JP2856936B2 - Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same - Google Patents

Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same

Info

Publication number
JP2856936B2
JP2856936B2 JP3093684A JP9368491A JP2856936B2 JP 2856936 B2 JP2856936 B2 JP 2856936B2 JP 3093684 A JP3093684 A JP 3093684A JP 9368491 A JP9368491 A JP 9368491A JP 2856936 B2 JP2856936 B2 JP 2856936B2
Authority
JP
Japan
Prior art keywords
range
aluminum alloy
strength
bake hardenability
ductility
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3093684A
Other languages
Japanese (ja)
Other versions
JPH04304339A (en
Inventor
毅 藤田
青史 津山
裕 土田
直武 吉原
真司 三田尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP3093684A priority Critical patent/JP2856936B2/en
Publication of JPH04304339A publication Critical patent/JPH04304339A/en
Application granted granted Critical
Publication of JP2856936B2 publication Critical patent/JP2856936B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、強度・延性バランス
及び焼付硬化性に優れたプレス成形用アルミニウム合金
板並びにその製造方法に関し、特に圧延後の熱処理のま
までの強度・延性バランスに優れ、しかも170℃程度
の低温の焼付塗装においても硬化能が高い自動車車体等
に好適なプレス成形用アルミニウム合金板及びその製造
方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy sheet for press forming having excellent balance between strength and ductility and bake hardenability, and a method for producing the same. In addition, the present invention relates to an aluminum alloy sheet for press forming suitable for an automobile body and the like having a high hardening ability even at a low temperature of about 170 ° C., and a method for producing the same.

【0002】[0002]

【従来の技術】従来より自動車ボディーシート等の成形
加工用板材として表面処理冷延鋼板が多用されている
が、近年、自動車の燃費向上のための軽量化の要望が高
まっており、その要望を満たすべく自動車ボディーシー
ト等にアルミニウム合金板が使用され始めてきている。
2. Description of the Related Art Conventionally, surface-treated cold-rolled steel sheets have been frequently used as a plate material for forming an automobile body sheet or the like. In recent years, there has been an increasing demand for weight reduction for improving fuel efficiency of automobiles. Aluminum alloy sheets are beginning to be used for automobile body sheets and the like to satisfy the requirements.

【0003】自動車ボディーシート用アルミニウム合金
としては、5182に代表される非熱処理型のAl−M
g系合金と、熱処理型のAl−Cu系、Al−Mg−S
i系に分けられる。非熱処理型のAl−Mg系合金とし
ては、CuやZnを微量添加し、熱処理して用いること
を前提としたものが開発されている(特開昭57−12
0648、特開昭 53−103914等)。
As an aluminum alloy for an automobile body sheet, a non-heat-treated Al-M represented by 5182 is used.
g-based alloy, heat-treated Al-Cu-based, Al-Mg-S
It is divided into i-series. As a non-heat treatment type Al-Mg based alloy, an alloy premised on the premise that a small amount of Cu or Zn is added, and heat treatment is used has been developed (JP-A-57-12).
0648, JP-A-53-103914, etc.).

【0004】しかし、これらは熱処理型のAl合金より
やや成形性が優れてはいるものの、従来の表面処理冷間
圧延鋼板よりも劣り、さらには塗装焼付工程により強度
の上昇が得られない。また、熱処理型であるAl−Cu
系の2036、Al−Mg−Si系の6009、601
0、6011では成形性が劣り、さらには欧米における
200℃での焼付けに対して省エネルギの観点から進め
られた日本国内で主流の170℃以下の温度で30分間
たらず保持する低温短時間の焼付けでは強度が上昇せ
ず、2000系においては逆に低下するという問題もあ
った。
[0004] However, although these are slightly better in formability than heat-treated Al alloys, they are inferior to conventional surface-treated cold-rolled steel sheets, and furthermore, no increase in strength can be obtained by the paint baking step. Also, a heat treatment type Al-Cu
System 2036, Al-Mg-Si system 6009, 601
0, 6011, the moldability is inferior, and furthermore, the baking at 200 ° C. in Europe and the United States has been advanced from the viewpoint of energy saving. There was also a problem that the strength was not increased by baking, and conversely decreased in the 2000 series.

【0005】このように、従来のアルミニウム合金で
は、自動車ボディシートに要求される特性、特に成形性
と焼付硬化性が十分に満足されていないのが現状であ
る。
[0005] As described above, at present, conventional aluminum alloys do not sufficiently satisfy the characteristics required for an automobile body sheet, particularly, moldability and bake hardenability.

【0006】[0006]

【発明が解決しようとする課題】この発明はかかる事情
に鑑みてなされたものであって、強度・延性バランスが
良く自動車車体用等として十分なプレス成形性を有し、
低温かつ短時間の焼付においても焼付硬化性が良好なア
ルミニウム合金板及びその製造方法を提供することを目
的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and has a good balance between strength and ductility, and has sufficient press formability for use in automobile bodies and the like.
An object of the present invention is to provide an aluminum alloy sheet having good bake hardenability even at low temperature and short time baking, and a method for producing the same.

【0007】[0007]

【課題を解決するための手段及び作用】本願発明者等
は、上記目的を達成するために種々検討を重ねた結果、
化学成分組成を適切に調整し、製造条件を適正化するこ
とにより、熱処理後の伸びが30%以上で、かつ170
℃で30分間といった低温・短時間の焼付処理において
も焼付後の降伏強度を焼付前よりも3〜5kgf /mm2
上硬化することを見出し、本発明を完成するに至った。
すなわち、本発明は、強度・延性バランスの向上、成形
性の向上、及び塗装焼付後の耐デント性の向上を図るべ
く、材料特性としての破断伸びと、低温・短時間焼付後
の降伏強度との両特性を改善させたものである。
The inventors of the present invention have made various studies to achieve the above object, and as a result,
By appropriately adjusting the chemical composition and optimizing the production conditions, the elongation after heat treatment is 30% or more, and the elongation after heat treatment is 170%.
It has been found that even after baking at a low temperature for a short period of time at 30 ° C. for 30 minutes, the yield strength after baking hardens by 3 to 5 kgf / mm 2 or more than before baking, and the present invention has been completed.
That is, the present invention is intended to improve the strength-ductility balance, improve the formability, and improve the dent resistance after baking, and to elongate the material as a breaking elongation, yield strength after low-temperature and short-time baking. Are both improved.

【0008】特に、化学成分組成については、Cu,M
g,Siの添加量を特定の範囲に規定してこれらのバラ
ンスを制御するとともに、微量のFe,Ti,B,Zn
を添加し、さらに、成形性改善のため、結晶粒を等軸化
することにより、強度・延性のバランスをとり、かつ1
70℃で30分間という低温短時間の焼付処理において
も優れた焼付硬化性を得ることを可能にしたものであ
る。
In particular, regarding the chemical composition, Cu, M
g and Si are specified in a specific range,
Control the amount of Fe, Ti, B, Zn
To make the crystal grains equiaxed to improve formability
To balance strength and ductility, and
For low temperature and short time baking at 70 ° C for 30 minutes
Is also capable of obtaining excellent bake hardenability.
You.

