JPH05331588A - Aluminum alloy sheet for forming excellent in flange formability and its production - Google Patents

Aluminum alloy sheet for forming excellent in flange formability and its production

Info

Publication number
JPH05331588A
JPH05331588A JP16697392A JP16697392A JPH05331588A JP H05331588 A JPH05331588 A JP H05331588A JP 16697392 A JP16697392 A JP 16697392A JP 16697392 A JP16697392 A JP 16697392A JP H05331588 A JPH05331588 A JP H05331588A
Authority
JP
Japan
Prior art keywords
amount
alloy
strength
formability
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16697392A
Other languages
Japanese (ja)
Other versions
JP3210419B2 (en
Inventor
Shinji Teruda
伸二 照田
Akira Tajiri
彰 田尻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP16697392A priority Critical patent/JP3210419B2/en
Publication of JPH05331588A publication Critical patent/JPH05331588A/en
Application granted granted Critical
Publication of JP3210419B2 publication Critical patent/JP3210419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To produce an Al alloy sheet for forming excellent in flange formability by limiting the components, mainly, of Mn, Fe, and Si and regulating the state of dispersion of intermetallic compound and the amount of solid- solution Mn, respectively. CONSTITUTION:An Al alloy sheet which has a composition consisting of, by weight, 0.5-2% Mg, 0.6-1.4% Mn, 0.3-1% Fe, 0.15-0.5% Si, 0.005-0.2% Ti as a component for refining and stabilizing structure, independently or in combination with 0.0001-0.05% B, further one or more kinds among 0.05-0.5% Cu, 0.05-0.3% Cr, and 0.1-0.5% Zn, and the balance Al with inevitable impurities and satisfying the conditions of 1<=Mn/Fe<=2.5, 3<=Mn/Si<=4, and 1%<=Fe+Mn<=2% and where intermetallic compound of >=5mu grain size exists in the sheet surface by (100 to 200)pieces/0.2mm<2> and the amount of solid-solution Mn is regulated to <=0.16% is prepared. By this method, the Al alloy sheet for forming excellent in flange formability after DI forming can be obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強度及び成形加工性に
優れ、しかも成形加工後のベーキング後の成形性に優れ
たアルミニウム硬質板ならびに該アルミニウム硬質板の
製造方法に係り、更に詳しく述べるなら2ピースアルミ
ニウム缶(DI缶)の缶胴材等に好適な塗装焼付け処理
後のフランジ成形性に優れたAl−Mg−Mn系アルミ
ニウム合金硬質板ならびにその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum hard plate excellent in strength and moldability and excellent in moldability after baking after molding, and a method for producing the aluminum hard plate. The present invention relates to an Al-Mg-Mn-based aluminum alloy hard plate having excellent flange formability after paint baking, which is suitable for a can body of a two-piece aluminum can (DI can), and a method for producing the same.

【0002】[0002]

【従来の技術】近年、缶材として用いられるアルミニウ
ム合金板は薄肉化と高強度化が進められている。これ
は、より強度の高い薄板を利用することによりコストを
低減するする等の経済的要請によるものである。JIS
3004合金硬質板は、強度を上げるために圧延率の高
い冷間圧延を施した場合でも比較的良好な成形性を有す
ることから、従来よりこのような缶胴材の用途に用いら
れることが多かった。このJIS3004合金硬質板
は、均質化処理後、常法に従って熱間圧延され、ついで
冷間圧延を施してからあるいは施さずに、中間焼鈍を行
うことにより製造されることが多い。一方、近年連続焼
鈍炉(CAL)の普及に伴い、高温到達および急速冷却
の中間焼鈍を行うことが可能となり、これにより溶体化
効果を利用して高強度化した缶胴材の製造が主流となり
つつある。この方法によれば塗装焼付け後の強度低下が
少ないため、DI成形時の強度は従来のバッチタイプの
中間焼鈍材ほど高くしなくて済むためDI成形性は良好
となる。
2. Description of the Related Art In recent years, aluminum alloy sheets used as cans have been made thinner and have higher strength. This is due to economic demands such as cost reduction by using a stronger thin plate. JIS
Since the 3004 alloy hard plate has relatively good formability even when cold rolled with a high rolling ratio to increase the strength, it has been conventionally used for such can body materials. It was This JIS 3004 alloy hard plate is often manufactured by homogenizing, then hot rolling according to a conventional method, and then performing intermediate annealing with or without cold rolling. On the other hand, with the widespread use of continuous annealing furnaces (CAL) in recent years, it has become possible to carry out intermediate annealing of reaching high temperature and rapid cooling, and as a result, the production of can body materials with high strength utilizing the solutionizing effect becomes the mainstream. It's starting. According to this method, since the decrease in strength after paint baking is small, the strength during DI molding does not have to be as high as that of the conventional batch type intermediate annealed material, and the DI moldability becomes good.

【0003】[0003]

【発明が解決しようとする課題】上述した如く、缶胴材
の板厚の薄肉化が進められているが、成形前の元板の板
厚を薄くすることに比例してDI成形を施した後の缶側
壁も薄くなる。従来、側壁のフランジ成形部は厚さが2
00μm程度あったものが現行では150μm程度にま
で薄くなっており、さらに薄くなる傾向がある。しかし
ながら、フランジ成形部の板厚が薄くなると延性が低下
して成形時の割れ感受性が高まりフランジ成形性が悪化
する。
As described above, the thickness of the can body is being reduced, but DI molding was performed in proportion to the reduction of the thickness of the base plate before molding. The side wall of the later can also becomes thinner. Conventionally, the flange forming part of the side wall has a thickness of 2
What has been about 00 μm is now as thin as about 150 μm, and there is a tendency for it to be even thinner. However, if the plate thickness of the flange forming portion becomes thin, the ductility decreases, the crack susceptibility during forming increases, and the flange formability deteriorates.

【0004】本発明は、従来用いられているJIS30
04合金とは異なる合金系をもとにして、耳率、強度、
DI成形性等の特性は従来材と同等ないしそれ以上で、
しかもフランジ成形性およびシーミング成形性に優れた
缶胴材に適する材料を提供することを目的とするもので
ある。
The present invention is based on the conventionally used JIS30.
Based on an alloy system different from 04 alloy, ear ratio, strength,
Properties such as DI moldability are equal to or better than conventional materials,
Moreover, it is an object of the present invention to provide a material suitable for a can body which has excellent flange formability and seaming formability.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に本発明者らは化学成分調整、組織並びに製造条件等に
ついて総合的に研究を重ね鋭意検討した結果、主にMn
・Fe・Siの成分を制限して適切な金属間化合物の分
散状態ならびに適切なMn固溶量とすることにより上記
目的を達成できることを見出した。
[Means for Solving the Problems] In order to achieve the above-mentioned object, the inventors of the present invention have comprehensively studied comprehensively on chemical component adjustment, structure, manufacturing conditions, etc.
It has been found that the above object can be achieved by limiting the components of Fe and Si so as to obtain an appropriate intermetallic compound dispersion state and an appropriate Mn solid solution amount.

【0006】すなわち本発明は、請求項1記載のごとく
重量%でMg:0.5〜2.0%、Mn:0.6〜1.
4%、Fe:0.3〜1.0%、Si:0.15〜0.
5%、組織微細化・安定化のためにTi:0.005〜
0.20%を単独であるいはB:0.0001〜0.0
5%とともに含有し、1≦Mn/Fe≦2.5、3≦M
n/Si≦4、1%≦Fe+Mn≦2%の条件を満た
し、さらにCu:0.05〜0.5%、Cr:0.05
〜0.3%、Zn:0.1〜0.5%のうちの1種また
は2種以上を含有し、残部がAlおよび不可避的不純物
からなり、板表面における5μm以上の金属間化合物が
100〜200個/0.2mm2存在し、Mn固溶量が
0.16%以下であることを特徴とする成形性特にDI
成形加工後のフランジ成形性に優れた成形加工用アルミ
ニウム合金板であり、また、請求項2記載のごとく、重
量%でMg:0.5〜2.0%、Mn:0.6〜1.4
%、Fe:0.3〜1.0%、Si:0.15〜0.5
%、組織微細化・安定化のためにTi:0.005〜
0.20%を単独であるいはB:0.0001〜0.0
5%とともに含有し、1≦Mn/Fe≦2.5、3≦M
n/Si≦4、1%≦Fe+Mn≦2%の条件を満た
し、さらにCu:0.05〜0.5%、Cr:0.05
〜0.3%、Zn:0.1〜0.5%のうちの1種また
は2種以上を含有し、残部がAlおよび不可避的不純物
からなるアルミニウム合金の鋳塊を、常法に従って均熱
を施してその後熱間圧延を行ない、その後、そのまま又
は冷却後または冷間圧延後に、1℃/s以上の加熱・冷
却速度で400〜600℃の到達温度で10分以内の保
持時間の焼鈍を施し、次いで40%以上の圧延率の冷間
圧延を施し、板表面における5μm以上の金属間化合物
が100〜200個/0.2mm2存在し、Mn固溶量
が0.16%以下であることを特徴とする成形性特にD
I成形加工後のフランジ成形性に優れた成形加工用アル
ミニウム合金板の製造方法である。
That is, according to the present invention, the weight% of Mg is 0.5 to 2.0% and the Mn is 0.6 to 1.
4%, Fe: 0.3 to 1.0%, Si: 0.15 to 0.
5%, Ti: 0.005 to refine and stabilize the structure
0.20% alone or B: 0.0001 to 0.0
Included with 5%, 1 ≦ Mn / Fe ≦ 2.5, 3 ≦ M
n / Si ≦ 4, 1% ≦ Fe + Mn ≦ 2% are satisfied, and further Cu: 0.05 to 0.5%, Cr: 0.05.
.About.0.3%, Zn: 0.1 to 0.5% of one or more, and the balance consisting of Al and unavoidable impurities. ~ 200 pieces / 0.2 mm 2 exist, and the Mn solid solution amount is 0.16% or less.
It is an aluminum alloy plate for forming which is excellent in flange formability after forming. Further, according to claim 2, Mg: 0.5 to 2.0% and Mn: 0.6 to 1.% by weight. Four
%, Fe: 0.3 to 1.0%, Si: 0.15 to 0.5
%, Ti: 0.005 to refine and stabilize the structure
0.20% alone or B: 0.0001 to 0.0
Included with 5%, 1 ≦ Mn / Fe ≦ 2.5, 3 ≦ M
n / Si ≦ 4, 1% ≦ Fe + Mn ≦ 2% are satisfied, and further Cu: 0.05 to 0.5%, Cr: 0.05.
~ 0.3%, Zn: 0.1 to 0.5% of one or more of 0.1%, and the balance of Al and unavoidable impurities in the aluminum alloy ingot is soaked according to a conventional method. After that, hot rolling is performed, and then, as it is or after cooling or after cold rolling, annealing is performed at a heating / cooling rate of 1 ° C./s or more at an ultimate temperature of 400 to 600 ° C. for a holding time of 10 minutes or less. Cold rolling at a rolling rate of 40% or more, 100 to 200 intermetallic compounds of 5 μm or more / 0.2 mm 2 on the plate surface, and a Mn solid solution amount of 0.16% or less. Moldability characterized by that D
I is a method for producing an aluminum alloy sheet for forming which is excellent in flange formability after forming.

【0007】[0007]

【作用】以下、本発明を更に詳細に説明する。まず、本
発明における化学成分の限定理由について説明する。 Mg:MgはSi・Cuとの共存によりMg2Siある
いはAl−Cu−Mgの時効析出により強度向上が望
め、本発明のごとく溶体化効果をもたせた中間焼鈍の場
合には特に塗装焼付け後の強度低下を抑制するのに効果
がある。更にMg単独でも固溶体強化により強度向上に
効果がある。このように強度向上には不可欠な元素であ
るが、Mg量が0.5%未満ではその効果が少なく十分
な強度が得られず、2.0%を超えて添加した場合には
絞り成形性の点では問題がないが加工硬化しやすくなる
ために再絞り性やしごき性を悪くする。したがって、M
g量は0.5〜2.0%の範囲とする。 Mn:Mnは強度向上に寄与するとともに成形性向上に
有効な元素である。特に本発明が目指す用途である缶胴
材では、しごき成形されるためにとりわけMnは重要で
ある。アルミニウム合金板のしごき成形においては通常
エマルジョンタイプの潤滑剤が用いられている。しか
し、同程度の強度を有していてもMn系晶出物の数・量
が少ない組織の場合にはエマルジョンタイプの潤滑剤だ
けでは潤滑能力が不足し、ゴーリングと呼ばれる擦り疵
や焼付きといった外観不良が発生する。この現象は、晶
出物の大きさ、量、種類に影響され、適切に選択された
Mn量を添加することが不可欠である。固溶Mnは強度
向上に大きく寄与するが、Mgのように強度に寄与して
延性を向上させるのではなく、材料を脆くする作用があ
る。図1は延性の評価として限界フランジ伸びを測定し
てMn固溶量の延性への影響を調べたものである。Mn
の固溶量が0.16%までであれば延性を低下させない
が、0.16%を超えると固溶量の増加とともに延性が
低下することがわかる。したがってMn固溶量は0.1
6%以下とする。また、Mn量が0.6%未満ではMn
化合物による固体潤滑的な効果が得られないが、1.4
%を超えると後に述べるFeとあわさり、(Mn,F
e)Al6の初晶巨大金属間化合物が晶出し、成形性を
著しく損う。さらにMnの固溶量は、Mnの添加量が多
くなると固溶量も多くなるが、Fe・Si等の添加量に
よりMn添加量が多くてもMn固溶量を調節することが
できる。しかし、Mn添加量が1.4%を超えるとSi
・Fe量によってもMn固溶量を抑えることが難しい。
したがって、Mn量は0.6〜1.4%とする。 Fe:FeはMnの晶出や析出を促進し、アルミニウム
マトリックス中のMnの固溶量やMn系不溶性金属間化
合物の分散状態を制御するために必要な元素である。適
正状態を得る必要条件はMn添加量に応じたFeの添加
である。Mn/Feが2.5より大きくなるとMnの固
溶量が増え延性を劣化させる。またMn/Feの数値が
小さくなると晶出化合物が細かくなり一般的に延性は向
上するが、この値が1未満となると晶出物サイズが小さ
くなりすぎてしごき成形時の潤滑効果が低下し缶表面の
外観不良を引き起こす。したがって、Mn/Feの値は
1≦Mn/Fe≦2.5とする。またFeは単独の成分
としては0.3%未満では適正な化合物分散状態を得る
ことが難しく、また1%を超えてはMn添加と合わせ
て、(Mn,Fe)Al6等の初晶巨大金属間化合物が
晶出し、成形性を著しく損う。したがって、Fe量は
0.3〜1.0%とする。さらにFeおよびMnは、こ
の合金系で認められる初晶金属間化合物の主な成分であ
るので、適正な分散状態を得るには、これらの添加総量
を規制する必要がある。Fe+Mn量が1%未満では晶
出化合物の総量が不足してしごき性が劣り、また2%を
超えるとしごき性の面では問題無いが、巨大な初晶金属
間化合物が発生しやすくなり成形性を著しく損ない、そ
の個数も増え成形時の材料の塑性変形がスムーズに行か
ず結局延性を損なう結果となる。したがって、Fe+M
n量は1〜2%とする。 Si:Siを添加することにより、Mg2Si系化合物
の時効硬化による強度向上が期待できるが、本発明にお
いては晶出物を適正な分散状態にし、またMn固溶量を
適正状態にするために必要な元素である。SiもFeと
同様にMnの晶出や析出を促進し、アルミニウムマトリ
ックス中のMn固溶量やMn系不溶性金属間化合物の分
散状態を制御する。Mn/Siが小さくなると晶出化合
物のサイズが細かくなり一般的に延性はよくなるが、こ
の値が3より小さくなるとDI加工におけるしごき成形
時の潤滑効果が低下し缶表面の外観不良を引き起こす。
またこの値が4を超えるとMnの固溶量を0.16%以
下に制御することが難しくなり延性の低下が起こる。し
たがってMn/Siの比は3≦Mn/Si≦4の範囲と
するまた、Si量が0.15%未満ではその効果がな
く、0.5%を超えると時効硬化には効果があるものの
Mn添加量の調整によっても適切な晶出物化合物の分散
が得られない。したがって、Si量は0.15〜0.5
%の範囲とする。 Ti、B:通常のアルミニウム合金においては、鋳塊結
晶粒の微細化・安定化のためにTi及びBを微量添加す
ることが行われており、本発明においても微量のTiを
単独であるいはBとともに添加する。Ti量が0.00
5%未満ではその効果が得られず、また0.2%を超え
ると初晶TiAl3が晶出して成形性を阻害する。した
がってTi量は0.005〜0.2%の範囲とする。ま
たTiと共にBを添加するとこの効果が向上する。ただ
しBを添加する場合、0.0001%未満ではその効果
がなく、0.05%を越えてはTiB2の粗大粒子が混
入して成形性を害する。したがって、B量は0.000
1〜0.05%の範囲とする。 Cu:本発明では、Cuの溶体化効果による強度向上が
期待できる。すなわち、焼付け処理時のAl−Cu−M
g系析出物の析出過程で起る時効硬化を利用して強度向
上に寄与する元素である。Cu量が0.05%未満では
その効果は得られず、一方0.5%を超えて添加した場
合、時効硬化は容易に得られるものの硬くなりすぎて成
形性を阻害する。したがって、Cu量は0.05〜0.
5%の範囲とする。 Zn:Znの添加によりMg2Zn3Al2の時効析出に
よる強度向上を望めるが、Zn量が0.1%未満ではそ
の効果はなく、0.5%を超えて添加されると強度の面
では問題ないが耐食性を劣化させるため、この値以下に
規制する必要がある。したがって、Zn量は0.1〜
0.5%とする。 Cr:Crの添加は強度向上に大きな効果を示す。しか
しCr量が0.05%未満ではその効果はなく、0.3
%を超えて過多に添加されると巨大晶出物の生成および
晶出物数の増大が起こり成形性の低下を招くため好まし
くない。したがって、Cr量は0.05〜0.3%とす
る。以上の各成分の残部はAl及び不可避不純物であ
る。
The present invention will be described in more detail below. First, the reasons for limiting the chemical components in the present invention will be described. Mg: Mg is expected to improve strength by aging precipitation of Mg 2 Si or Al-Cu-Mg by coexistence with Si / Cu. In the case of intermediate annealing having a solution treatment effect as in the present invention, especially after coating baking, It is effective in suppressing the decrease in strength. Further, Mg alone is effective in improving strength by strengthening the solid solution. As described above, it is an essential element for improving strength, but if the Mg content is less than 0.5%, its effect is small and sufficient strength cannot be obtained. Although there is no problem in point, workability is likely to be hardened, so that redrawability and ironing property are deteriorated. Therefore, M
The amount of g is 0.5 to 2.0%. Mn: Mn is an element that contributes to the improvement of strength and is effective in improving the formability. Mn is particularly important for can body material, which is the purpose of the present invention, for ironing. Emulsion type lubricants are usually used in the ironing of aluminum alloy sheets. However, even if the structure has the same level of strength and a small number and amount of Mn-based crystallized substances, the emulsion type lubricant alone lacks the lubrication ability, and the appearance defect such as scratches and seizure called galling is poor. Occurs. This phenomenon is affected by the size, amount, and type of crystallized substances, and it is essential to add an appropriately selected Mn amount. Although solute Mn greatly contributes to the improvement of strength, it does not contribute to strength like Mg to improve ductility, but has an action of making the material brittle. FIG. 1 shows the influence of Mn solid solution amount on the ductility by measuring the limit flange elongation as an evaluation of the ductility. Mn
It can be seen that when the solid solution amount of is up to 0.16%, the ductility is not reduced, but when it exceeds 0.16%, the ductility is reduced with an increase in the solid solution amount. Therefore, the Mn solid solution amount is 0.1
6% or less. If the Mn content is less than 0.6%, Mn
The solid lubricating effect of the compound cannot be obtained, but 1.4
If it exceeds%, it will be mixed with Fe, which will be described later, (Mn, F
e) The primary crystal giant intermetallic compound of Al 6 crystallizes, and the formability is significantly impaired. Further, the solid solution amount of Mn increases as the added amount of Mn increases, but the solid solution amount of Mn can be adjusted by the added amount of Fe.Si etc. even if the added amount of Mn is large. However, if the amount of Mn added exceeds 1.4%, Si
-It is difficult to suppress the amount of Mn solid solution depending on the amount of Fe.
Therefore, the Mn content is 0.6 to 1.4%. Fe: Fe is an element necessary for promoting crystallization and precipitation of Mn, and controlling the solid solution amount of Mn in the aluminum matrix and the dispersed state of the Mn-based insoluble intermetallic compound. The necessary condition for obtaining the proper state is the addition of Fe according to the amount of Mn added. If Mn / Fe is more than 2.5, the amount of Mn solid solution increases and the ductility deteriorates. When the value of Mn / Fe becomes smaller, the crystallized compound becomes finer and the ductility is generally improved. However, when the value is less than 1, the crystallized product size becomes too small and the lubrication effect at the time of ironing is reduced, resulting in a can. Causes poor surface appearance. Therefore, the value of Mn / Fe is 1 ≦ Mn / Fe ≦ 2.5. Further, if Fe is less than 0.3% as a single component, it is difficult to obtain a proper compound dispersion state, and if it exceeds 1%, it is combined with Mn addition to form a large primary crystal such as (Mn, Fe) Al 6. The intermetallic compound crystallizes and the formability is significantly impaired. Therefore, the amount of Fe is set to 0.3 to 1.0%. Furthermore, since Fe and Mn are the main components of the primary crystal intermetallic compound found in this alloy system, it is necessary to regulate the total addition amount of these in order to obtain a proper dispersed state. If the Fe + Mn amount is less than 1%, the total amount of crystallized compounds is insufficient and the ironing property is inferior. If it exceeds 2%, there is no problem in the ironing property, but a huge primary crystal intermetallic compound is likely to be generated and formability is increased. The plastic deformation of the material at the time of molding does not go smoothly, resulting in a loss of ductility. Therefore, Fe + M
The amount of n is 1-2%. Si: The addition of Si can be expected to improve the strength of the Mg 2 Si-based compound due to age hardening. However, in the present invention, the crystallized substance is in an appropriate dispersed state and the Mn solid solution amount is in an appropriate state. Is an element necessary for. Si, like Fe, promotes crystallization and precipitation of Mn, and controls the amount of Mn solid solution in the aluminum matrix and the dispersed state of the Mn-based insoluble intermetallic compound. When Mn / Si becomes smaller, the size of the crystallized compound becomes finer and ductility is generally improved, but when this value is smaller than 3, the lubricating effect at the time of ironing forming in DI processing is deteriorated and the appearance of the can surface is deteriorated.
Further, if this value exceeds 4, it becomes difficult to control the solid solution amount of Mn to 0.16% or less, and ductility decreases. Therefore, the ratio of Mn / Si should be in the range of 3 ≦ Mn / Si ≦ 4. Further, if the Si content is less than 0.15%, the effect is not obtained, and if it exceeds 0.5%, the age hardening is effective, but Mn Even if the addition amount is adjusted, an appropriate dispersion of the crystallized compound cannot be obtained. Therefore, the amount of Si is 0.15 to 0.5
The range is%. Ti, B: In ordinary aluminum alloys, a small amount of Ti and B is added for refining and stabilizing the ingot crystal grains. In the present invention, a small amount of Ti alone or B is also used. Added with. Ti amount is 0.00
If it is less than 5%, the effect cannot be obtained, and if it exceeds 0.2%, primary crystal TiAl 3 crystallizes and hinders formability. Therefore, the Ti content is in the range of 0.005 to 0.2%. Further, when B is added together with Ti, this effect is improved. However, in the case of adding B, if it is less than 0.0001%, there is no effect, and if it exceeds 0.05%, coarse particles of TiB 2 are mixed and the formability is impaired. Therefore, the amount of B is 0.000
The range is 1 to 0.05%. Cu: In the present invention, strength improvement due to the solution treatment effect of Cu can be expected. That is, Al-Cu-M during baking treatment
It is an element that contributes to strength improvement by utilizing the age hardening that occurs in the precipitation process of g-based precipitates. If the Cu content is less than 0.05%, the effect cannot be obtained. On the other hand, if the Cu content is more than 0.5%, age hardening is easily obtained, but it becomes too hard and hinders moldability. Therefore, the Cu amount is 0.05 to 0.
The range is 5%. The addition of Zn: Zn is expected to improve the strength by aging precipitation of Mg 2 Zn 3 Al 2 , but if the Zn content is less than 0.1%, this effect is not obtained, and if it is added in excess of 0.5%, the strength is However, there is no problem, but since corrosion resistance is deteriorated, it is necessary to regulate below this value. Therefore, the Zn content is 0.1 to
0.5%. Cr: Addition of Cr has a great effect on the strength improvement. However, if the amount of Cr is less than 0.05%, the effect is not obtained and 0.3
If it is added excessively in excess of%, the formation of huge crystallized substances and the increase in the number of crystallized substances occur, resulting in a decrease in moldability, which is not preferable. Therefore, the Cr content is 0.05 to 0.3%. The balance of each of the above components is Al and inevitable impurities.

【0008】次に本発明における組織の限定理由につい
て説明する。板表面における5μm以上の金属間化合物
が100個/0.2mm2未満ではDI加工におけるし
ごき成形時の潤滑効果およびセルフクリーニング効果が
少なくなるため、ゴーリングと呼ばれる擦り疵や焼付き
といった外観不良が発生し、出来上りの缶の外観を損ね
る。また、200個/0.2mm2を超えて存在する
と、しごき性は良いものの、粗大な粒子の個数が増える
ことから延性を損ねる。したがって、板表面において5
μm以上の金属間化合物が100〜200個/0.2m
2存在することとする。
Next, the reasons for limiting the organization of the present invention will be described. When the intermetallic compound of 5 μm or more on the plate surface is less than 100 / 0.2 mm 2 , the lubrication effect and the self-cleaning effect at the time of ironing in DI processing are reduced, so that appearance defects such as scratches and seizure called galling occur. However, the appearance of the finished can is damaged. On the other hand, if it exceeds 200 particles / 0.2 mm 2 , the ironing property is good, but the ductility is impaired because the number of coarse particles increases. Therefore, 5 on the plate surface
100 to 200 intermetallic compounds with a size of μm or more / 0.2 m
m 2 exists.

【0009】次に本発明における製造プロセスについて
説明する。 鋳造:前述の合金組成を有するアルミニウム合金を常法
に従ってDC鋳造法(半連続鋳造法)により鋳造する。 均熱:次いでその鋳塊に対して、均質化処理を兼ねた熱
間圧延前の予備加熱を施して熱間圧延を行うか、または
均質化処理としての加熱を施し次いで熱間圧延前の予備
加熱を施して熱間圧延を行う。均熱温度が500℃未満
または保持時間1時間未満では十分な均質化が得られ
ず、また620℃を超えると鋳塊表面に膨れが生じたり
するため、均熱条件は500〜620℃の温度で1時間
以上の保持を行うことが望ましい。 熱間圧延:上記均熱処理の後に常法に従って熱間圧延を
行なう。 中間焼鈍:熱間圧延後そのまま、または熱間圧延後冷却
した後、または熱間圧延後冷間圧延を施した後に、1℃
/sより速い加熱・冷却速度で400〜600℃の到達
温度で10分以内の保持時間の中間焼鈍を行う。400
℃未満の温度ではCu、Mg、Si等の金属元素の固溶
が進まず、従って溶体化効果による強度向上が望めな
い。一方、高温である方がより溶体化効果による強度向
上が望めるが、600℃を超える温度では共晶融解によ
る製造上の不都合および製品の外観不良が生じる。した
がって、焼鈍温度は400〜600℃の到達温度とす
る。また到達温度からの冷却速度が1℃/s未満ではせ
っかく固溶した合金元素が冷却過程において析出してし
まい、溶体化効果による強度向上の程度が少なくなる。
したがって、冷却速度は1℃/s以上とする。また40
0〜600℃の温度範囲で製品が晒される時間は10分
以内とする。これより長時間になると表面の酸化皮膜の
形成により焼鈍終了後の冷間圧延性や製品の外観を損ね
る。Mn固溶量を低くするだけであるならばバッチタイ
プの焼鈍炉により保持時間の長い焼鈍を行うことにより
容易に達成することができる。しかし本発明は塗装焼付
け後の強度が高く、かつDI成形する時点での強度は低
くて成形性の良い材料を得るために塗装焼付け処理によ
る強度低下の少ないCALによる中間焼鈍を採用し、合
金成分元素の規制ならびに中間焼鈍以外の製造条件の選
定によりMn固溶量を低く抑えることを実現したもので
ある。 冷間圧延:上記焼鈍後、40%以上の圧延率の冷間圧延
を施す。圧延率が40%未満では十分な強度が得られな
い。なお、必要に応じて100〜200℃程度の最終焼
鈍を施すことにより、深絞り性の改善が望める。
Next, the manufacturing process in the present invention will be described. Casting: An aluminum alloy having the above alloy composition is cast by a DC casting method (semi-continuous casting method) according to a conventional method. Soaking: Then, the ingot is preheated before hot rolling which also serves as homogenization treatment to perform hot rolling, or is heated as homogenization treatment and then preparatory before hot rolling. It is heated and hot rolled. If the soaking temperature is less than 500 ° C or the holding time is less than 1 hour, sufficient homogenization cannot be obtained, and if it exceeds 620 ° C, swelling may occur on the surface of the ingot, so the soaking condition is a temperature of 500 to 620 ° C. It is desirable to maintain the temperature for 1 hour or more. Hot rolling: Hot rolling is performed according to a conventional method after the soaking. Intermediate annealing: 1 ° C. as it is after hot rolling, after hot rolling and then cooling, or after hot rolling and cold rolling.
The intermediate annealing is performed at a heating / cooling rate faster than / s at an ultimate temperature of 400 to 600 ° C. for a holding time of 10 minutes or less. 400
If the temperature is lower than ℃, solid solution of metal elements such as Cu, Mg and Si does not proceed, and therefore strength improvement due to solution effect cannot be expected. On the other hand, the higher the temperature, the more the strength can be expected to be improved by the solutionizing effect. However, at a temperature higher than 600 ° C., eutectic melting causes inconvenience in production and poor appearance of the product. Therefore, the annealing temperature is set to the ultimate temperature of 400 to 600 ° C. Further, if the cooling rate from the ultimate temperature is less than 1 ° C./s, the alloy elements that have been solid-dissolved will precipitate during the cooling process, and the degree of strength improvement due to the solution treatment effect will decrease.
Therefore, the cooling rate is 1 ° C./s or more. Again 40
The time for which the product is exposed in the temperature range of 0 to 600 ° C is 10 minutes or less. If the time is longer than this, an oxide film is formed on the surface, which impairs the cold rollability after the annealing and the appearance of the product. If only the amount of Mn solid solution is reduced, it can be easily achieved by performing annealing with a long holding time in a batch type annealing furnace. However, in the present invention, in order to obtain a material having high strength after coating baking and low strength at the time of DI molding and good moldability, intermediate annealing by CAL that causes little strength reduction due to coating baking treatment is adopted, and the alloy composition By controlling the elements and selecting manufacturing conditions other than intermediate annealing, it was possible to suppress the amount of Mn solid solution to a low level. Cold rolling: After the above annealing, cold rolling with a rolling ratio of 40% or more is performed. If the rolling ratio is less than 40%, sufficient strength cannot be obtained. In addition, improvement of deep drawability can be expected by performing final annealing at about 100 to 200 ° C. if necessary.

【0010】[0010]

【実施例】次に本発明の実施例について説明する。実施
例に用いた合金成分組成を表1に、また、各々のMn/
Fe,Mn/SiおよびFe+Mnの値を表2に示す。
各々について説明すると、合金Aは、Crを多めに添加
した発明合金である。合金Bは、Crを含まない発明合
金である。合金Cは各成分は本発明の請求の範囲に含ま
れるが、(Mn/Si)の値が外れている比較合金であ
る。合金DはMn量がやや低いものの各成分は本発明の
請求の範囲に含まれるが、(Fe+Mn)の値が外れて
いる比較合金である。合金Eは各成分はSi量が低く、
また(Mn/Fe)および(Mn/Si)の値が外れて
いる比較合金である。合金Fは各成分は本発明の請求の
範囲に含まれるが、(Fe*Mn)の値が外れている比
較合金である。合金GはMn量がやや低いものの各成分
は本発明の請求の範囲に含まれるが、(Mn/Fe)の
値が外れている比較合金である。合金Hは従来合金であ
り、(Mn/Fe)および(Mn/Si)の値が外れて
いる。
EXAMPLES Next, examples of the present invention will be described. Table 1 shows the composition of the alloy components used in the examples, and Mn /
The values of Fe, Mn / Si and Fe + Mn are shown in Table 2.
Explaining each of them, alloy A is an invention alloy in which Cr is added in a large amount. Alloy B is an invention alloy containing no Cr. Alloy C is a comparative alloy in which each component falls within the scope of the claims of the present invention, but the value of (Mn / Si) is deviated. Alloy D is a comparative alloy having a slightly low Mn content, but each component is included in the scope of the claims of the present invention, but the value of (Fe + Mn) is deviated. Alloy E has low Si content in each component,
Further, it is a comparative alloy in which the values of (Mn / Fe) and (Mn / Si) are deviated. Alloy F is a comparative alloy in which each component falls within the scope of the claims of the present invention, but the value of (Fe * Mn) is deviated. Alloy G is a comparative alloy having a slightly low Mn content, but each component is included in the scope of the claims of the present invention, but the value of (Mn / Fe) deviates. Alloy H is a conventional alloy, and the values of (Mn / Fe) and (Mn / Si) are deviated.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】表1に示す化学成分を有する各アルミニウ
ム合金を用いて、常法によって得られたDC鋳塊を60
5℃で10時間の均熱を行い、その後常法に従い熱間圧
延を行って、厚さ4mmの熱延コイルを得た。No1お
よび3〜9は板厚0.75mmまで冷間圧延を行った後
CALによる中間焼鈍を施したものであり、その条件は
加熱・冷却速度が約20℃/s、到達温度が530℃と
し、到達後即時に冷却した。その後冷間圧延を行って
0.3mmの板を得て最終焼鈍を100℃2時間で行っ
た。No2はNo1と同じ合金を用いたもので、中間焼
鈍をCALではなくバッチ焼鈍炉による焼鈍とした比較
例である。中間焼鈍条件は加熱・冷却速度が約35℃/
h、到達温度が350℃とし、温度到達後2時間保持し
た後冷却した。
Using each aluminum alloy having the chemical composition shown in Table 1, 60 DC ingots obtained by a conventional method were used.
Soaking was performed at 5 ° C. for 10 hours, and then hot rolling was performed according to a conventional method to obtain a hot rolled coil having a thickness of 4 mm. Nos. 1 and 3 to 9 were obtained by cold rolling to a plate thickness of 0.75 mm and then performing intermediate annealing by CAL under the conditions of a heating / cooling rate of about 20 ° C./s and an ultimate temperature of 530 ° C. , It cooled immediately after reaching. Then, cold rolling was performed to obtain a 0.3 mm plate, and final annealing was performed at 100 ° C. for 2 hours. No. 2 uses the same alloy as No. 1 and is a comparative example in which the intermediate annealing is performed by a batch annealing furnace instead of CAL. The intermediate annealing condition is that the heating / cooling rate is about 35 ° C /
h, the ultimate temperature was 350 ° C., the temperature was maintained for 2 hours and then cooled.

【0015】得られた試料について元板と塗装ベーキン
グ相当の200℃20分の熱処理後の各々の引張強さ
(TS:N/mm2)、耐力(YS:N/mm2)、伸び
(EL:%)を調べ、元板について耳率(%)を測定し
た。耳率は、38mmφ、肩R2.5mmのポンチを用
いて66mmφサークルをクリアランス30%で深絞り
を行って測定した。また実際のDI成形を行って、DI
缶の外観を観察して潤滑不良による黒筋状の外観欠陥の
有無を缶外観として評価した。さらにDI缶をベーキン
グ後、図2に示す17Rの治具でフランジ部の穴拡げ性
を測定し限界フランジ伸びとして評価した。単位は破断
時の広がり長さP(mm)である。また板表面のミクロ
組織の観察により5μm以上の晶出物の個数(個/0.
2mm2)を測定し、またMn固溶量(%)についても
測定した。その結果を表3に示す。
The tensile strength (TS: N / mm 2 ), proof stress (YS: N / mm 2 ), and elongation (EL) of each of the obtained samples after heat treatment at 200 ° C. for 20 minutes corresponding to the base plate and coating baking :%), And the ear ratio (%) of the base plate was measured. The ear rate was measured by deep-drawing a 66 mmφ circle with a clearance of 30% using a punch having a 38 mmφ and a shoulder R2.5 mm. In addition, by performing actual DI molding,
The appearance of the can was observed and the presence or absence of black streak-like appearance defects due to poor lubrication was evaluated as the can appearance. Further, after baking the DI can, the hole expandability of the flange portion was measured with a jig 17R shown in FIG. 2 and evaluated as the limit flange elongation. The unit is the spread length P (mm) at break. Further, the number of crystallized substances of 5 μm or more (number / 0.
2 mm 2 ) was also measured, and the Mn solid solution amount (%) was also measured. The results are shown in Table 3.

【0015】[0015]

【表3】 [Table 3]

【0016】各々について説明すると、No1は発明例
であり、従来例No9と比較して元板の引張強さ、耐
力、伸びおよびベーキング後の引張強さ、耐力、伸びと
もに同等であり、また耳率においては発明例は3%と小
さくなっている。またDI缶の外観不良は生じておら
ず、さらに限界フランジ伸びは6mmと従来例よりはる
かに優れている。No2はNo1の中間焼鈍をバッチ焼
鈍とした比較例であるが、耳率、限界フランジ伸びはN
o1と同等であるもののベーキング後の耐力の低下が大
きく強度不足となっている。No3は合金Bを用いた発
明例であり、No1とは成分が若干異なるが同様に従来
材よりフランジ伸びが良好である。No4はMn/Si
の値が小さい合金を用いた比較例で、5μm以上の晶出
物数が少なく細かい晶出物が多く存在する組織となって
いる。このため限界フランジ伸びは発明例と同等である
ものの外観不良が発生している。No5はFe+Mn量
が少ない合金を用いた比較例であり、表3に示すように
5μm以上の晶出物の個数が少なく、また晶出物の総個
数が不足している組織となっている。このため限界フラ
ンジ伸びは発明例と同等であるものの外観不良が発生し
ている。No6はMn/Si、Mn/Feの値が大きい
合金を用いた比較例で、5μm以上の晶出物個数は本発
明の範囲に入るがMn固溶量が0.20%と多くなって
いる。このため外観不良は生じていないものの限界フラ
ンジ伸びが4mmと小さくなっておりフランジ成形性が
良くない。No7はFe+Mn量が多い合金を用いた比
較例で、表3に示すように5μm以上の晶出物の個数が
本発明の範囲を超えているとともに晶出物の総個数が過
多となった組織となっている。またMn固溶量も本発明
の範囲を超えている。このため元板の伸びが小さく成形
性に劣るとともに、耳率が5%と大きく、さらに限界フ
ランジ伸びが小さくなっておりフランジ成形性が極めて
劣るものとなっている。No8はMn/Feが小さい合
金を用いた比較例で、Mn固溶量は本発明の範囲を満た
しているものの、細かい晶出物が多く存在し5μm以上
の晶出物が少なく、このため限界フランジ伸びは発明例
と同等の値であるが外観不良が生じている。No9は従
来例であり、Mn/Si,Mn/Feが大きな合金であ
る。このためりMn固溶量も多くなっており限界フラン
ジ伸びが小さくフランジ成形性に劣るものとなってい
る。
Explaining each of them, No. 1 is an invention example, and the tensile strength, proof stress and elongation of the base plate and the tensile strength, proof stress and elongation after baking are equivalent to those of the conventional example No. 9, and the ear In terms of the rate, the invention example is as small as 3%. In addition, the appearance of the DI can was not deteriorated, and the limit flange elongation was 6 mm, which is far superior to the conventional example. No. 2 is a comparative example in which the intermediate annealing of No. 1 is batch annealing, but the ear ratio and the limit flange elongation are N.
Although it is equivalent to o1, the yield strength after baking is large and the strength is insufficient. No. 3 is an example of the invention using alloy B, and although the composition is slightly different from No. 1, similarly, the flange elongation is better than the conventional material. No4 is Mn / Si
In a comparative example using an alloy having a small value of, the structure has a small number of crystallized substances of 5 μm or more and many fine crystallized substances. Therefore, although the limit flange elongation is the same as that of the invention example, the appearance defect occurs. No. 5 is a comparative example using an alloy with a small amount of Fe + Mn, and as shown in Table 3, the number of crystallized substances of 5 μm or more is small, and the total number of crystallized substances is insufficient. Therefore, although the limit flange elongation is the same as that of the invention example, the appearance defect occurs. No. 6 is a comparative example using an alloy having a large value of Mn / Si and Mn / Fe, and the number of crystallized substances of 5 μm or more is within the range of the present invention, but the Mn solid solution amount is as large as 0.20%. .. For this reason, although the appearance defect does not occur, the limit flange elongation is as small as 4 mm and the flange formability is not good. No. 7 is a comparative example using an alloy having a large amount of Fe + Mn, and as shown in Table 3, the number of crystallized substances of 5 μm or more exceeds the range of the present invention and the total number of crystallized substances is excessive. Has become. The amount of Mn solid solution also exceeds the range of the present invention. For this reason, the elongation of the base plate is small and the moldability is inferior, and the selvedge ratio is as large as 5%, and the limiting flange elongation is small, resulting in extremely poor flange moldability. No. 8 is a comparative example using an alloy having a small Mn / Fe. Although the Mn solid solution amount satisfies the range of the present invention, there are many fine crystallized substances and there are few crystallized substances of 5 μm or more. The flange elongation is the same value as that of the invention example, but the appearance defect occurs. No. 9 is a conventional example, and is an alloy having a large Mn / Si and Mn / Fe. For this reason, the amount of solid solution of Mn is large, the limit flange elongation is small, and the flange formability is poor.

【0017】[0017]

【効果】以上詳述したように、本発明により製造された
アルミニウム合金板は、特に缶材等のDI加工が施され
た後に塗装焼付け処理が施される用途に適したものであ
る。すなわち、元板強度はあまり強くないので成形加工
しやすく、一方、強度が必要とされるベーキング後にお
いては、溶体化効果により強度が向上しているという強
度的に優れた特性を有している。また、DI成形時の耳
率は3%と極めて低く耳率の点でも優れた材料である。
さらに、限界フランジ伸びも6mmとなっておりフラン
ジ成形性に特に優れている。また黒筋等の外観不良も発
生しない。従って本発明によれば、強度的に優れしかも
塗装焼付け後の成形性、特にフランジ成形性に優れたア
ルミニウム合金板を容易にかつ効率的に製造することが
できるものである。
As described above in detail, the aluminum alloy sheet produced according to the present invention is particularly suitable for applications such as a can material which is subjected to DI baking and then baking treatment. That is, since the base plate strength is not so strong, it can be easily formed and processed. On the other hand, after baking which requires strength, the strength is improved by the solution treatment effect, which is excellent in strength. .. Further, the ear rate at DI molding is as low as 3%, which is an excellent material in terms of ear rate.
Further, the limit flange elongation is 6 mm, which is particularly excellent in flange formability. In addition, the appearance defects such as black streaks do not occur. Therefore, according to the present invention, it is possible to easily and efficiently manufacture an aluminum alloy sheet which is excellent in strength and is excellent in formability after baking for coating, especially in flange formability.

【図面の簡単な説明】[Brief description of drawings]

【図1】Mn固溶量と限界フランジ伸びの関係を示すグ
ラフである。
FIG. 1 is a graph showing the relationship between the amount of Mn solid solution and the limit flange elongation.

【図2】本発明の実施例における治具を用いたフランジ
部の穴拡げ過程を示す断面図である。
FIG. 2 is a cross-sectional view showing a process of expanding a hole in a flange portion using a jig according to an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 缶胴 11 穴拡げ治具 P 限界フランジ伸び 10 Can barrel 11 Hole expanding jig P Limit flange extension

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 重量%で(以下、同じ)、Mg:0.5
〜2%、Mn:0.6〜1.4%、Fe:0.3〜1
%、Si:0.15〜0.5%、組織微細化・安定化の
ためにTi:0.005〜0.2%を単独であるいは
B:0.0001〜0.05%とともに含有し、1≦M
n/Fe≦2.5、3≦Mn/Si≦4、1%≦Fe+
Mn≦2%の条件を満たし、さらにCu:0.05〜
0.5%、Cr:0.05〜0.3%、Zn:0.1〜
0.5%のうちの1種または2種以上を含有し、残部が
Alおよび不可避的不純物からなり、板表面における5
μm以上の金属間化合物が100〜200個/0.2m
2存在し、Mn固溶量が0.16%以下であることを
特徴とする成形性特にDI成形加工後のフランジ成形性
に優れた成形加工用アルミニウム合金板。
1. In weight% (hereinafter the same), Mg: 0.5
~ 2%, Mn: 0.6-1.4%, Fe: 0.3-1
%, Si: 0.15 to 0.5%, Ti: 0.005 to 0.2% alone or together with B: 0.0001 to 0.05% for microstructuring / stabilization, 1 ≦ M
n / Fe ≦ 2.5, 3 ≦ Mn / Si ≦ 4, 1% ≦ Fe +
The condition of Mn ≦ 2% is satisfied, and further Cu: 0.05 to
0.5%, Cr: 0.05 to 0.3%, Zn: 0.1
One or more of 0.5% is contained, the balance consisting of Al and unavoidable impurities.
100 to 200 intermetallic compounds with a size of μm or more / 0.2 m
An aluminum alloy plate for forming, which is excellent in formability, particularly flange formability after DI forming, characterized in that m 2 is present and the amount of Mn solid solution is 0.16% or less.
【請求項2】 請求項1記載の化学成分を有するアルミ
ニウム合金の鋳塊を、常法に従って均熱を施してその後
熱間圧延を行ない、その後、そのまま又は冷却後または
冷間圧延後に、1℃/s以上の加熱・冷却速度で400
〜600℃の到達温度で10分以内の保持時間の焼鈍を
施し、次いで40%以上の圧延率の冷間圧延を施し、板
表面における5μm以上の金属間化合物が100〜20
0個/0.2mm2存在し、Mn固溶量が0.16%以
下であることを特徴とする成形性特にDI成形加工後の
フランジ成形性に優れた成形加工用アルミニウム合金板
の製造方法。
2. The ingot of the aluminum alloy having the chemical composition according to claim 1 is subjected to soaking according to a conventional method and then hot-rolled, and then, as it is or after cooling or cold-rolling, 1 ° C. 400 at a heating / cooling rate of over s / s
Annealing is performed at a reached temperature of up to 600 ° C for a holding time of 10 minutes or less, and then cold rolling is performed at a rolling rate of 40% or more, and an intermetallic compound of 5 µm or more on the plate surface is 100 to 20
0 pieces / 0.2 mm 2 are present and the amount of Mn solid solution is 0.16% or less, and the method for producing an aluminum alloy sheet for forming, which has excellent formability, particularly flange formability after DI forming. ..
JP16697392A 1992-06-01 1992-06-01 Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same Expired - Lifetime JP3210419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16697392A JP3210419B2 (en) 1992-06-01 1992-06-01 Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16697392A JP3210419B2 (en) 1992-06-01 1992-06-01 Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05331588A true JPH05331588A (en) 1993-12-14
JP3210419B2 JP3210419B2 (en) 2001-09-17

Family

ID=15841053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16697392A Expired - Lifetime JP3210419B2 (en) 1992-06-01 1992-06-01 Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3210419B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342657A (en) * 2002-03-20 2003-12-03 Kobe Steel Ltd Hot-rolled aluminum plate and plate material using the same and used for can shell
WO2007015560A1 (en) * 2005-08-04 2007-02-08 Universal Can Corporation Aluminum alloy sheet for can body, di can, and method for manufacture of the di can
JP2007197815A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2007197816A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2007197817A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
CN109371266A (en) * 2018-12-05 2019-02-22 中南大学 A kind of production method of high strength anti-corrosion weldable al-mg-Si system alloy extrusion material
CN114182144A (en) * 2021-12-14 2022-03-15 中铝瑞闽股份有限公司 Aluminum plate for anodic oxidation with excellent surface quality after thinning and preparation method thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342657A (en) * 2002-03-20 2003-12-03 Kobe Steel Ltd Hot-rolled aluminum plate and plate material using the same and used for can shell
WO2007015560A1 (en) * 2005-08-04 2007-02-08 Universal Can Corporation Aluminum alloy sheet for can body, di can, and method for manufacture of the di can
JP2007197815A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2007197816A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
JP2007197817A (en) * 2005-12-28 2007-08-09 Mitsubishi Alum Co Ltd Aluminum alloy sheet for can body having excellent resistance to circulation pinhole
CN109371266A (en) * 2018-12-05 2019-02-22 中南大学 A kind of production method of high strength anti-corrosion weldable al-mg-Si system alloy extrusion material
CN114182144A (en) * 2021-12-14 2022-03-15 中铝瑞闽股份有限公司 Aluminum plate for anodic oxidation with excellent surface quality after thinning and preparation method thereof

Also Published As

Publication number Publication date
JP3210419B2 (en) 2001-09-17

Similar Documents

Publication Publication Date Title
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
JP2862198B2 (en) Aluminum alloy plate for DI can body
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPH11256290A (en) Manufacture of aluminum alloy sheet for can body
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JP2000234158A (en) Production of aluminum alloy sheet for can barrel
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
JPH10259464A (en) Production of aluminum alloy sheet for forming
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JPH11256291A (en) Manufacture of aluminum alloy sheet for can body
JP3218099B2 (en) Method for producing aluminum alloy sheet with low ear ratio and excellent formability
JP2007131881A (en) Method of producing aluminum alloy sheet for forming and aluminum alloy sheet for forming
JP3247447B2 (en) Manufacturing method of aluminum alloy sheet for forming with low ear ratio
JPH07150282A (en) Al-mg-si alloy sheet excellent in formability and baking hardenability by crystalline grain control and its production
JPH0723160B2 (en) DI can body made of aluminum alloy with excellent necking and flange formability
JP3069008B2 (en) Method for manufacturing aluminum alloy DI can body
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JP2001040461A (en) Production of aluminum alloy sheet for can barrel
JPH0533107A (en) Production of hard aluminum alloy sheet excellent in strength and formability
JPH0633179A (en) Aluminum alloy sheet for press forming excellent in hardenability by high-temperature short-time baking and its production
JPH0813109A (en) Production of aluminum alloy sheet for forming
JPH11256292A (en) Manufacture of aluminum alloy sheet for can body

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20080713

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20090713

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100713

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 9

Free format text: PAYMENT UNTIL: 20100713

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20120713

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

EXPY Cancellation because of completion of term