JPH0543974A - Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production - Google Patents
Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its productionInfo
- Publication number
- JPH0543974A JPH0543974A JP20581891A JP20581891A JPH0543974A JP H0543974 A JPH0543974 A JP H0543974A JP 20581891 A JP20581891 A JP 20581891A JP 20581891 A JP20581891 A JP 20581891A JP H0543974 A JPH0543974 A JP H0543974A
- Authority
- JP
- Japan
- Prior art keywords
- less
- aluminum alloy
- range
- alloy sheet
- press formability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この発明は、プレス成形用アルミ
ニウム合金板及びその製造方法に関し、特に、焼付硬化
性及びプレス成形性に優れ、自動車車体等に好適なアル
ミニウム合金板及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy sheet for press forming and a method for producing the same, and more particularly to an aluminum alloy sheet excellent in bake hardenability and press formability and suitable for automobile bodies and a method for producing the same.
【0002】[0002]
【従来の技術】従来より自動車ボディ−シ−ト等の成形
加工用板材として表面処理冷間圧延鋼板が多用されてい
るが、近年、自動車の燃費向上のための軽量化の要望が
高まっており、その要望を満たすべく自動車ボディ−シ
−ト等にアルミニウム合金板が使用され始めてきてい
る。2. Description of the Related Art Conventionally, a surface-treated cold-rolled steel sheet has been widely used as a sheet material for forming an automobile body sheet or the like. In order to meet the demand, aluminum alloy sheets have begun to be used for automobile body sheets and the like.
【0003】自動車ボディ−シ−ト用アルミニウム合金
としては、5182に代表される非熱処理型のAl−M
g系合金と、熱処理型のAl−Cu系、Al−Mg−S
i系に分けられる。非熱処理型のAl−Mg系合金とし
ては、CuやZnを微量添加し、熱処理して用いること
を前提としたものが開発されている(特開昭57−12
0648、特開昭53−103914等)。As an aluminum alloy for automobile body sheets, a non-heat treatment type Al-M represented by 5182 is used.
g-based alloy, heat treatment type Al-Cu system, Al-Mg-S
Divided into i system. As a non-heat-treatment type Al-Mg alloy, one that has been developed on the assumption that Cu or Zn is added in a trace amount and heat-treated (JP-A-57-12).
0648, JP-A-53-103914, etc.).
【0004】しかし、これらは熱処理型のAl合金より
やや成形性が優れてはいるものの、従来の表面処理冷間
圧延鋼板よりも劣り、さらには塗装焼付工程により強度
の上昇が得られない。また、熱処理型であるAl−Cu
系の2036、Al−Mg−Si系の6009、601
0、6011では成形性が劣り、さらには欧米における
200℃での焼付けに対して省エネルギの観点から進め
られた日本国内で主流の170℃以下の温度で30分間
たらず保持する低温短時間の焼付けでは強度が上昇せ
ず、2000系においては逆に低下するという問題もあ
った。このように、従来のアルミニウム合金では、自動
車ボディシートに要求される特性、特に成形性と焼付硬
化性が十分に満足されていないのが現状である。However, although they are slightly superior to the heat treatment type Al alloy in formability, they are inferior to the conventional surface-treated cold-rolled steel sheet, and further, the strength cannot be increased by the coating baking process. In addition, heat treatment type Al-Cu
System 2036, Al-Mg-Si system 6009, 601
0, 6011 is inferior in moldability, and further, in order to save energy against baking at 200 ° C in Europe and the United States, the temperature of 170 ° C or less, which is the mainstream in Japan, is maintained for 30 minutes at low temperature for a short time. There was also a problem that the strength did not increase in baking, but decreased in 2000 series. As described above, the conventional aluminum alloys are not sufficiently satisfied with the properties required for automobile body sheets, in particular, the formability and the bake hardenability.
【0005】[0005]
【発明が解決しようとする課題】この発明はかかる事情
に鑑みてなされたものであって、自動車車体用等として
十分なプレス成形性を有し、低温かつ短時間の焼付にお
いても焼付硬化性が良好なアルミニウム合金板及びその
製造方法を提供することを目的とする。SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and has sufficient press formability for automobile bodies and the like, and has bake hardenability even at low temperature and short time baking. An object is to provide a good aluminum alloy plate and a method for manufacturing the same.
【0006】[0006]
【課題を解決するための手段及び作用】本願発明者等
は、上記目的を達成するために種々検討を重ねた結果、
化学成分組成を適切に調整し、製造条件を適正化するこ
とにより、熱処理後の伸びが30%以上で、かつ170
℃で20分間といった低温・短時間の焼付処理において
も焼付後の降伏強度を焼付前よりも4kgf /mm2 以上硬
化することを見出し、本発明を完成するに至った。すな
わち、本発明は、プレス成形性の向上と塗装焼付後の耐
デント性の向上を図るべく、材料特性としての破断伸び
と、低温・短時間焼付後の降伏強度との両特性を改善し
たものである。Means and Actions for Solving the Problems As a result of various studies conducted by the inventors of the present application to achieve the above object,
By appropriately adjusting the chemical composition and optimizing the manufacturing conditions, the elongation after heat treatment is 30% or more, and 170
The yield strength after baking is 4 kgf / mm 2 even before baking even at low temperature for a short time such as 20 minutes at ℃. The present invention has been completed by finding out that the composition is cured as described above. That is, the present invention has improved both the elongation at break as a material property and the yield strength after low temperature / short time baking in order to improve press formability and dent resistance after baking. Is.
【0007】特に、化学成分組成については、塗装焼付
け後における高強度化の観点から、Al−Mg−Si系
合金にCuを適量添加して結晶粒を等軸粗大粒として焼
付け前の降伏強度を低くし、焼付けによる降伏強度の上
昇分を増加させるため再結晶粒抑制元素を低減したもの
である。In particular, regarding the chemical composition, from the viewpoint of increasing the strength after coating and baking, an appropriate amount of Cu is added to the Al-Mg-Si alloy to make the crystal grains equiaxed and coarse and to improve the yield strength before baking. In order to increase the yield strength increase due to baking, the recrystallization grain suppressing element is reduced.
【0008】すなわち、この発明に係る焼付硬化性及び
プレス成形性に優れたアルミニウム合金板は、重量%
で、Mgを0.4〜1.5%、Siを0.24〜1.6
%、Cuを0.12〜1.5%、Znを1.0%以下、
Tiを0.005〜0.15%、Feを0.25%以下
の範囲で含有し、かつSi及びMgがSi≧0.6Mg
(%)の関係を満たし、残部がAl及び不可避的不純物
からなり、結晶粒における圧延方向の軸長をL、Lに対
して垂直の板厚方向の軸長をHとした場合に、その平均
アスペクト比H/Lが0.7以上であり、かつ平均粒径
が20μm以上であることを特徴とする。また、この組
成に対し、0.15%以下のMn、0.1%以下のC
r、0.1%以下のZr、0.1%以下のV、及び0.
0002〜0.05%のBのうち1種又は2種以上をさ
らに含んでいてもよい。That is, the aluminum alloy plate excellent in bake hardenability and press formability according to the present invention is
And 0.4 to 1.5% for Mg and 0.24 to 1.6 for Si.
%, Cu 0.12 to 1.5%, Zn 1.0% or less,
It contains Ti in the range of 0.005 to 0.15%, Fe in the range of 0.25% or less, and Si and Mg are Si ≧ 0.6Mg.
(%), The balance consists of Al and unavoidable impurities, and the average when the axial length of the crystal grain in the rolling direction is L and the axial length in the plate thickness direction perpendicular to L is H The aspect ratio H / L is 0.7 or more, and the average particle size is 20 μm or more. Further, with respect to this composition, Mn of 0.15% or less and C of 0.1% or less
r, 0.1% or less Zr, 0.1% or less V, and 0.
One or two or more of B of 0002 to 0.05% may be further contained.
【0009】また、この発明に係る焼付硬化性及びプレ
ス成形性に優れたアルミニウム合金板の製造方法は、上
記組成のアルミニウム合金鋳塊に対して450〜580
℃の範囲内の温度で1段又は多段の均質化処理を施した
後、この鋳塊を熱間圧延及び冷間圧延することにより所
望の板厚とし、次いで480〜580℃の範囲内の温度
まで3℃/秒以上の加熱速度で加熱してその温度で0〜
120秒間保持し、その後100℃まで2℃/秒以上の
冷却速度で冷却することを特徴とする。これにより、平
均アスペクト比H/Lが0.7以上、平均結晶粒径が2
0μm以上の結晶粒の上記アルミニウム合金板が得られ
る。The method for producing an aluminum alloy sheet excellent in bake hardenability and press formability according to the present invention is 450 to 580 for an aluminum alloy ingot having the above composition.
After performing a single-stage or multi-stage homogenization treatment at a temperature in the range of ℃, the ingot is hot-rolled and cold-rolled to a desired plate thickness, and then a temperature in the range of 480 to 580 ℃. At a heating rate of 3 ° C / sec or more and at that temperature
It is characterized in that it is held for 120 seconds and then cooled to 100 ° C. at a cooling rate of 2 ° C./second or more. As a result, the average aspect ratio H / L is 0.7 or more and the average crystal grain size is 2
The aluminum alloy plate having crystal grains of 0 μm or more can be obtained.
【0010】この場合に、熱間圧延と冷間圧延との間、
又は冷間圧延と冷間圧延との間、又はその両方で、32
0〜580℃の範囲内の温度における中間焼鈍処理を1
回又は2回以上実施することが好ましい。以下、この発
明について詳細に説明する。なお、以下の説明において
%表示は重量%を表わす。先ず、この発明に係るアルミ
ニウム合金の成分組成の限定理由について説明する。In this case, between hot rolling and cold rolling,
Or between cold rolling and cold rolling, or both, 32
Intermediate annealing treatment at a temperature within the range of 0 to 580 ° C.
It is preferable to carry out once or twice or more. Hereinafter, the present invention will be described in detail. In addition, in the following description, "%" represents "% by weight". First, the reasons for limiting the component composition of the aluminum alloy according to the present invention will be described.
【0011】Mg: Mgは本発明に係る合金における
必須の基本成分であり、Siと共にMg2 Siなる化合
物を形成し、強度の向上に寄与する。しかし、Mgが
0.4%未満では十分な強度が得られず、逆に1.5%
を超えると伸びが低下する。従って、Mgの含有量を
0.4〜1.5%の範囲に規定する。Mg: Mg is an essential basic component in the alloy according to the present invention, and forms a compound of Mg 2 Si together with Si and contributes to the improvement of strength. However, if Mg is less than 0.4%, sufficient strength cannot be obtained, and conversely 1.5%.
If it exceeds, the elongation will decrease. Therefore, the content of Mg is specified in the range of 0.4 to 1.5%.
【0012】Si: SiはMgと同様に、本発明に係
る合金における必須の基本成分であり、Mgと共にMg
2 Siなる化合物を形成し、強度の向上に寄与する。し
かし、Siが1.6%を超えると成形性に悪影響を及ぼ
す粗大な晶出物が生成されやすくなり、0.24%未満
では強度が不十分である。従って、Siの含有量を0.
24〜1.6%の範囲に規定する。また、Si≧0.6
Mg(%)であればプレス性の向上に有効である。従っ
て、Si≧0.6Mg(%)を満たす範囲にSiを規定
する。Si: Si, like Mg, is an essential basic component in the alloy according to the present invention.
It forms a compound of 2 Si and contributes to the improvement of strength. However, if Si exceeds 1.6%, coarse crystallized substances that adversely affect the formability tend to be generated, and if less than 0.24%, the strength is insufficient. Therefore, if the Si content is 0.
It is specified in the range of 24 to 1.6%. Also, Si ≧ 0.6
Mg (%) is effective for improving pressability. Therefore, Si is defined in a range that satisfies Si ≧ 0.6Mg (%).
【0013】Fe: Feは不可避的不純物として通常
アルミニウム合金に含有されるものであり、含有量が
0.25%を超えるとAlとの共存により成形性に悪影
響を及ぼす粗大な晶出物が生成されやすく、また、Si
と結び付いて析出硬化として有用なSiの量を低下させ
る。従って、Feの含有量を0.25%以下に規定す
る。Fe: Fe is usually contained in an aluminum alloy as an unavoidable impurity, and if the content exceeds 0.25%, coarse crystallized substances which adversely affect the formability due to coexistence with Al are formed. Easily, and Si
In combination with the above, the amount of Si useful as precipitation hardening is reduced. Therefore, the Fe content is specified to be 0.25% or less.
【0014】Cu: Cuは強度及び成形性を向上さ
せ、さらにベ−キングによる硬化に寄与する成分であ
る。しかし、その含有量が0.12%未満ではその効果
が十分に得られず、逆に1.5%を超えると成形性及び
耐食性を劣化させる。従って、Cu含有量を0.12〜
1.5%の範囲に規定する。Cu: Cu is a component that improves strength and formability and contributes to curing by baking. However, if the content is less than 0.12%, the effect cannot be sufficiently obtained, and conversely, if it exceeds 1.5%, formability and corrosion resistance are deteriorated. Therefore, the Cu content is 0.12
Specify within the range of 1.5%.
【0015】Ti: Tiは微量添加により鋳塊の結晶
粒を微細化して加工性等を改善する効果を有する。しか
しながら、これらを過剰に添加すると粗大な晶出物を生
成し、成形性を劣化させる。従って、Tiの含有量を
0.005〜0.15%の範囲に規定する。Ti: Ti has the effect of improving the workability by refining the crystal grains of the ingot by adding a trace amount. However, if these are added excessively, a coarse crystallized product is generated and the moldability is deteriorated. Therefore, the Ti content is specified in the range of 0.005 to 0.15%.
【0016】Zn: Znは強度の向上に寄与する元素
であるが、1.0%を超えると延性及びプレス成形性を
劣化させる。従って、Znの含有量を1.0%以下に規
定する。Zn: Zn is an element contributing to the improvement of strength, but if it exceeds 1.0%, ductility and press formability are deteriorated. Therefore, the Zn content is specified to be 1.0% or less.
【0017】本発明においては、以上の必須元素の他
に、必要に応じて、Mn,Cr,Zr,V及びBのうち
1種または2種以上を適量添加してもよい。これらの元
素は再結晶抑制元素であるから、異常粒成長を抑制する
目的で適量添加してもよい。しかし、これらの合金成分
は、再結晶粒の等軸化に対し負の効果があり成形性を低
下させるため、これらの含有量は従来のアルミニウム合
金よりも少ない範囲に規定する必要がある。従って、こ
れらを添加する場合には、Mn,Cr、Zr、V、Bの
含有量を夫々0.15%以下、0.10%以下、0.1
0%以下、0.10%以下、0.0002〜0.05%
に規定する。In the present invention, in addition to the above essential elements, if necessary, one or more of Mn, Cr, Zr, V and B may be added in an appropriate amount. Since these elements are recrystallization suppressing elements, they may be added in appropriate amounts for the purpose of suppressing abnormal grain growth. However, these alloy components have a negative effect on the equiaxing of the recrystallized grains and reduce the formability. Therefore, their contents must be specified within a range smaller than that of conventional aluminum alloys. Therefore, when these are added, the contents of Mn, Cr, Zr, V, and B are 0.15% or less, 0.10% or less, and 0.1% or less, respectively.
0% or less, 0.10% or less, 0.0002 to 0.05%
Prescribed in.
【0018】上記元素の他、通常のアルミニウム合金と
同様、不可避的不純物が含有されるが、その量は本発明
の効果が損なわれない範囲であれば許容される。例え
ば、Be、Na,K等は、それぞれ0.001%以下程
度なら含有していても、特性上の支障はない。次に、組
織について説明する。In addition to the above-mentioned elements, inevitable impurities are contained as in the case of ordinary aluminum alloys, but the amount thereof is acceptable as long as the effects of the present invention are not impaired. For example, Be, Na, K, etc. do not cause a problem even if they are contained in an amount of about 0.001% or less. Next, the organization will be described.
【0019】アルミニウム合金の成形性は、結晶粒径及
び結晶粒形状に大きく依存している。平均粒径が20μ
m未満で、なおかつ、結晶粒の平均アスペクト比H/L
(L:圧延方向の結晶粒軸長、H:Lに対し垂直の板厚
方向軸長)が0.7未満では成形性が十分でなく、また
プレス模様が現出し表面性状も劣化するため、平均粒径
は20μm以上、結晶粒の平均アスペクト比は0.7以
上であることが必要である。次に、この発明の合金の製
造条件について説明する。The formability of an aluminum alloy largely depends on the crystal grain size and the crystal grain shape. Average particle size is 20μ
is less than m and the average aspect ratio of crystal grains is H / L
If (L: crystal grain axis length in the rolling direction, H: plate thickness direction axis length perpendicular to L) is less than 0.7, the formability is not sufficient, and the press pattern appears and the surface quality deteriorates. It is necessary that the average grain size is 20 μm or more and the average aspect ratio of the crystal grains is 0.7 or more. Next, the manufacturing conditions of the alloy of this invention will be described.
【0020】上記範囲に成分・組成が規定されたアルミ
ニウム合金を常法により溶解・鋳造し、その鋳塊に対し
て450〜580℃の範囲内の温度で1段又は多段の均
質化熱処理を施す。このような均質化処理を施すことに
より、鋳造時に晶出した共晶化合物の拡散固溶を促進
し、局部的ミクロ偏析を軽減する。また、この処理によ
り、最終製品の結晶粒の異常粒成長を抑制し、均一化を
図るうえで重要な役割を果たすMn,Cr,Zr,Vの
化合物を微細に析出させることができる。しかし、この
処理の温度が450℃未満の場合には上述したような効
果が不十分であり、一方580℃を超えると共晶融解が
生じる。従って、均質化処理の温度を450〜580℃
の範囲とした。なお、この温度範囲内での保持時間が1
時間未満では上述の効果が十分に得られず、72時間を
超える長時間の加熱はその効果が飽和してしまうため、
この均質化処理の保持時間は1〜72時間が望ましい。An aluminum alloy having the components and compositions defined in the above range is melted and cast by a conventional method, and the ingot is subjected to one-step or multi-step homogenization heat treatment at a temperature in the range of 450 to 580 ° C. .. By performing such homogenization treatment, diffusion solid solution of the eutectic compound crystallized during casting is promoted and local microsegregation is reduced. Further, by this treatment, it is possible to finely precipitate the compounds of Mn, Cr, Zr, and V that play an important role in suppressing the abnormal grain growth of the crystal grains of the final product and achieving uniformity. However, when the temperature of this treatment is lower than 450 ° C, the above-mentioned effects are insufficient, while when it exceeds 580 ° C, eutectic melting occurs. Therefore, the temperature of the homogenization treatment is 450 to 580 ° C.
And the range. Note that the holding time within this temperature range is 1
If the time is less than the time, the above effect cannot be sufficiently obtained, and if the heating for a long time exceeding 72 hours is saturated, the effect is saturated.
The holding time for this homogenization treatment is preferably 1 to 72 hours.
【0021】次いで、このような均質化処理が施された
鋳塊に対し、常法に従って所定の板厚を得るために熱間
圧延及び冷間圧延を行う。また、歪矯正又は表面粗度調
整のため5%以下のスキンパス圧延を実施してもよい。Then, the ingot subjected to such homogenization treatment is subjected to hot rolling and cold rolling in order to obtain a predetermined plate thickness according to a conventional method. Further, skin pass rolling of 5% or less may be carried out for strain correction or surface roughness adjustment.
【0022】圧延終了後、このような圧延板材に対し、
480〜580℃の範囲内の温度に3℃/秒以上の加熱
速度で加熱して、その温度に達して後即座に、又は12
0秒間以下の期間保持した後、100℃まで2℃/秒以
上の冷却速度で急速冷却するといった条件の熱処理を施
す。この処理により組織が均一化し、結晶粒の平均粒径
が20μm以上、平均アスペクト比が0.7以下に調整
され、さらに加工歪が除去され、結果としてプレス成形
性を向上させることができる。また、この熱処理は、焼
付硬化に対する寄与が大きいMg2 Si等の金属間化合
物の溶体化を図り、焼付硬化性の向上を達成するもので
ある。この場合に、加熱温度が480℃未満では、上述
のような効果を十分に得ることができない。また、加熱
温度が580℃を超えたり、加熱速度が遅すぎたり、保
持時間が長すぎると、結晶粒の一部が異常粒成長を起こ
してしまう。さらに、100℃までの冷却速度が2℃/
秒未満では、冷却中に上述の化合物が粗大に析出し、プ
レス成形性及び焼付硬化性の点で望ましくない。従っ
て、上述のように条件が規定される。After completion of rolling, for such rolled plate material,
Heating to a temperature in the range of 480 to 580 ° C at a heating rate of 3 ° C / sec or more, and immediately after reaching that temperature, or 12
After holding for a period of 0 seconds or less, heat treatment is performed under the condition that the material is rapidly cooled to 100 ° C. at a cooling rate of 2 ° C./second or more. By this treatment, the structure is homogenized, the average grain size of the crystal grains is adjusted to 20 μm or more, the average aspect ratio is adjusted to 0.7 or less, and further the processing strain is removed, and as a result, the press formability can be improved. Further, this heat treatment aims at solution treatment of an intermetallic compound such as Mg 2 Si, which makes a large contribution to bake hardening, and achieves improvement of bake hardenability. In this case, if the heating temperature is lower than 480 ° C., the above effects cannot be sufficiently obtained. Further, if the heating temperature exceeds 580 ° C., the heating rate is too slow, or the holding time is too long, some of the crystal grains cause abnormal grain growth. Furthermore, the cooling rate up to 100 ° C is 2 ° C /
If it is less than 2 seconds, the above-mentioned compounds coarsely precipitate during cooling, which is not desirable in terms of press formability and bake hardenability. Therefore, the conditions are defined as described above.
【0023】このような工程に加えて、上述の熱間圧延
と冷間圧延との間、又は冷間圧延と冷間圧延との間、又
はその両方で、1回又は2回以上の中間焼鈍を施すこと
が望ましい。この中間焼鈍を施すことにより、冷間圧延
において強圧下する際のエッジ割れを防止することがで
き、また、再結晶核として機能するMg化合物が析出し
て組織が均一化し、結果として成形性を向上させること
ができる。しかし、この際の温度が320℃未満ではそ
の効果が十分ではなく、また580℃を超えると共晶融
解が生じる。従って、中間焼鈍は320〜580℃の範
囲で行う。なお、この中間焼鈍は必須のプロセスではな
く、省プロセスの観点からはこの中間焼鈍を省略しても
構わない。In addition to the above steps, one or more intermediate annealings may be performed between the hot rolling and the cold rolling, or between the cold rolling and the cold rolling, or both of them. Is desirable. By performing this intermediate annealing, it is possible to prevent edge cracking during strong reduction in cold rolling, and the Mg compound that functions as a recrystallization nucleus precipitates to homogenize the structure, and as a result, formability is improved. Can be improved. However, if the temperature at this time is less than 320 ° C, the effect is not sufficient, and if it exceeds 580 ° C, eutectic melting occurs. Therefore, the intermediate annealing is performed in the range of 320 to 580 ° C. The intermediate annealing is not an essential process, and the intermediate annealing may be omitted from the viewpoint of process saving.
【0024】このようにして得られたアルミニウム合金
板は、焼付硬化性及びプレス成形性に優れ、破断伸びが
30%以上となり、また低温焼付による硬化性にも優れ
ている。従って、このようなアルミニウム合金板は自動
車ボディ−シ−ト用として好適である。The aluminum alloy sheet thus obtained is excellent in bake hardenability and press formability, has an elongation at break of 30% or more, and is also excellent in hardenability by low temperature bake. Therefore, such an aluminum alloy plate is suitable for an automobile body sheet.
【0025】[0025]
【実施例】以下、この発明の実施例について説明する。 (実施例1)Embodiments of the present invention will be described below. (Example 1)
【0026】表1、表2に示すような成分・組成を有す
る合金を溶解−連続鋳造し、得られた鋳塊を面削した
後、520℃で8時間の均質化処理を実施し、次いで鋳
片を460℃に加熱し、板厚4mmまで熱間圧延を行い、
室温に冷却した後、圧延率75%の冷間圧延を行って厚
さ1mmの板材とした。なお、熱間圧延の仕上り温度は2
80℃であった。この厚さ1mmの板材を550℃まで1
0℃/秒の速度で加熱し、60秒保持後、100℃まで
20℃/秒の冷却速度で強制空冷を行った。Alloys having the components and compositions shown in Tables 1 and 2 were melted and continuously cast, the obtained ingots were chamfered, and then homogenized at 520 ° C. for 8 hours, then, The slab is heated to 460 ° C and hot rolled to a plate thickness of 4 mm,
After cooling to room temperature, cold rolling was performed at a rolling ratio of 75% to obtain a plate material having a thickness of 1 mm. The finish temperature of hot rolling is 2
It was 80 ° C. This 1mm thick plate material can be used up to 550 ℃ 1
After heating at a rate of 0 ° C / sec and holding for 60 seconds, forced air cooling was performed up to 100 ° C at a cooling rate of 20 ° C / sec.
【0027】このようにして製造した板材を室温で30
日間放置後、所定形状に切出し、引張試験(JIS5
号,引張方向:圧延方向)及びコニカルカップ試験(J
ISZ2249:試験工具17型)を実施し、さらに平
均結晶粒径、結晶粒の平均アスペクト比H/Lを測定し
た。なお、コニカルカップ試験はプレス成形のシミュレ
−トとして行い、張出しと深絞りとの複合成形性をCC
V(mm)により評価した(CCVが小さいほど成形性に
優れている)。また、結晶粒形状はGa処理によりミク
ロ組織を現出し、サンプル数50として切断法により求
めた。さらに、プレス成形後の塗装焼付をシミュレ−ト
するために、170℃で30分間の熱処理(焼付に対
応)を行い、その後もう一度上述した熱処理後の試験と
同一条件で引張試験を行った。The plate material produced in this manner is used at room temperature for 30 minutes.
After leaving for a day, it is cut into a predetermined shape and subjected to a tensile test (JIS5
No., tensile direction: rolling direction) and conical cup test (J
ISZ2249: test tool type 17) was carried out, and the average crystal grain size and the average aspect ratio H / L of the crystal grains were measured. The conical cup test was performed as a press-molding simulation, and the composite moldability of overhanging and deep drawing was evaluated by CC.
It was evaluated by V (mm) (the smaller the CCV, the better the moldability). Further, the crystal grain shape was determined by a cutting method using a Ga treatment to reveal a microstructure and 50 samples. Furthermore, in order to simulate coating baking after press molding, heat treatment (corresponding to baking) was performed at 170 ° C. for 30 minutes, and then a tensile test was performed again under the same conditions as the above-mentioned test after heat treatment.
【0028】これらの試験結果を表3、4に示す。な
お、「焼付硬化」の欄は、焼付シミュレ−ト後の降伏強
度から、最終熱処理後の降伏強度を引いた値を示してい
る。また、コニカルカップ試験後の表面性状も併記し
た。The results of these tests are shown in Tables 3 and 4. The column of "bake hardening" shows a value obtained by subtracting the yield strength after the final heat treatment from the yield strength after the baking simulation. The surface properties after the conical cup test are also shown.
【0029】なお、表1の合金番号1〜16は本発明の
組成範囲内の実施例であり、表2の合金番号17〜33
はその範囲から外れる比較例である。なお、合金番号3
1〜33は従来からボディ−シ−ト用に用いられている
合金であり、夫々、2036、5182、6010に相
当するものである。Alloy Nos. 1 to 16 in Table 1 are working examples within the composition range of the present invention, and Alloy Nos. 17 to 33 in Table 2 are examples.
Is a comparative example outside the range. Alloy number 3
Reference numerals 1 to 33 are alloys conventionally used for body sheets and correspond to 2036, 5182 and 6010, respectively.
【0030】表3から明らかなように、実施例である合
金番号1〜16は、伸びが30%以上、平均粒径が20
μm以上、平均アスペクト比が0.7以上で、CCVも
良好で優れた成形性が得られることが確認された。ま
た、焼付硬化も降伏強度で4kgf /mm2 以上と高い値を
有し、優れた成形性と低温焼付硬化性とを有しているこ
とが確認された。As is clear from Table 3, the alloy Nos. 1 to 16 of the examples have an elongation of 30% or more and an average particle size of 20.
It was confirmed that the moldability was not less than μm, the average aspect ratio was not less than 0.7, the CCV was also good, and excellent moldability was obtained. Also, the bake hardening yield strength is 4kgf / mm 2 It was confirmed that it has a high value as above and has excellent moldability and low temperature bake hardenability.
【0031】これに対して、表2に示す比較例の合金番
号17〜33は、表4から明らかなように、平均粒径が
20μm以上、平均アスペクト比が0.7以上のもので
あっても、成形性及び焼付硬化性のうち双方又は一方が
実施例よりも劣っていた。例えば焼付硬化に寄与する成
分であるMg、Si、Cuのいずれかの含有量が低い合
金番号17,18,20は、焼付硬化性が低く、2kgf
/mm2 程度であった。逆に、Si,Cuの含有量が多い
合金番号19,21は成形性が低かった。また、Mn,
Cr,Zr,V,Ti−B,Feの量が本発明の範囲よ
りも多い合金番号23,24,25,26,27,2
8,29は伸びが低く、さらに平均結晶粒径が20μm
以下で、結晶粒の平均アスペクト比が0.7以下である
ため成形性に劣り、またフロ−マ−クが生じたため表面
性状も悪かった。On the other hand, alloy numbers 17 to 33 of the comparative examples shown in Table 2 have an average particle size of 20 μm or more and an average aspect ratio of 0.7 or more, as is clear from Table 4. Also, both or one of the moldability and the bake hardenability was inferior to the examples. For example, alloy Nos. 17, 18, and 20 having a low content of Mg, Si, or Cu, which are components contributing to bake hardening, have a low bake hardenability of 2 kgf.
/ Mm 2 It was about. On the contrary, Alloy Nos. 19 and 21 containing a large amount of Si and Cu had low formability. In addition, Mn,
Alloy Nos. 23, 24, 25, 26, 27, 2 in which the amounts of Cr, Zr, V, Ti-B and Fe are higher than the range of the present invention.
Nos. 8 and 29 have low elongation, and the average crystal grain size is 20 μm.
In the following, since the average aspect ratio of the crystal grains was 0.7 or less, the moldability was poor, and the flow marks were generated, and the surface properties were also poor.
【0032】なお、図1にCCV特性と結晶粒の平均ア
スペクト比との関係を示すが、この図から、平均アスペ
クト比が本発明の範囲外である0.7以下の場合(合金
番号29,30)にCCV特性が悪く、成形性に劣るこ
とが明らかである。FIG. 1 shows the relationship between the CCV characteristics and the average aspect ratio of crystal grains. From this figure, it is seen that the average aspect ratio is 0.7 or less, which is outside the range of the present invention (alloy No. 29, It is apparent that the CCV characteristics of 30) are poor and the moldability is poor.
【0033】合金番号22はTi−Bの量が本発明の範
囲よりも少ないものであるが、伸びの値が不十分であっ
た。さらに従来の合金番号31〜33についても焼付硬
化性及び成形性の両方とも劣っていることが確認され
た。Alloy No. 22 had an amount of Ti-B smaller than the range of the present invention, but the elongation value was insufficient. Further, it was confirmed that the conventional alloy numbers 31 to 33 are inferior in both the bake hardenability and the formability.
【0034】[0034]
【表1】 [Table 1]
【0035】[0035]
【表2】 [Table 2]
【0036】[0036]
【表3】 [Table 3]
【0037】[0037]
【表4】 (実施例2)[Table 4] (Example 2)
【0038】次に、表1に示した合金のうち、合金番号
2の組成を有する鋳塊を使用し、表5に示す製造条件で
合金板材を製造した。なお、表5に特に記載されていな
い処理については実施例1の条件を採用した(圧延条件
等)。なお、表3中記号A〜Eは本発明に係る製造方法
の範囲内の実施例であり、記号F〜Mはその範囲から外
れる比較例である。このようにして製造した板材につい
て実施例1と同様の評価試験を行った。その結果も表5
に併記する。表5から明らかなように、本発明の条件を
満足しない比較例は伸び及び成形性、あるいは焼付硬化
性が不十分であることが確認された。Next, among the alloys shown in Table 1, ingots having the composition of alloy No. 2 were used to produce alloy sheet materials under the production conditions shown in Table 5. The conditions of Example 1 were adopted for the treatments not particularly described in Table 5 (rolling conditions, etc.). In Table 3, symbols A to E are examples within the range of the manufacturing method according to the present invention, and symbols F to M are comparative examples outside the range. The same evaluation test as in Example 1 was performed on the plate material manufactured in this manner. The results are also shown in Table 5.
Also described in. As is clear from Table 5, it was confirmed that the comparative examples not satisfying the conditions of the present invention had insufficient elongation and moldability, or bake hardenability.
【0039】例えば、比較例のF,G,Lのように中間
焼鈍温度あるいは熱処理温度が本発明の範囲から外れる
と、成形性、焼付硬化性に劣り、比較例Kのように溶体
化焼き入れ条件の冷却速度が小さいと、焼付硬化性に劣
ることが確認された。また比較例Mは溶体化焼入の加熱
保持温度が低く、平均粒径が20μm未満でかつ平均ア
スペクト比が0.7未満であり、伸びも低いため成形性
に劣り、表面性状も肌荒れのため悪く、さらに十分な焼
付硬化が得られないことが確認された。溶体化焼入れの
加熱保持温度が高い比較例Iは、共晶融解等を生じて強
度が低下し、また、溶体化焼入れの加熱保持時間が長い
比較例Jの場合には、異常粒成長を生じ、フロ−マ−ク
が現れ、成形性も劣っていることが確認された。溶体化
焼入れの加熱速度が小さい比較例Hの場合には、伸びが
低い傾向にあることが確認された。For example, when the intermediate annealing temperature or the heat treatment temperature is out of the range of the present invention as in Comparative Examples F, G, and L, the formability and bake hardenability are poor, and the solution hardening is performed as in Comparative Example K. It was confirmed that the bake hardenability was inferior when the cooling rate under the conditions was small. Further, Comparative Example M has a low heat holding temperature for solution hardening, an average particle size of less than 20 μm and an average aspect ratio of less than 0.7, and has low elongation, resulting in poor formability and rough surface texture. It was confirmed that it was not good, and that sufficient bake hardening could not be obtained. Comparative Example I, which has a high heating and holding temperature for solution hardening, undergoes eutectic melting and the like, and its strength decreases. Further, Comparative Example J, which has a long heating and holding time for solution hardening, causes abnormal grain growth. , Flow mark appeared, and it was confirmed that the moldability was inferior. It was confirmed that in the case of Comparative Example H in which the heating rate of solution hardening was small, the elongation tended to be low.
【0040】[0040]
【表5】 [Table 5]
【0041】[0041]
【発明の効果】この発明によれば、伸び、プレス成形
性、及び低温・短時間の塗装焼付の際の焼付硬化能が従
来のアルミニウム合金板よりも優れており、プレス成形
性と塗装焼付後の耐デント性が要求される自動車ボディ
−シ−ト用等として好適なアルミニウム合金板及びその
製造方法が提供される。EFFECTS OF THE INVENTION According to the present invention, the elongation, press formability, and bake hardenability during low temperature and short time coating baking are superior to those of conventional aluminum alloy sheets. There is provided an aluminum alloy sheet suitable for an automobile body sheet or the like, which requires dent resistance, and a method for producing the same.
【図1】結晶粒の平均アスペクト比とCCV特性との関
係を示す図。FIG. 1 is a diagram showing a relationship between an average aspect ratio of crystal grains and CCV characteristics.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 吉原 直武 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 三田尾 真司 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Naotake Yoshihara Marunouchi 1-2-2 Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan Co., Ltd. (72) Shinji Mitao 1-2-1 Marunouchi, Chiyoda-ku, Tokyo Nippon Steel Tube Co., Ltd.
Claims (5)
iを0.24〜1.6%、Cuを0.12〜1.5%、
Znを1.0%以下、Tiを0.005〜0.15%、
Feを0.25%以下の範囲で含有し、かつSi及びM
gがSi≧0.6Mg(%)の関係を満たし、残部がA
l及び不可避的不純物からなり、結晶粒における圧延方
向の軸長をL、Lに対して垂直の板厚方向の軸長をHと
した場合に、その平均アスペクト比H/Lが0.7以上
であり、かつ平均粒径が20μm以上であることを特徴
とする焼付硬化性及びプレス成形性に優れたアルミニウ
ム合金板。1. Mg in an amount of 0.4 to 1.5% by weight and S
i is 0.24 to 1.6%, Cu is 0.12 to 1.5%,
Zn is 1.0% or less, Ti is 0.005 to 0.15%,
Fe in the range of 0.25% or less, and Si and M
g satisfies the relationship of Si ≧ 0.6Mg (%), and the balance is A
When L is the axial length of the crystal grain in the rolling direction and H is the axial length in the plate thickness direction perpendicular to L, the average aspect ratio H / L is 0.7 or more. And an average grain size of 20 μm or more, which is excellent in bake hardenability and press formability.
1%以下のCr、0.1%以下のZr、0.1%以下の
V、及び0.0002〜0.05%のBのうち1種又は
2種以上をさらに含んでいることを特徴とする請求項1
に記載の焼付硬化性及びプレス成形性に優れたアルミニ
ウム合金板。2. A Mn content of 0.15% or less by weight% and an O.V.
1% or less of Cr, 0.1% or less of Zr, 0.1% or less of V, and 0.0002 to 0.05% of B are further included in one or more kinds. Claim 1
An aluminum alloy sheet excellent in bake hardenability and press formability as described in 1.
iを0.24〜1.6%、Cuを0.12〜1.5%、
Znを1.0%以下、Tiを0.005〜0.15%、
Feを0.25%以下の範囲で含有し、かつSi及びM
gがSi≧0.6Mg(%)の関係を満たし、残部がA
l及び不可避的不純物からなるアルミニウム合金の鋳塊
に対し、450〜580℃の範囲内の温度で1段又は多
段の均質化処理を施した後、この鋳塊を熱間圧延及び冷
間圧延することにより所望の板厚とし、次いで480〜
580℃の範囲内の温度まで3℃/秒以上の加熱速度で
加熱してその温度で0〜120秒間保持し、その後10
0℃まで2℃/秒以上の冷却速度で冷却することを特徴
とする焼付硬化性及びプレス成形性に優れたアルミニウ
ム合金板の製造方法。3. Mg in an amount of 0.4 to 1.5% by weight and S
i is 0.24 to 1.6%, Cu is 0.12 to 1.5%,
Zn is 1.0% or less, Ti is 0.005 to 0.15%,
Fe in the range of 0.25% or less, and Si and M
g satisfies the relationship of Si ≧ 0.6Mg (%), and the balance is A
1 and multi-stage homogenization treatment at a temperature in the range of 450 to 580 ° C. for an aluminum alloy ingot composed of 1 and inevitable impurities, and then hot rolling and cold rolling this ingot. To the desired thickness, then 480-
It is heated to a temperature in the range of 580 ° C. at a heating rate of 3 ° C./sec or more and held at that temperature for 0 to 120 seconds, then 10
A method for producing an aluminum alloy sheet excellent in bake hardenability and press formability, which comprises cooling to 0 ° C. at a cooling rate of 2 ° C./second or more.
で、0.15%以下のMn、0.1%以下のCr、0.
1%以下のZr、0.1%以下のV、及び0.0002
〜0.05%のBのうち1種又は2種以上をさらに含ん
でいることを特徴とする請求項3に記載の焼付硬化性及
びプレス成形性に優れたアルミニウム合金板の製造方
法。4. The aluminum alloy ingot has a weight% of
, 0.15% or less of Mn, 0.1% or less of Cr, 0.
1% or less Zr, 0.1% or less V, and 0.0002
The method for producing an aluminum alloy sheet having excellent bake hardenability and press formability according to claim 3, further comprising one or more of B of 0.05 to 0.05%.
延と冷間圧延との間、又はその両方で、320〜580
℃の範囲内の温度における中間焼鈍処理を1回又は2回
以上実施することを特徴とする請求項3又は4に記載の
焼付硬化性及びプレス成形性に優れたアルミニウム合金
板の製造方法。5. 320 to 580 between hot rolling and cold rolling, or between cold rolling and cold rolling, or both.
The method for producing an aluminum alloy sheet excellent in bake hardenability and press formability according to claim 3 or 4, wherein the intermediate annealing treatment is performed once or twice or more at a temperature within a range of ° C.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20581891A JPH0543974A (en) | 1991-08-16 | 1991-08-16 | Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP20581891A JPH0543974A (en) | 1991-08-16 | 1991-08-16 | Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0543974A true JPH0543974A (en) | 1993-02-23 |
Family
ID=16513212
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP20581891A Pending JPH0543974A (en) | 1991-08-16 | 1991-08-16 | Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0543974A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0613959A1 (en) * | 1993-03-03 | 1994-09-07 | Nkk Corporation | An aluminium alloy sheet for use in press forming , exhibiting excellent hardening property obtained by baking at low temperature for a short period of time and a method of manufacturing the same |
WO1995022634A1 (en) * | 1994-02-16 | 1995-08-24 | Sumitomo Light Metal Industries, Ltd. | Method of manufacturing aluminum alloy plate for molding |
JP2000319741A (en) * | 1998-09-10 | 2000-11-21 | Kobe Steel Ltd | Al-Mg-Si BASED ALLOY SHEET |
JP2001040444A (en) * | 1999-05-25 | 2001-02-13 | Nippon Light Metal Co Ltd | Aluminum alloy plate material for rpecision working and production therefor |
CN103757507A (en) * | 2014-02-25 | 2014-04-30 | 北京科技大学 | High baking varnish hardening aluminum alloy material for external car body plate and preparation method thereof |
CN104018040A (en) * | 2014-06-23 | 2014-09-03 | 北京科技大学 | Automotive high-formability aluminum alloy material and preparation method thereof |
JP2018513916A (en) * | 2015-12-18 | 2018-05-31 | ノベリス・インコーポレイテッドNovelis Inc. | High strength 6XXX aluminum alloy and manufacturing method thereof |
US10513766B2 (en) | 2015-12-18 | 2019-12-24 | Novelis Inc. | High strength 6XXX aluminum alloys and methods of making the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53103914A (en) * | 1977-02-22 | 1978-09-09 | Sumitomo Light Metal Ind | Highhstrength aluminum alloy for formed products and articles |
JPS63169353A (en) * | 1986-12-29 | 1988-07-13 | Furukawa Alum Co Ltd | Aluminum alloy for forming and its production |
JPH04365834A (en) * | 1991-03-30 | 1992-12-17 | Nkk Corp | Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production |
-
1991
- 1991-08-16 JP JP20581891A patent/JPH0543974A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS53103914A (en) * | 1977-02-22 | 1978-09-09 | Sumitomo Light Metal Ind | Highhstrength aluminum alloy for formed products and articles |
JPS63169353A (en) * | 1986-12-29 | 1988-07-13 | Furukawa Alum Co Ltd | Aluminum alloy for forming and its production |
JPH04365834A (en) * | 1991-03-30 | 1992-12-17 | Nkk Corp | Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0613959A1 (en) * | 1993-03-03 | 1994-09-07 | Nkk Corporation | An aluminium alloy sheet for use in press forming , exhibiting excellent hardening property obtained by baking at low temperature for a short period of time and a method of manufacturing the same |
US5580402A (en) * | 1993-03-03 | 1996-12-03 | Nkk Corporation | Low baking temperature hardenable aluminum alloy sheet for press-forming |
WO1995022634A1 (en) * | 1994-02-16 | 1995-08-24 | Sumitomo Light Metal Industries, Ltd. | Method of manufacturing aluminum alloy plate for molding |
JP2000319741A (en) * | 1998-09-10 | 2000-11-21 | Kobe Steel Ltd | Al-Mg-Si BASED ALLOY SHEET |
JP2001040444A (en) * | 1999-05-25 | 2001-02-13 | Nippon Light Metal Co Ltd | Aluminum alloy plate material for rpecision working and production therefor |
CN103757507A (en) * | 2014-02-25 | 2014-04-30 | 北京科技大学 | High baking varnish hardening aluminum alloy material for external car body plate and preparation method thereof |
CN104018040A (en) * | 2014-06-23 | 2014-09-03 | 北京科技大学 | Automotive high-formability aluminum alloy material and preparation method thereof |
JP2018513916A (en) * | 2015-12-18 | 2018-05-31 | ノベリス・インコーポレイテッドNovelis Inc. | High strength 6XXX aluminum alloy and manufacturing method thereof |
US10513766B2 (en) | 2015-12-18 | 2019-12-24 | Novelis Inc. | High strength 6XXX aluminum alloys and methods of making the same |
US10538834B2 (en) | 2015-12-18 | 2020-01-21 | Novelis Inc. | High-strength 6XXX aluminum alloys and methods of making the same |
JP2020015981A (en) * | 2015-12-18 | 2020-01-30 | ノベリス・インコーポレイテッドNovelis Inc. | High strength 6xxx aluminum alloy and manufacturing method therefor |
US11920229B2 (en) | 2015-12-18 | 2024-03-05 | Novelis Inc. | High strength 6XXX aluminum alloys and methods of making the same |
US12043887B2 (en) | 2015-12-18 | 2024-07-23 | Novelis Inc. | High strength 6xxx aluminum alloys and methods of making the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58224141A (en) | Cold roller aluminum alloy plate for forming and its manufacture | |
EP0480402B1 (en) | Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability | |
EP0646655B1 (en) | Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardening ability | |
EP0616044A2 (en) | Method of manufacturing natural aging retardated aluminum alloy sheet | |
EP0613959B1 (en) | An aluminium alloy sheet for use in press forming , exhibiting excellent hardening property obtained by baking at low temperature for a short period of time and a method of manufacturing the same | |
JPH05112840A (en) | Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture | |
JPH0543974A (en) | Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production | |
JP2595836B2 (en) | Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same | |
JPH06340940A (en) | Aluminum alloy sheet excellent in press formability and baking hardenability and its production | |
JP2856936B2 (en) | Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same | |
JPS61272342A (en) | Aluminum alloy sheet excelling in formability and baking hardening and its production | |
JPH05331588A (en) | Aluminum alloy sheet for forming excellent in flange formability and its production | |
JPH04263034A (en) | Aluminum alloy sheet for press forming excellent in baking hardenability and its production | |
JPH04214834A (en) | Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture | |
JP2000160272A (en) | Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY | |
JPH0860283A (en) | Aluminum alloy sheet for di can body and its production | |
JPH0718389A (en) | Production of al-mg series alloy sheet for forming | |
JPH06228696A (en) | Aluminum alloy sheet for di can body | |
JPH07173565A (en) | Aluminum alloy sheet for press forming excellent in curability for coating/baking | |
JPH08296011A (en) | Production of aluminum alloy sheet for high speed forming excellent in baking hardenability of coating film and cold stability | |
JP3359428B2 (en) | Manufacturing method of aluminum alloy sheet for forming | |
JP2000001730A (en) | Aluminum alloy sheet for can body, and its production | |
JP4034904B2 (en) | Hot rolled plate for aluminum can body and can body plate using the same | |
JPH0633179A (en) | Aluminum alloy sheet for press forming excellent in hardenability by high-temperature short-time baking and its production | |
JP3069008B2 (en) | Method for manufacturing aluminum alloy DI can body |