記熱間粗圧延の際の1 パス当たりの加工率さえ規定すれば、仕上げ圧延の加工率によらず、熱間圧延板を実質的に加工組織とすることができる。
【0029】
次に、このような熱間圧延後のアルミニウム合金板は冷間圧延され、所望の板厚のアウター用 (成形用) 薄板にされる。なお、本発明では、中間焼鈍は基本的には不要である。本発明では、このような中間焼鈍が無くても、リジングマークや成形性、あるいはベークハード性などを含めた、良好な特性が得られ、この点が大きな利点でもある。ただ、前記良好な特性を更に向上させるために、中間焼鈍しても良い。
【0030】
冷間圧延後のアルミニウム合金板は、調質処理として、溶体化および焼入れ処理される。溶体化および焼入れ処理は、後の塗装焼き付け硬化処理などの人工時効硬化処理によりGPゾーンなどの化合物相を十分粒内に析出させるために重要な工程である。この効果を出すための溶体化処理条件は、500 〜560 ℃の温度範囲で行うのが好ましい。これによって、溶体化および焼入れ処理後のアルミニウム合金板の0.2%耐力を140MPaを越える高強度にして、プレス成形やヘムなどの曲げ加工後の塗装工程などにおける前記低温短時間の人工時効硬化処理でも170MPaを越えるような高強度のパネルとする。
【0031】
溶体化処理後の焼入れの際には、冷却速度は50℃/ 分以上の急冷とすることが好ましい。冷却速度が50℃/ 分未満の遅い場合には、焼入れ後の強度が低くなり、時効硬化能が不足し、前記低温短時間の低温での人工時効処理により170MPa以上の高耐力を確保できない。
【0032】
また、粒界上にSi、MgSiなどが析出しやすくなり、プレス成形やフラットヘム加工時の割れの起点となり易く、これら成形性が低下する。この冷却速度を確保するために、焼入れ処理は、ファンなどの空冷でもよいが冷却速度が遅くなる可能性が大きく、ミスト、スプレー、浸漬等の水冷手段から選択して行うことが好ましい。
【0033】
本発明では、成形パネルの塗装焼き付け工程などの人工時効硬化処理での時効硬化性を高めるため、溶体化焼入れ処理後のクラスターの生成を抑制し、GPゾーンの析出を促進するために、予備時効処理をしても良い。この予備時効処理は、50〜100 ℃、より好ましくは60〜90℃の温度範囲に、1 〜24時間の必要時間保持することが好ましい。また、予備時効処理後の冷却速度は、1 ℃/hr 以下であることが好ましい。
【0034】
この予備時効処理として、溶体化処理後の焼入れ終了温度を50〜100 ℃と高くした後に、直ちに再加熱乃至そのまま保持して行う。あるいは、溶体化処理後常温までの焼入れ処理の後に、直ちに50〜100 ℃に再加熱して行う。
【0035】
また、連続溶体化焼入れ処理の場合には、前記予備時効の温度範囲で焼入れ処理を終了し、そのままの高温でコイルに巻き取るなどして行う。なお、コイルに巻き取る前に再加熱しても、巻き取り後に保温しても良い。また、常温までの焼入れ処理の後に、前記温度範囲に再加熱して高温で巻き取るなどしてもよい。
【0036】
更に、室温時効抑制のために、前記予備時効処理後に、比較的低温での熱処理(人工時効処理) を行い、GPゾーンを更に生成させても良い。人工時効処理までの時間的な遅滞があった場合、予備時効処理後でも、時間の経過とともに室温時効 (自然時効) が生じ、この室温時効が生じた後では、前記比較的低温での熱処理による効果が発揮しにくくなる。
【0037】
この他、用途や必要特性に応じて、更に高温の時効処理や安定化処理を行い、より高強度化などを図ることなども勿論可能である。
【0038】
次に、本発明アルミニウム合金板の化学成分組成の実施形態につき、以下に説明する。
本発明アルミニウム合金板の基本組成は、アウタパネルとしての要求諸特性を確保するために、Si:0.4〜1.3%、Mg:0.2〜1.2%、Mn:0.01 〜0.65% 、Cu:0.001〜1.0%を含み、かつSi/Mg が質量比で1 以上とした過剰Si型の6000系Al合金とする。そして、アウタパネルとしての要求諸特性をより確実に確保するためには、上記規定各成分以外の残部を、より厳密にAlおよび不可避的不純物とすることが好ましい。なお、本発明での化学成分組成の% 表示は、前記請求項の% 表示も含めて、全て質量% の意味である。
【0039】
上記合金元素以外の、Cr、Zr、Ti、B 、Fe、Zn、Ni、V など、その他の合金元素は、基本的には不純物元素である。これら不純物元素の含有量が多くなると、本発明のような比較的低温の鋳塊均質化熱処理条件では、鋳塊が均質化されなくなるため、出来だけ少ない方が好ましい。しかし、一方、リサイクルや経済性の観点から、溶解材として、高純度Al地金だけではなく、6000系合金やその他のAl合金スクラップ材、低純度Al地金などを溶解原料として使用して、本発明Al合金組成を溶製する場合には、これら他の合金元素は必然的に含まれることとなる。したがって、本発明では、本発明効果やアウタパネルとしての特性を阻害しない範囲で、これら他の合金元素が含有されることを許容する。
【0040】
各元素の好ましい含有範囲と意義、あるいは許容量について以下に説明する。
Si:0.4〜1.3%。
Siは、固溶強化と、塗装焼き付け処理などの、前記低温短時間での人工時効処理時に、MgとともにGPゾーンなどの化合物相を形成して、時効硬化能を発揮し、パネルとして170MPa以上の必要強度を得るための必須の元素である。したがって、本発明過剰Si型6000系アルミニウム合金板にあって、プレス成形性、ヘム加工性などの諸特性を兼備させるための最重要元素である。
【0041】
また、低温短時間での人工時効処理時 (パネルへの成形後の塗装焼き付け処理、評価試験としては2%ストレッチ付与後160 ℃×20分の低温時効処理) 時の耐力を170MPa以上という、優れた低温時効硬化能を発揮させるためにも、Si/Mg を質量比で1.0 以上とし、SiをMgに対し過剰に含有させた過剰Si型6000系Al合金組成とすることが好ましい。
【0042】
Si量が0.4%未満では、前記時効硬化能、更には、各用途に要求される、プレス成形性、ヘム加工性などの諸特性を兼備することができない。一方、Siが1.3%を越えて含有されると、特にヘム加工性や曲げ加工性が著しく阻害される。更に、溶接性を著しく阻害する。また、本発明の比較的低温の鋳塊均質化熱処理条件では、鋳塊が均質化されない。したがって、Siは0.4 〜1.3%の範囲とするのが好ましい。なお、アウタパネルでは、ヘム加工性が特に重視されるため、プレス成形性などの他の特性を低下させずに、フラットヘム加工性をより向上させるために、Si含有量を0.6 〜1.2%とすることが好ましい。
【0043】
Mg:0.2〜1.2%。
Mgは、固溶強化と、塗装焼き付け処理などの前記人工時効処理時に、SiとともにGPゾーンなどの化合物相を形成して、時効硬化能を発揮し、パネルとしての170MPa以上の必要強度を得るための必須の元素である。Mgの0.2%未満の含有では、絶対量が不足するため、人工時効処理時に前記化合物相を形成できず、時効硬化能を発揮できない。このためパネルとして必要な前記必要強度が得られない。
【0044】
一方、Mgが1.2%を越えて含有されると、プレス成形性や曲げ加工性 (ヘム加工性) 等の成形性が著しく阻害される。また、本発明の比較的低温の鋳塊均質化熱処理条件では、鋳塊が均質化されない。したがって、Mgの含有量は、0.2 〜1.2%の範囲で、かつSi/Mg が質量比で1.0 以上となるような量とする。また、フラットヘム加工性をより向上させるために、Si含有量を前記0.6 〜1.0%の範囲とする場合には、これに対応して過剰Si型6000系Al合金組成とするために、Mg含有量も0.2 〜0.8%の範囲とすることが好ましい。
【0045】
Cu:0.001〜1.0%
Cuは、本発明の比較的低温短時間の人工時効処理の条件で、Al合金材組織の結晶粒内へのGPゾーンなどの化合物相の析出を促進させる効果がある。また、時効処理状態で固溶したCuは成形性を向上させる効果もある。Cu含有量が0.001%未満ではこの効果がない。一方、1.0%を越えると、耐応力腐食割れ性や、塗装後の耐蝕性の内の耐糸さび性、また溶接性を著しく劣化させる。また、本発明の比較的低温の鋳塊均質化熱処理条件では、鋳塊が均質化されない。このため、Cu含有量は0.001 〜1.0%の範囲とする。
【0046】
Mn:0.01 〜0.65%
Mnには、均質化熱処理時に分散粒子 (分散相) を生成し、これらの分散粒子には再結晶後の粒界移動を妨げる効果があるため、微細な結晶粒を得ることができる効果がある。前記した通り、本発明アルミニウム合金板のプレス成形性やヘム加工性はAl合金組織の結晶粒が微細なほど向上する。この点、Mn含有量が0.01% 未満ではこれらの効果が無い。
【0047】
一方、Mn含有量が0.65% を越えて多くなった場合、溶解、鋳造時に粗大なAl−Fe−Si−(Mn、Cr、Zr) 系の金属間化合物や晶析出物を生成しやすく、破壊の起点となり易いため、アルミニウム合金板の機械的性質を低下させる原因となる。特に前記複雑形状や薄肉化、あるいはインナパネル端部とアウタパネル縁曲部内面との間の隙間の存在などによって、加工条件が厳しくなったフラットヘム加工においては、Mn含有量が0.25% を越えた場合にヘム加工性が低下する。このため、Mnは0.01〜0.65% の範囲とし、前記加工条件が厳しくなったフラットヘム加工では0.01〜0.25% の範囲とすることが好ましい。
【0048】
Cr、Zrの遷移元素は、Mnと同様、均質化熱処理時に分散粒子 (分散相) を生成し、微細な結晶粒を得ることができる効果がある。しかし、Cr、Zrも、0.15% を越える含有では、前記加工条件が厳しくなったフラットヘム加工ではヘム加工性が低下する。したがって、Cr、Zrの含有量も、0.20% 以下に規制することが好ましい。
【0049】
Ti、B は、Ti:0.1% 、B:300ppmを各々越えて含有すると、粗大な晶出物を形成し、成形性を低下させる。但し、Ti、B には微量の含有で、鋳塊の結晶粒を微細化し、プレス成形性を向上させる効果もある。したがって、Ti:0.1% 以下、B:300ppm以下までの含有は許容する。
【0050】
溶解原料から混入して、不純物として含まれるFeは晶出物を生成し、これらの晶出物は再結晶粒の核となり、Feが0.08% 以上含まれた場合に、結晶粒の粗大化を阻止して、結晶粒を50μm 以下の微細粒とする役割を果たす。しかし、一方でこれらの晶出物は、破壊靱性および疲労特性、更には、前記加工条件が厳しくなったフラットヘム加工性およびプレス成形性を著しく劣化させる。これらの劣化特性は、Feの含有量が0.50% を越えると顕著になる。このため、含有させる場合のFeの含有量は0.50% 以下とすることが好ましい。
【0051】
Znは0.5%を越えて含有されると、耐蝕性が顕著に低下する。したがって、Znの含有量は好ましくは0.5%以下とすることが好ましい。
【0052】
【実施例】
次に、本発明の実施例を説明する。各組成を表1 に示す600mm 厚の6000系アルミニウム合金鋳塊をDC鋳造法により溶製した。これらの鋳塊を昇温速度40℃/hr にて加熱して、表2 に各々示す各温度で4 時間の均質化熱処理した。その後、表2 に各々示す各開始温度で熱間粗圧延した。なお発明例7 のみは均質化熱処理後に空冷して熱間粗圧延温度まで冷却した。他の発明例や比較例は全て、均質化熱処理後直ちに熱間粗圧延しており、均質化熱処理と熱間粗圧延開始温度とは略同じである。
【0053】
この熱間粗圧延は、量産に用いるリバース式粗圧延機を用いて粗圧延した。この際、各例とも、熱間粗圧延1 パス当たりの加工率を50% 以下とした。また、続く熱間仕上げ圧延では、量産に用いる4 段4 タンデム式の仕上げ圧延機列を用いて(4回のパスによって) 仕上げ圧延してコイル化した。
【0054】
これら熱間粗圧延上がりの状態および熱間仕上げ圧延上がりの状態で、各々複数の試験片を採取し、ST方向断面のミクロ組織を10000 倍のSEM にて観察した。そして、加工組織 (未再結晶組織) 主体の組織か、再結晶粒組織主体の組織かを判別した。なお、表2 には、板厚とともに、均一な加工組織も、再結晶粒組織が混在するが加工組織主体の組織も、共に加工組織として記載する。同様に、均一な再結晶粒組織も、加工組織が混在するが再結晶粒組織主体の組織も、共に再結晶粒組織として記載する。
【0055】
熱間圧延後のアルミニウム合金板を、中間焼鈍無しで、冷間圧延し、共通して厚さ1.0mm のアルミニウム合金冷延板 (コイル) を作成した。更に、この各冷延コイルから板を採取して、以下の同じ条件で調質処理した。先ず、上記冷延板を570 ℃に保持した空気炉に投入し、各試験片が550 ℃の溶体化処理温度に到達した時点で (保持時間 0秒) 、80℃の温水に焼き入れする処理を行った。前記焼入れ処理の際の冷却速度は200 ℃/ 秒とし、焼入れ終了温度 (焼入れ温度) は共通して80℃とし、焼入れ後にこの温度で2 時間保持する予備時効処理 (保持後は冷却速度0.6 ℃/hr で徐冷) を行った。
【0056】
これら調質処理後の各アルミニウム合金板から試験用の幅500mm ×長さ500mm の供試板 (ブランク) を複数枚切り出し、調質処理後に十分室温時効したアルミニウム合金板がプレス成形およびヘム加工されることを想定して、前記調質処理後 4カ月間 (120 日間) の室温時効後の、各供試板の平均結晶粒径 (μm)、圧延方向に対し90°の方向のAS耐力 (σ0.2)および伸び(%) 測定した。これらの結果を表3 に示す。
【0057】
なお、耐力、伸び測定のための引張試験はJIS Z 2201にしたがって行うとともに、試験片形状はJIS 5 号試験片で行った。また、クロスヘッド速度は5mm/分で、試験片が破断するまで一定の速度で行った。
【0058】
また、平均結晶粒径は、板の圧延方向(L方向) の結晶粒の平均粒径とした。測定方法は、アルミニウム合金板の圧延方向(L方向) と板厚方向 (ST方向) とを含む面を機械研磨した後に電解エッチングした面を、光学顕微鏡を用いて観察し、表面、板厚の1/8 の部分、板厚の2/8 の部分、板厚の3/8 の部分、板厚の4/8 の部分の各部で、前記L 方向に、ラインインターセプト法で測定した。1 測定ライン長さは0.95mmとし、1 視野当たり各5 本で合計5 視野を観察して、結晶粒径を測定して平均化し、平均結晶粒径とした。
【0059】
また、前記室温時効した供試板を、自動車パネルとしてプレス成形やヘム加工されることを模擬して、成形試験した。より具体的には、張出成形試験、張出成形後のフラットヘム加工試験を行い、成形性を評価した。これらの結果を表3 に示す。
【0060】
張出成形試験の条件は、前記供試板 (ブランク) を、中央部に一辺が300mm で高さが30mmと高い角筒状の張出部と、この張出部の四周囲に平坦なフランジ部 (幅30mm) を有するハット型のパネルに、1000トンの大型プレスにより金型を用いて張出成形した。この際、しわ押さえ力は49kN、潤滑油は一般防錆油、成形速度は20mm/ 分とした。
【0061】
張出成形試験は、同じ条件で5 回行い、5 回とも成形ハット型パネルの張出部角部などに割れがなく正常に成形できた例を〇、5 回のうち少なくとも1 回以上割れが生じたが他は成形できたものを△、5 回とも成形ハット型パネルに割れが生じて成形できなかったものを×として評価した。
【0062】
成形品のリジングマークなどの表面性状の評価は、上記張出成形試験の成形品を洗浄後、同一条件でリン酸亜鉛処理、塗装および焼き付け処理を行った後の成形品表面の外観を目視観察にてリジングマークの発生状況を評価した。前記5 回(5個) の成形品表面 (成形時割れたものを含む) に、5 個とも全てリジングマークが生じていないものを〇、1 個以上軽度のリジングマークが生じているものを△、1 個以上顕著なリジングマークが生じているものを×と評価した。
【0063】
この際のリン酸亜鉛処理は、リン酸チタンのコロイド分散液による処理を行い、次いでフッ素を50ppm の低濃度含むリン酸亜鉛浴に浸漬してリン酸亜鉛皮膜を成形材表面に形成した。その後の塗装処理は、カチオン電着塗装を行った後に、170 ℃×20分の焼き付けを行う条件とした。
【0064】
次に、フラットヘム加工試験は以下の通りとした。前記張出成形試験の成形品パネルを、アウターパネルとしてヘム加工されることを模擬して、パネルの前記平坦なフランジ部を以下の条件でフラットヘム加工した。まず、任意のフランジ部をフラットヘム加工代 (ヘム加工後のパネルの内側に折り曲げられた端部から折り曲げ部の端部までの距離) を8mm として、ダウンフランジ工程を模擬し、フランジ部をAl合金パネルの一辺の縁を90度の角度となるまで折り曲げた。この際にフランジ部の90°曲げ半径は0.8tとした。次に、プリヘム工程模擬して、フランジ部の上記折り曲げ部の縁を更に135 °の角度まで内側に折り曲げた。その後更に、フラットヘム加工条件を模擬して、厚さ0.8mm のインナパネルをフランジ部の上記折り曲げ部内に挿入し、折り曲げ部を内側に180 度折り曲げ、インナパネル面に密着させる曲げ加工を行った。
【0065】
そして、このフラットヘムの縁曲部の、肌荒れ、微小な割れ、大きな割れの発生などの表面状態を目視観察した。評価は、1;肌荒れや微小な割れも無く良好、2;肌荒れが発生しているものの、微小なものを含めた割れはない、3;微小な割れが発生、4;大きな割れが発生、5;大きな割れが複数乃至多数発生、の5 段階の評価(5段階の各中間の評価を含む) をした。この評価として、ヘム加工性が良好 (使用可) と判断されるのは1 〜2 段階までで、3 段階以上はヘム加工性が劣る (使用不可) と判断される。
【0066】
更に、人工時効処理能を調査するため、前記プレス成形品から供試板を採取して、170 ℃×20分の低温短時間の人工時効硬化処理し、処理後の各供試板の (元のアルミニウム合金板の) 前記平均の耐力 (ABσ0.2)を測定した。これらの結果を表3 に示す。
【0067】
表2 、3 から明らかな通り、熱間粗圧延の開始温度を380 〜480 ℃の低い温度とした発明例1 〜6 は、熱間粗圧延上がりと熱間仕上げ圧延上がりにおいて、いずれも加工組織となっており、均質化熱処理温度が380 〜480 ℃と比較的低いにもかかわらず、前記 4カ月間 (120 日間) の室温時効後でも、張出成形の後にリジングマークが生じておらず、成形品の表面性状が著しく優れている。
【0068】
また、張出成形性自体やフラットヘム加工性にも優れている。更に、AB耐力が180MPa以上と高く、低温短時間の人工時効硬化性にも優れている。
【0069】
これらの評価は、実際の自動車アウタパネルなどの成形性や人工時効硬化性の評価につながるものである。したがって、発明例1 〜6 は、自動車アウタパネルとしての使用に耐えることを示している。
【0070】
但し、発明例の中でも、Si含有量が(Si/Mgの質量比も) 比較的低い合金3 を用いた発明例3 は、AB耐力が他の発明例に比して低い。
【0071】
また、均質化熱処理温度が380 ℃と比較的低い発明例4 は、合金の成分組成が同じで、均質化熱処理温度が比較的高い他の発明例1 、2 に比して、プレス成形性やヘム加工性が劣る。これは、発明例4 の均質化熱処理における、鋳塊偏析の除去や合金組織の均質化が、発明例1 、2 に比して、不十分となったためと考えられる。
【0072】
これに対し、比較例7 は、均質化熱処理温度と熱間粗圧延の開始温度などを発明例1 、2 と同じ条件としているものの、Si含有量が低過ぎる合金4 を用いており、成形後の表面性状は良好であるものの、AB耐力が発明例1 、2 に比して著しく低い。
【0073】
また、Si含有量やMg含有量が高過ぎる合金5 、6 を用いた比較例8 、9 は、均質化熱処理温度と熱間粗圧延の開始温度などを発明例1 、2 と同じ条件としているものの、発明例1 、2 に比して、成形後の表面性状とともに、プレス成形性やヘム加工性が著しく劣る。これは、Si含有量やMg含有量が高過ぎるために、発明例4 の均質化熱処理における、鋳塊偏析の除去や合金組織の均質化が、発明例1 、2 に比して、著しく不十分となったためと考えられる。
【0074】
また、均質化熱処理温度が370 ℃と低く過ぎる比較例10は、合金の成分組成が同じで、均質化熱処理温度が比較的高い他の発明例1 、2 に比して、成形後の表面性状とともに、プレス成形性やヘム加工性が劣る。これは、発明例4 の均質化熱処理における、鋳塊偏析の除去や合金組織の均質化が、発明例1 、2 に比して、不十分となったためと考えられる。
【0075】
均質化熱処理温度と熱間粗圧延の開始温度が500 ℃と高い、従来の通常の板材相当の比較例11は、熱間粗圧延上がりと熱間仕上げ圧延上がりにおいて、いずれも再結晶組織となっており、プレス成形性や低温短時間の人工時効硬化性には優れているものの、ヘム加工性や成形後の表面性状が発明例1 、2 に比して著しく劣る。
【0076】
更に、均質化熱処理温度を500 ℃以上と高くし、これを冷却速度20℃/hr にて冷却して、420 、450 ℃の低温熱間粗圧延開始温度とした、比較例12、13は、リジングマークは発生していないものの、低温短時間でのベークハード性が発明例1 、2 に比して著しく劣る。
【0077】
したがって、これらの結果から、本発明製造方法における、成分組成範囲と均質化熱処理温度と熱間粗圧延の開始温度との、特に成形後の表面性状や、パネルとしての他の必要特性に対する臨界的な意義が分かる。
【0078】
【表1】

Figure 2004238657
【0079】
【表2】
Figure 2004238657
【0080】
【表3】
Figure 2004238657
【0081】
【発明の効果】
本発明によれば、量産的な熱延ラインによって、6000系アルミニウム合金板を製造する場合にでも、プレス成形時のリジングマークを防止し、プレス成形性や曲げ加工性、あるいは人工時効硬化性にも優れた6000系アルミニウム合金板の製造方法を提供することができる。したがって、6000系アルミニウム合金板のパネル用途への拡大を図ることができる点で、多大な工業的な価値を有するものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for producing an Al-Mg-Si-based aluminum alloy sheet (hereinafter, aluminum is also simply referred to as Al) having excellent surface properties after press molding and excellent moldability.
[0002]
[Prior art]
2. Description of the Related Art In recent years, in response to global environmental problems caused by exhaust gas and the like, improvement in fuel efficiency by reducing the weight of vehicles such as automobiles has been pursued. For this reason, the use of lighter Al-Mg-Si-based (AA to JIS 6000-based) aluminum alloy materials has been increasing, especially for automobile bodies, in place of conventionally used steel materials.
[0003]
Among the Al-Mg-Si-based (hereinafter also referred to as 6000-based) aluminum alloy materials, the outer panel (outer plate) of a panel structure such as a hood, a fender, a door, a roof, and a trunk lid of an automobile is thin. As the high-strength aluminum alloy plate, it is preferable to use an excess Si type 6000-based aluminum alloy plate.
[0004]
The excess Si type 6000 series aluminum alloy basically contains Si and Mg as essential components and has a composition in which the mass ratio of Si / Mg is 1 or more. Excess Si type 6000 series aluminum alloy has excellent artificial age hardening ability (bake hardness). For this reason, in addition to ensuring the formability by reducing the strength during press forming and bending, the strength is improved by age hardening by heating at a relatively low temperature artificial age hardening treatment such as paint baking treatment of the panel after forming. There is an advantage that the strength required for the outer panel can be secured.
[0005]
Further, these excess Si type 6000 series aluminum alloy materials have a large amount of alloys such as Mg, and have a relatively small amount of alloying elements as compared with other Al-Mg based 5000 series aluminum alloys and the like. For this reason, when these 6000 series aluminum alloy scraps are reused as an aluminum alloy melting material (melting raw material), an original 6000 series aluminum alloy ingot is easily obtained and excellent in recyclability.
[0006]
On the other hand, as is well known, an outer panel of an automobile is manufactured by performing a forming process such as an overhanging process in a press forming process or a bending process on an aluminum alloy plate. For example, an outer panel such as a hood or a door is formed into a molded product as an outer panel by press forming such as overhang, and then is bonded to the inner panel by hemming a flat hem or the like around the outer panel periphery. Is performed to form a panel structure.
[0007]
A typical defect generated by the press molding is a surface defect called a ridging mark. When the ridging mark is remarkably generated, the outer panel, which requires a beautiful surface, has a poor appearance and cannot be used.
[0008]
The ridging marks are surface irregularities caused by a large difference in the deformation behavior at the boundary between the crystal grain groups when the crystal grains having similar crystallographic orientations form a cluster. For this reason, even if the crystal grains of the aluminum alloy plate are fine enough not to cause roughening, it is troublesome that the grains are formed by press molding. This ridging mark is particularly likely to occur when press forming conditions become severe due to an increase in the size and shape of the panel structure or a reduction in the thickness of the panel structure. In addition, there is also a problem that it is relatively inconspicuous immediately after press molding, and becomes conspicuous after proceeding to a coating process as a panel structure as it is.
[0009]
In order to solve the problem of the ridging mark, it has been customary to cool the excess Si-type 6000 series aluminum alloy ingot at a temperature of 500 ° C. or higher after homogenizing heat treatment and start hot rolling at a relatively low temperature of 350 to 450 ° C. It is known that ridging marks can be prevented by using such methods (see, for example, Patent Documents 1 and 2).
[0010]
[Patent Document 1]
Japanese Patent No. 2823797
[Patent Document 2]
Japanese Patent Application Laid-Open No. H8-232052
[0011]
[Problems to be solved by the invention]
However, when cooling to a low hot rolling start temperature after the homogenizing heat treatment at a temperature of 500 ° C. or more, if the cooling rate during this cooling is slow, Mg 2 Since the Si-based compound precipitates and coarsens, it is necessary to perform the solution treatment and the quenching treatment at a high temperature and for a long time, and there is a problem that productivity is remarkably reduced.
[0012]
In recent years, ingots have increased in size to, for example, 500 mmt or more from the viewpoint of production efficiency. When rapidly cooling to the hot-rolling start temperature after the homogenization heat treatment, the larger the ingot, the more stable control of the cooling rate and hot-rolling start temperature is limited by the actual manufacturing equipment or manufacturing process. That makes it very difficult. Therefore, in the actual manufacturing process, when cooling to a low hot rolling start temperature after the homogenization heat treatment, the cooling rate is necessarily slow. For this reason, in reality, simply starting hot rolling at a relatively low temperature causes instability of the material properties of the final product, lowers productivity during solution treatment and quenching, and is effective in preventing ridging marks. It is hard to say.
[0013]
The present invention has been made in view of such circumstances, and its purpose is to produce Al-Mg-Si-based aluminum alloy sheets by mass-produced hot rolling lines, An object of the present invention is to provide a method for producing an Al-Mg-Si-based aluminum alloy sheet which prevents ridging marks and is excellent in press formability and bending workability.
[0014]
[Means for Solving the Problems]
In order to achieve this object, the gist of the method for producing an aluminum alloy sheet for an outer panel having excellent surface properties after molding according to the present invention is as follows: Si: 0.4 to 1.3%, Mg: 0.2 to 1.%. An Al-Mg-Si based aluminum alloy ingot containing 2%, Mn: 0.01 to 0.65%, Cu: 0.001 to 1.0%, and having a mass ratio of Si / Mg of 1 or more. A method for producing an aluminum alloy sheet in which hot rolling is performed after homogenizing heat treatment, and further cold rolling is performed, followed by solution treatment and quenching, wherein the homogenizing heat treatment is performed in a temperature range of 380 to 480 ° C. To start hot rolling.
[0015]
In addition, the aluminum alloy plate referred to in the present invention refers to a plate (rolled plate) that has been subjected to a tempering treatment (solution treatment and quenching treatment) after cold rolling. In other words, it refers to an aluminum alloy plate during an arbitrary period after the tempering treatment (after plate production) and before press forming.
[0016]
As a result of the study, the inventors of the present invention have recognized that a temperature of 500 ° C. or higher was conventionally required to remove ingot segregation and homogenize the alloy structure. It has been found that, even if the above-mentioned process is carried out at a relatively low temperature of 380 to 480 ° C., the aluminum alloy ingot can be homogenized within the above-mentioned composition.
[0017]
In addition, by performing the homogenizing heat treatment at a relatively low temperature of 380 to 480 ° C., rapid cooling from the above-described high-temperature homogenizing heat treatment becomes unnecessary, so that hot rolling can be started at a relatively low temperature, and the low-temperature The ridging mark prevention effect of hot rolling can be maximized. Then, the variation of the hot rolling start temperature between lots is small, and the material properties of the final product are stabilized. Further, the homogenizing heat treatment has a lower temperature, which has an additional effect of saving energy by reducing heat energy.
[0018]
BEST MODE FOR CARRYING OUT THE INVENTION
The production method of the present invention will be described in detail below.
First, the melting and casting steps are performed by subjecting a molten aluminum alloy melt-adjusted within the range of the specific 6000 series composition of the present invention to a normal melting casting method such as a continuous casting rolling method and a semi-continuous casting method (DC casting method). It is appropriately selected and cast.
[0019]
The heat treatment for homogenizing the ingot is performed at a relatively low temperature range of 380 to 480 ° C. When the temperature of the homogenization heat treatment exceeds 480 ° C., there is no great difference from the above-mentioned prior art, and cooling is required in order to obtain a relatively low hot rolling start temperature of 380 to 480 ° C. At this time, as described above, the larger the ingot, when rapidly cooling to the hot-rolling start temperature after the homogenization heat treatment, to stably control the cooling rate and the hot-rolling start temperature, on actual production equipment or This is very difficult due to restrictions in the manufacturing process. Therefore, in the actual manufacturing process, when cooling to a low hot rolling start temperature after the homogenization heat treatment, the cooling rate is necessarily slow. As a result, the material properties of the final product become unstable, and the productivity during solution treatment and quenching is reduced.
[0020]
On the other hand, when the homogenizing heat treatment temperature is lower than 380 ° C., even in the range of the composition of the present invention, the aluminum alloy ingot is not sufficiently homogenized and the press formability is deteriorated, or the hemmability is deteriorated. Formability is significantly reduced.
[0021]
In the present invention, both the homogenization heat treatment and the hot rolling start temperature are relatively low at 380 to 480 ° C. For this reason, when starting the hot rough rolling after the homogenizing heat treatment, if the homogenizing heat treatment and the hot rolling start temperature are substantially the same, it is unnecessary to forcibly cool the 6000 series aluminum alloy ingot after the homogenizing heat treatment. It is. However, for reasons such as in the process, forced cooling such as cooling, air cooling, or rapid cooling is allowed from the relatively high homogenization heat treatment temperature to the relatively low hot rolling start temperature. It is not necessary to cool the aluminum alloy ingot after the homogenization heat treatment once to room temperature and reheat it to the hot rolling start temperature of 380 to 480 ° C. to start hot rolling.
[0022]
In the hot rolling after the homogenizing heat treatment, in a mass production type process of a large ingot, first, rough rolling is performed by a plurality of passes by a rough rolling machine such as a reverse type. In the hot finishing rolling subsequent to the hot rough rolling, the aluminum alloy sheet is subjected to a plurality of passes (rolling) while passing through a plurality of rolling mills arranged in series by a tandem finishing rolling mill or the like. Finished and rolled.
[0023]
In the case of such a step, during the rough rolling, in order to suppress the ridging mark and the rough surface of the panel structure surface after press forming, unlike the ordinary method, as described above, the starting temperature of the hot rough rolling is different from the ordinary method. At a relatively low temperature of 380-480 ° C.
[0024]
By setting the starting temperature of the hot rough rolling at such a relatively low temperature, the structure at the end of the hot rough rolling can be a uniform processed structure (unrecrystallized structure). For this reason, even at the end of the subsequent hot finish rolling, as a result of maintaining this uniform processed structure, a uniform recrystallized structure is obtained in the solution treatment after cold rolling, and the ridging mark during press forming is reduced. Prevention or suppression. This is the same in hot rolling without hot rough rolling (no differentiation between hot rough rolling and finish rolling). In the present invention, even in the case of hot rolling without such hot rough rolling, The hot rough rolling start temperature is used as the hot rolling start temperature.
[0025]
When the starting temperature of the hot rolling becomes a relatively high temperature exceeding 480 ° C., there is no much difference from the hot rolling at the conventional high starting temperature, and after the hot rolling, the recrystallized structure or the processed structure is recrystallized. , Resulting in a non-uniform processed structure, and ridging marks during press molding cannot be prevented or suppressed. On the other hand, if the starting temperature of the hot rolling is lower than 380 ° C., the hot rolling itself becomes difficult.
[0026]
In order to more reliably prevent ridging marks during hot rough rolling, it is preferable to reduce the working ratio per hot rough rolling pass to a relatively small value of 50% or less. If the working ratio per pass of the hot rough rolling exceeds 50%, the hot rough rolling is started at a relatively low temperature of 300 to 450 ° C. Alternatively, a non-uniform processed structure in which a recrystallized structure is mixed with the processed structure is likely to be formed.
[0027]
In this way, by setting the starting temperature of the hot rough rolling to the relatively low temperature and reducing the processing rate per hot rough rolling pass, the structure at the end of the hot rough rolling can be made more uniform. It can be processed (unrecrystallized).
[0028]
In this hot finish rolling, the rolling end temperature is preferably set to 200 to 300 ° C. If the finish temperature of the finish rolling exceeds 300 ° C., the recrystallized structure will be formed at the end of the hot rolling, and the hot rolled sheet cannot be substantially formed into a processed structure. And skin roughness may not be suppressed. On the other hand, if the finish temperature of the finish rolling is lower than 200 ° C., the hot rolling itself becomes difficult. In addition, as long as the working ratio per pass at the time of the above-mentioned hot rough rolling is specified, the hot-rolled sheet can have a substantially worked structure regardless of the working ratio of the finish rolling.
[0029]
Next, the aluminum alloy sheet after such hot rolling is cold-rolled to form an outer (forming) thin sheet having a desired sheet thickness. In the present invention, the intermediate annealing is basically unnecessary. In the present invention, even without such intermediate annealing, good characteristics including ridging marks, moldability, bake hardness and the like can be obtained, which is a great advantage. However, intermediate annealing may be performed to further improve the good characteristics.
[0030]
The aluminum alloy plate after the cold rolling is subjected to a solution treatment and a quenching treatment as a tempering treatment. The solution treatment and the quenching treatment are important steps in order to sufficiently precipitate the compound phase such as the GP zone in the grains by an artificial aging hardening treatment such as a later baking hardening treatment. Solution treatment conditions for obtaining this effect are preferably performed in a temperature range of 500 to 560 ° C. Thereby, the 0.2% proof stress of the aluminum alloy plate after solution treatment and quenching treatment is increased to a high strength exceeding 140 MPa, and the artificial aging hardening at a low temperature for a short time in the painting process after press forming or bending such as hem. A panel having a high strength exceeding 170 MPa in the processing is obtained.
[0031]
During the quenching after the solution treatment, the cooling rate is preferably quenched at 50 ° C./min or more. When the cooling rate is slow at less than 50 ° C./min, the strength after quenching becomes low, the age hardening ability becomes insufficient, and the high yield strength of 170 MPa or more cannot be secured by the artificial aging treatment at a low temperature for a short time at a low temperature.
[0032]
Further, Si, MgSi, and the like are easily precipitated on the grain boundaries, and easily become a starting point of a crack during press forming or flat hemming, and these formability is reduced. In order to secure this cooling rate, the quenching treatment may be performed by air cooling with a fan or the like, but the cooling rate is likely to be slow, and it is preferable to perform the quenching treatment by selecting from water cooling means such as mist, spray and immersion.
[0033]
In the present invention, in order to enhance age hardening in an artificial age hardening process such as a paint baking process of a molded panel, formation of clusters after solution quenching is suppressed, and pre-aging is performed in order to promote precipitation of a GP zone. Processing may be performed. This pre-aging treatment is preferably carried out in a temperature range of 50 to 100 ° C, more preferably 60 to 90 ° C, for a required time of 1 to 24 hours. Further, the cooling rate after the pre-aging treatment is preferably 1 ° C./hr or less.
[0034]
This preliminary aging treatment is carried out immediately after the quenching end temperature after the solution treatment is increased to 50 to 100 ° C. and then immediately reheated or kept as it is. Alternatively, after the quenching treatment up to room temperature after the solution treatment, reheating to 50 to 100 ° C. is performed immediately.
[0035]
In the case of the continuous solution quenching treatment, the quenching treatment is completed in the temperature range of the preliminary aging, and the quenching is carried out at a high temperature as it is. Note that reheating may be performed before winding into the coil, or the temperature may be maintained after winding. Further, after quenching to normal temperature, reheating to the above temperature range and winding at a high temperature may be performed.
[0036]
Furthermore, in order to suppress room temperature aging, heat treatment at a relatively low temperature (artificial aging treatment) may be performed after the preliminary aging treatment to further generate a GP zone. If there is a time delay until the artificial aging treatment, even after the preliminary aging treatment, room temperature aging (natural aging) occurs with the lapse of time, and after this room temperature aging occurs, the heat treatment at the relatively low temperature is performed. The effect is less likely to be exhibited.
[0037]
In addition, it is of course possible to further increase the strength and the like by performing aging treatment and stabilization treatment at a higher temperature according to the use and necessary characteristics.
[0038]
Next, embodiments of the chemical composition of the aluminum alloy sheet of the present invention will be described below.
The basic composition of the aluminum alloy sheet of the present invention is as follows: Si: 0.4-1.3%, Mg: 0.2-1.2%, Mn: 0.01- An excess Si type 6000 series Al alloy containing 0.65% and Cu: 0.001 to 1.0% and having a mass ratio of Si / Mg of 1 or more. Then, in order to more reliably secure the required characteristics as the outer panel, it is preferable that the remaining components other than the above specified components are more strictly made of Al and inevitable impurities. In the present invention, the expression “%” of the chemical component composition means “% by mass” including the expression “%” in the claims.
[0039]
Other alloy elements other than the above alloy elements, such as Cr, Zr, Ti, B, Fe, Zn, Ni, and V, are basically impurity elements. When the content of these impurity elements is increased, the ingot is not homogenized under the ingot homogenization heat treatment condition at a relatively low temperature as in the present invention. Therefore, the ingot is preferably as small as possible. However, on the other hand, from the viewpoint of recycling and economy, not only high-purity Al ingot but also 6000 series alloy and other Al alloy scrap materials, low-purity Al ingot, etc. When melting the Al alloy composition of the present invention, these other alloy elements are necessarily included. Therefore, the present invention allows the inclusion of these other alloy elements as long as the effects of the present invention and the characteristics of the outer panel are not impaired.
[0040]
The preferable content range and significance of each element, or the allowable amount will be described below.
Si: 0.4 to 1.3%.
Si forms a compound phase such as a GP zone together with Mg at the time of artificial aging at a low temperature and a short time, such as solid solution strengthening and paint baking, and exhibits age hardening ability, and as a panel, has a strength of 170 MPa or more. It is an essential element to obtain the required strength. Therefore, the excess Si type 6000 series aluminum alloy sheet of the present invention is the most important element for providing various properties such as press formability and hemming property.
[0041]
In addition, the proof strength at the time of artificial aging treatment at low temperature and short time (paint baking treatment after forming on panel, low-temperature aging treatment at 160 ° C x 20 minutes after applying 2% stretch as an evaluation test) is excellent at 170 MPa or more. In order to exert the low-temperature age hardening ability, it is preferable to use an excess Si type 6000 series Al alloy composition containing Si / Mg in a mass ratio of 1.0 or more and containing Si in excess of Mg.
[0042]
If the Si content is less than 0.4%, the above-mentioned age hardening ability and various properties required for each application, such as press formability and hemmability, cannot be obtained. On the other hand, when Si is contained in excess of 1.3%, the hemability and bending workability are particularly impaired. In addition, it significantly impairs weldability. In addition, the ingot is not homogenized under the relatively low-temperature ingot homogenization heat treatment conditions of the present invention. Therefore, the content of Si is preferably set in the range of 0.4 to 1.3%. In the outer panel, hemmability is particularly emphasized. Therefore, in order to further improve flat hemmability without deteriorating other properties such as press formability, the Si content is set to 0.6 to 1.0. It is preferably set to 2%.
[0043]
Mg: 0.2-1.2%.
Mg forms a compound phase such as a GP zone with Si at the time of the solid solution strengthening and the artificial aging treatment such as a paint baking treatment, exerts age hardening ability, and obtains a required strength of 170 MPa or more as a panel. Is an essential element. If the content of Mg is less than 0.2%, the absolute amount is insufficient, so that the compound phase cannot be formed during the artificial aging treatment and the age hardening ability cannot be exhibited. Therefore, the required strength required for the panel cannot be obtained.
[0044]
On the other hand, when Mg is contained in excess of 1.2%, the formability such as press formability and bending workability (hemm workability) is significantly impaired. In addition, the ingot is not homogenized under the relatively low-temperature ingot homogenization heat treatment conditions of the present invention. Therefore, the content of Mg is in the range of 0.2 to 1.2%, and the amount is such that the mass ratio of Si / Mg is 1.0 or more. When the Si content is in the range of 0.6 to 1.0% in order to further improve the flat hem workability, a corresponding excess Si type 6000 series Al alloy composition is required. Preferably, the Mg content is also in the range of 0.2 to 0.8%.
[0045]
Cu: 0.001 to 1.0%
Cu has the effect of accelerating the precipitation of a compound phase such as a GP zone in the crystal grains of the Al alloy material structure under the conditions of the artificial aging treatment at a relatively low temperature for a short time in the present invention. Further, Cu dissolved as a solid solution in the aging treatment has an effect of improving the formability. When the Cu content is less than 0.001%, this effect is not obtained. On the other hand, if it exceeds 1.0%, the stress corrosion cracking resistance, the thread rust resistance among the corrosion resistance after painting, and the weldability are significantly deteriorated. In addition, the ingot is not homogenized under the relatively low-temperature ingot homogenization heat treatment conditions of the present invention. Therefore, the Cu content is in the range of 0.001 to 1.0%.
[0046]
Mn: 0.01 to 0.65%
Mn generates dispersed particles (dispersed phase) during the homogenization heat treatment, and these dispersed particles have the effect of preventing the movement of the grain boundary after recrystallization, and thus have the effect of obtaining fine crystal grains. . As described above, the press formability and hemmability of the aluminum alloy sheet of the present invention are improved as the crystal grains of the Al alloy structure become finer. In this regard, if the Mn content is less than 0.01%, these effects are not obtained.
[0047]
On the other hand, when the Mn content exceeds 0.65%, coarse Al-Fe-Si- (Mn, Cr, Zr) -based intermetallic compounds and crystal precipitates are easily formed during melting and casting. In addition, since it easily becomes a starting point of fracture, it causes a decrease in mechanical properties of the aluminum alloy plate. In particular, in flat hemming in which the processing conditions are severe due to the complicated shape or thinning, or the existence of a gap between the inner panel end and the inner surface of the outer panel curving portion, the Mn content is reduced to 0.25%. If it exceeds, hemmability decreases. For this reason, it is preferable that Mn is in the range of 0.01 to 0.65%, and in flat hemming in which the processing conditions are severe, it is preferable that Mn is in the range of 0.01 to 0.25%.
[0048]
As with Mn, the transition elements of Cr and Zr produce dispersed particles (dispersed phase) during the homogenization heat treatment, and have the effect of obtaining fine crystal grains. However, if the content of Cr and Zr exceeds 0.15%, the hemmability is reduced in flat hemming in which the above processing conditions are severe. Therefore, it is preferable that the contents of Cr and Zr are also restricted to 0.20% or less.
[0049]
If the contents of Ti and B exceed 0.1% of Ti and 300 ppm of B, respectively, a coarse crystallized substance is formed and the formability is reduced. However, a small amount of Ti and B 2 has the effect of refining the crystal grains of the ingot and improving press formability. Therefore, the content of Ti: 0.1% or less and B: 300 ppm or less is permitted.
[0050]
The Fe mixed as impurities and contained as impurities generates crystallized substances, and these crystallized substances become nuclei of recrystallized grains. When Fe is contained in an amount of 0.08% or more, the crystal grains become coarse. And serves to reduce the size of the crystal grains to 50 μm or less. However, on the other hand, these crystallized substances significantly deteriorate fracture toughness and fatigue properties, and further, flat hem workability and press formability under the severe processing conditions. These deterioration characteristics become remarkable when the content of Fe exceeds 0.50%. Therefore, when Fe is contained, the content of Fe is preferably set to 0.50% or less.
[0051]
If Zn is contained in excess of 0.5%, the corrosion resistance is significantly reduced. Therefore, the content of Zn is preferably set to 0.5% or less.
[0052]
【Example】
Next, examples of the present invention will be described. A 6000 series aluminum alloy ingot having a thickness of 600 mm and having the respective compositions shown in Table 1 was melted by DC casting. These ingots were heated at a heating rate of 40 ° C./hr and subjected to a homogenizing heat treatment at each temperature shown in Table 2 for 4 hours. Thereafter, hot rough rolling was performed at each starting temperature shown in Table 2. In addition, only the invention example 7 was air-cooled after the homogenization heat treatment and cooled to the hot rough rolling temperature. All other invention examples and comparative examples are subjected to hot rough rolling immediately after the homogenizing heat treatment, and the homogenizing heat treatment and the hot rough rolling start temperature are substantially the same.
[0053]
This hot rough rolling was performed by using a reverse rough rolling mill used for mass production. At this time, the working ratio per hot rough rolling pass was set to 50% or less in each example. Further, in the subsequent hot finish rolling, a coil was formed by finish rolling (by four passes) using a four-stage four-tandem finishing rolling mill train used for mass production.
[0054]
A plurality of test pieces were taken in each of the state after the hot rough rolling and the state after the hot finish rolling, and the microstructure of the cross section in the ST direction was observed with a SEM of 10,000 times. Then, it was determined whether the structure was mainly composed of a processed structure (unrecrystallized structure) or a structure mainly composed of a recrystallized grain structure. In Table 2, together with the plate thickness, a uniform processed structure and a recrystallized grain structure are both included as a processed structure. Similarly, both a uniform recrystallized grain structure and a structure mainly composed of a recrystallized grain structure including a processed structure are described as a recrystallized grain structure.
[0055]
The aluminum alloy sheet after the hot rolling was cold-rolled without intermediate annealing, and an aluminum alloy cold-rolled sheet (coil) having a thickness of 1.0 mm was prepared in common. Further, a plate was collected from each of the cold-rolled coils and subjected to a tempering treatment under the same conditions as described below. First, the cold rolled sheet is put into an air furnace maintained at 570 ° C., and when each test piece reaches the solution treatment temperature of 550 ° C. (holding time: 0 second), quenching in hot water of 80 ° C. Was done. A pre-aging treatment in which the cooling rate during the quenching treatment is 200 ° C./sec, the quenching end temperature (quenching temperature) is 80 ° C., and the quenching is maintained at this temperature for 2 hours (after cooling, the cooling rate is 0.2 ° C. 6 ° C./hr).
[0056]
A plurality of test plates (blanks) having a width of 500 mm and a length of 500 mm for testing are cut out from each of the tempered aluminum alloy plates, and after tempering, the aluminum alloy plates which have been sufficiently aged at room temperature are subjected to press forming and hemming. Assuming that, after aging at room temperature for 4 months (120 days) after the tempering treatment, the average crystal grain size (μm) of each test plate, the AS proof stress in the direction of 90 ° to the rolling direction ( σ 0.2 ) And elongation (%) were measured. Table 3 shows the results.
[0057]
In addition, the tensile test for proof stress and elongation measurement was performed in accordance with JIS Z 2201, and the shape of the test piece was a JIS No. 5 test piece. The crosshead speed was 5 mm / min, and the test was performed at a constant speed until the test piece broke.
[0058]
The average crystal grain size was the average grain size of the crystal grains in the rolling direction (L direction) of the sheet. The measuring method is as follows: the surface including the rolling direction (L direction) and the thickness direction (ST direction) of the aluminum alloy plate is mechanically polished, and then the electrolytically etched surface is observed using an optical microscope. The measurement was performed by the line intercept method in the L direction at each of the 1/8, the 2/8 plate thickness, the 3/8 plate thickness, and the 4/8 plate thickness. 1. The length of the measurement line was set to 0.95 mm, and a total of 5 visual fields were observed with 5 lines per visual field, and the crystal grain sizes were measured and averaged to obtain an average crystal grain size.
[0059]
Further, the test plate aged at room temperature was subjected to a forming test by simulating press forming or hemming as an automobile panel. More specifically, a stretch forming test and a flat hemming test after stretch forming were performed to evaluate formability. Table 3 shows the results.
[0060]
The conditions of the overhang forming test are as follows: the test plate (blank) is a square tubular overhang having a height of 300 mm and a height of 30 mm at the center, and flat flanges around four sides of the overhang. A hat-shaped panel having a part (width 30 mm) was stretch-formed using a die by a large-sized press of 1000 tons. At this time, the wrinkle pressing force was 49 kN, the lubricating oil was a general rust preventive oil, and the molding speed was 20 mm / min.
[0061]
The overhanging test was performed 5 times under the same conditions. An example in which the overhang portion of the molded hat-shaped panel was normally formed without cracks in all 5 times. Those which were formed but were otherwise formed were evaluated as △, and those which could not be formed by cracking of the formed hat-shaped panel in all five times were evaluated as x.
[0062]
To evaluate the surface properties such as ridging marks of the molded product, after washing the molded product in the above-mentioned overhang test, visually observe the appearance of the molded product surface after zinc phosphate treatment, painting and baking treatment under the same conditions Was used to evaluate the occurrence of ridging marks. In the five times (five) of the molded product surfaces (including those cracked at the time of molding), all five had no ridging mark. Those with one or more mild ridging marks. A sample in which one or more remarkable ridging marks occurred was evaluated as x.
[0063]
In this case, the zinc phosphate treatment was carried out using a colloidal dispersion of titanium phosphate, and then immersed in a zinc phosphate bath containing fluorine at a low concentration of 50 ppm to form a zinc phosphate film on the surface of the molding material. The subsequent coating treatment was performed under conditions of performing baking at 170 ° C. for 20 minutes after performing cationic electrodeposition coating.
[0064]
Next, the flat hemming test was performed as follows. The flat flange portion of the panel was flat-hemmed under the following conditions in order to simulate that the molded product panel of the overhang molding test was hemmed as an outer panel. First, a flat hemming allowance (distance from the edge bent inside the panel after hemming to the end of the bent portion) of any flange portion was set to 8 mm, and the down flange process was simulated. One edge of the alloy panel was bent to a 90 degree angle. At this time, the 90 ° bending radius of the flange portion was 0.8 t. Next, by simulating the prehem process, the edge of the bent portion of the flange portion was further bent inward to an angle of 135 °. Thereafter, further simulating the flat hemming conditions, an inner panel having a thickness of 0.8 mm is inserted into the above-mentioned bent portion of the flange portion, and the bent portion is bent inward by 180 degrees to perform a bending process in which the inner panel surface is closely contacted. Was.
[0065]
Then, the surface state of the curving portion of the flat hem, such as rough skin, minute cracks, and occurrence of large cracks, was visually observed. The evaluations were 1; good without rough skin and minute cracks; 2; no rough and fine cracks were found; 3; small cracks occurred; 4; large cracks occurred; A five-step evaluation (including intermediate evaluations in each of the five steps) of a plurality or large numbers of large cracks. In this evaluation, the hem workability is judged to be good (usable) up to 1 to 2 stages, and the hem workability is judged to be inferior to 3 or more stages (unusable).
[0066]
Further, in order to investigate the artificial aging treatment ability, a test plate was sampled from the press-formed product, subjected to an artificial aging hardening treatment at 170 ° C. for 20 minutes at a low temperature for a short time, and the (source) of each of the treated test plates was treated. Average yield strength (ABσ) of the aluminum alloy plate 0.2 ) Was measured. Table 3 shows the results.
[0067]
As is clear from Tables 2 and 3, Invention Examples 1 to 6 in which the starting temperature of the hot rough rolling was a low temperature of 380 to 480 ° C. were all processed structures in the hot rough rolling finish and the hot finish rolling finish. Despite the relatively low homogenization heat treatment temperature of 380 to 480 ° C., no ridging mark was formed after overhang forming even after the above-mentioned four-month (120 days) aging at room temperature. The surface properties of the molded product are remarkably excellent.
[0068]
It is also excellent in overhang formability itself and flat hem workability. Further, the AB proof strength is as high as 180 MPa or more, and the artificial aging hardenability at a low temperature for a short time is excellent.
[0069]
These evaluations lead to the evaluation of moldability and artificial age hardening properties of actual automobile outer panels and the like. Therefore, Inventive Examples 1 to 6 show that they can be used as automobile outer panels.
[0070]
However, among the inventive examples, the inventive example 3 using the alloy 3 having a relatively low Si content (also the mass ratio of Si / Mg) has a lower AB proof stress than the other inventive examples.
[0071]
In addition, Invention Example 4 having a relatively low homogenization heat treatment temperature of 380 ° C. has the same pressurizing property and press formability as those of Invention Examples 1 and 2 having the same alloy composition and a relatively high homogenization heat treatment temperature. Poor hemmability. This is considered to be because the removal of ingot segregation and the homogenization of the alloy structure in the homogenizing heat treatment of Invention Example 4 were insufficient compared to Invention Examples 1 and 2.
[0072]
On the other hand, in Comparative Example 7, although the homogenizing heat treatment temperature and the starting temperature of the hot rough rolling were the same as those of Invention Examples 1 and 2, alloy 4 having too low a Si content was used. Although the surface properties are good, the AB proof stress is remarkably low as compared with Inventive Examples 1 and 2.
[0073]
In Comparative Examples 8 and 9 using alloys 5 and 6 having too high Si content and Mg content, the homogenizing heat treatment temperature and the starting temperature of hot rough rolling were the same as those of Invention Examples 1 and 2. However, as compared with Inventive Examples 1 and 2, not only the surface properties after molding, but also the press moldability and the hemmability are significantly inferior. This is because the removal of ingot segregation and the homogenization of the alloy structure in the homogenization heat treatment of Invention Example 4 are significantly poorer than those of Invention Examples 1 and 2 because the Si content and the Mg content are too high. It is thought that it became enough.
[0074]
In Comparative Example 10 in which the homogenizing heat treatment temperature was too low as 370 ° C., the surface properties after molding were lower than those of Invention Examples 1 and 2 in which the alloy composition was the same and the homogenizing heat treatment temperature was relatively high. At the same time, press formability and hemmability are poor. This is considered to be because the removal of ingot segregation and the homogenization of the alloy structure in the homogenizing heat treatment of Invention Example 4 were insufficient compared to Invention Examples 1 and 2.
[0075]
Comparative Example 11, which is equivalent to a conventional sheet material in which the homogenization heat treatment temperature and the hot rough rolling start temperature are as high as 500 ° C., shows that both the recrystallized structure is obtained after hot rough rolling and hot finishing rolling. Although it has excellent press moldability and artificial aging hardenability at a low temperature for a short time, the hem workability and the surface properties after molding are significantly inferior to those of Invention Examples 1 and 2.
[0076]
Further, the homogenizing heat treatment temperature was increased to 500 ° C. or higher, and this was cooled at a cooling rate of 20 ° C./hr to obtain a low-temperature hot rough rolling start temperature of 420 and 450 ° C. Although no ridging mark is generated, the bake hardenability at a low temperature for a short time is remarkably inferior to Examples 1 and 2.
[0077]
Therefore, from these results, in the production method of the present invention, the component composition range, the homogenizing heat treatment temperature and the starting temperature of the hot rough rolling, particularly the surface properties after forming, and critical for other necessary properties as a panel. I understand the significance.
[0078]
[Table 1]
Figure 2004238657
[0079]
[Table 2]
Figure 2004238657
[0080]
[Table 3]
Figure 2004238657
[0081]
【The invention's effect】
According to the present invention, even when a 6000 series aluminum alloy sheet is manufactured by a mass-produced hot rolling line, ridging marks at the time of press forming are prevented, and press formability, bending workability, or artificial age hardening is achieved. Also, it is possible to provide a method for producing a 6000 series aluminum alloy sheet which is excellent. Therefore, the 6000 series aluminum alloy plate has a great industrial value in that it can be used for panel applications.

Claims (2)

Si:0.4〜1.3%、Mg:0.2〜1.2%、Mn:0.01 〜0.65% 、Cu:0.001〜1.0%を含み、かつSi/Mg が質量比で1 以上であるAl−Mg−Si系アルミニウム合金鋳塊を均質化熱処理後に熱間圧延し、更に冷間圧延した後に溶体化および焼入れ処理するアルミニウム合金板の製造方法であって、前記均質化熱処理を380 〜480 ℃の温度範囲で行なうとともに、この温度範囲で熱間圧延を開始することを特徴とする成形後の表面性状に優れたアウタパネル用アルミニウム合金板の製造方法。Si: 0.4 to 1.3%, Mg: 0.2 to 1.2%, Mn: 0.01 to 0.65%, Cu: 0.001 to 1.0%, and Si / Mg Is a method for producing an aluminum alloy plate in which an Al-Mg-Si-based aluminum alloy ingot having a mass ratio of 1 or more is subjected to hot rolling after homogenizing heat treatment, and further solution treatment and quenching after cold rolling. A method for producing an aluminum alloy sheet for an outer panel having excellent surface properties after forming, wherein the homogenizing heat treatment is performed in a temperature range of 380 to 480 ° C and hot rolling is started in this temperature range. 前記アウタパネルが自動車用である請求項1に記載の成形後の表面性状に優れたアルミニウム合金板の製造方法。The method according to claim 1, wherein the outer panel is for an automobile.
JP2003027206A 2003-02-04 2003-02-04 Method of manufacturing aluminum alloy plate for outer panel Pending JP2004238657A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003027206A JP2004238657A (en) 2003-02-04 2003-02-04 Method of manufacturing aluminum alloy plate for outer panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003027206A JP2004238657A (en) 2003-02-04 2003-02-04 Method of manufacturing aluminum alloy plate for outer panel

Publications (1)

Publication Number Publication Date
JP2004238657A true JP2004238657A (en) 2004-08-26

Family

ID=32955012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003027206A Pending JP2004238657A (en) 2003-02-04 2003-02-04 Method of manufacturing aluminum alloy plate for outer panel

Country Status (1)

Country Link
JP (1) JP2004238657A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354444C (en) * 2006-02-17 2007-12-12 于克儒 Magnesium-ally mud-guard and production method
JP2008045192A (en) * 2006-08-21 2008-02-28 Kobe Steel Ltd Aluminum alloy sheet showing excellent ridging-mark resistance at molding
WO2009123011A1 (en) * 2008-03-31 2009-10-08 株式会社神戸製鋼所 Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
JP2009242813A (en) * 2008-03-28 2009-10-22 Furukawa-Sky Aluminum Corp Method for producing aluminum alloy rolled sheet having excellent thermal conductivity and bending workability
US8722204B2 (en) 2010-12-27 2014-05-13 Posco Aluminum coated Steel sheet having excellent oxidation resistance and heat resistance
CN104775059A (en) * 2015-04-21 2015-07-15 宝山钢铁股份有限公司 Al-Mg-Si series aluminum-alloy material with long-time natural aging stability, aluminum-alloy plate and manufacturing method thereof
CN105838927A (en) * 2015-02-02 2016-08-10 株式会社神户制钢所 High strength aluminum alloy sheet
JP2020158885A (en) * 2014-10-28 2020-10-01 ノベリス・インコーポレイテッドNovelis Inc. Aluminum alloy products and method of preparation
CN113215451A (en) * 2021-05-13 2021-08-06 中南大学 High-strength Al-Mg-Si-Cu aluminum alloy and preparation method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100354444C (en) * 2006-02-17 2007-12-12 于克儒 Magnesium-ally mud-guard and production method
JP2008045192A (en) * 2006-08-21 2008-02-28 Kobe Steel Ltd Aluminum alloy sheet showing excellent ridging-mark resistance at molding
JP2009242813A (en) * 2008-03-28 2009-10-22 Furukawa-Sky Aluminum Corp Method for producing aluminum alloy rolled sheet having excellent thermal conductivity and bending workability
WO2009123011A1 (en) * 2008-03-31 2009-10-08 株式会社神戸製鋼所 Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
JP2009263781A (en) * 2008-03-31 2009-11-12 Kobe Steel Ltd Aluminum alloy sheet with excellent post-fabrication surface quality and method of manufacturing same
US8366846B2 (en) 2008-03-31 2013-02-05 Kobe Steel, Ltd. Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
US8722204B2 (en) 2010-12-27 2014-05-13 Posco Aluminum coated Steel sheet having excellent oxidation resistance and heat resistance
JP2020158885A (en) * 2014-10-28 2020-10-01 ノベリス・インコーポレイテッドNovelis Inc. Aluminum alloy products and method of preparation
US11193192B2 (en) 2014-10-28 2021-12-07 Novelis Inc. Aluminum alloy products and a method of preparation
CN105838927A (en) * 2015-02-02 2016-08-10 株式会社神户制钢所 High strength aluminum alloy sheet
CN104775059A (en) * 2015-04-21 2015-07-15 宝山钢铁股份有限公司 Al-Mg-Si series aluminum-alloy material with long-time natural aging stability, aluminum-alloy plate and manufacturing method thereof
CN113215451A (en) * 2021-05-13 2021-08-06 中南大学 High-strength Al-Mg-Si-Cu aluminum alloy and preparation method thereof
CN113215451B (en) * 2021-05-13 2022-04-22 中南大学 High-strength Al-Mg-Si-Cu aluminum alloy and preparation method thereof

Similar Documents

Publication Publication Date Title
KR100999208B1 (en) Aluminum alloy sheet
WO2013121876A1 (en) Aluminum alloy sheet with excellent baking-paint curability
JP4939088B2 (en) Manufacturing method of aluminum alloy sheet with excellent ridging mark property during forming
JP2007169740A (en) Aluminum alloy sheet having excellent formability and its production method
JP5918158B2 (en) Aluminum alloy sheet with excellent properties after aging at room temperature
JP4939091B2 (en) Manufacturing method of aluminum alloy plate with excellent bending workability
JP6810508B2 (en) High-strength aluminum alloy plate
JP2008045192A (en) Aluminum alloy sheet showing excellent ridging-mark resistance at molding
CN110832092A (en) 6 xxxx-series rolled sheet products with improved formability
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP2009173973A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
JP5643479B2 (en) Al-Mg-Si aluminum alloy plate with excellent bendability
JP2009173972A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
JP4944474B2 (en) Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof
JP4328242B2 (en) Aluminum alloy plate with excellent ridging mark characteristics
JP2003105471A (en) Aluminum alloy sheet, and production method therefor
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JP3740086B2 (en) A method for producing an aluminum alloy plate that is excellent in hemmability after aging at room temperature and is hemmed after stretch forming
JP2008190022A (en) Al-Mg-Si-BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP3838504B2 (en) Aluminum alloy plate for panel forming and manufacturing method thereof
JP3766334B2 (en) Aluminum alloy plate with excellent bending workability
JP2003247040A (en) Aluminum alloy sheet having excellent flat hem workability and production method thereof
CN108884524B (en) Aluminum alloy sheet and method for producing aluminum alloy sheet
JP4022497B2 (en) Method for manufacturing aluminum alloy panel