【0009】すなわち、この発明に係る強度・延性バラ
ンス及び焼付硬化性に優れたプレス成形用アルミニウム
合金板は、重量%で、Mgを1.5〜3.9%、Cuを
0.25〜3.0%、Siを0.02〜0.15%、F
eを0.03〜0.25%、Tiを0.005〜0.1
5%、Bを0.0002〜0.05%、Znを0.02
〜0.10%の範囲で含有し、かつMg及びCuが、M
g−Cuの座標において、その座標点を(Mg%,Cu
%)で表した場合に、図1に示す(4.0,0.2
5)、(1.5,0.8)、(1.5,3.0)、
(4.0,2.23)の4点で囲まれる範囲であり、残
部がAl及び0.1%以下の不可避的不純物からなり、
結晶粒における圧延方向の軸長をL、Lに対して垂直の
板厚方向の軸長をHとした場合に、その平均アスペクト
比L/Hが1.3以下であり、170℃で30分間の焼
付処理を行なった場合の降伏強度の上昇が3kg/mm
2 以上であることを特徴とする。また、この組成に対
し、0.01〜0.15%のMn、0.01〜0.15
%のCr、0.01〜0.12%のZr、及び0.01
〜0.18%のVのうち1種又は2種以上をさらに含ん
でいてもよい。これらは、再結晶抑制元素であるから、
異常粒成長を抑制する目的で添加してもよいが、その量
は成形性向上の観点から従来よりも低い上述の範囲に限
定される。
More specifically, the aluminum alloy sheet for press forming according to the present invention, which has excellent strength-ductility balance and bake hardenability, contains 1.5 to 3.9 % of Mg and 0.25 to 3% of Cu by weight%. 0.0%, Si 0.02 to 0.15%, F
e is 0.03 to 0.25%, and Ti is 0.005 to 0.1%.
5%, B 0.0002-0.05%, Zn 0.02
0.10.10% and Mg and Cu are M
In the coordinate of g-Cu, the coordinate point is defined as (Mg%, Cu
%), Shown in FIG. 1 (4.0, 0.2
5), (1.5, 0.8), (1.5, 3.0),
(4.0, 2.23), the remainder being made up of Al and 0.1% or less inevitable impurities,
Assuming that the axis length of the crystal grains in the rolling direction is L and the axis length in the thickness direction perpendicular to L is H, the average aspect ratio L / H is 1.3 or less, and 170 ° C. for 30 minutes 3kg / mm increase in yield strength when baking
It is characterized by being 2 or more. Further, based on this composition, Mn of 0.01 to 0.15%, 0.01 to 0.15%
% Cr, 0.01-0.12% Zr, and 0.01%
One or more of V of 0.18% may be further contained. Since these are recrystallization suppressing elements,
It may be added for the purpose of suppressing abnormal grain growth, but its amount is limited to the above-mentioned range lower than the conventional range from the viewpoint of improving formability.

【0010】また、この発明に係る強度・延性バランス
及び焼付硬化性に優れたプレス成形用アルミニウム合金
板の製造方法は、重量%で、Mgを1.5〜3.9%、
Cuを0.25〜3.0%、Siを0.02〜0.15
%、Feを0.03〜0.25%、Tiを0.005〜
0.15%、Bを0.0002〜0.05%、Znを
0.02〜0.10%の範囲で含有し、かつMg及びC
uが、Mg−Cuの座標において、その座標点を(Mg
%,Cu%)で表した場合に、図1に示す(4.0,
0.25)、(1.5,0.8)、(1.5,3.
0)、(4.0,2.23)の4点で囲まれる範囲であ
り、残部がAl及び0.1%以下の不可避的不純物から
なるアルミニウム合金の鋳塊に対し、450〜580℃
の範囲内の温度で1段又は多段の均質化処理を施した
後、この鋳塊を熱間圧延及び冷間圧延することにより所
望の板厚とし、次いで440〜580℃の範囲内の温度
まで3℃/秒以上の加熱速度で加熱してその温度で0〜
120秒間保持し、その後100℃まで2℃/秒以上の
冷却速度で冷却して170℃で30分間の焼付処理を行
なった場合の降伏強度の上昇が3kg/mm2 以上であ
るアルミニウム合金板を得ることを特徴とする。
The method for producing an aluminum alloy sheet for press forming according to the present invention, which is excellent in strength-ductility balance and bake hardenability, comprises Mg in an amount of 1.5 to 3.9 % by weight,
Cu is 0.25 to 3.0%, Si is 0.02 to 0.15
%, Fe 0.03-0.25%, Ti 0.005-
0.15%, B in the range of 0.0002 to 0.05%, Zn in the range of 0.02 to 0.10%, and Mg and C
u sets the coordinate point of the Mg—Cu coordinates to (Mg
%, Cu%), as shown in FIG.
0.25), (1.5, 0.8), (1.5, 3..
0) and (4.0, 2.23). The range surrounded by the four points is 450 to 580 ° C. with respect to an aluminum alloy ingot consisting of Al and 0.1% or less inevitable impurities.
After performing one or more stages of homogenization at a temperature within the range, the ingot is hot-rolled and cold-rolled to a desired thickness, and then to a temperature within the range of 440 to 580 ° C. Heat at a heating rate of 3 ° C / sec or more,
Held for 120 seconds, the aluminum alloy plate an increase in yield strength when subjected to baking for 30 minutes at then cooled to 170 ° C. at a cooling rate of more than 2 ° C. / sec to 100 ° C. is 3 kg / mm 2 or more It is characterized by obtaining.

【0011】この場合に、熱間圧延と冷間圧延との間、
又は冷間圧延と冷間圧延との間、又はその両方で、32
0〜580℃の範囲内の温度における中間焼鈍処理を1
回又は2回以上実施することが好ましい。
In this case, between hot rolling and cold rolling,
Or between cold rolling and cold rolling, or both,
The intermediate annealing treatment at a temperature within the range of 0 to 580 ° C.
It is preferable to carry out once or twice or more.

【0012】以下、この発明について詳細に説明する。
なお、以下の説明において%表示は重量%を表わす。
Hereinafter, the present invention will be described in detail.
In addition, in the following description,% display represents weight%.

【0013】先ず、この発明に係るアルミニウム合金の
成分組成の限定理由について説明する。
First, the reasons for limiting the component composition of the aluminum alloy according to the present invention will be described.

【0014】Mgは本発明に係る合金における必須の基
本成分であり、適量合金されることにより合金の強度及
び延性の向上に大きく寄与する。しかし、Mgが1.5
%未満では十分な強度および焼付硬化性が得られず、逆
に4.0%を超えると熱間圧延時の割れが顕著となり、
熱間加工性が劣化し、また焼付硬化性が低下する。熱間
加工性及び焼付硬化性を考慮して特に有効な範囲は1.
5〜3.9%である。従って、本発明ではMgの含有量
を1.5〜3.9%の範囲に規定する。
Mg is an essential basic component in the alloy according to the present invention, and when it is alloyed in an appropriate amount, it greatly contributes to improving the strength and ductility of the alloy. However, when Mg is 1.5
%, Sufficient strength and bake hardenability cannot be obtained. Conversely, if it exceeds 4.0%, cracks during hot rolling become remarkable,
Hot workability deteriorates and bake hardenability decreases. Hot
A particularly effective range in consideration of workability and bake hardenability is 1.
5 to 3.9%. Therefore, in the present invention, the content of Mg is defined in the range of 1.5 to 3.9%.

【0015】Cu: Cuは主としてAl−Mgと結び
つき、Al2 CuMg系析出物を形成し、焼付けによる
硬化に寄与する成分である。しかし、Cuの含有量が
0.25%未満ではその効果が十分に得られず、逆に
3.0%を超えると成形性及び耐食性を劣化させる。従
って、Cuの含有量を0.25〜3.0%の範囲に規定
する。
Cu: Cu is a component that mainly binds to Al—Mg to form an Al 2 CuMg-based precipitate and contributes to hardening by baking. However, if the Cu content is less than 0.25%, the effect cannot be sufficiently obtained, and if it exceeds 3.0%, the moldability and the corrosion resistance deteriorate. Therefore, the content of Cu is specified in the range of 0.25 to 3.0%.

【0016】また、Mg及びCuの量は、さらに上述し
た図1における座標点を結ぶ線に囲まれる範囲に限定さ
れるのは、この範囲を外れると素材の強度、延性及び焼
付後の強度が不十分になるか、または焼付硬化性が不十
分になるからである。すなわち、図1の座標において、
B(4.0,0.25)とC(1.5,0.8)とを結
ぶ線よりも、Mg又はCuの量が少ない場合には十分な
強度が得られない。また、E(8.0,1.0)とD
(1.5,3.0)とを結ぶ線よりもMg又はCuの量
が多い場合には延性すなわち成形性が低下する。さら
に、C(1.5,0.8)とD(1.5,3.0)とで
規定される範囲よりもMg又はCuの量が少ない場合に
は延性(すなわち成形性)及び焼付後の強度が十分でな
い。さらにまた、Mgが4.0を超える範囲、すなわち
B(4.0,0.25)とF(4.0,2.23)とを
結ぶ線よりもMg量が多い場合には焼付硬化性が不十分
になる傾向にある。
Further, the amounts of Mg and Cu are further limited to the range surrounded by the line connecting the coordinate points in FIG. 1 described above. If the range is out of this range, the strength, ductility, and post-baking strength of the material are reduced. Insufficient or insufficient bake hardenability
Because it is a minute . That is, in the coordinates of FIG.
If the amount of Mg or Cu is smaller than the line connecting B (4.0, 0.25) and C (1.5, 0.8), sufficient strength cannot be obtained. Also, E (8.0,1.0) and D
When the amount of Mg or Cu is larger than the line connecting (1.5, 3.0), ductility, that is, moldability is reduced. Further, when the amount of Mg or Cu is smaller than the range defined by C (1.5, 0.8) and D (1.5, 3.0), ductility (ie, formability) and after baking Is not strong enough. Furthermore, the range in which Mg exceeds 4.0, that is,
B (4.0, 0.25) and F (4.0, 2.23)
Baking hardenability is insufficient when the amount of Mg is larger than the connecting wire
Tends to be.

【0017】Si: Siは通常不可避的不純物として
含有される元素であるが、微量添加であれば成形性の向
上に寄与する重要な元素である。また、Cu,Mgとと
もに適量添加されることにより低温短時間における焼付
硬化性を向上させる元素である。しかし、Siの含有量
が0.02%未満ではその効果が十分ではなく、逆に
0.15%を超えると溶体化処理においても熱間圧延等
で析出していた粗大なMg2 Si系析出物が固溶せず、
成形性を低下させる。従って、Siの含有量を0.02
〜0.15%の範囲に規定する。望ましくは0.02〜
0.1%である。
Si: Si is an element usually contained as an unavoidable impurity, but if added in a small amount, it is an important element contributing to the improvement of formability. Also, Cu, Mg and
Baking in low temperature and short time by adding appropriate amount
It is an element that improves curability . However, if the Si content is less than 0.02%, the effect is not sufficient, and if the Si content is more than 0.15%, coarse Mg 2 Si-based precipitates deposited by hot rolling or the like even in solution treatment. Things do not dissolve,
Decreases moldability. Therefore, the content of Si is set to 0.02
It is specified in the range of 0.15%. Desirably 0.02-
0.1%.

【0018】Fe: Feは不可避的不純物として通常
アルミニウム合金に含有されるものであり、含有量が
0.25%を超えるとAlとの共存により粗大な晶出物
が生成されやすくプレス成形性に悪影響を及ぼす。しか
し、微量の添加により成形性の向上に寄与し、これらの
含有量が0.02%未満と少なすぎると成形性が劣化す
る。従って、Feの含有量を0.02〜0.25%の範
囲に規定する。
Fe: Fe is usually contained as an inevitable impurity in aluminum alloys. When the content exceeds 0.25%, coarse crystals are easily formed due to the coexistence with Al, and the press formability is reduced. Adversely affect. However, the addition of a small amount contributes to the improvement of the moldability, and if their content is too small, less than 0.02%, the moldability deteriorates. Therefore, the content of Fe is defined in the range of 0.02 to 0.25%.

【0019】Ti,B: Ti及びBはTiB2 等とし
て存在し、鋳塊の結晶粒を微細化して熱間での加工性等
を改善する効果を有するので、これらを複合添加するの
が極めて重要である。しかしながら、これらを過剰に添
加すると粗大な晶出物を生成し、成形性を劣化させるの
でTi及びBの含有量を、夫々0.005〜0.15
%、及び0.0002〜0.05%の範囲に規定する。
Ti, B: Ti and B are present as TiB 2 and the like, and have the effect of refining the crystal grains of the ingot to improve the workability during hot work and the like. is important. However, if these are added excessively, coarse crystals are formed and the formability is degraded. Therefore, the contents of Ti and B are reduced to 0.005 to 0.15, respectively.
% And a range of 0.0002 to 0.05%.

【0020】Zn:Znは強度の向上に寄与する元素で
あり、そのために0.02%以上添加するが、その含有
量が0.1%を超えると延性及び焼付後の硬化性を低減
させるため、その含有量を0.02〜0.1%以下に規
定する。なお、表1の合金番号1〜10(3,5,6,
9は欠番)は本発明の組成範囲内の実施例であり、表2
の合金番号11〜33はその範囲から外れる比較例であ
る。なお、合金番号31〜33は従来からボディーシー
ト用に用いられている合金であり、夫々2036,51
82,6010に相当するものである。
Zn: Zn is an element contributing to the improvement of the strength. For this reason, Zn is added in an amount of 0.02% or more. If the content exceeds 0.1%, the ductility and the curability after baking are reduced. , Its content is specified to be 0.02 to 0.1% or less. The alloy numbers 1 to 10 in Table 1 (3, 5, 6,
9 are missing numbers) are examples within the composition range of the present invention.
Are comparative examples out of the range. The alloy numbers 31 to 33 are alloys conventionally used for body sheets.
82,6010.

【0021】本発明においては、以上の元素の他に、必
要に応じて、Mn,Cr,ZrおよびVのうち1種また
は2種以上を適量添加してもよい。
In the present invention, one or more of Mn, Cr, Zr and V may be added in an appropriate amount, if necessary, in addition to the above elements.

【0022】Mn,Cr,Zr,V: これらの元素は
再結晶抑制元素であるから、異常粒成長を抑制する目的
で適量添加してもよい。しかし、これらの合金成分は、
再結晶粒の等軸化に対し負の効果があり成形性を低下さ
せるため、これらの含有量は従来のアルミニウム合金よ
りも少ない範囲に規定する必要がある。従って、Mn,
Cr、Zr、Vの含有量を夫々0.01〜0.15%、
0.01〜0.15%、0.01〜0.12%、0.0
1〜0.18%に規定する。
Mn, Cr, Zr, V: Since these elements are recrystallization suppressing elements, they may be added in appropriate amounts for the purpose of suppressing abnormal grain growth. However, these alloy components
Since these materials have a negative effect on equiaxing recrystallized grains and lower the formability, their contents need to be specified in a range smaller than that of conventional aluminum alloys. Therefore, Mn,
The contents of Cr, Zr, and V are each 0.01 to 0.15%,
0.01-0.15%, 0.01-0.12%, 0.0
It is defined as 1 to 0.18%.

【0023】上記元素の他、通常のアルミニウム合金と
同様、不可避的不純物が含有されるが、その量は本発明
の効果が損なわれない範囲であれば許容される。例え
ば、Be、Na,K等は、それぞれ0.001%以下程
度、合計で0.1%以下ならばこれらを含有していて
も、特性上の支障はない。
In addition to the above-mentioned elements, unavoidable impurities are contained as in the case of ordinary aluminum alloys, but the amount is acceptable as long as the effects of the present invention are not impaired. For example, Be, Na, K, and the like each have a content of about 0.001% or less, and a total of 0.1% or less.

【0024】次に、組織について説明する。Next, the organization will be described.

【0025】アルミニウム合金の成形性は、結晶粒形状
に大きく依存している。等軸平均アスペクト比L/H
(L:圧延方向の結晶粒軸長、H:Lに対し垂直の板厚
方向軸長)が1.3を超えるとプレス加工時に歪模様が
現出し、成形性も低下するため、等軸平均アスペクト比
は1.3以下であることが必要である。本発明では、以
上のような化学組成および組織とすることにより、17
0℃で30分間という低温短時間の焼付処理の場合に
も、3kg/mm 2 以上の焼付硬化性を可能にしたもの
である。
The formability of an aluminum alloy largely depends on the crystal grain shape. Equiaxial average aspect ratio L / H
If (L: grain axis length in the rolling direction, H: axis length in the thickness direction perpendicular to L) exceeds 1.3, a distorted pattern appears at the time of press working, and the formability also decreases. The aspect ratio needs to be 1.3 or less. In the present invention,
With the above chemical composition and organization, 17
In the case of baking at low temperature and short time of 30 minutes at 0 ° C
Also have bake hardenability of 3 kg / mm 2 or more
It is.

【0026】次に、この発明の合金の製造条件について
説明する。
Next, the conditions for producing the alloy of the present invention will be described.

【0027】上記範囲に成分・組成が規定されたアルミ
ニウム合金を常法により溶解・鋳造し、その鋳塊に対し
て450〜580℃の範囲内の温度で1段又は多段の均
質化熱処理を施す。このような均質化処理を施すことに
より、鋳造時に晶出した共晶化合物の拡散固溶を促進
し、局部的ミクロ偏析を軽減する。また、この処理によ
り、最終製品の結晶粒の異常粒成長を抑制し、均一化を
図るうえで重要な役割を果たすMn,Cr,Zr,Vの
化合物を微細に析出させることができる。しかし、この
処理の温度が450℃未満の場合には上述したような効
果が不十分であり、一方580℃を超えると共晶融解が
生じる。従って、均質化処理の温度を450〜580℃
の範囲とした。なお、この温度範囲内での保持時間が1
時間未満では上述の効果が十分に得られず、72時間を
超える長時間の加熱はその効果が飽和してしまうため、
この均質化処理の保持時間は1〜72時間が望ましい。
An aluminum alloy having a specified composition and composition in the above range is melted and cast by a conventional method, and the ingot is subjected to one or more stages of homogenizing heat treatment at a temperature in the range of 450 to 580 ° C. . By performing such a homogenization treatment, diffusion and solid solution of the eutectic compound crystallized during casting are promoted, and local microsegregation is reduced. Further, by this treatment, it is possible to suppress abnormal grain growth of crystal grains of the final product and to precipitate finely the compounds of Mn, Cr, Zr, and V which play an important role in achieving uniformity. However, if the temperature of this treatment is lower than 450 ° C., the above-mentioned effects are insufficient, while if it exceeds 580 ° C., eutectic melting occurs. Therefore, the temperature of the homogenization treatment is set to 450 to 580 ° C.
Range. The holding time within this temperature range is 1
If the time is less than the time, the above-mentioned effect cannot be sufficiently obtained, and the long-time heating exceeding 72 hours saturates the effect.
The holding time of this homogenization treatment is desirably 1 to 72 hours.

【0028】次いで、このような均質化処理が施された
鋳塊に対し、常法に従って所定の板厚を得るために熱間
圧延及び冷間圧延を行う。また、歪矯正又は表面粗度調
整のため、以下に示す熱処理の前後両方、又はいずれか
一方で5%以下のストレッチング、レベリング、又はス
キンパス圧延を実施してもよい。
Next, the ingot subjected to such homogenization treatment is subjected to hot rolling and cold rolling according to a conventional method to obtain a predetermined thickness. Further, in order to correct the distortion or adjust the surface roughness, stretching, leveling, or skin pass rolling of 5% or less may be performed before and / or after the heat treatment described below.

【0029】圧延終了後、このような圧延板材に対し、
440〜580℃の範囲内の温度に3℃/秒以上の加熱
速度で加熱して、その温度に達して後即座に、又は12
0秒間以下の期間保持した後、100℃まで2℃/秒以
上の冷却速度で急速冷却するといった条件の熱処理を施
す。この処理により組織が均一化し、結晶粒の平均アス
ペクト比が1.3以下に調整され、さらに加工歪が除去
され、結果としてプレス成形性を向上させることができ
る。また、この熱処理は、焼付硬化に対する寄与が大き
いAl−Cu−Mg系の金属間化合物の溶体化を図り、
焼付硬化性の向上を達成するものである。この場合に、
加熱温度が440℃未満では、上述のような効果を十分
に得ることができない。また、加熱速度が3℃/秒未満
であったり、加熱温度が580℃を超えたり、保持時間
が120秒よりも長かったりすると、結晶粒の一部が異
常粒成長を起こしてしまう。さらに、100℃までの冷
却速度が2℃/秒未満では、冷却中に上述の化合物が粗
大に析出し、プレス成形性及び焼付硬化性の点で望まし
くない。従って、上述のように製造条件が規定される。
After the completion of rolling, such a rolled sheet material is
Heating to a temperature in the range of 440 to 580 ° C. at a heating rate of 3 ° C./sec or more, and immediately after reaching the temperature, or
After holding for a period of 0 second or less, heat treatment is performed under conditions such as rapid cooling to 100 ° C. at a cooling rate of 2 ° C./second or more. By this treatment, the structure is made uniform, the average aspect ratio of the crystal grains is adjusted to 1.3 or less, and the processing strain is removed, and as a result, the press formability can be improved. In addition, this heat treatment aims to form a solution of an Al-Cu-Mg intermetallic compound that greatly contributes to bake hardening,
This achieves improvement in bake hardenability. In this case,
If the heating temperature is lower than 440 ° C., the above-mentioned effects cannot be sufficiently obtained. If the heating rate is less than 3 ° C./sec, the heating temperature exceeds 580 ° C., or the holding time is longer than 120 seconds, some of the crystal grains will undergo abnormal grain growth. Further, if the cooling rate to 100 ° C. is less than 2 ° C./sec, the above-mentioned compound is coarsely precipitated during cooling, which is not desirable in terms of press formability and bake hardenability. Therefore, the manufacturing conditions are defined as described above.

【0030】このような工程に加えて、上述の熱間圧延
と冷間圧延との間、又は冷間圧延と冷間圧延との間、又
はその両方で、1回又は2回以上の中間焼鈍を施すこと
が望ましい。この中間焼鈍を施すことにより、冷間圧延
において強圧下する際のエッジ割れを防止することがで
き、また再結晶核として機能するMg化合物が析出して
組織が均一化し、結果として成形性を向上させることが
できる。しかし、この際の温度が320℃未満ではその
効果が十分ではなく、また580℃を超えると共晶融解
が生じる。従って、中間焼鈍は320〜580℃の範囲
で行う。なお、この中間焼鈍は必須のプロセスではな
く、省プロセスの観点からはこの中間焼鈍を省略しても
構わない。
In addition to such steps, one or more intermediate annealings may be performed between the above-described hot rolling and cold rolling, or between cold rolling and cold rolling, or both. It is desirable to apply. By performing this intermediate annealing, it is possible to prevent edge cracking during cold rolling during strong rolling, and to precipitate a Mg compound functioning as a recrystallization nucleus to homogenize the structure, thereby improving formability. Can be done. However, if the temperature at this time is lower than 320 ° C., the effect is not sufficient, and if it exceeds 580 ° C., eutectic melting occurs. Therefore, the intermediate annealing is performed in the range of 320 to 580 ° C. Note that this intermediate annealing is not an essential process, and may be omitted from the viewpoint of saving the process.

【0031】このようにして得られたアルミニウム合金
板は、強度・延性バランスに優れ、破断伸びが30%以
上となり、また低温焼付による硬化性にも優れている。
従って、このようなアルミニウム合金板は自動車ボディ
−シ−ト用として好適である。
The aluminum alloy sheet thus obtained is excellent in balance between strength and ductility, has an elongation at break of 30% or more, and also has excellent curability by low-temperature baking.
Therefore, such an aluminum alloy plate is suitable for use in an automobile body sheet.

【0032】[0032]

【実施例】以下、この発明の実施例について説明する。 (実施例1)表1、表2に示すような成分・組成を有す
る合金を溶解−連続鋳造し、得られた鋳塊を面削した
後、530℃で10時間、さらに冷却の途中で450℃
で4時間の2段の均質化処理を実施し、次いで鋳片を4
00℃に加熱し、板厚4mmまで熱間圧延を行い、350
℃で1時間の中間焼鈍を施した。その後、室温に冷却
し、圧延率75%の冷間圧延を行って厚さ1mmの板材と
した。なお、熱間圧延の仕上り温度は280℃であっ
た。また、中間焼鈍は昇温・冷却ともに50℃/時間の
徐加熱及び徐冷で行った。この厚さ1mmの板材を530
℃まで10℃/秒の速度で加熱し、10秒間保持後、1
00℃まで20℃/秒の冷却速度で強制空冷を行った。
Embodiments of the present invention will be described below. (Example 1) An alloy having the components and compositions shown in Tables 1 and 2 was melt-continuously cast, and the obtained ingot was face-cut. ° C
And a two-hour homogenization treatment for 4 hours.
Heated to 00 ° C, hot-rolled to a thickness of 4 mm,
Intermediate annealing was performed at 1 ° C. for 1 hour. Thereafter, the plate was cooled to room temperature, and cold-rolled at a rolling reduction of 75% to obtain a sheet having a thickness of 1 mm. The finishing temperature of the hot rolling was 280 ° C. In addition, the intermediate annealing was performed by gradually heating and cooling at 50 ° C./hour for both heating and cooling. 530 pieces of this 1 mm thick plate
To 10 ° C. at a rate of 10 ° C./sec.
Forced air cooling was performed at a cooling rate of 20 ° C./sec to 00 ° C.

【0033】このようにして製造した板材を室温で30
日間放置後、所定形状に切出し、引張試験(JIS5
号,引張方向:圧延方向)及びコニカルカップ試験(J
ISZ2249:試験工具17型)を実施し、結晶粒の
平均アスペクト比L/Hを測定した。なお、コニカルカ
ップ試験はプレス成形のシミュレ−トとして行い、張出
しと深絞りとの複合成形性をCCV(mm)により評価し
た(CCVが小さいほど成形性に優れている)。また、
結晶粒形状はGa処理によりミクロ組織を現出し、サン
プル数50として切断法により求めた。さらに、プレス
成形後の塗装焼付をシミュレ−トするために、170℃
で30分間の熱処理(焼付に対応)を行い、その後もう
一度上述した熱処理後の試験と同一条件で引張試験を行
った。
[0033] The plate material produced in this way is kept at room temperature for 30 minutes.
After standing for a few days, cut out into a predetermined shape and use a tensile test (JIS5
No., tensile direction: rolling direction) and conical cup test (J
ISZ2249: test tool type 17), and the average aspect ratio L / H of the crystal grains was measured. The conical cup test was performed as a simulation of press molding, and the composite formability of overhang and deep drawing was evaluated by CCV (mm) (the smaller the CCV, the better the formability). Also,
The crystal grain shape was obtained by a micro-processing, in which a microstructure was revealed by the Ga treatment, and the number of samples was 50, and the cutting method was used. Further, in order to simulate the baking of the paint after press molding, the temperature of 170 ° C.
For 30 minutes (corresponding to seizure), and then a tensile test was again performed under the same conditions as the above-mentioned test after the heat treatment.

【0034】これらの試験結果を表3、4に示す。ま
た、コニカルカップ試験後の表面性状も併記した。な
お、焼付シミュレ−ト後の降伏強度から、最終熱処理後
の降伏強度を引いた値で焼付硬化を把握した。
Tables 3 and 4 show the test results. The surface properties after the conical cup test are also shown. The bake hardening was determined by subtracting the yield strength after the final heat treatment from the yield strength after the bake simulation.

【0035】なお、表1の合金番号1〜10は本発明の
組成範囲内の実施例であり、表2の合金番号11〜33
はその範囲から外れる比較例である。なお、合金番号
1〜33は従来からボディ−シ−ト用に用いられている
合金であり、夫々2036,5182,6010に相当
するものである。
The alloy numbers 1 to 10 in Table 1 are examples within the composition range of the present invention, and the alloy numbers 11 to 33 in Table 2
Are comparative examples out of the range. In addition, alloy number 3
Reference numerals 1 to 33 denote alloys conventionally used for body sheets, which correspond to 2036, 5182 and 6010, respectively.

【0036】表3から明らかなように、実施例である合
金番号1〜10は平均アスペクト比が1.3以下で、破
断伸びが30%以上と高く、CCVも良好で優れた成形
性が得られた。また、焼付硬化も降伏強度で3.7kgf
/mm2 以上と高い値を有し、焼付後の強度と焼付前の伸
びのバランスを表わすYSBH×El(降伏強度×伸び)
及びTSBH×El(引張強度×伸び)が高いことが確認
された。
As is clear from Table 3, the alloy Nos. 1 to 10 of Examples have an average aspect ratio of 1.3 or less, a high elongation at break of 30% or more, a good CCV, and excellent moldability. Was done. In addition, bake hardening is 3.7 kgf in yield strength.
YSBH × El (yield strength × elongation), which has a high value of at least / mm 2 and indicates the balance between strength after baking and elongation before baking.
And TSBH × El (tensile strength × elongation) were confirmed to be high.

【0037】これに対して、表2に示す比較例の合金番
号11〜33は、表4から明らかなように、平均アスペ
クト比が1.3以下であっても、成形性及び焼付硬化性
のうち双方又は一方が実施例よりも劣っていた。例えば
焼付硬化に寄与する成分であるMg及びCuの含有量が
低い合金番号11、及び焼付硬化性を低下させる成分で
あるZnの含有量が多い合金番号18は、焼付硬化性が
低く、2kgf/mm2 程度であった。また、Mgが
3.9%を超える合金番号26〜30も焼付硬化性が若
干劣っていた。さらに、Si,Mn,Cr,Zr,V,
Ti−B,Feの量が多い合金番号15,17,19,
20,21,22,24は伸びが低く、平均アスペクト
比が1.3以上であるため、成形性に劣り、歪模様が生
じやすい。
On the other hand, as is apparent from Table 4, the alloy numbers 11 to 33 of the comparative examples shown in Table 2 have the formability and the bake hardenability even if the average aspect ratio is 1.3 or less. Both or one of them was inferior to the examples. For example, Alloy No. 11 having a low content of Mg and Cu as components contributing to bake hardening and Alloy No. 18 having a large content of Zn which is a component lowering bake hardenability have low bake hardenability and 2 kgf / mm 2 . Also, Mg
The alloy numbers 26 to 30 exceeding 3.9 % also had slightly poor bake hardenability. Further, Si, Mn, Cr, Zr, V,
Alloy numbers 15, 17, 19, with large amounts of Ti-B and Fe
Since 20, 21, 22, and 24 have low elongation and an average aspect ratio of 1.3 or more, they are inferior in moldability and are likely to have a distorted pattern.

【0038】合金番号31,32,33の従来材は、焼
付硬化性がなく、また破断伸びも低いため、強度・伸び
バランスに劣っていた。
The conventional materials of Alloy Nos. 31 , 32 , and 33 had no bake hardenability and low elongation at break, and thus were inferior in strength-elongation balance.

【0039】図1の座標で示すように、A(8.0,
0.25)、B(4.0,0.25)、C(1.5,
0.8)、D(1.5,3.0)、E(8.0,1.
0)の5点で囲まれる範囲では、強度・伸びバランスが
良好であるが、この範囲よりもMg,Cuの量が多い合
金番号12,13は伸びが低く、また、この範囲よりも
Mg,Cuが低い合金番号11は逆に強度が不十分であ
て、強度・伸びバランスが悪いことが確認された。一
方、図3に示すように、焼付硬化性はMgが4%以下の
範囲において良好な値となる。従って、強度・伸びバラ
ンス及び焼付硬化性の双方とも良好になるのは、A
(4.0,0.25)、B(1.5,0.8)、C
(1.5,3.0)、D(4.0,2.23)の4点で
囲まれる範囲であることが確認された。
As shown by the coordinates in FIG. 1, A (8.0,
0.25), B (4.0, 0.25), C (1.5,
0.8), D (1.5, 3.0), E (8.0, 1..
In the range surrounded by the five points (0), the strength and elongation balance
Is good, Mg than this range, the alloy number 12, 13 high amount of Cu has a low elongation, also, Mg than this range, Cu is low alloy number 11 is a strength conversely insufficient It was confirmed that the balance between strength and elongation was poor. one
On the other hand, as shown in FIG.
Good values are obtained in the range. Therefore, the strength and elongation
The reason that both the bounce and bake hardenability are good is that A
(4.0, 0.25), B (1.5, 0.8), C
(1.5, 3.0) and D (4.0, 2.23)
It was confirmed that the area was enclosed.

【0040】図2にSi量とCCVとの関係を示すが、
この図に示すように、Si量が本発明の範囲外の場合
(合金番号14,15)に、CCV特性が低く、成形性
に劣ることが確認された。 (実施例2) 次に、表1に示した合金のうち、合金番号の組成を有
する鋳塊を使用し、表5に示す製造条件で合金板材を製
造した。なお、表5に特に記載されていない処理につい
ては実施例1の条件を採用した(圧延条件等)。なお、
表3中記号A〜Eは本発明に係る製造方法の範囲内の実
施例であり、記号F〜Mはその範囲から外れる比較例で
ある。
FIG. 2 shows the relationship between the amount of Si and CCV.
As shown in this figure, when the amount of Si was out of the range of the present invention (alloy Nos. 14 and 15 ), it was confirmed that the CCV characteristics were low and the formability was poor. (Example 2) Next, among the alloys shown in Table 1, an ingot having a composition of alloy number 3 was used, and an alloy sheet material was manufactured under the manufacturing conditions shown in Table 5. In addition, the conditions of Example 1 were adopted for the processing not particularly described in Table 5 (rolling conditions and the like). In addition,
Symbols A to E in Table 3 are examples within the range of the production method according to the present invention, and symbols F to M are comparative examples out of the range.

【0041】このようにして製造した板材について実施
例1と同様の評価試験を行った。その結果も表5に併記
する。
An evaluation test similar to that of Example 1 was performed on the plate material thus manufactured. The results are also shown in Table 5.

【0042】表5から明らかなように、本発明の条件を
満足しない比較例は伸び及び成形性、あるいは焼付硬化
性が不十分であることが確認された。
As is evident from Table 5, it was confirmed that Comparative Examples not satisfying the conditions of the present invention had insufficient elongation and moldability or bake hardenability.

【0043】例えば、比較例のG,I,Lのように均質
化処理温度、中間焼鈍処理温度あるいは溶体化焼入の加
熱温度が高いと成形性に劣りGとIでは歪模様が発生
し、比較例Jのように溶体化焼入の冷却速度が低かった
り、Fのように均質化処理温度が低いと、焼付硬化性に
劣ることが確認された。また、溶体化焼入の加熱温度が
低い比較例Mでは平均アスペクト比が1.3を超えてお
り伸びも低いため、成形性に劣り歪模様が発生した。ま
た、十分な焼付硬化性が得られないため、強度・伸びバ
ランスが低かった。溶体化焼入の加熱時間が長い比較例
K及び溶体化焼入における加熱速度が小さいHの場合に
は、異常粒成長が生じ、成形性が劣っており、歪模様が
発生していることが確認された。
For example, when the homogenizing treatment temperature, the intermediate annealing treatment temperature, or the solution quenching heating temperature is high as in Comparative Examples G, I, and L, the formability is inferior. When the cooling rate of solution quenching was low as in Comparative Example J or when the homogenization treatment temperature was low as in F, it was confirmed that the bake hardenability was poor. In Comparative Example M, in which the heating temperature for solution quenching was low, the average aspect ratio exceeded 1.3 and the elongation was low, so that the moldability was poor and a strain pattern was generated. In addition, since sufficient bake hardenability was not obtained, the balance between strength and elongation was low. In the case of Comparative Example K, in which the heating time of the solution quenching is long, and in the case of H, in which the heating rate in the solution quenching is small, abnormal grain growth occurs, the formability is poor, and a strain pattern is generated. confirmed.

【0044】[0044]

【発明の効果】この発明によれば、強度−延性バラン
ス、プレス成形性、及び低温・短時間の塗装焼付の際の
焼付硬化能が従来のアルミニウム合金板よりも優れてお
り、プレス成形性と塗装焼付後の耐デント性が要求され
る自動車ボディ−シ−ト用等として好適なアルミニウム
合金板及びその製造方法が提供される。
According to the present invention, the balance between strength and ductility, press formability, and bake hardening ability at the time of low-temperature and short-time coating baking are superior to those of conventional aluminum alloy sheets. Provided are an aluminum alloy sheet suitable for use in an automobile body sheet or the like which requires dent resistance after baking, and a method for producing the same.

【0045】 [0045]

【0046】[0046]

【表2】 [Table 2]

【0047】 [0047]

【0048】[0048]

【表4】 [Table 4]

【0049】[0049]

【表5】 [Table 5]

【図面の簡単な説明】[Brief description of the drawings]

【図1】Mg及びCuの含有量の範囲を示す図。FIG. 1 is a view showing ranges of contents of Mg and Cu.

【図2】Si含有量とCCV特性との関係を示す図。FIG. 2 is a graph showing the relationship between Si content and CCV characteristics.

【図3】Mg含有量と焼付硬化性との関係を示す図。FIG. 3 is a graph showing the relationship between the Mg content and bake hardenability.

フロントページの続き (72)発明者 土田 裕 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 吉原 直武 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (72)発明者 三田尾 真司 東京都千代田区丸の内一丁目1番2号 日本鋼管株式会社内 (56)参考文献 特開 平2−118049(JP,A) 特開 平2−118050(JP,A) 特開 平2−47234(JP,A)Continuation of the front page (72) Inventor Hiroshi Tsuchida 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Naotake Yoshiwara 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (72) Inventor Shinji Mitao 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nippon Kokan Co., Ltd. (56) References JP-A-2-118049 (JP, A) JP-A-2-118050 (JP, A JP-A-2-47234 (JP, A)

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、Mgを1.5〜3.9%、C
uを0.25〜3.0%、Siを0.02〜0.15
%、Feを0.03〜0.25%、Tiを0.005〜
0.15%、Bを0.0002〜0.05%、Znを
0.02〜0.10%の範囲で含有し、かつMg及びC
uが、Mg−Cuの座標において、その座標点を(Mg
%,Cu%)で表した場合に、図1に示す(4.0,
0.25)、(1.5,0.8)、(1.5,3.
0)、(4.0,2.23)の4点で囲まれる範囲であ
り、残部がAl及び0.1%以下の不可避的不純物から
なり、結晶粒における圧延方向の軸長をL、Lに対して
垂直の板厚方向の軸長をHとした場合に、その平均アス
ペクト比L/Hが1.3以下であり、170℃で30分
間の焼付処理を行なった場合の降伏強度の上昇が3kg
/mm2 以上であることを特徴とする強度・延性バラン
ス及び焼付硬化性に優れたプレス成形用アルミニウム合
金板。
1. An amount of Mg of 1.5 to 3.9 % by weight,
u is 0.25 to 3.0%, Si is 0.02 to 0.15
%, Fe 0.03-0.25%, Ti 0.005-
0.15%, B in the range of 0.0002 to 0.05%, Zn in the range of 0.02 to 0.10%, and Mg and C
u sets the coordinate point of the Mg—Cu coordinates to (Mg
%, Cu%), as shown in FIG.
0.25), (1.5, 0.8), (1.5, 3..
0) and (4.0, 2.23), and the remainder is made up of Al and 0.1% or less inevitable impurities. The axial lengths of the crystal grains in the rolling direction are L and L. The average aspect ratio L / H is 1.3 or less when the axial length in the thickness direction perpendicular to the thickness is H, and the yield strength increases when a baking treatment is performed at 170 ° C. for 30 minutes. Is 3kg
/ Mm 2 or more, an aluminum alloy sheet for press forming having excellent balance between strength and ductility and bake hardenability.
【請求項2】 重量%で、0.01〜0.15%のM
n、0.01〜0.15%のCr、0.01〜0.12
%のZr、及び0.01〜0.18%のVのうち1種又
は2種以上をさらに含んでいることを特徴とする請求項
1に記載の強度・延性バランス及び焼付硬化性に優れた
プレス成形用アルミニウム合金板。
2. 0.01 to 0.15% of M by weight.
n, 0.01 to 0.15% Cr, 0.01 to 0.12
% Of Zr and 0.01 to 0.18% of V, further comprising one or two or more kinds of V. Excellent in balance between strength and ductility and bake hardenability according to claim 1. Aluminum alloy plate for press forming.
【請求項3】 重量%で、Mgを1.5〜3.9%、C
uを0.25〜3.0%、Siを0.02〜0.15
%、Feを0.03〜0.25%、Tiを0.005〜
0.15%、Bを0.0002〜0.05%、Znを
0.02〜0.10%の範囲で含有し、かつMg及びC
uが、Mg−Cuの座標において、その座標点を(Mg
%,Cu%)で表した場合に、図1に示す(4.0,
0.25)、(1.5,0.8)、(1.5,3.
0)、(4.0,2.23)の4点で囲まれる範囲であ
り、残部がAl及び0.1%以下の不可避的不純物から
なるアルミニウム合金の鋳塊に対し、450〜580℃
の範囲内の温度で1段又は多段の均質化処理を施した
後、この鋳塊を熱間圧延及び冷間圧延することにより所
望の板厚とし、次いで440〜580℃の範囲内の温度
まで3℃/秒以上の加熱速度で加熱してその温度で0〜
120秒間保持し、その後100℃まで2℃/秒以上の
冷却速度で冷却して170℃で30分間の焼付処理を行
なった場合の降伏強度の上昇が3kg/mm2 以上であ
るアルミニウム合金板を得ることを特徴とする強度・延
性バランス及び焼付硬化性に優れたプレス成形用アルミ
ニウム合金板の製造方法。
3. An amount of Mg of 1.5 to 3.9 % by weight,
u is 0.25 to 3.0%, Si is 0.02 to 0.15
%, Fe 0.03-0.25%, Ti 0.005-
0.15%, B in the range of 0.0002 to 0.05%, Zn in the range of 0.02 to 0.10%, and Mg and C
u sets the coordinate point of the Mg—Cu coordinates to (Mg
%, Cu%), as shown in FIG.
0.25), (1.5, 0.8), (1.5, 3..
0) and (4.0, 2.23). The range surrounded by the four points is 450 to 580 ° C. with respect to an aluminum alloy ingot consisting of Al and 0.1% or less inevitable impurities.
After performing one or more stages of homogenization at a temperature within the range described above, the ingot is subjected to hot rolling and cold rolling to a desired thickness, and then to a temperature within the range of 440 to 580 ° C. Heat at a heating rate of 3 ° C / sec or more,
Held for 120 seconds, the aluminum alloy plate an increase in yield strength when subjected to baking for 30 minutes at then cooled to 170 ° C. at a cooling rate of more than 2 ° C. / sec to 100 ° C. is 3 kg / mm 2 or more A method for producing a press-formed aluminum alloy sheet having excellent strength-ductility balance and bake hardenability, characterized by being obtained.
【請求項4】 前記アルミニウム合金の鋳塊は、重量%
で、0.01〜0.15%のMn、0.01〜0.15
%のCr、0.01〜0.12%のZr、及び0.01
〜0.18%のVのうち1種又は2種以上をさらに含ん
でいることを特徴とする請求項3に記載の強度・延性バ
ランス及び焼付硬化性に優れたプレス成形用アルミニウ
ム合金板の製造方法。
4. The ingot of the aluminum alloy has a weight percentage of
, 0.01 to 0.15% Mn, 0.01 to 0.15%
% Cr, 0.01-0.12% Zr, and 0.01%
4. The aluminum alloy sheet for press forming according to claim 3, further comprising one or more of V of 0.18% to 0.18%, which is excellent in balance between strength and ductility and bake hardenability. Method.
【請求項5】 熱間圧延と冷間圧延との間、又は冷間圧
延と冷間圧延との間、又はその両方で、320〜580
℃の範囲内の温度における中間焼鈍処理を1回又は2回
以上実施することを特徴とする請求項3又は4に記載の
強度・延性バランス及び焼付硬化性に優れたプレス成形
用アルミニウム合金板の製造方法。
5. 320 to 580 between hot rolling and cold rolling, or between cold rolling and cold rolling, or both.
5. The aluminum alloy sheet for press forming having excellent strength-ductility balance and bake hardenability according to claim 3 or 4, wherein the intermediate annealing treatment at a temperature in the range of ° C is performed once or twice or more. Production method.
JP3093684A 1991-03-30 1991-03-30 Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same Expired - Fee Related JP2856936B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3093684A JP2856936B2 (en) 1991-03-30 1991-03-30 Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3093684A JP2856936B2 (en) 1991-03-30 1991-03-30 Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same

Publications (2)

Publication Number Publication Date
JPH04304339A JPH04304339A (en) 1992-10-27
JP2856936B2 true JP2856936B2 (en) 1999-02-10

Family

ID=14089239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3093684A Expired - Fee Related JP2856936B2 (en) 1991-03-30 1991-03-30 Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2856936B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69311089T2 (en) * 1993-03-03 1998-01-22 Nippon Kokan Kk AL alloy sheet for press molds, which has excellent hardenability, which can be obtained in a short time when tempered at relatively low temperatures, and a method for producing the same
JP2997145B2 (en) * 1993-03-03 2000-01-11 日本鋼管株式会社 Method for producing aluminum alloy sheet having delayed aging at room temperature
JP2997156B2 (en) * 1993-09-30 2000-01-11 日本鋼管株式会社 Method for producing aluminum alloy sheet at room temperature with slow aging excellent in formability and paint bake hardenability
JPH09137243A (en) 1995-11-10 1997-05-27 Nkk Corp Aluminum alloy sheet excellent in bendability after press forming and its production
JP4542004B2 (en) * 2005-09-16 2010-09-08 株式会社神戸製鋼所 Aluminum alloy sheet for forming
CN109825746B (en) * 2019-04-10 2020-12-25 中铝瑞闽股份有限公司 Anodic alumina base material for aluminum veneer curtain wall and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0247234A (en) * 1988-08-09 1990-02-16 Sumitomo Light Metal Ind Ltd High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture
JPH02118050A (en) * 1988-10-27 1990-05-02 Sky Alum Co Ltd Aluminum alloy rolled sheet for forming and its manufacture
JPH02118049A (en) * 1988-10-27 1990-05-02 Sky Alum Co Ltd Aluminum alloy rolled sheet for forming and its manufacture
JP3066091B2 (en) * 1991-01-31 2000-07-17 スカイアルミニウム株式会社 Aluminum alloy rolled plate for hole enlarging and method for producing the same

Also Published As

Publication number Publication date
JPH04304339A (en) 1992-10-27

Similar Documents

Publication Publication Date Title
JPS58224141A (en) Cold roller aluminum alloy plate for forming and its manufacture
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH0569898B2 (en)
EP0646655B1 (en) Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardening ability
JP2997145B2 (en) Method for producing aluminum alloy sheet having delayed aging at room temperature
JPH08232052A (en) Production of aluminum alloy sheet for automobile outer sheet
JPS62207851A (en) Rolled aluminum alloy sheet for forming and its production
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JPS626740B2 (en)
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JPH05306440A (en) Manufacture of aluminum alloy sheet for forming excellent baking hardenability
JPH04214834A (en) Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
JPH05331588A (en) Aluminum alloy sheet for forming excellent in flange formability and its production
JPH05345963A (en) Manufacture of high formability aluminum alloy sheet
JPH0718389A (en) Production of al-mg series alloy sheet for forming
JPH07173565A (en) Aluminum alloy sheet for press forming excellent in curability for coating/baking
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JP3539996B2 (en) Manufacturing method of high strength aluminum alloy sheet for forming
JP4237364B2 (en) Method for producing an aluminum alloy plate excellent in press formability

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees