JP5643479B2 - Al-Mg-Si aluminum alloy plate with excellent bendability - Google Patents

Al-Mg-Si aluminum alloy plate with excellent bendability Download PDF

Info

Publication number
JP5643479B2
JP5643479B2 JP2008290098A JP2008290098A JP5643479B2 JP 5643479 B2 JP5643479 B2 JP 5643479B2 JP 2008290098 A JP2008290098 A JP 2008290098A JP 2008290098 A JP2008290098 A JP 2008290098A JP 5643479 B2 JP5643479 B2 JP 5643479B2
Authority
JP
Japan
Prior art keywords
phase
crystallized
aluminum alloy
ratio
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008290098A
Other languages
Japanese (ja)
Other versions
JP2010116594A (en
Inventor
松本 克史
克史 松本
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to JP2008290098A priority Critical patent/JP5643479B2/en
Publication of JP2010116594A publication Critical patent/JP2010116594A/en
Application granted granted Critical
Publication of JP5643479B2 publication Critical patent/JP5643479B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、曲げ性に優れたAl−Mg−Si系アルミニウム合金板に関するものである。本発明で言うアルミニウム合金板とは、熱間圧延板や冷間圧延板であって、これら圧延上がりままの状態である(非調質)か、焼鈍などの調質されたアルミニウム合金板を言う。また、以下、アルミニウムをAlとも言う。   The present invention relates to an Al—Mg—Si based aluminum alloy plate excellent in bendability. The aluminum alloy sheet referred to in the present invention is a hot-rolled sheet or a cold-rolled sheet, and refers to an aluminum alloy sheet that has been tempered such as being rolled up (not tempered) or annealed. . Hereinafter, aluminum is also referred to as Al.
近年、排気ガス等による地球環境問題に対して、自動車などの輸送機の車体の軽量化による燃費の向上が追求されている。このため、特に、自動車の車体に対し、従来から使用されている鋼材に代わって、成形性や焼付硬化性に優れた、より軽量なアルミニウム合金材の適用が増加しつつある。   In recent years, with respect to global environmental problems caused by exhaust gas and the like, improvement in fuel efficiency has been pursued by reducing the weight of the body of a transport aircraft such as an automobile. For this reason, in particular, the application of lighter aluminum alloy materials excellent in formability and bake hardenability is increasing in place of steel materials that have been used in the past for automobile bodies.
この内、自動車のフード、フェンダー、ドア、ルーフ、トランクリッドなどのパネル構造体の、アウタパネル (外板) やインナパネル( 内板) 等のパネルには、薄肉でかつ高強度アルミニウム合金板として、過剰Si型などのAl−Mg−Si系のAA乃至JIS 6000系 (以下、単に6000系と言う) のアルミニウム合金板の使用が検討されている。   Among these, panels such as outer panels (outer plates) and inner panels (inner plates) of panel structures such as automobile hoods, fenders, doors, roofs, and trunk lids are thin and high-strength aluminum alloy plates. The use of Al-Mg-Si-based AA to JIS 6000-based (hereinafter simply referred to as 6000-based) aluminum alloy plates such as excess Si type has been studied.
6000系アルミニウム合金板は、Si、Mgを必須として含み、特に過剰Si型の6000系アルミニウム合金は、これらSi/Mgが質量比で1以上である組成を有し、優れた時効硬化能を有している。このため、プレス成形や曲げ加工時には低耐力化により成形性を確保するとともに、成形後のパネルの塗装焼付処理などの、比較的低温の人工時効( 硬化) 処理時の加熱により時効硬化して耐力が向上し、パネルとしての必要な強度を確保できるBH性 (ベークハード性、人工時効硬化能、塗装焼付硬化性) がある。   The 6000 series aluminum alloy plate contains Si and Mg as essential components, and especially the excess Si type 6000 series aluminum alloy has a composition in which the mass ratio of Si / Mg is 1 or more and has excellent age-hardening ability. doing. For this reason, formability is ensured by reducing the yield strength during press molding and bending, and age hardening is achieved by heating during relatively low-temperature artificial aging (curing) treatment such as paint baking treatment of panels after molding. BH properties (bake hardness, artificial age hardening ability, paint bake hardenability) that can secure the required strength as a panel.
また、6000系アルミニウム合金板は、Mg量などの合金量が多い他の5000系アルミニウム合金などに比して、合金元素量が比較的少ない。このため、これら6000系アルミニウム合金板のスクラップを、アルミニウム合金溶解材 (溶解原料) として再利用する際に、元の6000系アルミニウム合金鋳塊が得やすく、リサイクル性にも優れている。   Further, the 6000 series aluminum alloy plate has a relatively small amount of alloy elements as compared with other 5000 series aluminum alloys having a large amount of alloy such as Mg. For this reason, when the scraps of these 6000 series aluminum alloy sheets are reused as the aluminum alloy melting material (melting raw material), the original 6000 series aluminum alloy ingot is easily obtained, and the recyclability is excellent.
一方、自動車のアウタパネルは、周知の通り、アルミニウム合金板に対し、プレス成形における張出成形時や曲げ成形などの成形加工が複合して行われて製作される。例えば、フードやドアなどの大型のアウタパネルでは、張出などのプレス成形によって、アウタパネルとしての成形品形状となされ、次いで、このアウタパネル周縁部のフラットヘムなどのヘム (ヘミング) 加工によって、インナパネルとの接合が行われ、パネル構造体とされる。   On the other hand, as is well known, an outer panel of an automobile is manufactured by combining an aluminum alloy plate with a forming process such as an extension forming in a press forming or a bending forming. For example, a large outer panel such as a hood or a door is formed into a molded product shape as an outer panel by press molding such as overhanging, and then the inner panel and hem (hemming) processing such as a flat hem on the outer peripheral edge of the outer panel. Are joined to form a panel structure.
一方、前記自動車などのアウタパネルでは、アルミニウム合金板を張出や絞りあるいはトリム等のプレス成形してアウタパネル化した後、アウタパネルの縁を折り曲げて(180度折り返して) インナパネルの縁との接合を行う、ヘム( ヘミングの別称) 加工と呼ばれる厳しい曲げ加工が複合して施される。また、インナパネルでは深絞り等の厳しいプレス成形が複合して施される。   On the other hand, in the outer panel of the automobile or the like, after the aluminum alloy plate is formed by press forming such as overhanging, drawing or trim to form an outer panel, the outer panel is bent (turned 180 degrees) to be joined to the inner panel edge. A severe bending process called a hem (other name for hemming) process is performed in combination. In addition, the inner panel is subjected to a combination of severe press molding such as deep drawing.
そして、前記自動車パネルの内、外板 (アウタパネル) では、上記プレス成形の後に、内板 (インナパネル) と接合してパネル構造体とするために、加工条件の厳しいフラットヘム加工と呼ばれる180 °曲げ加工等の厳しい曲げ成形が複合して施される。このフラットヘム加工は、アウタパネルの縁を折り曲げて (180 度折り返して) インナパネルの縁との接合を行うヘム (ヘミングの別称) 加工と呼ばれる厳しい曲げ加工である。   Of the automotive panels, the outer panel (outer panel) is joined to the inner panel (inner panel) after the press molding to form a panel structure, which is called 180 ° called flat hem processing, which has severe processing conditions. A severe bending process such as bending is applied in combination. This flat hem process is a severe bending process called a hem process (another name for hemming) in which the edge of the outer panel is bent (folded 180 degrees) and joined to the edge of the inner panel.
しかしながら、6000系アルミニウム合金は、前記した優れた特性を有する反面で、冷延鋼板に比して、特に、曲げ性(曲げ加工性)が劣るという問題を有している。このため、特に上記アウタパネルのフラットヘム加工において、形成されるフラットヘムの縁曲部 (ヘム部、折り曲げ部) に、比較的大きな割れ等の不良が生じ易くなる。   However, the 6000 series aluminum alloy has the above-described excellent characteristics, but has a problem that the bendability (bending workability) is particularly inferior to that of a cold-rolled steel sheet. For this reason, in particular, in the flat hem processing of the outer panel, a defect such as a relatively large crack is likely to occur in the edge bent portion (hem portion, bent portion) of the formed flat hem.
これら6000系アルミニウム合金板の、前記ヘム加工性を含む曲げ加工性向上のために、従来から、溶体化および焼入れ処理などの調質処理後に形成されるMg-Si クラスターなどのミクロ組織を制御する等の冶金的な改善が行なわれている。しかし、これら冶金的な改善は、一方では、前記BH性を低下させることにも繋がるため、曲げ加工性向上には限界がある。また、6000系アルミニウム合金板の集合組織を制御して(異方性を持たせて)、板の曲げ加工性を改善する方法も種々提案されている。しかし、これの方法もプレス成形性が低下するなどの犠牲を伴うために、やはり曲げ加工性の向上には限界がある。   In order to improve the bending workability of these 6000 series aluminum alloy plates including the heme workability, conventionally, the microstructure of Mg-Si clusters and the like formed after tempering treatment such as solution treatment and quenching treatment is controlled. Metallurgical improvements such as are being made. However, these metallurgical improvements, on the other hand, lead to a decrease in the BH property, so there is a limit to improving the bending workability. Various methods for improving the bending workability of the plate by controlling the texture of the 6000 series aluminum alloy plate (giving anisotropy) have also been proposed. However, since this method also comes at the expense of reduced press formability, there is a limit to improving the bending workability.
これに対して、6000系アルミニウム合金板組織中の晶出物(第2相粒子)に注目して、これら晶出物の存在形態を制御して、曲げ加工性を改善する方法も提案されている(特許文献1、2、3)。   On the other hand, paying attention to the crystallization (second phase particles) in the structure of the 6000 series aluminum alloy sheet, a method for improving the bending workability by controlling the existence form of these crystallization is proposed. (Patent Documents 1, 2, and 3).
これらは、6000系アルミニウム合金板組織中のFe、Si系化合物あるいはFe、Si、Cu系化合物(Cuを含有する場合)からなる晶出物(不溶性化合物)が、曲げ加工性やヘム加工性あるいは靱性なども低下させているとの認識に基づく。即ち、6000系アルミニウム合金板の製造過程において、これらの晶出物が主として鋳塊の均熱工程などで生成し、生成した晶出物が、更に熱間圧延や冷間圧延によって、加工方向である圧延方向に延伸されて、組織中に連なって存在するようになる。そして、6000系アルミニウム合金板が曲げ加工された際に、鋭い切り欠きとして働き、ヘム加工性を含む曲げ加工性やプレス成形性あるいは靱性なども低下させているものである。
特開平9−263869号公報 特開平11−71623号公報 特開2001−262264号公報
These are Fe, Si-based compounds or crystallized substances (insoluble compounds) made of Fe, Si, Cu-based compounds (when Cu is contained) in a 6000-based aluminum alloy sheet structure. This is based on the recognition that toughness is also reduced. That is, in the production process of a 6000 series aluminum alloy sheet, these crystallization products are mainly generated in the soaking process of the ingot, and the generated crystallization products are further processed in the working direction by hot rolling or cold rolling. It is stretched in a certain rolling direction and continues to exist in the structure. When the 6000 series aluminum alloy plate is bent, it works as a sharp notch, and bending workability including hem workability, press formability, toughness, and the like are also reduced.
Japanese Patent Laid-Open No. 9-263869 JP-A-11-71623 JP 2001-262264 A
このような認識に基づき、前記特許文献1では、晶出物のサイズを規定し、晶出物を微細化することで靱性を改善しようとしている。しかし、この特許文献1のような単なる晶出物の微細化では、曲げ加工性改善の十分な効果が得られていない。   Based on this recognition, Patent Document 1 attempts to improve toughness by defining the size of the crystallized product and making the crystallized product finer. However, the mere refinement of the crystallized material as in Patent Document 1 does not provide a sufficient effect of improving the bending workability.
また、前記特許文献2では、板の圧延方向断面で見られる最大径が10μm以上である前記晶出物の個数を300個/mm2 以下とし、かつ、最大径と最小径との比(最大径/最小径)が3.5以上である前記晶出物の個数を100個/mm2 以下と規定して、晶出物を微細化および球状化している。 In Patent Document 2, the number of crystallized substances having a maximum diameter of 10 μm or more seen in a cross section in the rolling direction of the plate is 300 pieces / mm 2 or less, and the ratio between the maximum diameter and the minimum diameter (maximum The number of crystallized substances having a diameter / minimum diameter of 3.5 or more is defined as 100 / mm 2 or less, and the crystallized substances are refined and spheroidized.
更に、前記特許文献3では、前記晶出物の最大粒子径を5μm 以下とし、最大アスペクト比を5以下とし、特許文献2と同様に、晶出物を微細化および球状化し、かつ平均結晶粒径を30μm 以下としている。   Further, in Patent Document 3, the maximum particle size of the crystallized product is set to 5 μm or less, the maximum aspect ratio is set to 5 or less, and the crystallized product is refined and spheroidized, and the average crystal grain size is the same as in Patent Document 2. The diameter is 30 μm or less.
しかし、これらの晶出物の微細化および球状化でも、加工条件が厳しくなった曲げ加工やヘム加工では、曲げ加工性改善の十分な効果が得られていない。   However, even with the refinement and spheroidization of these crystallized products, sufficient effects for improving the bending workability have not been obtained in the bending process or hem process in which the processing conditions have become severe.
本発明は、かかる問題に鑑みなされたもので、ヘム加工性を含む曲げ加工性に優れた6000系アルミニウム合金板(Al−Mg−Si系アルミニウム合金板)を提供することを目的とする。   The present invention has been made in view of such a problem, and an object thereof is to provide a 6000 series aluminum alloy plate (Al—Mg—Si based aluminum alloy plate) excellent in bending workability including heme workability.
上記目的を達成するための本発明6000系アルミニウム合金板の要旨は、質量%で、Mg:0.3〜1.5%、Si:0.5〜1.5%、Fe:0.1〜1.0%を各々含み、更に、Mn:0.03〜1.0%、Cr:0.01〜0.3%、Zr:0.01〜0.3%、V:0.01〜0.3%、Ti:0.001〜0.1%、Cu:0.1〜1.0%、Zn:0.1〜1.0%の内の一種また二種以上を含有し、残部Alおよび不可避的不純物からなり、抽出残渣法によって得られる不溶性化合物のうちFe、Siのいずれか1種以上を含む第2相粒子の平均粒径が2.0μm 以下、平均アスペクト比が1.0以上、1.7以下であって、かつ、この第2相粒子をX線回折法により測定した際のα相とβ相の各X線強度ピーク値の合計に対する前記α相のX線強度ピーク値の割合が0.2以上であることとする。 The gist of the present invention 6000 series aluminum alloy plate for achieving the above object is mass%, Mg: 0.3-1.5%, Si: 0.5-1.5%, Fe: 0.1 1.0% each, Mn: 0.03-1.0%, Cr: 0.01-0.3%, Zr: 0.01-0.3%, V: 0.01-0 3%, Ti: 0.001 to 0.1%, Cu: 0.1 to 1.0%, Zn: 0.1 to 1.0%, or one or more of them, and the balance Al and becomes unavoidable impurities, the average grain size of the second phase particles containing Fe, any one or more of Si in the extracted residue method to the thus obtained insoluble compound 2.0μm or less, an average aspect ratio of 1.0 above, a 1.7 or less, and, to-the second phase particles to the sum of the X-ray intensity peak value of α phase and β phase when measured by X-ray diffractometry The proportion of X-ray intensity peak value of the α-phase is to be at least 0.2 that.
本発明で言う第2相粒子とは、製造された6000系アルミニウム合金板組織中のFe、Si系化合物(但し、Cu、Mnなどの遷移元素を含有する場合には、これらの元素を含む場合もある)からなる不溶性化合物のことを言う。これらの第2相粒子は、鋳塊鋳造時、鋳塊均熱処理時などに主として生成する晶出物や、熱延時、溶体化・焼入れ処理時、調質処理時などに主として生成する析出物などからなる。これに対して、本発明で問題とする前記α相とβ相との形態や割合は、前記晶出物のα相とβ相との形態や割合である。前記平均粒径や前記平均アスペクト比の規定なども、主たる対象としているのは、同様に、前記晶出物である。   The second phase particles referred to in the present invention are Fe and Si compounds in the manufactured 6000 series aluminum alloy sheet structure (however, when these transition elements such as Cu and Mn are contained, these elements are included) Insoluble compounds). These second phase particles are crystallized products mainly generated during ingot casting, ingot soaking, and precipitates mainly generated during hot rolling, solution treatment / quenching processing, tempering processing, etc. Consists of. On the other hand, the form and ratio of the α phase and the β phase, which are problems in the present invention, are the form and ratio of the α phase and the β phase of the crystallized product. It is the crystallized product that is also mainly targeted for the definition of the average particle diameter and the average aspect ratio.
ただ、本発明の、前記X線回折法によるα相とβ相の各X線強度ピーク値の合計に対する前記α相のX線強度ピーク値の割合規定では、現実的な測定方法として、板組織中のFe、Siのいずれか1種以上を含む第2相粒子である、不溶性化合物全体を測定対象としている。これは、前記平均粒径や前記平均アスペクト比の規定などでも同様である。即ち、これらの測定では、前記晶出物だけに限らず、前記析出物も含めて、互いに区分けをせずに、板組織中の不溶性化合物全体を測定の対象としている。したがって、本発明の前記要旨では、前記平均粒径や前記平均アスペクト比の規定などと同様に、前記X線回折法によるα相とβ相の各X線強度ピーク値の合計に対する前記α相のX線強度ピーク値の割合の規定を、晶出物ではなく、第2相粒子にて規定している。なお、以下の説明では、この第2相粒子に対し、分かりやすく晶出物という言い方も使う。また、前記した、X線回折法によるα相とβ相の各X線強度ピーク値の合計に対する前記α相のX線強度ピーク値の割合を、単に「α相の割合」とも言う。   However, in the provision of the ratio of the X-ray intensity peak value of the α phase to the total of the X-ray intensity peak values of the α phase and the β phase by the X-ray diffraction method of the present invention, The entire insoluble compound, which is a second phase particle containing at least one of Fe and Si, is the object of measurement. The same applies to the definition of the average particle diameter and the average aspect ratio. That is, in these measurements, not only the crystallized substances but also the precipitates are not separated from each other, and the entire insoluble compounds in the plate structure are measured. Therefore, in the gist of the present invention, as in the definition of the average particle diameter and the average aspect ratio, the α phase is a sum of the X-ray intensity peak values of the α phase and the β phase by the X-ray diffraction method. The ratio of the X-ray intensity peak value is defined by the second phase particles, not the crystallized product. In the following description, the term “crystallized product” is also used for the second phase particles. Further, the ratio of the X-ray intensity peak value of the α phase to the total of the X-ray intensity peak values of the α phase and the β phase according to the X-ray diffraction method is also simply referred to as “ratio of α phase”.
本発明者は、前記従来技術における、晶出物の微細化および球状化制御が、加工条件が厳しくなったヘム加工を含む曲げ加工に対して、なぜ、曲げ加工性改善の十分な効果が得られていないのか検討した。   The present inventor obtained a sufficient effect of improving the bending workability with respect to the bending work including the hemming process in which the processing conditions became stricter, because the refinement and spheroidization control of the crystallized material in the above-described prior art were performed. We examined whether it was not done.
この結果、6000系アルミニウム合金板組織中のFe、Si系化合物からなる晶出物には、大きく分けて二つの相、α相とβ相とがあることを知見した。そして、前記晶出物がα相であるか、β相であるかによって、晶出物の形態(アスペクト比)が大きく異なり、ヘム加工を含む曲げ加工時の鋭い切り欠きとして、曲げ加工性を低下させる因子として働くか否かの作用が大きく異なることを知見した。   As a result, it has been found that the crystallized material composed of Fe and Si compounds in the 6000 series aluminum alloy sheet structure is roughly divided into two phases, an α phase and a β phase. Depending on whether the crystallized product is in the α phase or the β phase, the form (aspect ratio) of the crystallized product is greatly different. As a sharp notch at the time of bending including heme processing, bending workability is improved. It was found that the effect of whether or not it acts as a factor to be reduced is greatly different.
後述する通り、晶出物がα相となっているか、β相となっているかの相形態は、X線回折法により明確に(正確に)同定、区別して、定量化することができる。そして、面心立方構造(hcp)であるα相晶出物は、体心立方構造(bcc)であるβ相に比して、より微細化と球状化とが進んだ形態をしている。したがって、晶出物がα相化した場合、言い換えると、晶出物のうちのα相晶出物の割合が多いほど、曲げ加工時の鋭い切り欠きとして、曲げ加工性を低下させる因子として働くことが無くなり、ヘム加工性を含む曲げ加工性が向上する。   As will be described later, the phase morphology of whether the crystallized product is an α phase or a β phase can be clearly identified (exactly) and quantified by an X-ray diffraction method. The α-phase crystallized product having a face-centered cubic structure (hcp) has a form in which finer and more spheroidized forms are achieved as compared with the β-phase having a body-centered cubic structure (bcc). Therefore, when the crystallized product becomes α-phase, in other words, as the proportion of the α-phase crystallized product in the crystallized product increases, it acts as a sharp notch at the time of bending and acts as a factor that decreases bending workability. The bending workability including heme workability is improved.
しかし、特に均熱処理条件など、通常の6000系アルミニウム合金板の製造方法では、β相化した晶出物の方が優先的に生成し、これが最終製造過程まで維持されるために、通常の6000系アルミニウム合金板では、存在する晶出物は殆どβ相化した晶出物となっている。このため、前記した従来技術のように、晶出物を微細化および球状化しても、「微細化および球状化」されているのは、殆どβ相化した晶出物であり、前記曲げ加工性向上に効果的な「微細化および球状化」とは言い難かったものである。   However, in the usual method for producing a 6000 series aluminum alloy sheet, such as soaking conditions, the β-phase crystallized product is preferentially produced, and this is maintained until the final production process. In the aluminum alloy plate, most of the existing crystallized product is a β-phased crystallized product. For this reason, even if the crystallized product is refined and spheroidized as in the prior art described above, it is almost the β-phased crystallized product that has been “refined and spheroidized” and the bending process described above. It was difficult to say “miniaturization and spheroidization” effective in improving the properties.
例えば、前記した従来技術では、晶出物の最大粒子径(最大径)や、最大アスペクト比など、晶出物の「微細化および球状化」を最大値にて規定している。しかし、これら最大値にて規定した場合、確かに、粗大な晶出物は減少するものの、存在する晶出物全体が十分に「微細化および球状化」されているとは言い難い。したがって、晶出物の「微細化および球状化」の、厳しい条件での前記曲げ加工性向上に対する寄与は小さくならざるを得なかった。   For example, in the above-described prior art, “miniaturization and spheroidization” of a crystallized product such as the maximum particle diameter (maximum diameter) of the crystallized product and the maximum aspect ratio are defined by the maximum value. However, when it is defined by these maximum values, although the coarse crystallized product is certainly reduced, it is difficult to say that the entire existing crystallized product is sufficiently “miniaturized and spheroidized”. Accordingly, the contribution of the refinement and spheroidization of the crystallized product to the improvement of the bending workability under severe conditions has to be reduced.
事実、前記した特許文献3では、晶出物の微細化、アスペクト比の低減のために、鋳造時の冷却速度を5℃/sec 以上に速くしたりする鋳塊組織制御と圧延条件の制御によって、5μm 超などの粗大な晶出物を排除している。確かに、これらの工程の制御によって粗大な晶出物自体は無くすことができる。   In fact, in the above-mentioned Patent Document 3, in order to refine the crystallized product and reduce the aspect ratio, the ingot structure control and the rolling condition control in which the cooling rate during casting is increased to 5 ° C./sec or more are performed. Coarse crystallized material such as more than 5 μm is excluded. Certainly, the coarse crystallized product itself can be eliminated by controlling these processes.
しかし、晶出物がα相化するか、β相化するかの相形態は、後述する通り、特に均熱処理条件によって決まり、通常の均熱処理条件では、前記した通り、β相化した晶出物の方が優先的に生成する。即ち、従来の鋳造条件や圧延条件の制御によっては、α相かβ相かの晶出物の相形態を制御できない。したがって、従来技術では、前記した通り、必然的に、β相化した晶出物の方が優先的に生成してしまうこととなる。   However, the phase morphology of whether the crystallized is α-phase or β-phase is determined by the soaking condition as described later. Under normal soaking conditions, as described above, The thing is generated preferentially. In other words, the phase morphology of the crystallized product of the α phase or the β phase cannot be controlled by controlling the conventional casting conditions and rolling conditions. Therefore, in the prior art, as described above, the β-phase crystallized product is necessarily generated preferentially.
これに対して、本発明では、6000系アルミニウム合金板に存在する晶出物のα相晶出物の割合を多くして、存在する晶出物全体を更に「微細化および球状化」させるため、前記厳しい条件での曲げ加工性が大きく向上する。これによって、本発明によれば、晶出物の存在を許容した上で、言い換えると、高強度やBH性、あるいはプレス成形性などの特性確保に必要な、Siなどの合金元素量を確保した上で、前記曲げ加工性を向上できる。例えば、晶出物の量自体を減らせば、前記曲げ加工性は向上するが、そのためにはSiなどの合金元素量を減らす必要があり、前記した6000系アルミニウム合金板の他の優れた特性が犠牲となる。   On the other hand, in the present invention, the proportion of the α-phase crystallized product in the 6000 series aluminum alloy plate is increased, and the entire existing crystallized product is further refined and spheroidized. The bending workability under the severe conditions is greatly improved. Thus, according to the present invention, while allowing the presence of crystallized substances, in other words, the amount of alloying elements such as Si necessary for securing characteristics such as high strength, BH properties, or press formability was secured. Above, the bending workability can be improved. For example, if the amount of crystallized material itself is reduced, the bending workability is improved, but for that purpose, the amount of alloying elements such as Si must be reduced. Sacrifice.
以下に、本発明の実施の形態につき、本発明6000系アルミニウム合金板の組織から、順に各要件ごとに具体的に説明する。   Hereinafter, the embodiment of the present invention will be described in detail for each requirement in order from the structure of the present invention 6000 series aluminum alloy sheet.
組織−晶出物の相形態:
図1、2に、6000系アルミニウム合金板の組織を、後述する実施例の通り、X線回折法(粉末X線回折法)により同定した際の、晶出物のX線強度ピークデータを示す。図1、2において、横軸2θ(単位:deg)の17deg近傍にある強度ピークが、体心立方構造(bcc)であるβ相晶出物特有の強度ピークであり、β相晶出物の存在を示している。また、図1の22deg近傍にある強度ピークが、面心立方構造(hcp)であるα相晶出物特有の強度ピークであり、α相晶出物の存在を示している。
Structure-Crystallized phase morphology:
1 and 2 show the X-ray intensity peak data of the crystallized product when the structure of the 6000 series aluminum alloy plate is identified by the X-ray diffraction method (powder X-ray diffraction method) as in the examples described later. . 1 and 2, the intensity peak in the vicinity of 17 deg of the horizontal axis 2θ (unit: deg) is an intensity peak peculiar to the β-phase crystallized body having the body-centered cubic structure (bcc), Indicates existence. Moreover, the intensity peak in the vicinity of 22 deg in FIG. 1 is an intensity peak peculiar to the α-phase crystallized product having the face-centered cubic structure (hcp), and indicates the presence of the α-phase crystallized product.
図1は後述する実施例表3の発明例2であり、α相晶出物とβ相晶出物の強度ピークが両方存在し、α相とβ相とが混在する晶出物相からなり、後述する実施例表3の通り、前記α相の割合(X線回折法によるα相とβ相の各X線強度ピーク値の合計に対する前記α相のX線強度ピーク値の割合)が0.21である。また、図2が表3の比較例15であり、β相晶出物の強度ピークしか存在せず、β相晶出物のみの単相からなり、前記表3の通り、前記α相の割合が0.0である。   FIG. 1 is Invention Example 2 of Example Table 3 to be described later, and consists of a crystallized phase in which both α-phase crystallized product and β-phase crystallized product have intensity peaks, and α-phase and β-phase are mixed. As shown in Example 3 described later, the ratio of the α phase (the ratio of the X-ray intensity peak value of the α phase to the total of the X-ray intensity peak values of the α phase and the β phase by the X-ray diffraction method) is 0. .21. FIG. 2 shows Comparative Example 15 in Table 3, where only the intensity peak of the β-phase crystallized substance exists and consists of a single phase of only the β-phase crystallized substance. As shown in Table 3, the ratio of the α phase Is 0.0.
通常の均熱処理(均質化熱処理)条件では、均熱温度への昇温速度が遅い(それほど速くはない)。このため、過飽和したFe、Siが均熱温度への昇温途中の温度域で、体心立方構造(bcc)であるβ相化した晶出物として優先的に析出し、このβ相晶出物の状態が、溶体化・焼入れ処理などの調質処理を含めた、製造後の板まで維持される。   Under normal soaking conditions (homogenizing heat treatment), the heating rate to soaking temperature is slow (not so fast). For this reason, supersaturated Fe and Si are preferentially precipitated as a β-phased crystallized substance having a body-centered cubic structure (bcc) in the temperature range during the temperature increase to the soaking temperature. The state of the object is maintained up to the post-manufacturing board including tempering treatment such as solution treatment and quenching treatment.
これに対して、特別に、均熱温度への昇温速度を速めれば、前記β相晶出物の析出を抑制できる。そして、更に、前記遷移元素の拡散速度が増大するよう、特別に均熱温度を高めた高温域において、晶出物を核とした析出を促進させれば、晶出物の面心立方構造(hcp)であるα相化、球状化が促進される。   On the other hand, if the rate of temperature increase to the soaking temperature is increased, precipitation of the β-phase crystallized product can be suppressed. Further, in the high temperature region where the soaking temperature is specially increased so as to increase the diffusion rate of the transition element, if the precipitation centering on the crystallized substance is promoted, the face-centered cubic structure of the crystallized substance ( α phase and spheroidization, which are hcp), are promoted.
このような特別な条件で均熱処理して析出させたα相晶出物は、晶出物の中でも、元々微細で、より球状化した晶出物である。具体的には、平均粒子径が1.4〜1.9μm程度の微細であり、また、平均アスペクト比も1.3〜1.7程度に球状化した第2相粒子(不溶性化合物)である。   The α-phase crystallized product precipitated by soaking under such special conditions is a crystallized product that is originally finer and more spheroidized. Specifically, it is a second phase particle (insoluble compound) having an average particle diameter of about 1.4 to 1.9 μm and spheroidized to an average aspect ratio of about 1.3 to 1.7. .
これに対して、6000系アルミニウム合金板に通常存在するβ相晶出物は、元々粗大化しやすく、前記特許文献3のように、最大粒子径を5μm 以下とし、最大アスペクト比を5以下として、粗大なβ相晶出物を除外したとしても、前記α相晶出物ほどには、微細化あるいは球状化はしない。粗大なβ相晶出物を除外した場合、具体的には、平均粒子径が2.0〜2.6μm程度であり、また、球状化させても平均アスペクト比が1.7〜2.1程度である。   On the other hand, the β-phase crystallized substance normally present in the 6000 series aluminum alloy plate is originally easily coarsened, and as in Patent Document 3, the maximum particle diameter is 5 μm or less, and the maximum aspect ratio is 5 or less. Even if a coarse β-phase crystallized product is excluded, it is not as fine or spheroidized as the α-phase crystallized product. When the coarse β-phase crystallized product is excluded, specifically, the average particle diameter is about 2.0 to 2.6 μm, and the average aspect ratio is 1.7 to 2.1 even when spheroidized. Degree.
これらの数値同士の対比では、あまり差が無いようであるが、これらの数値は、前記した晶出物の最大粒子径(最大径)や最大アスペクト比規定など、粗大な晶出物を減少させた上での、存在する晶出物全体のレベルを示している。即ち、本発明のように、α相晶出物の割合を増せば、6000系アルミニウム合金板組織中に存在する晶出物、ひいては前記した第2相粒子(不溶性化合物)全体のレベルが「微細化および球状化」されることとなる。   It seems that there is not much difference in the comparison between these numerical values, but these numerical values reduce coarse crystallized products such as the maximum particle diameter (maximum diameter) and maximum aspect ratio of the crystallized crystals described above. In addition, it shows the level of the total crystallized present. That is, if the proportion of the α-phase crystallized product is increased as in the present invention, the level of the crystallized product present in the 6000 series aluminum alloy sheet structure, and thus the above-mentioned second phase particles (insoluble compounds) as a whole is “fine. And spheroidizing ".
このため、前記より厳しい加工条件における曲げ加工性には、この晶出物全体、ひいては第2相粒子(不溶性化合物)全体のレベルがより効いてくるものと推考される。前記した従来技術のβ相晶出物の「微細化および球状化」が、より厳しい加工条件における曲げ加工性向上に効果的な「微細化および球状化」とは言い難かったのはこの理由による。   For this reason, it is presumed that the level of the entire crystallized substance, and hence the entire second phase particle (insoluble compound), is more effective for the bending workability under the more severe processing conditions. For this reason, it is difficult to say that “refining and spheronization” of the β-phase crystallized material in the prior art described above is effective “bending and spheroidizing” for improving bending workability under more severe processing conditions. .
組織−α相晶出物の割合:
なお、前記均熱処理条件を変えても(昇温速度を速めても)、製造された6000系アルミニウム合金板組織中の晶出物を全てα相化できるわけではなく、実際の均熱処理工程では、幾ら昇温速度を速めても、前記昇温過程でのβ相化した晶出物の析出は必然的に生じる。また、鋳造時に生成する晶出物も殆どがβ相である。したがって、本発明6000系アルミニウム合金板組織中においても、β相晶出物が実質量存在し、量的にはα相晶出物よりも多い場合も当然ある。
Ratio of structure-alpha phase crystallization product:
Even if the soaking conditions are changed (even if the heating rate is increased), not all of the crystallization in the produced 6000 series aluminum alloy sheet structure can be α-phased. In the actual soaking process, However, no matter how fast the rate of temperature increase is, the precipitation of the β-phased crystallization product inevitably occurs in the temperature increasing process. Further, most of the crystallized product produced during casting is β-phase. Therefore, even in the 6000 series aluminum alloy sheet structure of the present invention, a substantial amount of β-phase crystallized material is present, and there are naturally cases where the amount is larger than the α-phase crystallized material.
したがって、より厳しい加工条件におけるヘム加工性を含む曲げ加工性の向上に重要な点は、このβ相化した晶出物の割合を少しでも減らして、逆に、α相化した晶出物の、β相晶出物に対する割合を少しでも多くすることである。そして、これによって、6000系アルミニウム合金板組織中に存在する晶出物全体、ひいては前記第2相粒子(不溶性化合物)全体のレベルをより「微細化および球状化」させる。   Therefore, the important point for improving the bending workability including heme workability under more severe processing conditions is to reduce the ratio of this β-phased crystallized material as much as possible, and conversely, The ratio to the β-phase crystallized product is increased as much as possible. As a result, the level of the entire crystallized substance present in the 6000 series aluminum alloy plate structure, and thus the entire second phase particle (insoluble compound), is further refined and spheroidized.
このために、本発明では、6000系アルミニウム合金板組織中に存在する前記第2相粒子をX線回折法により測定した際の、α相とβ相の各X線強度ピーク値の合計に対する前記α相のX線強度ピーク値の割合(前記α相の割合)を0.2以上、1.0以下と規定する。   Therefore, in the present invention, the second phase particles present in the 6000 series aluminum alloy plate structure are measured by the X-ray diffraction method, and the total X-ray intensity peak values of the α phase and the β phase are measured. The ratio of the X-ray intensity peak value of the α phase (the ratio of the α phase) is defined as 0.2 or more and 1.0 or less.
α相晶出物のX線強度ピークは、前記図1の横軸2θ(単位:deg)の22deg近傍にある強度ピークの、縦軸の強度(cps)の大きさ(高さ)で表される。また、β相晶出物のX線強度ピークは、前記図2の横軸2θ(単位:deg)の17deg近傍にある強度ピークの、縦軸の強度(cps)の大きさ(高さ)で表される。したがって、これらのX線強度ピーク(値)を用いて行う計算「α相晶出物の22deg近傍のX線強度ピーク値/(α相晶出物の22deg近傍のX線強度ピーク値+β相晶出物の17deg近傍のX線強度ピーク値)」がα相とβ相の各X線強度ピーク値の合計に対する前記α相のX線強度ピーク値の割合(前記α相の割合)となる。   The X-ray intensity peak of the α-phase crystallized product is represented by the magnitude (height) of the intensity (cps) on the vertical axis of the intensity peak near 22 deg of the horizontal axis 2θ (unit: deg) in FIG. The Further, the X-ray intensity peak of the β-phase crystallized product is the magnitude (height) of the intensity (cps) on the vertical axis of the intensity peak in the vicinity of 17 deg of the horizontal axis 2θ (unit: deg) in FIG. expressed. Therefore, the calculation performed using these X-ray intensity peaks (values) “X-ray intensity peak value near 22 deg of α-phase crystallized product / (X-ray intensity peak value near 22 deg of α-phase crystallized substance + β-phase crystal) The X-ray intensity peak value in the vicinity of 17 deg of the product ”is the ratio of the X-ray intensity peak value of the α phase to the total of the X-ray intensity peak values of the α phase and β phase (the ratio of the α phase).
このα相の割合が0.2未満では、β相晶出物に対してα相晶出物が絶対量としても少なすぎ、従来の6000系アルミニウム合金板と大差なくなる。したがって、6000系アルミニウム合金板組織中に存在する晶出物全体、ひいては前記第2相粒子(不溶性化合物)全体のレベルをより「微細化および球状化」させることができず、これら晶出物を含む、前記した第2相粒子(不溶性化合物)の平均粒径を2.0μm 以下、平均アスペクト比を1.0以上、1.7以下とできない。したがって、より厳しい加工条件における曲げ加工性を向上させることができない。   If the ratio of the α phase is less than 0.2, the absolute amount of the α phase crystallized product is too small relative to the β phase crystallized product, which is not much different from the conventional 6000 series aluminum alloy sheet. Therefore, the level of the entire crystallized substance existing in the structure of the 6000 series aluminum alloy sheet, and thus the entire second phase particle (insoluble compound), cannot be further “miniaturized and spheroidized”. The above-mentioned second phase particles (insoluble compounds) cannot have an average particle diameter of 2.0 μm or less and an average aspect ratio of 1.0 or more and 1.7 or less. Therefore, it is not possible to improve the bending workability under more severe processing conditions.
一方、このα相の割合の上限は、割合ゆえに必然的に1.0となり、β相晶出物が無い、α相晶出物だけの相を意味する。したがって、本発明における、このX線強度ピーク値によるα相の割合は、より正確には0.2〜1.0の範囲となる。ただ、実際の6000系アルミニウム合金板の製造では、前記した通り、あるいは後述する通り、β相晶出物が必然的に生成するため、上限である1.0に近い数値とはなっても、1.0とはなりにくい。   On the other hand, the upper limit of the ratio of the α phase is inevitably 1.0 because of the ratio, meaning that there is no β phase crystallized phase and only the α phase crystallized phase. Therefore, in the present invention, the proportion of the α phase based on this X-ray intensity peak value is more accurately in the range of 0.2 to 1.0. However, in the actual production of a 6000 series aluminum alloy plate, as described above or as will be described later, a β-phase crystallized product is inevitably generated, so even if the numerical value is close to the upper limit of 1.0, It is difficult to be 1.0.
組織−第2相粒子のサイズと形態:
本発明では、これら晶出物を含む、前記第2相粒子(不溶性化合物)の平均粒径(平均粒子径とも言う)が2.0μm 以下、平均アスペクト比が1.0以上、1.7以下と規定する。これは、粗大なβ相晶出物を除外するとともに、前記した通り、6000系アルミニウム合金板組織中に存在する前記第2相粒子全体のレベルをより「微細化および球状化」させ、より厳しい加工条件における曲げ加工性を向上させるためである。
Structure-Size and morphology of second phase particles:
In the present invention, the average particle size (also referred to as average particle size) of the second phase particles (insoluble compounds) containing these crystallized substances is 2.0 μm or less, and the average aspect ratio is 1.0 or more and 1.7 or less. It prescribes. This excludes coarse β-phase crystallized materials, and as described above, makes the level of the entire second phase particles present in the 6000 series aluminum alloy plate structure more “fine and spheroidized” and more severe. This is to improve the bending workability under the processing conditions.
前記第2相粒子の平均粒径が2.0μm を超えた場合、粗大なβ相晶出物など、粗大な第2相粒子が多くなり、平均アスペクト比も1.7以下と球状化できなくなる。このため、第2相粒子が破壊の起点となるため、6000系アルミニウム合金板の靱性、曲げ加工性を著しく劣化させる。   When the average particle size of the second phase particles exceeds 2.0 μm, the number of coarse second phase particles such as coarse β-phase crystals is increased, and the average aspect ratio becomes 1.7 or less, which makes it impossible to spheroidize. . For this reason, since the second phase particles serve as a starting point of fracture, the toughness and bending workability of the 6000 series aluminum alloy plate are remarkably deteriorated.
また、平均アスペクト比が1.7を超えた場合、前記第2相粒子の平均粒径が2.0μm 以下であっても、球状化した第2相粒子が少なくなる。これら球状化していない第2相粒子(β相晶出物など)は、平均粒径が小さくても、応力集中が生じやすく、破壊の起点になりやすいため、やはり靱性、曲げ加工性を著しく劣化させる。   In addition, when the average aspect ratio exceeds 1.7, the spheroidized second phase particles are reduced even if the average particle size of the second phase particles is 2.0 μm or less. These non-spherical second-phase particles (β-phase crystals, etc.) tend to cause stress concentration even when the average particle size is small, and they tend to be the starting point of fracture. Let
組織−第2相粒子のサイズと形態:
これら第2相粒子は、組織の走査型電子顕微鏡による観察(1000〜10000倍)で確認でき、平均粒径や平均アスペクト比も測定できる。観察される不溶性化合物にFe、Siのいずれか1種以上を含むものを、本発明で規定する第2相粒子とする。不溶性化合物中に含まれるFe、Siの確認は、X線マイクロアナライザ(EPMA: Electron Probe Micro Analyzer)を用いて行う。
Structure-Size and morphology of second phase particles:
These second phase particles can be confirmed by observing the structure with a scanning electron microscope (1000 to 10,000 times), and the average particle diameter and average aspect ratio can also be measured. The insoluble compound to be observed contains at least one of Fe and Si as second phase particles defined in the present invention. Confirmation of Fe and Si contained in the insoluble compound is performed using an X-ray microanalyzer (EPMA).
組成−6000系:
本発明6000系アルミニウム合金板の化学成分組成について、以下に説明する。本発明が対象とする自動車などの輸送機の車体用の6000系アルミニウム合金板には、前記した自動車の外板用の板などとして、ヘム加工性を含む曲げ加工性の他にも、優れたプレス成形性やBH性、強度、溶接性、耐食性などの諸特性が要求される。
Composition-6000 series:
The chemical component composition of the present invention 6000 series aluminum alloy sheet will be described below. In addition to bending workability including hemming workability, the 6000 series aluminum alloy plate for the body of a transport machine such as an automobile targeted by the present invention is excellent in addition to bending workability including hemming workability. Various properties such as press formability, BH property, strength, weldability, and corrosion resistance are required.
このような要求を満足するために、アルミニウム合金板の組成は、質量%で、Mg:0.3〜1.5%、Si:0.5〜1.5%を含み、残部Alおよび不可避的不純物からなるものとする。なお、各元素の含有量の%表示は全て質量%の意味である。   In order to satisfy such a requirement, the composition of the aluminum alloy plate includes, by mass%, Mg: 0.3 to 1.5%, Si: 0.5 to 1.5%, the balance Al and unavoidable It shall consist of impurities. In addition,% display of content of each element means the mass% altogether.
本発明は、リジングマークが生じやすいが、BH性がより優れた、SiとMgとの質量比Si/ Mgが1 以上であるような過剰Si型の6000系アルミニウム合金板に適用されて好ましい。6000系アルミニウム合金板は、プレス成形や曲げ加工時には低耐力化により成形性を確保するとともに、成形後のパネルの塗装焼付処理などの、比較的低温の人工時効処理時の加熱により時効硬化して耐力が向上し、必要な強度を確保できる優れた時効硬化能(BH性)を有している。この中でも、過剰Si型の6000系アルミニウム合金板は、質量比Si/ Mgが1未満の6000系アルミニウム合金板に比して、このBH性がより優れている。   The present invention is preferably applied to an excess Si type 6000 series aluminum alloy plate having a ridging mark that is easily generated but having a better BH property and having a Si / Mg mass ratio of Si / Mg of 1 or more. The 6000 series aluminum alloy sheet secures formability by reducing the yield strength during press molding and bending, and is age-hardened by heating during relatively low temperature artificial aging treatment such as paint baking treatment of the panel after molding. Yield strength is improved, and it has excellent age-hardening ability (BH property) that can secure the required strength. Among these, the excess Si type 6000 series aluminum alloy plate is more excellent in this BH property than the 6000 series aluminum alloy plate having a mass ratio Si / Mg of less than 1.
前記Mg、Si以外のその他の元素は、基本的には不純物であり、AA乃至JIS 規格などに沿った各元素レベルの含有量 (許容量) とする。リサイクルの観点から、溶解材として、高純度Al地金だけではなく、6000系合金やその他のアルミニウム合金スクラップ材、低純度Al地金などを溶解原料として多量に使用した場合には、前記Mg、Si以外の元素も大抵の場合混入される。そして、これらの不純物元素を低減すること自体が製造コストアップとなり、ある程度の含有を許容することが必要となる。そして、実質量含有しても、本発明目的や効果を阻害しない含有範囲があり、また、この範囲で固有の含有効果がある元素もある。   The other elements other than Mg and Si are basically impurities, and the content (allowable amount) at each element level in accordance with AA or JIS standards. From the viewpoint of recycling, not only high-purity Al ingots but also 6000 series alloys and other aluminum alloy scrap materials, low-purity Al ingots and the like as a melting material are used as a melting material. Elements other than Si are also usually mixed. And reducing these impurity elements itself increases the manufacturing cost, and it is necessary to allow the inclusion to some extent. And even if it contains a substantial amount, there is a content range that does not hinder the object and effect of the present invention, and there is also an element having a specific content effect within this range.
したがって、このような下記元素を、各々以下に規定する量以下の範囲での含有を許容する。具体的には、前記6000系アルミニウム合金板が、上記した基本組成に加えて、更に、Fe、Mn、Cr、Zr、V、Ti、Cu、Ag、Zn、Snの一種また二種以上を含有することを許容する。   Therefore, the following elements are allowed to be contained within the ranges specified below. Specifically, in addition to the basic composition described above, the 6000 series aluminum alloy plate further contains one or more of Fe, Mn, Cr, Zr, V, Ti, Cu, Ag, Zn, Sn. Allow to do.
6000系アルミニウム合金における、各元素の好ましい含有範囲と意義、あるいは許容量について以下に元素毎に説明する。   The preferable content range and significance of each element in the 6000 series aluminum alloy, or the allowable amount will be described below for each element.
Si:0.5〜1.5%
SiはMgとともに、6000系アルミニウム合金板を固溶強化し、前記晶出物を生成する。また、塗装焼き付け処理などの前記低温での人工時効処理時に強度向上に寄与する時効析出物などを形成する時効硬化能を発揮して、自動車のアウタパネルとして必要な強度(耐力)を得るための必須の元素である。
Si: 0.5 to 1.5%
Si together with Mg solidifies and strengthens a 6000 series aluminum alloy plate to generate the crystallized product. In addition, it is essential to obtain the required strength (proof strength) for the outer panel of automobiles by exhibiting age hardening ability to form aging precipitates that contribute to strength improvement during artificial aging treatment at low temperature such as paint baking treatment Elements.
パネルへの成形後の、より低温、短時間での塗装焼き付け処理での優れた低温時効硬化能を発揮させるためには、Si/ Mgを質量比で1.0以上とし、一般に言われる過剰Si型よりも更にSiをMgに対し過剰に含有させた6000系アルミニウム合金組成とすることが好ましい。   In order to exhibit excellent low-temperature age-hardening ability in coating baking at a lower temperature and shorter time after molding into a panel, Si / Mg is made to be 1.0 or more in mass ratio, and generally referred to as excess Si It is preferable to have a 6000 series aluminum alloy composition in which Si is further contained in excess of Mg rather than the mold.
Si含有量が少なすぎると、前記時効硬化能、更には、各用途に要求される、プレス成形性などの諸特性を兼備することができない。さらに、熱延中または熱延終了後で再結晶が促進されて、粗大再結晶を生じたり、Cube方位が発達しやすくなり、本発明の規定範囲内に結晶方位分布状態を均一に制御することができなくなる。一方、Si含有量が多すぎると、粗大な晶出物および析出物が形成されて、曲げ加工性を含めたプレス成形性が著しく阻害される。更に、溶接性も著しく阻害される。したがって、Siは0.5〜1.5%の範囲とする。   If the Si content is too low, the above-mentioned age-hardening ability and further various properties such as press formability required for each application cannot be obtained. Furthermore, recrystallization is promoted during hot rolling or after completion of hot rolling, resulting in coarse recrystallization or easy development of Cube orientation, and uniformly controlling the crystal orientation distribution state within the specified range of the present invention. Can not be. On the other hand, when there is too much Si content, a coarse crystallization thing and a precipitate will be formed and press formability including bending workability will be inhibited remarkably. Furthermore, weldability is also significantly impaired. Therefore, Si is in the range of 0.5 to 1.5%.
Mg:0.3〜1.5%
Mgは、固溶強化と、塗装焼き付け処理などの前記人工時効処理時に、Siとともに強度向上に寄与する時効析出物を形成して、時効硬化能を発揮し、パネルとしての必要耐力を得るための必須の元素である。
Mg: 0.3 to 1.5%
Mg forms an aging precipitate that contributes to strength improvement together with Si during the above-mentioned artificial aging treatment such as solid solution strengthening and paint baking treatment, to exhibit age hardening ability and to obtain the necessary proof stress as a panel It is an essential element.
Mg含有量が少なすぎると、絶対量が不足するため、人工時効処理時に前記化合物相を形成できず、時効硬化能を発揮できない。このためパネルとして必要な耐力が得られない。さらに、熱延で再結晶が促進されて、粗大再結晶を生じたり、Cube方位が発達しやすくなり、本発明の規定範囲内に結晶方位分布状態を均一に制御することができなくなる。   If the Mg content is too small, the absolute amount is insufficient, so that the compound phase cannot be formed during the artificial aging treatment, and the age hardening ability cannot be exhibited. For this reason, the proof stress required as a panel cannot be obtained. Furthermore, recrystallization is promoted by hot rolling, and coarse recrystallization occurs, or the Cube orientation easily develops, and the crystal orientation distribution state cannot be uniformly controlled within the specified range of the present invention.
一方、Mg含有量が多すぎると、却って、プレス成形加工時にSSマーク(ストレッチャストレインマーク)が発生し易くなる。したがって、Mgの含有量は0.3〜1.5%の範囲で、Si/ Mgが質量比で1.0以上となるような量とする。   On the other hand, if the Mg content is too large, SS marks (stretcher strain marks) are likely to occur during press molding. Therefore, the Mg content is in the range of 0.3 to 1.5%, and the Si / Mg content is 1.0 or more in mass ratio.
Fe、Mn、Cr、Zr、V、Ti、Cu、Ag、Zn、Snなどの元素は、基本的に不純物だが、強度向上に寄与する面もある。したがって、これらの元素は含まなくても良いが、前記した通り、これらの内の一種また二種以上を含む場合には、各々下記範囲で含有させる。
Fe:0.1〜1.0%、Mn:0.03〜1.0%、Cr:0.01〜0.3%、Zr:0.01〜0.3%、V:0.01〜0.3%、Ti:0.001〜0.1%、Cu:0.1〜1.0%、Zn:0.1〜1.0%。
Elements such as Fe, Mn, Cr, Zr, V, Ti, Cu, Ag, Zn, and Sn are basically impurities, but there are also aspects that contribute to strength improvement. Therefore, these elements may not be included, but as described above, when one or more of these elements are included, each element is included in the following range.
Fe: 0.1-1.0%, Mn: 0.03-1.0%, Cr: 0.01-0.3%, Zr: 0.01-0.3%, V: 0.01- 0.3%, Ti: 0.001 to 0.1%, Cu: 0.1 to 1.0% , Zn: 0.1 to 1.0 %.
ここで、これらの元素の各記載上限量は、これらの元素の多量の含有によって、靱性、ヘム加工性を含む曲げ加工性、プレス成形性、溶接性、耐食性などの諸特性が低下するが、これらの諸特性の低下を許容できる上限量である。また、記載している各下限量は、含有する場合に、これらの元素が強度向上効果を有する下限量である。なお、Fe、Mn、Cr、Zr、V、Tiは、少量の含有により、結晶粒を微細化させる作用がある。Mnには、少量の含有により、晶出物がα相になりやすくなる効果もある。また、Cu、Ag、Zn、Snは、少量の含有により、ベーキング時の時効硬化速度を速め、時効による析出物形成を促進させる作用がある。   Here, the upper limit amounts of each of these elements are reduced by various properties such as toughness, bending workability including hem workability, press formability, weldability, and corrosion resistance due to the inclusion of a large amount of these elements. This is the upper limit that can tolerate the deterioration of these characteristics. Moreover, each lower limit amount currently described is a lower limit amount in which these elements have an effect of improving strength when contained. In addition, Fe, Mn, Cr, Zr, V, and Ti have the effect | action which refines | miniaturizes a crystal grain by containing a small amount. Mn also has an effect that the crystallized product easily becomes an α phase due to the small amount. Moreover, Cu, Ag, Zn, and Sn have the effect | action which accelerates | stimulates the age hardening rate at the time of baking and accelerates | stimulates the deposit formation by aging by containing a small amount.
製造方法:
次ぎに、本発明アルミニウム合金板の製造方法について以下に説明する。本発明アルミニウム合金板は、製造工程自体は、均熱処理条件などを除いて、常法で可能であり、上記6000系成分組成のアルミニウム合金鋳塊を鋳造後に均熱処理(均質化熱処理)し、熱間圧延、冷間圧延が施されて所定の板厚とされ、更に溶体化焼入れなどの調質処理が施されて製造される。
Production method:
Next, a method for producing the aluminum alloy plate of the present invention will be described below. In the aluminum alloy sheet of the present invention, the production process itself can be carried out by a conventional method except for soaking conditions, etc., so that the aluminum alloy ingot having the above-mentioned 6000 series component composition is soaked (homogenized heat treatment) after casting. Hot rolling and cold rolling are performed to obtain a predetermined plate thickness, and a tempering treatment such as solution hardening is performed.
(溶解、鋳造冷却速度)
先ず、溶解、鋳造工程では、上記6000系成分組成範囲内に溶解調整されたアルミニウム合金溶湯を、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。
(Dissolution, casting cooling rate)
First, in the melting and casting process, a molten aluminum alloy melt-adjusted within the above-mentioned 6000 series component composition range is cast by appropriately selecting a normal melting casting method such as a semi-continuous casting method (DC casting method).
なお、前記特許文献2は、凝固時に晶出する金属間化合物(晶出物)の微細分散、球状化のために、晶出核となる、Na、Sr、Sb、Ca、Te、Ba、Li、K、Bi、P、As、Seなどの元素を、鋳造凝固時に0.005〜0.3重量%添加する特別な方法をとっている。しかし、本発明では、晶出物の微細分散や球状化のために、前記特許文献2のような鋳造時の元素添加は不要であり、また、添加などはしない。これらの元素の添加は、生成する晶出物がα相かβ相かの形態には殆ど影響しない。即ち、これらの元素を鋳造時に添加しても、生成する晶出物は殆どがβ相である。また、前記晶出核となるNaなどの元素は、本発明が対象とする自動車車体用などとして要求される前記諸特性を阻害するとともに、脆化の原因となるなど、却って有害となるからである。   In addition, the said patent document 2 is Na, Sr, Sb, Ca, Te, Ba, Li which becomes a crystallization nucleus for the fine dispersion and spheroidization of the intermetallic compound (crystallized substance) which crystallizes at the time of solidification. , K, Bi, P, As, Se and other elements are added in an amount of 0.005 to 0.3% by weight during casting solidification. However, in the present invention, the addition of elements at the time of casting as described in Patent Document 2 is unnecessary and is not performed for fine dispersion and spheroidization of the crystallized product. The addition of these elements has little effect on the form of the crystallized product that is formed in the α phase or β phase. That is, even if these elements are added at the time of casting, most of the crystallized products produced are in the β phase. In addition, the element such as Na which becomes the crystallization nucleus is harmful because it inhibits the above-mentioned characteristics required for the automobile body and the like, and causes embrittlement. is there.
更に、前記した特許文献3では、晶出物の微細化、アスペクト比の低減のために、鋳造時の冷却速度を5℃/sec 以上好ましくは10℃/sec以上に速くして、粗大な晶出物を排除している。このために、鋳造時の冷却速度をそのようには速くできない通常のDC鋳造ではなく、双ロールなどの薄板連続鋳造方法によって、鋳塊を製造している。しかし、本発明では、製造の効率化のために薄板連続鋳造方法を採用しても良いが、効率晶出物の微細分散や球状化のために、前記特許文献2のような双ロールなどの薄板連続鋳造方法を用いることは不要である。鋳造時の冷却速度は、鋳塊の偏析や晶出物サイズや量のばらつきを抑えるためには、大きい方が好ましいが、生成する晶出物がα相かβ相かの形態には殆ど影響しない。即ち、鋳造時の冷却速度を速めても、生成する晶出物は殆どがβ相である。   Furthermore, in the above-mentioned Patent Document 3, in order to refine the crystallized substance and reduce the aspect ratio, the cooling rate during casting is increased to 5 ° C./sec or more, preferably 10 ° C./sec or more to obtain coarse crystals. Eliminate artifacts. For this reason, the ingot is manufactured by the thin plate continuous casting method such as twin rolls instead of the normal DC casting in which the cooling rate at the time of casting cannot be so high. However, in the present invention, a thin plate continuous casting method may be employed to improve the production efficiency. However, for the purpose of fine dispersion and spheroidization of the efficiency crystallized product, It is not necessary to use the thin plate continuous casting method. The cooling rate at the time of casting is preferably large in order to suppress segregation of the ingot and variation in the size and amount of the crystallized product, but it has almost no effect on the form of the crystallized product to be generated in the α phase or β phase. do not do. That is, even if the cooling rate at the time of casting is increased, most of the crystallized product produced is β phase.
(均質化熱処理)
これら特許文献2、3ともに記載されている通り、鋳造凝固後は、従来の一般的な板製造方法で、均熱処理、熱間圧延、冷間圧延および焼鈍によって圧延板としている。しかし、本発明では、晶出物の微細分散や球状化のための相形態の制御を均質化熱処理にて行う。均質化熱処理(均熱処理)は、熱間圧延に先立って、鋳造されたアルミニウム合金鋳塊組織の均質化、すなわち鋳塊組織中の結晶粒内の偏析をなくすことを元々目的とする。このため、通常は、均熱処理温度まで、比較的ゆっくりと加熱され、500℃以上で融点未満、均質化時間は4時間以上の範囲から適宜選択される。
(Homogenization heat treatment)
As described in both Patent Documents 2 and 3, after casting and solidification, a rolled sheet is obtained by soaking, hot rolling, cold rolling and annealing in a conventional general sheet manufacturing method. However, in the present invention, the phase form for fine dispersion and spheroidization of the crystallized product is controlled by a homogenization heat treatment. Homogenization heat treatment (soaking) is originally intended to homogenize the cast aluminum alloy ingot structure prior to hot rolling, that is, to eliminate segregation within the crystal grains in the ingot structure. For this reason, normally, it heats comparatively slowly to soaking temperature, is 500 degreeC or more, less than melting | fusing point, and the homogenization time is suitably selected from the range of 4 hours or more.
これに対して、本発明では、特別に、均熱温度への昇温速度を100℃/hrに高め、過飽和したFe、Si、Cuなどの遷移元素が昇温途中の温度域でβ相化した晶出物として優先的に析出するのを抑制する。そして、更に、前記遷移元素の拡散速度が増大するよう、550℃以上に、特別に均熱温度を高めた高温域において、好ましくは8時間(hr)以上保持する。これによって、晶出物を核とした析出を促進でき、面心立方構造(hcp)であるα相化した晶出物の析出が促進される。これによって、晶出物、ひいては第2相粒子の微細化、球状化が促進される。   On the other hand, in the present invention, the heating rate to the soaking temperature is increased to 100 ° C./hr, and supersaturated transition elements such as Fe, Si, and Cu are β-phased in the temperature range during the heating. Preferential precipitation as a crystallized product. Further, in order to increase the diffusion rate of the transition element, it is preferably maintained at 550 ° C. or higher in a high temperature region where the soaking temperature is particularly increased for 8 hours (hr) or longer. Thus, precipitation with the crystallized product as a nucleus can be promoted, and precipitation of the crystallized product having an α phase having a face-centered cubic structure (hcp) is promoted. This promotes the refinement and spheroidization of the crystallized product, and hence the second phase particles.
したがって、この均熱処理条件によって、製造後の板の、第2相粒子の平均粒径が2.0μm 以下、平均アスペクト比が1.0以上、1.7以下であり、かつ、前記α相の割合が0.2以上という本発明組織形成が保証される。均熱温度への昇温速度が100℃/hr未満、均熱温度が550℃未満、均熱温度での保持時間が8時間未満では、本発明組織形成は難しくなる。   Therefore, by this soaking condition, the average particle diameter of the second phase particles of the manufactured plate is 2.0 μm or less, the average aspect ratio is 1.0 or more and 1.7 or less, and the α phase The formation of the structure of the present invention with a ratio of 0.2 or more is guaranteed. When the rate of temperature increase to the soaking temperature is less than 100 ° C./hr, the soaking temperature is less than 550 ° C., and the holding time at the soaking temperature is less than 8 hours, the formation of the structure of the present invention becomes difficult.
(熱間圧延)
均熱処理後、直ちに熱間圧延を行ってもよいが、均質化熱処理温度から冷却して熱間圧延の開始温度として、熱間圧延を開始しても良い。また、均質化熱処理後に、一旦室温まで冷却し、熱間圧延開始温度まで再加熱して、この再加熱温度で熱間圧延を開始しても良い。
(Hot rolling)
Although the hot rolling may be performed immediately after the soaking, the hot rolling may be started as the starting temperature of the hot rolling by cooling from the homogenizing heat treatment temperature. Further, after the homogenization heat treatment, it may be once cooled to room temperature, reheated to the hot rolling start temperature, and hot rolling may be started at this reheating temperature.
熱間圧延は、圧延する板厚に応じて、鋳塊 (スラブ) の粗圧延工程と、粗圧延後の板厚が約40mm以下の板を約4mm以下の板厚まで圧延する仕上げ圧延工程とから構成される。これら粗圧延工程や仕上げ圧延工程では、リバース式あるいはタンデム式などの圧延機が適宜用いられる。粗圧延開始温度(熱間圧延開始温度)は、成分組成や鋳塊厚との関係で選択され、必ずしも特定されないが、高すぎると鋳塊の局部融解を生じ易く、低すぎると圧延荷重が過大となって圧延が困難となるため、340〜580℃の範囲とすることが好ましい。   Hot rolling is a rough rolling process for ingots (slabs) according to the sheet thickness to be rolled, and a finish rolling process for rolling a sheet having a thickness of about 40 mm or less after rough rolling to a thickness of about 4 mm or less. Consists of In these rough rolling process and finish rolling process, a reverse or tandem rolling mill is appropriately used. The rough rolling start temperature (hot rolling start temperature) is selected in relation to the component composition and the ingot thickness, and is not necessarily specified. However, if it is too high, local melting of the ingot tends to occur, and if it is too low, the rolling load is excessive. Since rolling becomes difficult, the temperature is preferably set in the range of 340 to 580 ° C.
熱間圧延の圧下率は、晶出物の平均アスペクト比や平均粒径を規定範囲内に制御するために重要となる。即ち、実際の板の製造では、前記した条件での均熱処理によっても、アスペクト比や粒径の大きな晶出物は生じやすい。このため、前記均熱処理の制御のみでは、特に晶出物の平均アスペクト比や平均粒径を規定範囲内に制御できなくなる可能性もある。したがって、晶出物の平均アスペクト比を規定範囲内に確実に制御するためには、粗圧延と仕上げ圧延との合計の圧下率を99%以上と大きくすることが好ましい。これによって、特にアスペクト比の大きな晶出物の、熱間圧延時の塑性変形による分断化と、それに伴う球状化と微細化とが促進され、晶出物の平均アスペクト比や平均粒径を規定範囲内に制御できやすくなる。   The rolling reduction in hot rolling is important for controlling the average aspect ratio and average particle diameter of the crystallized product within a specified range. That is, in the actual production of a plate, a crystallized product having a large aspect ratio and particle size is likely to be produced even by soaking under the above-described conditions. For this reason, there is a possibility that the average aspect ratio and the average particle size of the crystallized product cannot be controlled within the specified range only by controlling the soaking. Therefore, in order to surely control the average aspect ratio of the crystallized product within the specified range, it is preferable to increase the total rolling reduction of rough rolling and finish rolling to 99% or more. This promotes fragmentation by plastic deformation during hot rolling, and the accompanying spheroidization and refinement, especially for crystals with a large aspect ratio, and defines the average aspect ratio and average grain size of the crystals. It becomes easy to control within the range.
(熱延板の焼鈍)
この熱延板の冷間圧延前の焼鈍 (荒鈍) は必ずしも必要ではないが、リジングマークの抑制程度のバラツキを小さくするために、実施しても良い。
(Hot rolled sheet annealing)
Annealing (roughening) of the hot-rolled sheet before cold rolling is not always necessary, but it may be performed in order to reduce the variation of the degree of ridging mark suppression.
(冷間圧延)
冷間圧延では、上記熱延板を圧延して、所望の最終板厚の冷延板 (コイルも含む) に製作する。但し、結晶粒を微細化させるために、冷間圧延率は60%以上であることが望ましく、同様の目的で、冷間圧延パス間で中間焼鈍を行っても良い。
(Cold rolling)
In cold rolling, the hot-rolled sheet is rolled to produce a cold-rolled sheet (including a coil) having a desired final thickness. However, in order to refine the crystal grains, the cold rolling rate is desirably 60% or more, and intermediate annealing may be performed between cold rolling passes for the same purpose.
(溶体化および焼入れ処理)
冷間圧延後、溶体化焼入れ処理を行う。溶体化処理は500℃〜570で0〜10秒保持する条件で行い、その後10℃/秒以上の冷却速度で焼入れ処理を行うことが望ましい。溶体化処理後の焼入れ処理では、冷却速度が遅いと、粒界上にSi、MgSiなどが析出しやすくなり、プレス成形や曲げ加工時の割れの起点となり易く、これら成形性が低下する。この冷却速度を確保するために、焼入れ処理は、ファンなどの空冷、ミスト、スプレー、浸漬等の水冷手段や条件を各々選択して用い、冷却速度を10℃/秒以上の急冷とすることが好ましい。
(Solution and quenching)
After cold rolling, a solution hardening treatment is performed. It is desirable to perform the solution treatment under the condition that the solution treatment is held at 500 ° C. to 570 for 0 to 10 seconds, and then perform the quench treatment at a cooling rate of 10 ° C./second or more. In the quenching treatment after the solution treatment, when the cooling rate is low, Si, MgSi and the like are likely to be deposited on the grain boundary, which is likely to be a starting point of cracking during press molding or bending, and these moldability is lowered. In order to ensure this cooling rate, the quenching treatment may be performed by selecting and using water cooling means and conditions such as air cooling of a fan, mist, spray, immersion, etc., respectively, and rapid cooling at a cooling rate of 10 ° C./second or more. preferable.
板を通板しながら熱処理を行う連続熱処理炉を用いた、連続的溶体化焼入れ処理の場合には、前記予備時効の温度範囲で焼入れ処理を終了し、そのままの高温でコイルに巻き取るなどして行う。なお、コイルに巻き取る前に再加熱しても、巻き取り後に保温しても良い。また、常温までの焼入れ処理の後に、前記温度範囲に再加熱して高温で巻き取るなどしてもよい。   In the case of continuous solution quenching using a continuous heat treatment furnace that performs heat treatment while passing through the plate, the quenching process is completed within the temperature range of the preliminary aging, and the coil is wound around the coil at the same high temperature. Do it. In addition, you may reheat before winding up to a coil, and you may heat-retain after winding. Moreover, after the quenching process to room temperature, it may be reheated to the above temperature range and wound at a high temperature.
前記ベークハード性をより高めるため、この溶体化焼入れ処理の後に、直ちに予備時効処理を行ってもよい。この予備時効処理は70〜140℃の温度範囲に、1〜24時間の範囲で必要時間保持することが望ましい。この予備時効処理として、上記焼入れ処理の冷却終了温度を70〜140℃と高くした後に、直ちに再加熱乃至そのまま保持して行う。あるいは、溶体化処理後常温までの焼入れ処理の後に、10分以内に、直ちに70〜140℃に再加熱して行う。   In order to enhance the bake hardness, a preliminary aging treatment may be performed immediately after the solution hardening treatment. This preliminary aging treatment is desirably held in the temperature range of 70 to 140 ° C. for the required time in the range of 1 to 24 hours. As the preliminary aging treatment, the cooling end temperature of the quenching treatment is increased to 70 to 140 ° C., and then immediately reheated or held as it is. Alternatively, after the solution treatment, after the quenching treatment to room temperature, it is immediately reheated to 70 to 140 ° C. within 10 minutes.
更に、室温時効抑制のために、前記予備時効処理後に、時間的な遅滞無く、比較的低温での熱処理 (人工時効処理) を行っても良い。この他、用途や必要特性に応じて、更に高温の時効処理や安定化処理を行い、より高強度化などを図ることなども勿論可能である。   Furthermore, in order to suppress aging at room temperature, heat treatment (artificial aging treatment) at a relatively low temperature may be performed after the preliminary aging treatment without time delay. In addition to this, it is of course possible to further increase the strength by performing aging treatment or stabilization treatment at a higher temperature according to the application or required characteristics.
以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.
次に、本発明の実施例を説明する。表1に示す6000系アルミニウム合金を鋳造後、表2に示すように条件を変えて均熱処理および熱延し、更に、以下は共通の条件にて、冷延を行い、溶体化および焼入れ処理して製造した。なお、表1中の各元素の含有量の表示において、ブランク(空白)の表示は、検出限界以下であることを示す。ここで、表1、2、3の発明例12は、Mg量が少なすぎて本発明範囲から外れる参考例である。 Next, examples of the present invention will be described. After casting the 6000 series aluminum alloy shown in Table 1, the conditions are changed as shown in Table 2, soaking and hot rolling, and the following are cold-rolled, solutionized and quenched under the same conditions. Manufactured. In addition, in the display of content of each element in Table 1, the display of a blank (blank) shows that it is below a detection limit. Here, Invention Example 12 in Tables 1, 2, and 3 is a reference example that is out of the scope of the present invention because the amount of Mg is too small.
アルミニウム合金板のより具体的な製造条件は以下の通りである。溶解原料としてアルミニウム地金とともに6000系アルミニウム合金スクラップなども使用して、表1に示す各組成の6000系アルミニウム合金鋳塊をDC鋳造法により共通して溶製した。この鋳塊の均熱処理は、表2に示す昇温温度、均熱温度(到達温度)、保持時間の各条件とした。この均質化熱処理後、鋳塊を冷却し、または均熱温度によっては冷却せずに、共通して530〜540℃で熱延(粗圧延)を開始した。そして、表2に示すように、熱延圧下率(粗圧延と仕上げ圧延とを合わせた前記合計の圧下率)や各熱延板の厚みを変えて熱延し、熱間圧延板とした。   More specific production conditions for the aluminum alloy plate are as follows. A 6000 series aluminum alloy ingot of each composition shown in Table 1 was commonly melted by a DC casting method using a 6000 series aluminum alloy scrap as well as an aluminum ingot as a melting raw material. The soaking heat treatment of the ingot was carried out under the conditions of temperature rise temperature, soaking temperature (attainment temperature) and holding time shown in Table 2. After this homogenization heat treatment, the ingot was cooled or not depending on the soaking temperature, and hot rolling (rough rolling) was started at 530 to 540 ° C. in common. Then, as shown in Table 2, hot rolling was performed by changing the hot rolling reduction ratio (the total rolling reduction combined with rough rolling and finish rolling) and the thickness of each hot rolled sheet to obtain a hot rolled sheet.
熱間圧延後のアルミニウム合金板を、各例とも共通して中間焼鈍(荒焼鈍)および冷間圧延パス間での中間焼鈍を施さずに、冷間圧延し、各例とも共通して厚さ1.0mmの冷延板とした。この各冷延板を、各例とも共通して連続式の熱処理設備で、表2に記載する条件で、540〜550℃の溶体化温度まで加熱して、直ちに(溶体化温度での保持時間は0秒)、室温まで水冷(平均冷却速度50℃/秒以上)する溶体化焼入れ処理を行った。また、各例とも共通して、この室温までの冷却後、直ちに、表2に記載する70〜95℃の温度まで再加熱して、この温度で共通して2時間保持する予備時効処理を行った。   The aluminum alloy sheet after hot rolling is cold rolled without intermediate annealing (rough annealing) and intermediate annealing between cold rolling passes in common with each example, and the thickness is common with each example. A 1.0 mm cold rolled sheet was used. Each cold-rolled sheet is heated to a solution temperature of 540 to 550 ° C. under the conditions described in Table 2 using a continuous heat treatment facility in common with each example, and immediately (holding time at the solution temperature). For 0 second), and a solution-quenching treatment was performed to cool to room temperature (average cooling rate of 50 ° C./second or more). In addition, in common with each example, after cooling to this room temperature, immediately after reheating to the temperature of 70 to 95 ° C. described in Table 2, a preliminary aging treatment is performed for 2 hours in common at this temperature. It was.
これらT4調質処理後の各最終製品板から供試板 (ブランク) を切り出し、前記調質処理後15日の室温時効(室温放置)後の、各供試板の組織や特性を測定、評価した。これらの結果を表3に示す。なお、表1〜3の各例の番号は共通しており、各表における同じ番号は同じ例である。   A test plate (blank) is cut out from each final product plate after the T4 tempering treatment, and the structure and properties of each test plate are measured and evaluated after aging at room temperature (standing at room temperature) for 15 days after the tempering treatment. did. These results are shown in Table 3. In addition, the number of each example of Tables 1-3 is common, and the same number in each table is the same example.
第2相粒子の形態:
前記各供試板の平行断面において、第2相粒子の平均粒径(平均粒子径)、平均アスペクト比を、組織の5000倍の走査型電子顕微鏡(SEM)による観察で、画像解析により測定した。測定は、各供試板の任意の5箇所について行い、これらを平均化した。なお、前記した通り、不溶性化合物中に含まれるFe、Siの確認をX線マイクロアナライザを用いて行い、観察される不溶性化合物にFe、Siのいずれか1種以上を含むものを、本発明で規定する第2相粒子とした。言い換えると、Fe、Siのいずれも含まない不溶性化合物は測定対象外とした。
第2相粒子の形態:
Second phase particle morphology:
In the parallel cross section of each test plate, the average particle diameter (average particle diameter) and average aspect ratio of the second phase particles were measured by image analysis by observation with a scanning electron microscope (SEM) 5000 times the structure. . The measurement was performed at any five locations on each test plate, and these were averaged. As described above, Fe and Si contained in the insoluble compound are confirmed using an X-ray microanalyzer, and the observed insoluble compound containing at least one of Fe and Si is used in the present invention. It was set as the 2nd phase particle to prescribe | regulate. In other words, insoluble compounds containing neither Fe nor Si were excluded from measurement.
Second phase particle morphology:
第2相粒子の相形態:
前記各供試板を抽出残渣法にて、晶出物を含む不溶性の化合物である第2相粒子を抽出し、抽出された第2相粒子粉末をX線回折する粉末X線回折法にて、晶出物のα相とβ相の各X線強度ピーク値の合計に対する前記α相のX線強度ピーク値の割合(前記α相の割合)を求めた。測定は、各供試板の任意の5箇所について行い、これらを平均化した。
Phase morphology of second phase particles:
Each sample plate is extracted by the extraction residue method, second phase particles that are insoluble compounds containing crystallized substances are extracted, and the extracted second phase particle powder is X-ray diffracted by a powder X-ray diffraction method. The ratio of the X-ray intensity peak value of the α phase to the total of the X-ray intensity peak values of the α phase and β phase of the crystallized product (the ratio of the α phase) was determined. The measurement was performed at any five locations on each test plate, and these were averaged.
抽出残渣法は次のように行った。先ず、分解フラスコにフェノールを入れて加熱した後、前記各供試板試料を分解フラスコに移し入れて加熱分解した。次に、ベンジルアルコールを加えた後、吸引ろ過してフィルター上の未溶解残渣を捕集した。捕集した残渣は、ベンジルアルコールとメタノールで洗浄し、X線回折測定用試料とした。なお、前記吸引ろ過にはメンブレンフィルター(捕集粒子径0.1μm、φ47mm)を用いた。   The extraction residue method was performed as follows. First, phenol was put into a decomposition flask and heated, and then each sample plate sample was transferred to a decomposition flask and thermally decomposed. Next, after adding benzyl alcohol, suction filtration was performed to collect undissolved residue on the filter. The collected residue was washed with benzyl alcohol and methanol to prepare a sample for X-ray diffraction measurement. For the suction filtration, a membrane filter (collected particle diameter: 0.1 μm, φ47 mm) was used.
X線回折装置は、理学電気製X線回折装置RINT−1500を用い、Cuターゲット、モノクロメータを使用し、ターゲット出力は40kV−200mAで行った。X線回折チャートの測定は、測定角度(2θ)が10°〜100°まで行った。   The X-ray diffractometer was a Rigaku 1500 X-ray diffractometer RINT-1500, a Cu target and a monochromator were used, and the target output was 40 kV-200 mA. The measurement of the X-ray diffraction chart was performed until the measurement angle (2θ) was 10 ° to 100 °.
そして、α相晶出物のX線強度ピークを、前記図1のように横軸の22deg近傍にある強度ピークの縦軸の強度(cps)の大きさより測定した。また、β相晶出物のX線強度ピークを、前記図2のように横軸の17deg近傍にある強度ピークの縦軸の強度(cps)の大きさより測定した。そして、これらのX線強度ピーク値を用いて行う計算「α相晶出物の22deg近傍のX線強度ピーク値/(α相晶出物の22deg近傍のX線強度ピーク値+β相晶出物の17deg近傍のX線強度ピーク値)」から、前記α相の割合を求めた。   Then, the X-ray intensity peak of the α-phase crystallized product was measured from the intensity (cps) on the vertical axis of the intensity peak in the vicinity of 22 deg on the horizontal axis as shown in FIG. Further, the X-ray intensity peak of the β-phase crystallized product was measured from the intensity (cps) of the vertical axis of the intensity peak in the vicinity of 17 deg of the horizontal axis as shown in FIG. And the calculation performed using these X-ray intensity peak values “X-ray intensity peak value near 22 deg of α-phase crystallized product / (X-ray intensity peak value near 22 deg of α-phase crystallized substance + β-phase crystallized substance The X-ray intensity peak value in the vicinity of 17 deg) ”was determined.
As耐力:
前記各供試板から、板の圧延方向に平行な方向に、JISZ2201の5号試験片(25mm×50mmGL×板厚)を採取し、室温引張り試験を行った。室温引張り試験は、JISZ2241(1980)(金属材料引張り試験方法)に基づき、室温20℃で試験を行った。このときの試験片の採取方向は、圧延方向に平行な方向とした。また、クロスヘッド速度は、5mm/分で、試験片が破断するまで一定の速度で行った。この方法によって、0.2%耐力(MPa)を測定し、製造後の板の0.2%耐力であるAS耐力とした(N数=5の平均値)。
As yield strength:
From each of the test plates, a JISZ2201 No. 5 test piece (25 mm × 50 mmGL × plate thickness) was taken in a direction parallel to the rolling direction of the plate, and a room temperature tensile test was performed. The room temperature tensile test was performed at room temperature of 20 ° C. based on JISZ2241 (1980) (metal material tensile test method). At this time, the specimen was collected in the direction parallel to the rolling direction. The crosshead speed was 5 mm / min, and the test was performed at a constant speed until the test piece broke. By this method, 0.2% proof stress (MPa) was measured, and the AS proof strength, which is 0.2% proof strength of the manufactured plate, was obtained (average value of N number = 5).
AB耐力:
前記各供試板の人工時効処理能を調査するため、人工時効硬化処理後の0.2%耐力であるAB耐力を測定した。前記各供試板について、板の製造後に室温時効(時間経過後)してから実際に使用されることを想定した100℃×10hrの促進時効処理(室温時効促進処理)を施した。その後、この板の圧延方向に平行な方向に、前記5号引張試験片を切り出し、自動車車体用にプレス成形された後で塗装焼き付け処理が施されることを模擬して、この引張試験片に5%の予歪みをあらかじめ与えた。そして、この後、この引張試験片に170℃×20分の条件にて人工時効硬化処理を行い、前記As耐力と同じ条件にて、この人工時効硬化処理後の0.2%耐力(MPa)を測定した(N数=5の平均値)。
AB yield strength:
In order to investigate the artificial aging treatment ability of each test plate, AB proof stress, which is 0.2% proof stress after artificial aging hardening treatment, was measured. Each test plate was subjected to an accelerated aging treatment (room temperature aging promotion treatment) of 100 ° C. × 10 hr, which was assumed to be actually used after room temperature aging (after the passage of time) after the production of the plate. Thereafter, the No. 5 tensile test piece was cut out in a direction parallel to the rolling direction of the plate, and after the press-molding for an automobile body, a paint baking process was performed to simulate the tensile test piece. A pre-strain of 5% was applied in advance. Thereafter, this tensile test piece is subjected to an artificial age hardening treatment under the conditions of 170 ° C. × 20 minutes, and the 0.2% yield strength (MPa) after the artificial age hardening treatment under the same conditions as the As yield strength. (N number = average value of 5).
曲げ加工性:
曲げ加工性は、前記各供試板から、長さ180mm、幅30mmの曲げ加工試験片を採取し、フラットヘム加工を模擬した曲げ試験を行って評価した。曲げ加工条件としては、自動車車体用にプレス成形された後でフラットヘム加工が施されることを模擬した厳しい曲げ試験条件とした。即ち、この引張試験片に10%の予歪みをあらかじめ与えた後、曲げ時の内側半径が0.5mmの条件での180°密着曲げ試験を行った。
Bending workability:
The bending workability was evaluated by collecting a bending test piece having a length of 180 mm and a width of 30 mm from each of the test plates and performing a bending test simulating flat hem processing. The bending conditions were severe bending test conditions that simulated flat hem processing after press molding for automobile bodies. That is, after applying a pre-strain of 10% to this tensile test piece in advance, a 180 ° contact bending test was performed under the condition that the inner radius during bending was 0.5 mm.
曲げ加工性は、前記曲げ試験後の曲げ縁曲部の表面割れ発生程度を目視で評価した。評価基準は以下の通りである。
1:肌荒れ、微小な割れがない
2:肌荒れが発生しているものの微小なものを含めた割れはない
3:微小な割れが発生
4:大きな割れが発生
5:大きな割れが複数或いは多数発生
この評価で、ヘム加工性が良好と判断されるのは上記1〜2段階までで、3段階以下はヘム加工性が劣ると判断され、不合格となる。
The bending workability was evaluated by visual observation of the degree of occurrence of surface cracks at the bent edge after the bending test. The evaluation criteria are as follows.
1: No rough surface, no minute cracks 2: Although rough surface occurs but no cracks including minute ones 3: Small cracks occur 4: Large cracks occur 5: Multiple or many large cracks occur In the evaluation, heme workability is judged to be good up to the above 1 to 2 stages, and it is judged that heme workability is inferior in 3 stages or less and is rejected.
表1、2に示す通り、各発明例1〜13(但し、前記参考例とした発明例12を除く)は、本発明成分組成範囲内で、かつ、前記した好ましい条件範囲で均熱処理および熱間圧延を行なっている。このため、表3に示す通り、本発明で規定する組織を有する。即ち、第2相粒子の平均粒径が2.0μm 以下、平均アスペクト比が1.0以上、1.7以下であり、かつ、前記α相の割合が0.2以上、1.0以下である。このα相とβ相とのX線強度ピークについて、前記した通り、図1は表の発明例2であり、α相とβ相とが混在する晶出物相からなり、表3の通り、前記α相の割合が0.21である。また、図2が表の比較例15であり、β相晶出物のみの単相からなり、表3の通り、前記α相の割合が0.0である。 As shown in Tables 1 and 2, each of Inventive Examples 1 to 13 (excluding Inventive Example 12 as the above-mentioned Reference Example) is within the composition range of the present invention and within the above-mentioned preferable condition range and heat treatment and heat treatment. Hot rolling is performed. For this reason, as shown in Table 3, it has a structure defined in the present invention. That is, the average particle size of the second phase particles is 2.0 μm or less, the average aspect ratio is 1.0 or more and 1.7 or less, and the proportion of the α phase is 0.2 or more and 1.0 or less. is there. Regarding the X-ray intensity peaks of the α phase and the β phase, as described above, FIG. 1 is Invention Example 2 of the table, which consists of a crystallized phase in which the α phase and the β phase are mixed, as shown in Table 3. The ratio of the α phase is 0.21. Moreover, FIG. 2 is the comparative example 15 of a table | surface, and consists of a single phase only of (beta) phase crystallization, and as shown in Table 3, the ratio of the said (alpha) phase is 0.0.
この結果、各発明例は、表3に示す通り、本発明アルミニウム合金板は、前記厳しい条件での曲げ試験においても、上記2段階以上の優れた曲げ加工性を有している。なお、確認の結果、各発明例は、張出成形試験による張出成形性では、前記した従来技術と同じレベルであった。   As a result, in each example of the invention, as shown in Table 3, the aluminum alloy sheet of the present invention has excellent bending workability of the above two or more stages even in the bending test under the severe conditions. As a result of confirmation, each of the inventive examples was at the same level as the above-described conventional technique in terms of stretch formability by the stretch molding test.
なお、表1において、発明例2〜13が、前記請求項に対応する、Fe:0.1〜1.0%と、更にMn:0.03〜1.0%、Cr:0.01〜0.3%、Zr:0.01〜0.3%、V:0.01〜0.3%、Ti:0.001〜0.1%、Cu:0.1〜1.0%、Zn:0.1〜1.0の内の一種また二種以上を含有する組成となっている。そして、表1および表2、3の発明例1は、Mn、Cr、Zr、V、Ti、Cu、Znの一種また二種以上を含まず、前記請求項1から組成が外れる参考例である。

In Table 1, Invention Examples 2 to 13 correspond to Claim 1 in terms of Fe: 0.1 to 1.0% , Mn: 0.03 to 1.0%, and Cr: 0.01. -0.3%, Zr: 0.01-0.3%, V: 0.01-0.3%, Ti: 0.001-0.1%, Cu: 0.1-1.0% , The composition contains one or more of Zn: 0.1 to 1.0 % . And the invention example 1 of Table 1 and Table 2, 3 is a reference example which does not contain 1 type, or 2 or more types of Mn, Cr, Zr, V, Ti, Cu, Zn, and a composition remove | deviates from the said Claim 1. .

これに対して、比較例14〜21は、成分組成が本発明の範囲を外れるか、均熱処理条件が好ましい条件範囲を外れる。
比較例15はSi含有量が多すぎる。
比較例17はSi含有量が少な過ぎ、Fe含有量が多すぎる。
比較例20はMg含有量が多すぎる。
比較例14〜16、19は、鋳塊の均熱処理における昇温温度が昇温速度が100℃/hr未満と小さすぎる(遅すぎる)。
比較例18は、鋳塊の均熱処理における保持時間が8時間未満で短すぎる。
比較例14、15、16、21は、鋳塊の均熱処理における均熱温度(到達温度)が550℃未満で低すぎる。
比較例21は、熱延の合計の圧下率も99%未満と小さすぎる。
On the other hand, as for Comparative Examples 14-21, a component composition remove | deviates from the range of this invention, or soaking conditions remove | deviate from the preferable condition range.
The comparative example 15 has too much Si content.
Comparative Example 17 has too little Si content and too much Fe content.
The comparative example 20 has too much Mg content.
In Comparative Examples 14 to 16 and 19, the temperature elevation temperature in the soaking heat treatment of the ingot is too small (too slow) at a temperature elevation rate of less than 100 ° C./hr.
In Comparative Example 18, the holding time in the soaking heat treatment of the ingot is less than 8 hours and is too short.
In Comparative Examples 14, 15, 16, and 21, the soaking temperature (attainment temperature) in the soaking heat treatment of the ingot is less than 550 ° C. and too low.
In Comparative Example 21, the total rolling reduction of the hot rolling is too small at less than 99%.
このため、各比較例は、表3に示す通り、共通して、本発明で規定する組織を有しておらず、曲げ加工性が著しく劣っている。例えば、均熱処理条件が好ましい条件範囲を外れる比較例14、16、18、19および熱延の圧下率も99%未満と小さすぎる比較例21は、第2相粒子の平均粒径、平均アスペクト比、前記α相の割合、のいずれかが外れており、曲げ加工性が著しく劣る。また、組成が外れた比較例17、20などはAS耐力やAB耐力なども劣っている。   For this reason, each comparative example does not have the structure prescribed | regulated by this invention in common as shown in Table 3, and bending workability is remarkably inferior. For example, Comparative Examples 14, 16, 18, and 19 in which the soaking condition is outside the preferable condition range, and Comparative Example 21 in which the rolling ratio of hot rolling is too small as less than 99% are the average particle diameter and average aspect ratio of the second phase particles. Any of the ratios of the α phase is out of the range, and the bending workability is remarkably inferior. Further, Comparative Examples 17, 20 and the like out of the composition are inferior in AS proof strength, AB proof strength, and the like.
したがって、以上の実施例の結果から、本発明における成分や組織の各要件の曲げ加工性に対する臨界的な意義乃至効果が裏付けられる。また、好ましい製造条件の本発明組織を得るための臨界的な意義乃至効果が裏付けられる。   Therefore, the results of the above examples support the critical significance or effect on the bending workability of each component and structure requirement in the present invention. Moreover, the critical significance or effect for obtaining the structure of the present invention under preferable production conditions is supported.
本発明のAl−Mg−Si系Al合金板によれば、Mg、Si、Alのほか、所定量のFeあるいはさらにCuを本質的成分として含み、Fe,Si,Cu系化合物の最大粒子径、最大アスペクト比および平均結晶粒径を所定の値以下に制限したので、特性に悪影響を及ぼす有害な晶出物が残留せず、優れた靱性と曲げ性とを兼ね備えることができ、これらの特性が要求される、例えば自動車パネル等の素材として好適に使用することができる。また、本発明のAl合金板は、高純度のAl地金を用いることなく製造することができるので、製造コストを低減することができ、アルミ材料のリサイクルにも資することができる。   According to the Al-Mg-Si-based Al alloy plate of the present invention, Mg, Si, Al, in addition to a predetermined amount of Fe or further Cu as an essential component, the maximum particle size of Fe, Si, Cu-based compound, Since the maximum aspect ratio and the average crystal grain size are limited to a predetermined value or less, no harmful crystallized substances that adversely affect the properties remain, and both excellent toughness and bendability can be achieved. It can be suitably used as a required material such as an automobile panel. Moreover, since the Al alloy plate of the present invention can be manufactured without using high-purity Al metal, the manufacturing cost can be reduced and the aluminum material can be recycled.
発明例アルミニウム合金板の組織をX線回折法により同定した際の、晶出物のX線強度ピークを示す説明図である。It is explanatory drawing which shows the X-ray intensity peak of a crystallization thing when the structure | tissue of invention example aluminum alloy plate is identified by the X-ray-diffraction method. 比較例アルミニウム合金板の組織をX線回折法により同定した際の、晶出物のX線強度ピークを示す説明図である。It is explanatory drawing which shows the X-ray intensity peak of a crystallization thing when the structure | tissue of a comparative example aluminum alloy plate is identified by the X-ray diffraction method.

Claims (1)

  1. 質量%で、Mg:0.3〜1.5%、Si:0.5〜1.5%、Fe:0.1〜1.0%を各々含み、更に、Mn:0.03〜1.0%、Cr:0.01〜0.3%、Zr:0.01〜0.3%、V:0.01〜0.3%、Ti:0.001〜0.1%、Cu:0.1〜1.0%、Zn:0.1〜1.0%の内の一種また二種以上を含有し、残部Alおよび不可避的不純物からなり、抽出残渣法によって得られる不溶性化合物のうちFe、Siのいずれか1種以上を含む第2相粒子の平均粒径が2.0μm 以下、平均アスペクト比が1.0以上、1.7以下であって、かつ、この第2相粒子をX線回折法により測定した際のα相とβ相の各X線強度ピーク値の合計に対する前記α相のX線強度ピーク値の割合が0.2以上であることを特徴とする曲げ性に優れたAl−Mg−Si系アルミニウム合金板。 In mass%, Mg: 0.3-1.5%, Si: 0.5-1.5%, Fe: 0.1-1.0%, respectively, Mn: 0.03-1. 0%, Cr: 0.01 to 0.3%, Zr: 0.01 to 0.3%, V: 0.01 to 0.3%, Ti: 0.001 to 0.1%, Cu: 0 .1~1.0%, Zn: containing one addition two or more of 0.1% to 1.0%, the balance being Al and unavoidable impurities, in the extracted residue method to the thus obtained insoluble compound The second phase particles containing one or more of Fe and Si have an average particle size of 2.0 μm or less, an average aspect ratio of 1.0 or more and 1.7 or less , and the second phase particles are The ratio of the X-ray intensity peak value of the α phase to the sum of the X-ray intensity peak values of the α phase and β phase when measured by the X-ray diffraction method is 0.2 or more. Al-Mg-Si-based aluminum alloy plate with excellent bendability.
JP2008290098A 2008-11-12 2008-11-12 Al-Mg-Si aluminum alloy plate with excellent bendability Expired - Fee Related JP5643479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008290098A JP5643479B2 (en) 2008-11-12 2008-11-12 Al-Mg-Si aluminum alloy plate with excellent bendability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008290098A JP5643479B2 (en) 2008-11-12 2008-11-12 Al-Mg-Si aluminum alloy plate with excellent bendability

Publications (2)

Publication Number Publication Date
JP2010116594A JP2010116594A (en) 2010-05-27
JP5643479B2 true JP5643479B2 (en) 2014-12-17

Family

ID=42304422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008290098A Expired - Fee Related JP5643479B2 (en) 2008-11-12 2008-11-12 Al-Mg-Si aluminum alloy plate with excellent bendability

Country Status (1)

Country Link
JP (1) JP5643479B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130123652A (en) * 2012-05-03 2013-11-13 (주)레오포즈 Aluminum alloy for rheocasting and forging
JP5927617B2 (en) * 2013-05-27 2016-06-01 株式会社神戸製鋼所 Aluminum alloy plate for electrical connection parts and method for producing the same
CN106414782B (en) * 2014-01-21 2020-01-31 奥科宁克公司 6XXX aluminium alloy
WO2018111845A1 (en) 2016-12-16 2018-06-21 Novelis Inc. Aluminum alloys and methods of making the same
JP2020509171A (en) * 2016-12-16 2020-03-26 ノベリス・インコーポレイテッドNovelis Inc. High strength and high formability aluminum alloy resistant to natural age hardening and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0543777B2 (en) * 1987-10-08 1993-07-02 Sky Aluminium
JP3652411B2 (en) * 1995-07-13 2005-05-25 株式会社神戸製鋼所 Al-Mg-Si Al alloy with excellent extrudability
JPH10317114A (en) * 1997-05-14 1998-12-02 Nippon Light Metal Co Ltd Manufacture of medium-strength al-mg-si alloy extruded material excellent in air hardening property
JP3379901B2 (en) * 1998-05-12 2003-02-24 住友軽金属工業株式会社 Al-Mg-Si alloy extruded material excellent in cutting workability and method for producing the same
JP4057199B2 (en) * 1998-09-10 2008-03-05 株式会社神戸製鋼所 Al-Mg-Si alloy plate

Also Published As

Publication number Publication date
JP2010116594A (en) 2010-05-27

Similar Documents

Publication Publication Date Title
JP5059423B2 (en) Aluminum alloy plate
JP6227222B2 (en) Aluminum alloy sheet with excellent bake hardenability
JP5203772B2 (en) Aluminum alloy sheet excellent in paint bake hardenability and suppressing room temperature aging and method for producing the same
JP4312819B2 (en) Aluminum alloy sheet with excellent ridging marks during molding
JP5918158B2 (en) Aluminum alloy sheet with excellent properties after aging at room temperature
JP2007169740A (en) Aluminum alloy sheet having excellent formability and its production method
JP4328242B2 (en) Aluminum alloy plate with excellent ridging mark characteristics
JP6810508B2 (en) High-strength aluminum alloy plate
JP2008045192A (en) Aluminum alloy sheet showing excellent ridging-mark resistance at molding
JP4939088B2 (en) Manufacturing method of aluminum alloy sheet with excellent ridging mark property during forming
JP2017125240A (en) Aluminum alloy structural member, manufacturing method thereof, and aluminum alloy sheet
JP2017078211A (en) Aluminum alloy sheet having high moldability
JP5643479B2 (en) Al-Mg-Si aluminum alloy plate with excellent bendability
JP2003321754A (en) Method for manufacturing aluminum alloy sheet with excellent bendability
JP3838504B2 (en) Aluminum alloy plate for panel forming and manufacturing method thereof
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
WO2017170835A1 (en) Aluminum alloy sheet and aluminum alloy sheet manufacturing method
JP2009173973A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
JP2009173972A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
JP3766334B2 (en) Aluminum alloy plate with excellent bending workability
WO2016031937A1 (en) Aluminum alloy sheet for forming
JP4588338B2 (en) Aluminum alloy sheet with excellent bending workability and press formability
JP6301175B2 (en) Aluminum alloy sheet with excellent formability and bake hardenability
JP6306123B2 (en) Aluminum alloy plate and method for producing aluminum alloy plate
JP2008101239A (en) Method for manufacturing aluminum alloy sheet superior in bendability, and aluminum alloy sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110413

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131001

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131205

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131213

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141031

R150 Certificate of patent or registration of utility model

Ref document number: 5643479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees