JPH0547615B2 - - Google Patents

Info

Publication number
JPH0547615B2
JPH0547615B2 JP63271757A JP27175788A JPH0547615B2 JP H0547615 B2 JPH0547615 B2 JP H0547615B2 JP 63271757 A JP63271757 A JP 63271757A JP 27175788 A JP27175788 A JP 27175788A JP H0547615 B2 JPH0547615 B2 JP H0547615B2
Authority
JP
Japan
Prior art keywords
alloy
treatment
less
temperature
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63271757A
Other languages
Japanese (ja)
Other versions
JPH02118049A (en
Inventor
Toshio Komatsubara
Mamoru Matsuo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP27175788A priority Critical patent/JPH02118049A/en
Publication of JPH02118049A publication Critical patent/JPH02118049A/en
Publication of JPH0547615B2 publication Critical patent/JPH0547615B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は自動車用のボデイシートや骨格材、
エアクリーナ、オイルタンク、あるいは家電製品
の筐体例えばVTRのシヤーシなどの如く、高強
度と優れた成形加工性(特に曲げ性および張出
性)が要求される成形加工品に使用される熱処理
アルミニウム合金圧延板およびその製造方法に関
し、特に圧延後の熱処理のまま、T4処理材とし
て成形加工の用途に供されしかも室温時効による
材料特性の変化がなくかつ耐応力腐食割れ性(以
下SCC性と記す)が優れるとともに成形加工時に
リユーダースマークの発生のない高強度成形加工
用T4処理アルミニウム合金圧延板およびその製
造方法に関するものである。 従来の技術 従来一般に自動車用ボデイシート等の成形加工
用の自動車板材としては冷延鋼板が多用されてい
たが、最近では自動車を軽量化してその燃費を改
善するため、従来の冷延鋼板に代えてアルミニウ
ム合金圧延板を使用する要望が強まつている。 このような用途に供されるアルミニウム合金圧
延板としては、従来はAl−Mg系の5052合金O材
や5182合金O材、あるいはAl−Cu系の2036合金
T4処理材、さらにはAl−Mg−Si系の6009合金
T4処理材、6010合金T4処理材等が適用されてい
る。 しかしながら前述の5052合金O材や5182合金O
材は、自動車用ボデイシート材等としては成形後
の焼付塗装後の強度が不充分であり、また耐SCC
性が劣るため高い応力が付与された状態で腐食環
境下にさらされる部位に用いることは安全上問題
があり、さらに成形加工時にリユーダースマーク
が発生して外観不良が生じる問題がある。また
2036合金T4処理材では成形性が劣り、さらに
6009合金T4処理材では強度が不充分であり、ま
た6010合金T4処理材では成形性が劣る問題があ
る。 さらに、Al−Cu系、Al−Mg−Si系やAl−Mg
−Zn−Cu系の各合金は、室温時効による材料特
性の経時変化が大きく、製造後に時間が経過すれ
ば成形性が低下する欠点があり、成形時の在庫管
理、ロツト管理が複雑となるという問題がある。 そこで本発明者等は、特開昭62−27544号およ
び特願昭63−50029号において、上述のような問
題を解決するため、JIS5000番系合金として知ら
れるAl−Mg系合金をベースとし、これに少量の
Cuを積極添加して、従来のAl−Mg系合金では行
なわれていなかつたT4処理、すなわち溶体化処
理−急冷を行なうようにしたAl−Mg−Cu系の
T4処理圧延板と、その製造方法について提案し
ている。 発明が解決しようとする課題 前述のような本発明者等の提案によるAl−Mg
−Cu系T4処理材は、従来の合金と比較して強度
と成形加工性に優れ、しかも製造後に材料特性の
変化がなく、また成形加工時におけるリユーダー
スマークの発生を防止できるとともに、耐SCC性
も優れるという特徴を有しているが、複雑な形状
の成形に耐えるためには、より一層の成形加工性
の向上が望まれている。 この発明は以上の事情を背景としてなされたも
ので、Al−Mg系合金(JIS5000番系合金)をベ
ースとし、これに少量のCuを積極添加してT4処
理材とする考え方をベースとし、より優れた成形
加工性、特に優れた曲げ性と張出性を有するとと
もに、冷延鋼板なみの強度を有し、かつ耐SCC性
に有れるとともに成形加工時におけるリユーダー
スマークの発生がなく、しかも室温時効による材
料特性の経時変化のない、成形加工溶T4処理ア
ルミニウム合金圧延板およびその製造方法を提供
することを目的とするものである。 課題を解決するための手段 請求項1の発明は、強度および成形性、耐SCC
性に優れかつ成形加工時におけるリユーダースマ
ークの発生がなくまた室温時効による材料特性の
経時変化のない成形加工用熱処理型アルミニウム
合金圧延板を提供するものであつて、Al−Mg系
合金に適量のCuを添加するとともに、成形加工
性に悪影響を与えるFe、Siと、その他の不純物
の量、すなわちMn、Cr、Zr等の合計量を極微量
に規制し、かつ最終板における結晶粒を最適値に
規定したものである。 具体的には、請求項1の発明の成形加工用T4
処理アルミニウム合金圧延板は、Mg1.5〜5.5%、
Cu0.15〜1.5%、Fe0.05〜0.30%、Si0.05〜0.40%
を含有し、かつその他の不純物が合計で0.05%以
下に規制され、残部がAlからなり、結晶粒の平
均が30μm〜150μmの範囲内であることを特徴と
するものである。 また請求項2の発明は、上述のようなT4処理
アルミニウム合金圧延板を製造する方法を提供す
るものである。 具体的には、請求項2の発明の成形加工用T4
処理アルミニウム合金圧延板の製造方法は、
Mg1.5〜5.5%、Cu0.15〜1.5%、Fe0.05〜0.30%、
Si0.05〜0.40%を含有し、かつその他の不純物が
合計で0.05%以下に規制され、残部がAlからなる
Al合金鋳塊を鋳造した後、その鋳塊に450〜580
℃の範囲内の温度で均質化処理を施し、さらに熱
間加工および冷間圧延を行なつてから溶体化再結
晶処理を施すにあたり、溶体化再結晶処理直前の
冷間圧延率を30%以上とし、かつ溶体化再結晶処
理を、加熱温度450〜570℃、昇温速度50℃/min
以上、保持時間5分以下、冷却速度50℃/min以
上にて行なうことを特徴とするものである。 作 用 先ずこの発明における合金成分限定理由につい
て説明する。 Mg: Mgはこの発明の系のアルミニウム合金におい
て基本となる合金成分であつて、強度および成形
加工性とりわけ伸びと張出性を向上させるに寄与
する。Mgが1.5%未満では強度および成形加工性
が不充分となつて自動車用ボデイシート等として
不適当となる。一方Mgが5.5%を越えれば伸びが
低下するとともに圧延性が劣化するから、Mgは
1.5〜5.5%の範囲内とした。 Cu: Cuは、T4処理材とするための基本となる合金
元素であつて、溶体化処理−急冷によつて充分に
溶体化させることにより、その後のS相(Al−
Mg−Cu相)の析出によつて強度および曲げ性を
向上させるに寄与し、かつ成形加工時におけるリ
ユーダースマークの発生を防止するに有効な元素
である。またMgと3%以上含有するAl合金では
耐SCC性が低下するおそれがあるが、Cuを添加
することによつて耐SCC性を飛躍的に改善するこ
とができる。さらに5000番系合金では加工後に焼
付塗装処理を行なえば著しく軟化してしまうが、
Cuを添加すれば焼付処理時の時効硬化のため、
軟化量はわずかに抑えられる。Cu量が0.15%以下
ではこれらの効果が充分に得られず、一方1.5%
を越えてCuを添加すれば、強度は向上するが成
形加工性が劣化し、また溶体化処理後の室温時効
で材料特性の経時変化が大きくなる。したがつて
Cu量は0.15〜1.5%の範囲内に限定した。 Fe: Feは成形加工性、特に曲げ性および張出性を
劣化させる元素であるから、その含有量は極力少
ないことが好ましい。Fe量が0.30%を越えれば晶
出物量が多くなつて成形加工性を害するから、
0.30%以下とする必要がある。なおFeが0.05%未
満でも良好な性能が得られるが、経済的にコスト
が嵩むから、Feは0.05〜0.30%の範囲内とした。 Si: Siも晶出化合物量を増加させ、成形加工性を低
下させる元素である。Siが0.40%を越えれば成形
加工性が悪くなり、一方Siが0.05%未満では経済
的ではなくなるから、Siは0.05〜0.40%の範囲内
とした。 その他の不純物: Fe、Si以外の不純物も成形加工性および耐食
性に悪影響を与えるため、合計で最大0.05%以下
とした。特にMn、Cr、Zr等の遷移元素は強度向
上に寄与はするが、成形加工性特に曲げ性を損な
い、またこれらの遷移元素は結晶粒を微細化する
効果が強いため、結晶粒径を30μm以上に大きく
することが困難となる。 以上の各元素のほか、鋳塊における結晶粒微細
化のためにTi、またはTiおよびBを添加しても
良い。但し初晶TiAl3粒子の晶出を防止するため
にはTiは0.15%以下とすることが望ましく、また
TiB2粒子の生成を防止するためにはBは500ppm
以下とすることが望ましい。 さらに、Mgが1.5%以上含まれるAl合金溶湯に
おいては、溶湯の酸化防止のためにBeを添加す
ることが従来から行なわれており、この発明にお
いても溶湯酸化防止のためにBeを添加する場合
を除外するものではない。Beの添加量は50ppm
以下が一般的であり、この程度のBe添加量であ
ればこの発明においても他の性能を劣化させるこ
とはない。 さらにこの発明のアルミニウム合金圧延板にお
いては、前述のように各成分元素を規定するほ
か、特に最終板の状態における結晶粒が平均で
30μm以上、150μm以下である必要がある。結晶
粒は成形加工時におけるリユーダースマークの発
生と強い相関関係があり、結晶粒が小さければリ
ユーダースマークが発生し易い。特に結晶粒が
30μm未満ではリユーダースマークが発生し易く
なつて成形品の外観を損なう。一方結晶粒が
150μmを越えれば成形加工時において肌荒れが
著しくなり、前記同様に成形品の外観を損なうと
ともに、成形性も低下する。なおここで結晶粒径
は、ASTMによる“Intercept Method”(切断
法)により測定したものとし、また結晶粒の観察
面は板面(圧延面)に平行な面とする。 次にこの発明のアルミニウム合金圧延板の製造
方法について説明する。 先ず前述のような成分組成の合金溶湯を鋳造す
る。ここで鋳造方法としては、請求項1の発明の
アルミニウム合金圧延板を製造する場合は、DC
鋳造法(半連続鋳造法)、連続鋳造法のいずれで
も良いが、請求項2の発明の場合は、均質化処理
を行なう関係上、DC鋳造法を適用する。 得られたAl合金鋳塊に対しては、450〜580℃
の範囲内の温度で均質化処理を行なう。このよう
な均質化処理を行なうことによつて、成形加工性
を向上させるとともに熱間加工性を向上させるこ
とができる。均質化処理の温度が450℃未満では
上述の効果が得られず、一方580℃を越えれば井
晶融解が生じるおそれがある。なお均質化処理の
時間は1〜48時間が望ましい。1時間未満では上
述の効果が充分に得られず、一方48時間を越える
長時間の処理は経済的でない。 均質化処理後には、常法に従つて熱間圧延を施
し、さらに1回または2回以上の冷間圧延を行な
つて所要の板厚とする。なおこの熱間圧延と冷間
圧延との間、もしくは冷間圧延と冷間圧延との間
に中間焼鈍を行なつても良い。 冷間圧延後には後術する溶体化再結晶処理を行
なうが、この溶体化再結晶処理直前の冷間圧延
は、冷間圧延率(圧下率)を30%以上とする必要
がある。溶体化再結晶処理直前の冷間圧延率が30
%未満では、溶体化再結晶処理後の再結晶粒が、
150μmを越える粗大粒を含む混粒となつて、成
形加工性が低下してしまう。 冷間圧延後の溶体化再結晶処理は、次のような
役割を有する。 すなわち、第1には、材料を再結晶させ、好ま
しい成形加工性を与える。ここで、再結晶サイズ
は、成形加工時におけるリユーダースマークの発
生を防止すると同時に肌荒れを防止するため、適
切な大きさ(30μm以上150μm以下)にコントロ
ールする。 また第2は、Al−Mg−Cu相(S相)の溶体化
を図つて、強度、成形加工性、耐SCC性を向上さ
せる。 ここで、この発明で対象としている系の合金で
は、本来は再結晶粒を安定化させるに有用なFe、
Mn、Cr、Zr等の遷移元素の含有量を、成形加工
性向上のために極力低く抑えているから、再結晶
粒サイズをある範囲に安定化させるためには、溶
体化再結晶処理の条件をこの発明で規定する条件
範囲内に厳格に抑えることが必要である。すなわ
ち、昇温速度(加熱速度)を50℃/min以上と
し、加熱温度(到達温度)を450〜570℃とし、そ
の範囲内の温度での保持時間を5分以下(零を含
む)とし、さらに冷却速度を50℃/min以上とす
る必要がある。これらの溶体化再結晶処理の条件
限定理由は次の通りである。 先ず昇温速度に関しては、再結晶粒サイズを
150μm以下で安定化させるためには、昇温速度
は大きいことが好ましい。50℃/mm未満の昇温速
度では昇温中に結晶粒の食い合いが生じて150μ
mを越える粗大粒を含む混粒組織となつてしま
い、また全体に粗大粒が生じやすい。したがつて
昇温速度は50℃/min以上とする必要がある。 加熱温度に関しては、450℃未満では再結晶粒
が細かくなつて30μm未満となり、リユーダース
マークが発生し易くなる。一方570℃を越える温
度では再結晶粒の粒成長が生じて150μmを越え
る粗大粒となり、また局部溶解も生じるおそれが
ある。したがつて加熱温度は450〜570℃の範囲内
とする。 保持時間に関しては、この発明で対象としてい
る系の合金は再結晶粒を安定化させる元素が少な
いところから、5分を越えれば再結晶粒の粗大化
を生じてしまう。したがつて保持時間は5分以下
とする必要がある。なお加熱温度と保持時間は密
接な関係があり、加熱温度が高いほど保持時間を
短くすることが好ましい。 冷却速度については、S相その他の第2相の析
出を迎えるため、50℃/min以上とすることが必
要である。なおこのような冷却速度を得るための
冷却方法としては強制空冷や水冷などがあるが、
焼入歪を可及的に少なくする観点から、強制空冷
を適用することが望ましい。 なお上述のような溶体化再結晶処理−急冷は最
終熱処理であり、しかもその後は歪矯正程度を除
いて実質的に冷間加工を行なわずに所要の強度を
得るから、この発明の方法における調質は、JIS
調質記号T4に相当する。 ここで、従来のAl−Mg系合金(JIS5000番系
合金)は、非熱処理型合金として知られているも
のであり、従来はAl−Mg系合金についてT4処
理を行なうことは一般的には考えられていなかつ
た。これに対しこの発明では、Al−Mg系をベー
スとして、析出硬化に寄与するCuを少量積極添
加して、T4処理合金としている点に一つの特徴
がある。 以上のような溶体化再結晶処理の冷却後におい
ては、歪矯正を行なうのが通常であるが、この歪
矯正のためのレベリング、ストレツチ、スキンパ
スなどは、製品板における伸びの低下を防ぐため
に3%以下とすることが望ましい。 さらに、上記の歪矯正時の加工歪を除去してよ
り優れた成形加工性を得るため、第1図、第2図
において斜線領域で示した範囲内の加熱速度・冷
却速度、温度・保持時間で最終熱処理を行なつて
も、耐SCC性などの他の諸特性が劣化することは
ない。 以上のような条件、方法によつて得られたアル
ミニウム合金圧延板は、5052合金O材や5182合金
O材以上の優れた成形加工性、特に優れた曲げ性
と張出性を有するとともに、冷延鋼板なみの高強
度を有し、かつ成形加工時におけるリユーダース
マークの発生もないとともに、耐SCC性にも優
れ、しかも室温時効による材料特性の経時変化も
ない。 実施例 実施例 1 第1表の合金番号1〜5に示す成分組成の合金
をDC鋳造法により断面寸法500mm×1200mmのスラ
ブに鋳造し、その鋳塊に530℃×10時間の均質化
処理を施した後、板厚4mmまで熱間圧延し、さら
に板厚1mmまで冷間圧延した。なお一部のもの
は、熱間圧延後、板厚1.2mmまで冷間圧延した段
階で350℃×2時間の中間焼鈍を施し、さらに板
厚1mmまで冷間圧延した(中間焼鈍後の冷間圧延
率20%)。その後、各冷延板について、第2表の
熱処理番号A〜Fに示す条件の溶体化再結晶処理
を施した。 溶体化再結晶処理後、2週間室温時効した後の
機械的特性、成形性(成形加工時のリユーダース
マークおよび肌荒れの発生の有無も含む)、耐
SCC性を調べた結果を第3表に示す。 なお第3表中において、LDRは限界絞り比、
曲げ(mm)は最小曲げ半径を示す。またSCCは、
各材料について前記の溶体化再結晶処理後、30%
の冷間圧延を施してから、120℃×7日の増感処
理を行ない、DIN50908によるループ曲げ試験片
を作成して3.5%NaCl中で交互浸漬試験1ケ月を
行なつたときの応力腐食割れの発生の有無を示
す。
Industrial Application Field This invention is applicable to body sheets and frame materials for automobiles,
Heat-treated aluminum alloy used for molded products that require high strength and excellent formability (especially bendability and extensibility), such as air cleaners, oil tanks, and housings for home appliances, such as VTR chassis. Regarding rolled plates and their manufacturing methods, in particular, they can be used for forming processing as T4-treated materials without being heat-treated after rolling, yet have no change in material properties due to room temperature aging, and have stress corrosion cracking resistance (hereinafter referred to as SCC properties). The present invention relates to a T4-treated aluminum alloy rolled plate for high-strength forming processing that has excellent properties and does not generate Lyuders marks during forming processing, and a method for manufacturing the same. Conventional technology In the past, cold-rolled steel sheets were commonly used as automobile sheet materials for forming automobile body seats, etc., but recently, in order to reduce the weight of automobiles and improve their fuel efficiency, conventional cold-rolled steel sheets have been replaced. There is an increasing demand for the use of rolled aluminum alloy plates. Aluminum alloy rolled sheets used for such purposes have conventionally been Al-Mg-based 5052 alloy O material or 5182 alloy O material, or Al-Cu-based 2036 alloy O material.
T4 treated material and Al-Mg-Si based 6009 alloy
T4 treated materials, 6010 alloy T4 treated materials, etc. are used. However, the aforementioned 5052 alloy O material and 5182 alloy O
The material does not have sufficient strength after being baked and painted after forming, and has poor SCC resistance as an automotive body sheet material.
Because of its poor properties, there are safety issues when using it in areas exposed to corrosive environments under high stress, and there is also the problem of poor appearance due to the generation of reuders marks during molding. Also
2036 alloy T4 treated material has poor formability, and
The 6009 alloy T4 treated material has insufficient strength, and the 6010 alloy T4 treated material has poor formability. Furthermore, Al-Cu system, Al-Mg-Si system and Al-Mg
-Zn-Cu alloys have the disadvantage that material properties change significantly over time due to aging at room temperature, and formability deteriorates over time after manufacture, making inventory management and lot management during forming complicated. There's a problem. Therefore, in order to solve the above-mentioned problems, the inventors of the present invention, in Japanese Patent Application Laid-Open No. 62-27544 and Japanese Patent Application No. 63-50029, based on Al-Mg alloy known as JIS 5000 series alloy, A small amount of this
Al-Mg-Cu alloys are made by actively adding Cu and undergoing T4 treatment, which is solution treatment and rapid cooling, which has not been done with conventional Al-Mg alloys.
We are proposing a T4 treated rolled plate and its manufacturing method. Problems to be solved by the invention Al-Mg proposed by the inventors as described above
-Cu-based T4 treated material has superior strength and formability compared to conventional alloys, has no change in material properties after manufacturing, can prevent the occurrence of Lyuders marks during forming process, and is resistant to SCC. However, in order to withstand molding into complex shapes, it is desired to further improve moldability. This invention was made against the background of the above circumstances, and is based on the idea of using an Al-Mg alloy (JIS 5000 series alloy) as a base, actively adding a small amount of Cu to this to make a T4 treated material, and making it even more effective. It has excellent formability, especially excellent bendability and stretchability, has strength comparable to cold-rolled steel sheets, has SCC resistance, and does not generate reuders marks during forming process. The object of the present invention is to provide a hot-molten T4-treated aluminum alloy rolled sheet and a method for manufacturing the same, which does not cause changes in material properties over time due to aging at room temperature. Means for Solving the Problem The invention of claim 1 provides strength, formability, and SCC resistance.
The purpose of the present invention is to provide a heat-treated aluminum alloy rolled sheet for forming processing that has excellent properties and does not generate reuders marks during forming processing, and whose material properties do not change over time due to aging at room temperature. In addition to adding Cu, the amount of Fe, Si, and other impurities that adversely affect moldability, that is, the total amount of Mn, Cr, Zr, etc., is controlled to an extremely small amount, and the crystal grains in the final plate are optimized. It is specified in the value. Specifically, T4 for molding according to the invention of claim 1
Processed aluminum alloy rolled plate contains Mg1.5~5.5%,
Cu0.15~1.5%, Fe0.05~0.30%, Si0.05~0.40%
and other impurities are regulated to 0.05% or less in total, the remainder consists of Al, and the average crystal grain size is within the range of 30 μm to 150 μm. Moreover, the invention of claim 2 provides a method for manufacturing the above-mentioned T4-treated aluminum alloy rolled plate. Specifically, T4 for molding according to the invention of claim 2
The manufacturing method of treated aluminum alloy rolled plate is as follows:
Mg1.5~5.5%, Cu0.15~1.5%, Fe0.05~0.30%,
Contains 0.05 to 0.40% Si, and other impurities are regulated to 0.05% or less in total, with the remainder consisting of Al.
After casting the Al alloy ingot, the ingot has 450~580
When applying homogenization treatment at a temperature within the range of °C, further hot working and cold rolling, and then solution recrystallization treatment, the cold rolling rate immediately before the solution treatment recrystallization treatment must be 30% or more. and solution recrystallization treatment at a heating temperature of 450 to 570℃ and a heating rate of 50℃/min.
The above is characterized in that the holding time is 5 minutes or less and the cooling rate is 50° C./min or more. Function First, the reason for limiting the alloy components in this invention will be explained. Mg: Mg is a basic alloying component in the aluminum alloy of the present invention, and contributes to improving strength and formability, particularly elongation and extensibility. If the Mg content is less than 1.5%, the strength and moldability will be insufficient, making it unsuitable for use as automobile body sheets, etc. On the other hand, if Mg exceeds 5.5%, elongation decreases and rollability deteriorates.
It was set within the range of 1.5 to 5.5%. Cu: Cu is a basic alloying element for making T4 treated materials, and by sufficiently solutionizing it through solution treatment and rapid cooling, it can be used to form the S phase (Al-
It is an element that contributes to improving strength and bendability through the precipitation of Mg-Cu phase) and is effective in preventing the occurrence of Lyuders marks during molding. Furthermore, in Al alloys containing Mg and 3% or more, there is a risk that the SCC resistance will be reduced, but by adding Cu, the SCC resistance can be dramatically improved. Furthermore, if 5000 series alloys are baked and painted after machining, they will become significantly softer.
Adding Cu will cause age hardening during baking treatment.
The amount of softening can be suppressed slightly. These effects cannot be obtained sufficiently when the amount of Cu is 0.15% or less;
If Cu is added in excess of 20%, the strength will improve, but the moldability will deteriorate, and the material properties will change significantly over time due to room temperature aging after solution treatment. Therefore
The amount of Cu was limited within the range of 0.15 to 1.5%. Fe: Since Fe is an element that deteriorates moldability, particularly bendability and stretchability, it is preferable that its content be as low as possible. If the amount of Fe exceeds 0.30%, the amount of crystallized substances will increase, impairing moldability.
Must be 0.30% or less. Although good performance can be obtained even if the Fe content is less than 0.05%, the cost increases economically, so the Fe content is set within the range of 0.05 to 0.30%. Si: Si is also an element that increases the amount of crystallized compounds and reduces moldability. If Si exceeds 0.40%, moldability deteriorates, while if Si is less than 0.05%, it becomes uneconomical, so Si was set within the range of 0.05 to 0.40%. Other impurities: Since impurities other than Fe and Si also have a negative effect on moldability and corrosion resistance, the total amount was limited to a maximum of 0.05%. In particular, transition elements such as Mn, Cr, and Zr contribute to improving strength, but they impair formability, especially bendability, and these transition elements have a strong effect of refining crystal grains, so the grain size is reduced to 30 μm. It becomes difficult to increase the size beyond that. In addition to the above elements, Ti or Ti and B may be added to refine the crystal grains in the ingot. However, in order to prevent the crystallization of primary TiAl3 particles, it is desirable to keep Ti at 0.15% or less, and
To prevent the generation of TiB 2 particles, B is 500ppm.
The following is desirable. Furthermore, in Al alloy molten metal containing 1.5% or more of Mg, Be is added to prevent oxidation of the molten metal, and in this invention, Be is added to prevent oxidation of the molten metal. It does not exclude. The amount of Be added is 50ppm
The following is common, and if this amount of Be is added, other performances will not deteriorate even in this invention. Furthermore, in the aluminum alloy rolled sheet of the present invention, in addition to specifying each component element as described above, in particular, the crystal grains in the final sheet state are on average.
It must be 30 μm or more and 150 μm or less. Crystal grains have a strong correlation with the occurrence of Lyuders' marks during molding, and the smaller the crystal grains, the more easily Lyuders' marks occur. Especially when crystal grains
If the thickness is less than 30 μm, Reuders marks are likely to occur, spoiling the appearance of the molded product. On the other hand, crystal grains
If it exceeds 150 μm, the surface will become rough during molding, which will impair the appearance of the molded product as described above and will also reduce moldability. Note that the crystal grain size here is measured by the "Intercept Method" (cutting method) according to ASTM, and the observation plane of the crystal grains is a plane parallel to the plate surface (rolling surface). Next, a method for manufacturing an aluminum alloy rolled plate of the present invention will be explained. First, a molten alloy having the above-mentioned composition is cast. Here, as the casting method, when manufacturing the aluminum alloy rolled plate of the invention of claim 1,
Either a casting method (semi-continuous casting method) or a continuous casting method may be used, but in the case of the invention of claim 2, the DC casting method is applied because of the homogenization treatment. For the obtained Al alloy ingot, 450 to 580℃
The homogenization process is carried out at a temperature within the range of . By performing such homogenization treatment, molding workability and hot workability can be improved. If the temperature of the homogenization treatment is less than 450°C, the above-mentioned effects cannot be obtained, while if it exceeds 580°C, crystal melting may occur. Note that the time for the homogenization treatment is preferably 1 to 48 hours. If the treatment time is less than 1 hour, the above-mentioned effects cannot be sufficiently obtained, while treatment for a long time exceeding 48 hours is not economical. After the homogenization treatment, hot rolling is performed in accordance with a conventional method, and cold rolling is further performed one or more times to obtain the required thickness. Note that intermediate annealing may be performed between hot rolling and cold rolling or between cold rolling. After the cold rolling, a solution recrystallization treatment is performed later, and the cold rolling immediately before the solution recrystallization treatment must have a cold rolling ratio (reduction ratio) of 30% or more. Cold rolling rate just before solution recrystallization treatment is 30
%, the recrystallized grains after solution recrystallization treatment are
This results in mixed grains containing coarse grains exceeding 150 μm, resulting in poor moldability. The solution recrystallization treatment after cold rolling has the following roles. That is, first, the material is recrystallized to provide favorable moldability. Here, the recrystallization size is controlled to an appropriate size (30 μm or more and 150 μm or less) in order to prevent the occurrence of reuders marks during molding and at the same time to prevent rough skin. Second, the Al-Mg-Cu phase (S phase) is made into a solution to improve strength, moldability, and SCC resistance. Here, in the alloy system targeted by this invention, Fe, which is originally useful for stabilizing recrystallized grains,
Since the content of transition elements such as Mn, Cr, and Zr is kept as low as possible to improve moldability, the solution recrystallization treatment conditions must be met in order to stabilize the recrystallized grain size within a certain range. It is necessary to strictly keep the value within the range of conditions specified in this invention. In other words, the temperature increase rate (heating rate) is 50°C/min or more, the heating temperature (achieved temperature) is 450 to 570°C, and the holding time at a temperature within that range is 5 minutes or less (including zero). Furthermore, it is necessary to set the cooling rate to 50°C/min or more. The reasons for limiting the conditions for these solution recrystallization treatments are as follows. First, regarding the heating rate, the recrystallized grain size
In order to stabilize the thickness at 150 μm or less, it is preferable that the temperature increase rate be high. If the heating rate is less than 50℃/mm, crystal grains will interlock during heating and the temperature will increase to 150μ.
This results in a mixed grain structure containing coarse grains exceeding m, and coarse grains tend to form throughout. Therefore, the temperature increase rate needs to be 50°C/min or more. Regarding the heating temperature, if the heating temperature is lower than 450°C, the recrystallized grains become fine and become less than 30 μm, and Lyuders marks are likely to occur. On the other hand, if the temperature exceeds 570°C, recrystallized grains will grow and become coarse grains exceeding 150 μm, and local melting may also occur. Therefore, the heating temperature should be within the range of 450 to 570°C. Regarding the holding time, since the alloys targeted by this invention have few elements that stabilize the recrystallized grains, if the holding time exceeds 5 minutes, the recrystallized grains will become coarse. Therefore, the holding time must be 5 minutes or less. Note that there is a close relationship between the heating temperature and the holding time, and it is preferable that the higher the heating temperature is, the shorter the holding time is. Regarding the cooling rate, it is necessary to set the cooling rate to 50° C./min or more in order to cause precipitation of the S phase and other second phases. There are forced air cooling, water cooling, etc. as cooling methods to obtain such cooling speed.
From the viewpoint of reducing quenching distortion as much as possible, it is desirable to apply forced air cooling. Note that the solution recrystallization treatment and quenching described above is the final heat treatment, and after that, the required strength is obtained without substantially performing cold working except for strain correction. Quality is JIS
Corresponds to tempering symbol T4. Here, conventional Al-Mg alloys (JIS 5000 series alloys) are known as non-heat treatable alloys, and conventionally it was generally not considered to perform T4 treatment on Al-Mg alloys. It wasn't. On the other hand, one feature of the present invention is that it is based on an Al-Mg system, and a small amount of Cu, which contributes to precipitation hardening, is actively added to produce a T4-treated alloy. After cooling in the solution recrystallization treatment as described above, it is normal to perform strain correction, but leveling, stretching, skin pass, etc. % or less. Furthermore, in order to remove the processing strain during the above-mentioned strain correction and obtain better moldability, the heating rate, cooling rate, temperature, and holding time are within the range shown by the shaded areas in Figures 1 and 2. Even after the final heat treatment, other properties such as SCC resistance do not deteriorate. The aluminum alloy rolled sheet obtained under the above conditions and method has excellent formability superior to that of 5052 alloy O material and 5182 alloy O material, particularly excellent bendability and stretchability, and also has excellent bendability and stretchability. It has high strength comparable to rolled steel sheets, does not produce Lyuders marks during forming, has excellent SCC resistance, and does not change material properties over time due to aging at room temperature. Examples Example 1 Alloys having the composition shown in alloy numbers 1 to 5 in Table 1 were cast into slabs with cross-sectional dimensions of 500 mm x 1200 mm using the DC casting method, and the ingots were homogenized at 530°C for 10 hours. After applying the coating, it was hot rolled to a thickness of 4 mm, and further cold rolled to a thickness of 1 mm. In addition, some products were subjected to intermediate annealing at 350℃ x 2 hours at the stage of cold rolling to a plate thickness of 1.2 mm after hot rolling, and then cold rolling to a plate thickness of 1 mm (cold rolling after intermediate annealing). rolling rate 20%). Thereafter, each cold-rolled sheet was subjected to solution recrystallization treatment under the conditions shown in heat treatment numbers A to F in Table 2. After solution recrystallization treatment and aging at room temperature for two weeks, mechanical properties, formability (including the presence or absence of Lyuders marks and rough skin during molding), and resistance
Table 3 shows the results of investigating SCC properties. In Table 3, LDR is the limit drawing ratio,
Bending (mm) indicates the minimum bending radius. Also, SCC is
30% after the above solution recrystallization treatment for each material
After cold rolling, sensitization treatment was performed at 120°C for 7 days, loop bending test pieces according to DIN50908 were prepared, and stress corrosion cracking was observed when an alternate immersion test was conducted in 3.5% NaCl for 1 month. Indicates the presence or absence of occurrence.

【表】【table】

【表】【table】

【表】 第3表から明らかなように、この発明成分組成
範囲内の合金1、2について、この発明で規定す
るプロセス条件範囲内の溶体化再結晶処理を行な
つて、溶体化再結晶処理後の結晶粒サイズを30〜
150μmの範囲内とした場合には、従来例の5182
合金(合金番号5)のO材(熱処理記号F)より
優れた成形加工性(特に張出性、曲げ性)を有す
るとともに、成形加工時のリユーダースマークお
よび肌荒れの発生が認められず、しかも耐SCC性
も優れている。 実施例 2 第1表中の本発明例の合金番号1および従来例
(5182合金)の合金番号5の各合金について、実
施例1と同様な条件で鋳造−均質化熱処理−冷間
圧延を行なつた後、合金番号1については第2表
の熱処理記号Aによる溶体化再結晶処理を施し、
合金番号5については第2表の熱処理記号Fによ
る溶体化再結晶処理を施した。 各材料について、次のようにして加工ベーキン
グによる耐力の低下を調べた。すなわち、種々の
加工度(0%、5%、10%)で冷間加工を行なつ
てその状態での耐力を調べるとともに、各加工度
の板に対し175℃×1時間のベーキングを施した
後の耐力を調べた。その結果を第4表に示す。
[Table] As is clear from Table 3, Alloys 1 and 2 within the composition range of this invention were subjected to solution recrystallization treatment within the process condition range specified in this invention. Grain size after 30 ~
If it is within the range of 150μm, the conventional example 5182
It has better formability (especially stretchability and bendability) than the O material (heat treatment code F) of the alloy (alloy number 5), and does not cause reuders marks or rough skin during forming. It also has excellent SCC resistance. Example 2 Casting, homogenization heat treatment, and cold rolling were performed under the same conditions as in Example 1 for each alloy No. 1 of the present invention example and Alloy No. 5 of the conventional example (5182 alloy) in Table 1. After aging, Alloy No. 1 was subjected to solution recrystallization treatment according to heat treatment symbol A in Table 2,
Alloy No. 5 was subjected to solution recrystallization treatment according to heat treatment symbol F in Table 2. For each material, the decrease in yield strength due to processing and baking was investigated in the following manner. In other words, cold working was carried out at various degrees of working (0%, 5%, 10%) and the yield strength was investigated in that state, and the plates of each degree of working were baked at 175°C for 1 hour. The subsequent strength was investigated. The results are shown in Table 4.

【表】 第4表から明らかなように、この発明による合
金の場合は、加工ベーキング後の耐力低下が従来
合金である5182合金(合金番号5)よりも格段に
少なく、したがつて成形加工後に塗装焼付を行な
う自動車用ボデイシート材等に最適であることが
判る。 実施例 3 第1表に示す本発明例の合金番号1の合金につ
いて、実施例1と同様な条件で鋳造−均質化処理
−熱間圧延、冷間圧延を行なつた後、第2表の熱
処理記号Aによる溶体化再結晶処理を施した。そ
の材料に対し種々の時間室温時効したときの耐力
と、プレスによるφ100mmの球面張出高さを調べ
結果を第5表に示す。
[Table] As is clear from Table 4, in the case of the alloy according to the present invention, the decrease in yield strength after processing and baking is much smaller than that of the conventional alloy, 5182 alloy (alloy number 5), and therefore, after forming It is found that it is most suitable for automotive body sheet materials that undergo paint baking. Example 3 The alloy No. 1 of the invention examples shown in Table 1 was cast, homogenized, hot rolled, and cold rolled under the same conditions as in Example 1, and then Solution recrystallization treatment with heat treatment symbol A was performed. The yield strength of the material when aged at room temperature for various times and the height of the spherical surface of φ100 mm by pressing were investigated and the results are shown in Table 5.

【表】 第5表から明らかなように、この発明による合
金では、室温時効による強度および張出性の経時
変化が全く認められないことが判明した。 発明の効果 以上の説明で明らかなように、この発明によれ
ば、優れた成形加工性、特に優れた曲げ性と張出
性を有し、かつ自動車用ボデイシート等に適した
充分な耐応力腐食割れ性を有するとともに、成形
加工時におけるリユーダースマークの発生がな
く、しかも室温時効による材料特性の経時変化が
ないAl合金圧延板を得ることができ、したがつ
て自動車用ボデイシートやその他の自動車部品等
に対するAl合金の用途を拡大して、自動車車体
の軽量化を一層推進することが可能となるなど、
顕著な効果をもたらすことができる。 なおこの発明によるAl合金圧延板は、自動車
部品のみならず、各種電子電気機器の容器材例え
ばシヤーシ材など、各種の成形加工部品にも好適
であることは勿論である。
[Table] As is clear from Table 5, it was found that in the alloy according to the present invention, no change in strength and stretchability over time due to aging at room temperature was observed. Effects of the Invention As is clear from the above explanation, the present invention has excellent moldability, particularly excellent bendability and extensibility, and has sufficient stress resistance suitable for automobile body sheets, etc. It is possible to obtain an Al alloy rolled sheet that has corrosion cracking resistance, does not generate reuders marks during forming processing, and does not change material properties over time due to aging at room temperature, and is therefore suitable for automobile body sheets and other applications. It has become possible to expand the use of Al alloys in automobile parts, etc., and to further promote weight reduction of automobile bodies.
It can bring about remarkable effects. It goes without saying that the Al alloy rolled sheet according to the present invention is suitable not only for automobile parts but also for various molded parts such as container materials for various electronic and electrical devices, such as chassis materials.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は最終熱処理における加熱速度・冷却速
度と温度との関係を示す線図、第2図は最終熱処
理における保持時間と温度との関係を示す線図で
ある。
FIG. 1 is a diagram showing the relationship between heating rate/cooling rate and temperature in the final heat treatment, and FIG. 2 is a diagram showing the relationship between the holding time and temperature in the final heat treatment.

Claims (1)

【特許請求の範囲】 1 Mg1.5〜5.5%(重量%、以下同じ)、Cu0.15
〜1.5%、Fe0.05〜0.30%、Si0.05〜0.40%を含有
し、かつその他の不純物が合計で0.05%以下に規
制され、残部がAlからなり、結晶粒の平均が30μ
m〜150μmの範囲内であることを特徴とする成
形加工用T4処理アルミニウム合金圧延板。 2 Mg1.5〜5.5%、Cu0.15〜1.5%、Fe0.05〜
0.30%、Si0.05〜0.40%を含有し、かつその他の
不純物が合計で0.05%以下に規制され、残部がAl
からなるAl合金鋳塊を鋳造した後、その鋳塊に
450〜580℃の範囲内の温度で均質化処理を施し、
さらに熱間加工および冷間圧延を行なつてから溶
体化再結晶処理を施すにあたり、溶体化再結晶処
理直前の冷間圧延率を30%以上とし、かつ溶体化
再結晶処理を、加熱温度450〜570℃、昇温速度50
℃/min以上、保持時間5分以下、冷却速度50
℃/min以上にて行なうことを特徴とする成形加
工用T4処理アルミニウム合金圧延板の製造方法。
[Claims] 1. Mg1.5-5.5% (weight%, same hereinafter), Cu0.15
~1.5%, Fe0.05~0.30%, Si0.05~0.40%, and other impurities are regulated to 0.05% or less in total, the balance is Al, and the average crystal grain is 30μ
A T4-treated aluminum alloy rolled plate for forming processing, characterized in that the thickness is within the range of m to 150 μm. 2 Mg1.5~5.5%, Cu0.15~1.5%, Fe0.05~
0.30%, Si0.05-0.40%, and other impurities are regulated to a total of 0.05% or less, with the balance being Al.
After casting an Al alloy ingot consisting of
Homogenization treatment is carried out at a temperature within the range of 450-580℃,
Furthermore, when performing solution recrystallization treatment after hot working and cold rolling, the cold rolling rate immediately before the solution recrystallization treatment is set to 30% or more, and the solution treatment is carried out at a heating temperature of 450%. ~570℃, heating rate 50
℃/min or more, holding time 5 minutes or less, cooling rate 50
A method for producing a T4-treated aluminum alloy rolled plate for forming processing, characterized in that the process is carried out at a temperature of ℃/min or higher.
JP27175788A 1988-10-27 1988-10-27 Aluminum alloy rolled sheet for forming and its manufacture Granted JPH02118049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27175788A JPH02118049A (en) 1988-10-27 1988-10-27 Aluminum alloy rolled sheet for forming and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27175788A JPH02118049A (en) 1988-10-27 1988-10-27 Aluminum alloy rolled sheet for forming and its manufacture

Publications (2)

Publication Number Publication Date
JPH02118049A JPH02118049A (en) 1990-05-02
JPH0547615B2 true JPH0547615B2 (en) 1993-07-19

Family

ID=17504415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27175788A Granted JPH02118049A (en) 1988-10-27 1988-10-27 Aluminum alloy rolled sheet for forming and its manufacture

Country Status (1)

Country Link
JP (1) JPH02118049A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04263034A (en) * 1990-12-27 1992-09-18 Nkk Corp Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JP2856936B2 (en) * 1991-03-30 1999-02-10 日本鋼管株式会社 Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JP2595836B2 (en) * 1991-03-30 1997-04-02 日本鋼管株式会社 Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JPH05230583A (en) * 1992-02-25 1993-09-07 Mitsubishi Alum Co Ltd High strength al alloy sheet excellent in formability
JP2818721B2 (en) * 1992-11-12 1998-10-30 川崎製鉄株式会社 Method for producing aluminum alloy sheet for body sheet and aluminum alloy sheet obtained by the method
JPH09137243A (en) 1995-11-10 1997-05-27 Nkk Corp Aluminum alloy sheet excellent in bendability after press forming and its production
JP5905810B2 (en) * 2012-10-23 2016-04-20 株式会社神戸製鋼所 Aluminum alloy sheet for forming
JP6444779B2 (en) * 2015-03-09 2018-12-26 株式会社神戸製鋼所 Aluminum alloy automobile roof panels and aluminum alloy sheets for automobile roof panels

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151013A (en) * 1975-10-22 1979-04-24 Reynolds Metals Company Aluminum-magnesium alloys sheet exhibiting improved properties for forming and method aspects of producing such sheet
JPS57120648A (en) * 1981-01-16 1982-07-27 Kobe Steel Ltd Baking hardenable al alloy
JPS57210944A (en) * 1981-06-18 1982-12-24 Sukai Alum Kk Aluminum alloy for butt resistance welding with superior stress corrosion cracking resistance at joint
JPS58171547A (en) * 1982-03-31 1983-10-08 Sumitomo Light Metal Ind Ltd Aluminum alloy material for forming with superior bendability and its manufacture
JPS5939500A (en) * 1982-08-30 1984-03-03 Yamada Dobby Co Ltd Balancing device for press
JPS6050864A (en) * 1983-08-31 1985-03-20 Pentel Kk Manufacture of carbon body for electrode
JPS6223973A (en) * 1985-07-22 1987-01-31 Kobe Steel Ltd Manufacture of aluminum alloy for automobile wheel
JPS6227544A (en) * 1985-07-26 1987-02-05 Sky Alum Co Ltd Heat-treated-type aluminum alloy rolled sheet for forming working and its production
JPS6369952A (en) * 1986-09-09 1988-03-30 Sky Alum Co Ltd Manufacture of aluminum-alloy rolled sheet
JPS63118045A (en) * 1986-11-05 1988-05-23 Sky Alum Co Ltd Aluminum alloy for bright disk wheel

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4151013A (en) * 1975-10-22 1979-04-24 Reynolds Metals Company Aluminum-magnesium alloys sheet exhibiting improved properties for forming and method aspects of producing such sheet
JPS57120648A (en) * 1981-01-16 1982-07-27 Kobe Steel Ltd Baking hardenable al alloy
JPS57210944A (en) * 1981-06-18 1982-12-24 Sukai Alum Kk Aluminum alloy for butt resistance welding with superior stress corrosion cracking resistance at joint
JPS58171547A (en) * 1982-03-31 1983-10-08 Sumitomo Light Metal Ind Ltd Aluminum alloy material for forming with superior bendability and its manufacture
JPS5939500A (en) * 1982-08-30 1984-03-03 Yamada Dobby Co Ltd Balancing device for press
JPS6050864A (en) * 1983-08-31 1985-03-20 Pentel Kk Manufacture of carbon body for electrode
JPS6223973A (en) * 1985-07-22 1987-01-31 Kobe Steel Ltd Manufacture of aluminum alloy for automobile wheel
JPS6227544A (en) * 1985-07-26 1987-02-05 Sky Alum Co Ltd Heat-treated-type aluminum alloy rolled sheet for forming working and its production
JPS6369952A (en) * 1986-09-09 1988-03-30 Sky Alum Co Ltd Manufacture of aluminum-alloy rolled sheet
JPS63118045A (en) * 1986-11-05 1988-05-23 Sky Alum Co Ltd Aluminum alloy for bright disk wheel

Also Published As

Publication number Publication date
JPH02118049A (en) 1990-05-02

Similar Documents

Publication Publication Date Title
JPH0127146B2 (en)
JPH0747807B2 (en) Method for producing rolled aluminum alloy plate for forming
JPH06256917A (en) Production of aluminum alloy sheet having delayed aging characteristic at ordinary temperature
JPH0547615B2 (en)
JPH083702A (en) Production of aluminum alloy sheet material excellent in formability and heating hardenability
JP2671121B2 (en) Rolled aluminum alloy sheet for forming, which has excellent elongation, bendability, and overhanging property, and method for producing the same
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JPS61272342A (en) Aluminum alloy sheet excelling in formability and baking hardening and its production
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH0257655A (en) Foamable aluminum alloy having excellent surface treating characteristics and its manufacture
JPH07310153A (en) Production of aluminum alloy sheet excellent in strength ductility and stability
JP2004124175A (en) Method for manufacturing 6000 system alloy plate for forming excellent in formability, baking hardenability, and springback characteristic
JPH0788558B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH10259464A (en) Production of aluminum alloy sheet for forming
JPH08269608A (en) High strength aluminum alloy excellent in formability and corrosion resistance
JP3278119B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in formability and bake hardenability
JPH0480979B2 (en)
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JP3686146B2 (en) Method for producing aluminum alloy sheet for forming
JPH04304339A (en) Aluminum alloy sheet for press forming excellent in balance between strength and ductility and baking hardenability and its production
JPH01225738A (en) Heat treatment-type aluminum alloy rolled plate for forming and its manufacture
JPH04214834A (en) Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JPH04276048A (en) Production of aluminum alloy sheet for forming excellent in baking hardenability

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees