JP3210419B2 - Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same - Google Patents

Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same

Info

Publication number
JP3210419B2
JP3210419B2 JP16697392A JP16697392A JP3210419B2 JP 3210419 B2 JP3210419 B2 JP 3210419B2 JP 16697392 A JP16697392 A JP 16697392A JP 16697392 A JP16697392 A JP 16697392A JP 3210419 B2 JP3210419 B2 JP 3210419B2
Authority
JP
Japan
Prior art keywords
amount
alloy
strength
formability
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16697392A
Other languages
Japanese (ja)
Other versions
JPH05331588A (en
Inventor
伸二 照田
彰 田尻
Original Assignee
スカイアルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スカイアルミニウム株式会社 filed Critical スカイアルミニウム株式会社
Priority to JP16697392A priority Critical patent/JP3210419B2/en
Publication of JPH05331588A publication Critical patent/JPH05331588A/en
Application granted granted Critical
Publication of JP3210419B2 publication Critical patent/JP3210419B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、強度及び成形加工性に
優れ、しかも成形加工後のベーキング後の成形性に優れ
たアルミニウム硬質板並びに該アルミニウム硬質板の製
造方法に係り、更に詳しく述べるなら2ピースアルミニ
ウム缶(DI缶)の缶胴材に好適な塗装焼付け処理後の
フランジ成形性に優れたDI缶用Al−Mg−Mn系ア
ルミニウム合金硬質板並びにその製造方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum hard plate excellent in strength and formability, and also excellent in formability after baking after forming, and a method for producing the aluminum hard plate. The present invention relates to an Al-Mg-Mn-based aluminum alloy hard plate for a two-piece aluminum can (DI can) which is excellent in flange formability after baking treatment suitable for a can body material of a DI can and a method for producing the same.

【0002】[0002]

【従来の技術】近年、缶材として用いられるアルミニウ
ム合金板は薄肉化と高強度化が進められている。これ
は、より強度の高い薄板を利用することによりコストを
低減するする等の経済的要請によるものである。JIS
3004合金硬質板は、強度を上げるために圧延率の高
い冷間圧延を施した場合でも比較的良好な成形性を有す
ることから、従来よりこのような缶胴材の用途に用いら
れることが多かった。このJIS3004合金硬質板
は、均質化処理後、常法に従って熱間圧延され、ついで
冷間圧延を施してからあるいは施さずに、中間焼鈍を行
うことにより製造されることが多い。一方、近年連続焼
鈍炉(CAL)の普及に伴い、高温到達および急速冷却
の中間焼鈍を行うことが可能となり、これにより溶体化
効果を利用して高強度化した缶胴材の製造が主流となり
つつある。この方法によれば塗装焼付け後の強度低下が
少ないため、DI成形時の強度は従来のバッチタイプの
中間焼鈍材ほど高くしなくて済むためDI成形性は良好
となる。
2. Description of the Related Art In recent years, aluminum alloy sheets used as can materials have been reduced in thickness and strength. This is due to economic demands such as reducing costs by using thinner plates having higher strength. JIS
Since the 3004 alloy hard plate has relatively good formability even when cold-rolled at a high rolling rate in order to increase the strength, it is often used for such a can body material conventionally. Was. This JIS 3004 alloy hard plate is often manufactured by performing hot rolling according to a conventional method after homogenization treatment, and then performing intermediate annealing with or without performing cold rolling. On the other hand, with the spread of continuous annealing furnaces (CAL) in recent years, it has become possible to carry out intermediate annealing of high temperature and rapid cooling, and as a result, the mainstream has been the production of can body materials that have been strengthened by using the solution effect. It is getting. According to this method, the strength at the time of DI molding does not need to be as high as that of the conventional batch-type intermediate annealed material, so that the DI moldability is good because the strength does not decrease much after baking.

【0003】[0003]

【発明が解決しようとする課題】上述した如く、缶胴材
の板厚の薄肉化が進められているが、成形前の元板の板
厚を薄くすることに比例してDI成形を施した後の缶側
壁も薄くなる。従来、側壁のフランジ成形部は厚さが2
00μm程度あったものが現行では150μm程度にま
で薄くなっており、さらに薄くなる傾向がある。しかし
ながら、フランジ成形部の板厚が薄くなると延性が低下
して成形時の割れ感受性が高まりフランジ成形性が悪化
する。
As described above, the thickness of the can body has been reduced, but DI molding has been performed in proportion to the reduction in the thickness of the original plate before molding. Later can sidewalls also become thinner. Conventionally, the thickness of the flange forming part of the side wall is 2
What is about 00 μm is now thinner to about 150 μm, and tends to be even thinner. However, when the thickness of the flange-formed portion is reduced, ductility is reduced, cracking sensitivity at the time of forming is increased, and flange-formability is deteriorated.

【0004】本発明は、従来用いられているJIS30
04合金とは異なる合金系をもとにして、耳率、強度、
DI成形性等の特性は従来材と同等ないしそれ以上で、
しかもフランジ成形性およびシーミング成形性に優れた
缶胴材に適する材料を提供することを目的とするもので
ある。
[0004] The present invention is based on the conventional JIS 30
Ear ratio, strength, based on alloy system different from 04 alloy
Characteristics such as DI moldability are equal to or higher than conventional materials,
Moreover, it is an object of the present invention to provide a material suitable for a can body material excellent in flange formability and seaming formability.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するため
に本発明者らは化学成分調整、組織並びに製造条件等に
ついて総合的に研究を重ね鋭意検討した結果、主にMn
・Fe・Siの成分を制限して適切な金属間化合物の分
散状態ならびに適切なMn固溶量とすることにより上記
目的を達成できることを見出した。
Means for Solving the Problems In order to achieve the above object, the present inventors have conducted comprehensive studies on chemical composition adjustment, structure, manufacturing conditions, etc.
-It has been found that the above object can be achieved by restricting the components of Fe and Si and setting an appropriate intermetallic compound dispersion state and an appropriate Mn solid solution amount.

【0006】すなわち本発明は、請求項1記載のごとく
重量%でMg:0.5〜2.0%、Mn:0.6〜1.
4%、Cu:0.05〜0.5%、Fe:0.3〜1.
0%、Si:0.15〜0.5%、組織微細化・安定化
のためにTi:0.005〜0.2%を単独であるいは
B:0.0001〜0.05%とともに含有し、1≦M
n/Fe≦2.5、3≦Mn/Si≦4、1%≦Fe+
Mn≦2%の条件を満たし、さらにCr:0.05〜
0.3%、Zn:0.1〜0.5%のうちの1種または
2種を含有し、残部がAlおよび不可避的不純物からな
り、板表面における5μm以上の金属間化合物が100
〜200個/0.2mm2 存在し、Mn固溶量が0.1
6%以下であることを特徴とする成形性特にDI成形加
工後のフランジ成形性に優れたDI缶用アルミニウム合
金板であり、また、請求項2記載のごとく、重量%でM
g:0.5〜2.0%、Mn:0.6〜1.4%、C
u:0.05〜0.5%、Fe:0.3〜1.0%、S
i:0.15〜0.5%、組織微細化・安定化のために
Ti:0.005〜0.2%を単独であるいはB:0.
0001〜0.05%とともに含有し、1≦Mn/Fe
≦2.5、3≦Mn/Si≦4、1%≦Fe+Mn≦2
%の条件を満たし、さらにCr:0.05〜0.3%、
Zn:0.1〜0.5%のうちの1種または2種を含有
し、残部がAlおよび不可避的不純物からなるアルミニ
ウム合金鋳塊に、均熱を施してその後熱間圧延を行な
い、さらに冷間圧延を行なった後に、1℃/s以上の加
熱・冷却速度で400〜600℃の到達温度で10分以
内の保持時間の焼鈍を施し、次いで40%以上の圧延率
の冷間圧延を施し、板表面における5μm以上の金属間
化合物が100〜200個/0.2mm2 存在し、Mn
固溶量が0.16%以下であることを特徴とする成形性
特にDI成形加工後のフランジ成形性に優れたDI缶用
アルミニウム合金板の製造方法である。
That is, according to the present invention, Mg: 0.5-2.0%, Mn: 0.6-1.
4%, Cu: 0.05-0.5%, Fe: 0.3-1.
0%, Si: 0.15 to 0.5%, and Ti: 0.005 to 0.2% for fineness and stabilization of the structure alone or together with B: 0.0001 to 0.05%. , 1 ≦ M
n / Fe ≦ 2.5, 3 ≦ Mn / Si ≦ 4, 1% ≦ Fe +
The condition of Mn ≦ 2% is satisfied, and Cr: 0.05 to
0.3%, Zn: one or two of 0.1 to 0.5%, the balance being Al and unavoidable impurities, and an intermetallic compound of 5 μm or more on the plate surface of 100%
200200 / 0.2 mm 2 , Mn solid solution amount is 0.1
An aluminum alloy sheet for a DI can excellent in formability, particularly excellent in flange formability after DI forming, characterized in that it is not more than 6%.
g: 0.5-2.0%, Mn: 0.6-1.4%, C
u: 0.05 to 0.5%, Fe: 0.3 to 1.0%, S
i: 0.15 to 0.5%, and Ti: 0.005 to 0.2% alone or B: 0.
0001-0.05%, 1 ≦ Mn / Fe
≦ 2.5, 3 ≦ Mn / Si ≦ 4, 1% ≦ Fe + Mn ≦ 2
%, And Cr: 0.05 to 0.3%,
Zn: An aluminum alloy ingot containing one or two of 0.1% to 0.5%, the balance being Al and unavoidable impurities is subjected to soaking and then hot-rolled. After performing cold rolling, annealing is performed at a heating / cooling rate of 1 ° C./s or more at a temperature of 400 to 600 ° C. and a holding time of 10 minutes or less, and then cold rolling at a rolling rate of 40% or more is performed. And there are 100 to 200 intermetallic compounds of 5 μm or more on the plate surface / 0.2 mm 2 , and Mn
This is a method for producing an aluminum alloy sheet for a DI can having excellent formability, particularly having excellent flange formability after DI forming, characterized in that the solid solution amount is 0.16% or less.

【0007】以下、本発明を更に詳細に説明する。先
ず、本発明における化学成分の限定理由について説明す
る。 Mg:MgはSi、Cuとの共存によりMg2 Siある
いはAl−Cu−Mgの時効析出により強度向上が望
め、本発明のごとく溶体化効果をもたせた中間焼鈍の場
合には特に塗装焼付け後の強度低下を抑制するのに効果
がある。更にMg単独でも固溶体強化により強度向上に
効果がある。このように強度向上には不可欠な元素であ
るが、Mg量が0.5%未満ではその効果が少なく十分
な強度が得られず、2.0%を超えて添加した場合には
絞り成形性の点では問題がないが加工硬化しやすくなる
ために再絞り性やしごき性を悪くする。したがってMg
量は0.5〜2.0%の範囲とする。 Mn:Mnは強度向上に寄与するとともに成形性向上に
有効な元素である。特に本発明が目指す用途である缶胴
材では、しごき成形されるためにとりわけMnは重要で
ある。アルミニウム合金板のしごき成形においては通常
エマルジョンタイプの潤滑剤が用いられている。しか
し、同程度の強度を有していてもMn系晶出物の数・量
が少ない組織の場合にはエマルジョンタイプの潤滑剤だ
けでは潤滑能力が不足し、ゴーリングと呼ばれる擦り疵
や焼付きといった外観不良が発生する。この現象は、晶
出物の大きさ、量、種類に影響され、適切に選択された
Mn量を添加することが不可欠である。固溶Mnは強度
向上に大きく寄与するが、Mgのように強度に寄与して
延性を向上させるのではなく、材料を脆くする作用があ
る。図1は延性の評価として限界フランジ伸びを測定し
てMn固溶量の延性への影響を調べたものである。Mn
の固溶量が0.16%までであれば延性を低下させない
が、0.16%を超えると固溶量の増加とともに延性が
低下することがわかる。したがってMn固溶量は0.1
6%以下とする。また、Mn量が0.6%未満ではMn
化合物による固体潤滑的な効果が得られないが、1.4
%を超えると後に述べるFeとあわさり、(Mn,F
e)Al6 の初晶巨大金属間化合物が晶出し、成形性を
著しく損う。さらにMnの固溶量は、Mnの添加量が多
くなるほど多くなるが、Fe、Si等の添加量によりM
n添加量が多くてもMn固溶量を調節することができ
る。しかし、Mn添加量が1.4%を超えるとSi量、
Fe量によってもMn固溶量を抑えることが難しい。し
たがってMn量は0.6〜1.4%とする。 Cu:本発明では、Cuの溶体化効果による強度向上が
期待できる。すなわち、焼付け処理時のAl−Cu−M
g系析出物の析出過程で起る時効硬化を利用して強度向
上に寄与する元素である。Cu量が0.05%未満では
その効果は得られず、一方0.5%を超えて添加した場
合、時効硬化は容易に得られるものの硬くなりすぎて成
形性を阻害する。したがって、Cu量は0.05〜0.
5%の範囲とする。 Fe:FeはMnの晶出や析出を促進し、アルミニウム
マトリックス中のMnの固溶量やMn系不溶性金属間化
合物の分散状態を制御するために必要な元素である。適
正状態を得る必要条件はMn添加量に応じたFeの添加
である。Mn/Feが2.5より大きくなるとMnの固
溶量が増え延性を劣化させる。またMn/Feの数値が
小さくなると晶出化合物が細かくなり一般的に延性は向
上するが、この値が1未満となると晶出物サイズが小さ
くなりすぎてしごき成形時の潤滑効果が低下し缶表面の
外観不良を引き起こす。したがって、Mn/Feの値は
1≦Mn/Fe≦2.5とする。またFeは単独の成分
としては0.3%未満では適正な化合物分散状態を得る
ことが難しく、また1%を超えてはMn添加と合わせ
て、(Mn,Fe)Al6 等の初晶巨大金属間化合物が
晶出し、成形性を著しく損う。したがって、Fe量は
0.3〜1.0%とする。さらにFeおよびMnは、こ
の合金系で認められる初晶金属間化合物の主な成分であ
るので、適正な分散状態を得るには、これらの添加総量
を規制する必要がある。Fe+Mn量が1%未満では晶
出化合物の総量が不足してしごき性が劣り、また2%を
超えるとしごき性の面では問題無いが、巨大な初晶金属
間化合物が発生しやすくなり成形性を著しく損ない、そ
の個数も増え成形時の材料の塑性変形がスムーズに行か
ず結局延性を損なう結果となる。したがって、Fe+M
n量は1〜2%とする。 Si:Siを添加することにより、Mg2 Si系化合物
の時効硬化による強度向上が期待できるが、本発明にお
いては晶出物を適正な分散状態にし、またMn固溶量を
適正状態にするために必要な元素である。SiもFeと
同様にMnの晶出や析出を促進し、アルミニウムマトリ
ックス中のMn固溶量やMn系不溶性金属間化合物の分
散状態を制御する。Mn/Siが小さくなると晶出化合
物のサイズが細かくなり一般的に延性はよくなるが、こ
の値が3より小さくなるとDI加工におけるしごき成形
時の潤滑効果が低下し缶表面の外観不良を引き起こす。
またこの値が4を超えるとMnの固溶量を0.16%以
下に制御することが難しくなり延性の低下が起こる。し
たがってMn/Siの比は3≦M/Si≦4の範囲とす
る。また、Si量が0.15%未満ではその効果がな
く、0.5%を超えると時効硬化には効果があるものの
Mn添加量の調整によっても適切な晶出物化合物の分散
が得られない。したがって、Si量は0.15〜0.5
%の範囲とする。 Ti、B:通常のアルミニウム合金においては、鋳塊結
晶粒の微細化・安定化のためにTiおよびBを微量添加
することが行われており、本発明においても微量のTi
を単独であるいはBとともに添加する。Ti量が0.0
05%未満ではその効果が得られず、また0.2%を超
えると初晶TiAl3 が晶出して成形性を阻害する。し
たがってTi量は0.005〜0.2%の範囲とする。
またTiと共にBを添加するとこの効果が向上する。た
だしBを添加する場合、0.0001%未満ではその効
果がなく、0.05%を超えてはTiB2 の粗大粒子が
混入して成形性を害する。したがって、B量は0.00
01〜0.05%の範囲とする。 Zn:Znの添加によりMg2Zn3Al2 の時効析出に
よる強度向上を望めるが、Zn量が0.1%未満ではそ
の効果はなく、0.5%を超えて添加されると強度の面
では問題ないが耐食性を劣化させるため、この値以下に
規制する必要がある。したがって、Zn量は0.1〜
0.5%とする。 Cr:Crの添加は強度向上に大きな効果を示す。しか
しCr量が0.05%未満ではその効果はなく、0.3
%を超えて過多に添加される巨大晶出物の生成および晶
出物数の増大が起こり成形性の低下を招くため好ましく
ない。したがって、Cr量は0.05〜0.3%とす
る。以上の各成分の残部はAlおよび不可避不純物であ
る。
Hereinafter, the present invention will be described in more detail. First, the reasons for limiting the chemical components in the present invention will be described. Mg: Mg is expected to improve the strength by aging precipitation of Mg 2 Si or Al—Cu—Mg in coexistence with Si and Cu, and particularly in the case of intermediate annealing having a solution effect as in the present invention, especially after coating baking. It is effective in suppressing a decrease in strength. Furthermore, Mg alone is effective in improving strength by solid solution strengthening. As described above, it is an indispensable element for improving the strength. However, if the amount of Mg is less than 0.5%, the effect is small and sufficient strength cannot be obtained. Although there is no problem with respect to the above point, work hardening becomes easy, so that redrawability and ironing property are deteriorated. Therefore Mg
The amount ranges from 0.5 to 2.0%. Mn: Mn is an element that contributes to improving strength and is effective for improving formability. In particular, Mn is particularly important in the can body material, which is an application aimed at by the present invention, in order to be ironed. In the ironing of an aluminum alloy plate, an emulsion type lubricant is usually used. However, in the case of a structure with a small number and amount of Mn-based crystallized substances, even if they have the same strength, the lubricating ability is insufficient with the emulsion type lubricant alone, and poor appearance such as abrasion and galling called galling Occurs. This phenomenon is affected by the size, amount, and type of the crystallized matter, and it is essential to add an appropriately selected amount of Mn. Solid solution Mn greatly contributes to strength improvement, but does not contribute to strength like Mg to improve ductility, but has the effect of making the material brittle. FIG. 1 shows the influence of Mn solid solution amount on ductility by measuring the critical flange elongation as an evaluation of ductility. Mn
It can be seen that the ductility is not reduced when the solid solution amount is up to 0.16%, but the ductility is decreased as the solid solution amount increases when it exceeds 0.16%. Therefore, the Mn solid solution amount is 0.1
6% or less. If the Mn content is less than 0.6%,
The compound cannot provide a solid lubricating effect, but 1.4.
%, It is mixed with Fe described later, and (Mn, F
e) out primary crystal coarse intermetallic compound of Al 6 crystallizes, it intends significantly impair the moldability. Further, the solid solution amount of Mn increases as the added amount of Mn increases.
Even if the amount of n added is large, the amount of Mn solid solution can be adjusted. However, when the amount of added Mn exceeds 1.4%, the amount of Si,
It is difficult to suppress the amount of Mn solid solution even by the amount of Fe. Therefore, the amount of Mn is set to 0.6 to 1.4%. Cu: In the present invention, an improvement in strength due to the solution effect of Cu can be expected. In other words, the Al-Cu-M
It is an element that contributes to strength improvement by utilizing age hardening that occurs during the precipitation process of g-based precipitates. When the amount of Cu is less than 0.05%, the effect cannot be obtained. On the other hand, when the amount exceeds 0.5%, age hardening is easily obtained but becomes too hard to inhibit moldability. Therefore, the amount of Cu is 0.05-0.
The range is 5%. Fe: Fe is an element that promotes crystallization and precipitation of Mn, and is necessary for controlling the solid solution amount of Mn in the aluminum matrix and the dispersion state of the Mn-based insoluble intermetallic compound. A necessary condition for obtaining an appropriate state is the addition of Fe according to the amount of added Mn. When Mn / Fe is more than 2.5, the solid solution amount of Mn increases and ductility is deteriorated. When the value of Mn / Fe is small, the crystallized compound becomes fine and the ductility generally improves. However, when the value is less than 1, the size of the crystallized product becomes too small, and the lubricating effect at the time of ironing is reduced. Causes poor surface appearance. Therefore, the value of Mn / Fe is set to 1 ≦ Mn / Fe ≦ 2.5. If Fe is less than 0.3% as a single component, it is difficult to obtain a proper compound dispersion state, and if it exceeds 1%, the primary crystals such as (Mn, Fe) Al 6 are added together with Mn addition. Intermetallic compounds are crystallized and formability is significantly impaired. Therefore, the amount of Fe is set to 0.3 to 1.0%. Further, since Fe and Mn are main components of the primary intermetallic compound found in this alloy system, it is necessary to regulate the total amount of these additions in order to obtain a proper dispersion state. If the amount of Fe + Mn is less than 1%, the total amount of the crystallized compound is insufficient and the ironability is poor. If it exceeds 2%, there is no problem in the ironability, but a huge primary intermetallic compound is liable to be generated and the formability is increased. The plastic deformation of the material at the time of molding does not proceed smoothly, resulting in a loss of ductility. Therefore, Fe + M
The amount of n is 1-2%. By adding Si: Si, the strength can be expected to be improved by age hardening of the Mg 2 Si-based compound. Element required for Si promotes crystallization and precipitation of Mn similarly to Fe, and controls the amount of Mn solid solution in the aluminum matrix and the dispersion state of the Mn-based insoluble intermetallic compound. When Mn / Si is small, the size of the crystallized compound is small and ductility is generally good. However, when this value is smaller than 3, the lubricating effect at the time of ironing in DI processing is reduced, and the appearance of the can surface is poor.
If this value exceeds 4, it is difficult to control the solid solution amount of Mn to 0.16% or less, and the ductility is reduced. Therefore, the ratio of Mn / Si is in the range of 3 ≦ M / Si ≦ 4. When the amount of Si is less than 0.15%, the effect is not obtained. When the amount of Si exceeds 0.5%, although the effect of age hardening is obtained, even if the amount of Mn is adjusted, an appropriate dispersion of the crystallized compound cannot be obtained. . Therefore, the Si content is 0.15 to 0.5
% Range. Ti, B: In ordinary aluminum alloys, a small amount of Ti and B is added for refining and stabilizing ingot crystal grains.
Is added alone or together with B. Ti content is 0.0
If it is less than 05%, the effect cannot be obtained, and if it exceeds 0.2%, primary crystal TiAl 3 is crystallized to inhibit the formability. Therefore, the Ti content is in the range of 0.005 to 0.2%.
Further, when B is added together with Ti, this effect is improved. However, when B is added, if less than 0.0001%, the effect is not obtained, and if more than 0.05%, coarse particles of TiB 2 are mixed and formability is impaired. Therefore, the amount of B is 0.00
The range is from 0.01 to 0.05%. Zn: Addition of Zn can improve the strength by aging precipitation of Mg 2 Zn 3 Al 2. However, if the Zn content is less than 0.1%, there is no effect. Although this is not a problem, it is necessary to regulate the corrosion resistance to a value lower than this value because the corrosion resistance deteriorates. Therefore, the amount of Zn is 0.1 to
0.5%. Cr: Addition of Cr has a great effect on improving strength. However, when the Cr content is less than 0.05%, the effect is not obtained.
%, The formation of giant crystals added excessively and an increase in the number of crystals occur, which leads to a decrease in moldability, which is not preferable. Therefore, the amount of Cr is set to 0.05 to 0.3%. The balance of each of the above components is Al and inevitable impurities.

【0008】次に本発明における組織の限定理由につい
て説明する。板表面における5μm以上の金属間化合物
が100個/0.2mm2未満ではDI加工におけるし
ごき成形時の潤滑効果およびセルフクリーニング効果が
少なくなるため、ゴーリングと呼ばれる擦り疵や焼付き
といった外観不良が発生し、出来上りの缶の外観を損ね
る。また、200個/0.2mm2を超えて存在する
と、しごき性は良いものの、粗大な粒子の個数が増える
ことから延性を損ねる。したがって、板表面において5
μm以上の金属間化合物が100〜200個/0.2m
2存在することとする。
Next, the reasons for limiting the organization in the present invention will be described. If the number of intermetallic compounds of 5 μm or more on the plate surface is less than 100 / 0.2 mm 2 , the lubricating effect and the self-cleaning effect at the time of ironing in DI processing are reduced, resulting in appearance defects such as abrasion and galling called galling. And impair the appearance of the finished can. Further, when the number of particles exceeds 200 / 0.2 mm 2 , although the ironing property is good, the number of coarse particles increases, thereby impairing the ductility. Therefore, 5
100-200 intermetallic compounds of 0.2 μm or more / 0.2 m
m 2 exists.

【0009】次に本発明における製造プロセスについて
説明する。 鋳造:前述の合金組成を有するアルミニウム合金を常法
に従ってDC鋳造法(半連続鋳造法)により鋳造する。 均熱:次いでその鋳塊に対して、均質化処理を兼ねた熱
間圧延前の予備加熱を施して熱間圧延を行うか、または
均質化処理としての加熱を施し次いで熱間圧延前の予備
加熱を施して熱間圧延を行う。均熱温度が500℃未満
または保持時間1時間未満では十分な均質化が得られ
ず、また620℃を超えると鋳塊表面に膨れが生じたり
するため、均熱条件は500〜620℃の温度で1時間
以上の保持を行うことが望ましい。 熱間圧延:上記均熱処理の後に常法に従って熱間圧延を
行なう。冷間圧延(1次冷間圧延):上記熱間圧延の後
に、常法に従って1次冷間圧延を行なう。 中間焼鈍:熱間圧延および1次冷間圧延の後に、1℃/
sより速い加熱・冷却速度で400〜600℃の到達温
度で10分以内の保持時間の中間焼鈍を行う。400℃
未満の温度ではCu、Mg、Si等の金属元素の固溶が
進まず、従って溶体化効果による強度向上が望めない。
一方、高温である方がより溶体化効果による強度向上が
望めるが、600℃を超える温度では共晶融解による製
造上の不都合および製品の外観不良が生じる。したがっ
て、焼鈍温度は400〜600℃の到達温度とする。ま
た到達温度からの冷却速度が1℃/s未満ではせっかく
固溶した合金元素が冷却過程において析出してしまい、
溶体化効果による強度向上の程度が少なくなる。したが
って、冷却速度は1℃/s以上とする。また400〜6
00℃の温度範囲で製品が晒される時間は10分以内と
する。これより長時間になると表面の酸化皮膜の形成に
より焼鈍終了後の冷間圧延性や製品の外観を損ねる。M
n固溶量を低くするだけであるならばバッチタイプの焼
鈍炉により保持時間の長い焼鈍を行うことにより容易に
達成することができる。しかし本発明は塗装焼付け後の
強度が高く、かつDI成形する時点での強度は低くて成
形性の良い材料を得るために塗装焼付け処理による強度
低下の少ないCALによる中間焼鈍を採用し、合金成分
元素の規制ならびに中間焼鈍以外の製造条件の選定によ
りMn固溶量を低く抑えることを実現したものである。 冷間圧延(2次冷間圧延):上記焼鈍後、40%以上の
圧延率の2次冷間圧延(最終冷間圧延)を施す。圧延率
が40%未満では十分な強度が得られない。なお、必要
に応じて100〜200℃程度の最終焼鈍を施すことに
より、深絞り性の改善が望める。
Next, the manufacturing process according to the present invention will be described. Casting: An aluminum alloy having the above-mentioned alloy composition is cast by a DC casting method (semi-continuous casting method) according to a conventional method. Soaking: Next, the ingot is subjected to preheating before hot rolling also serving as a homogenization treatment to perform hot rolling, or is subjected to heating as a homogenization treatment and then subjected to a preheating before hot rolling. Heating is performed to perform hot rolling. If the soaking temperature is less than 500 ° C or the holding time is less than 1 hour, sufficient homogenization cannot be obtained, and if it exceeds 620 ° C, the surface of the ingot may swell, so the soaking condition is a temperature of 500 to 620 ° C. It is desirable to hold for 1 hour or more. Hot rolling: After the above soaking treatment, hot rolling is performed according to a conventional method. Cold rolling (primary cold rolling): After the above-mentioned hot rolling, primary cold rolling is performed according to a conventional method. Intermediate annealing: After hot rolling and primary cold rolling, 1 ° C /
Intermediate annealing is performed at a heating / cooling rate higher than s at a temperature of 400 to 600 ° C. and a holding time of 10 minutes or less. 400 ° C
At a temperature lower than the above, solid solution of metal elements such as Cu, Mg, and Si does not progress, and therefore, improvement in strength by a solution effect cannot be expected.
On the other hand, the higher the temperature, the higher the strength due to the solution effect can be expected. Therefore, the annealing temperature is set to the ultimate temperature of 400 to 600 ° C. Further, if the cooling rate from the ultimate temperature is less than 1 ° C./s, the alloy element which has been dissolved solidly will precipitate in the cooling process,
The degree of strength improvement due to the solution effect is reduced. Therefore, the cooling rate is set to 1 ° C./s or more. Also 400-6
The time during which the product is exposed in the temperature range of 00 ° C. is within 10 minutes. If the time is longer than this, the cold rollability after annealing and the appearance of the product are impaired due to the formation of an oxide film on the surface. M
If it is only necessary to lower the amount of n solid solution, it can be easily achieved by performing annealing with a long holding time using a batch type annealing furnace. However, in order to obtain a material having a high strength after baking paint and a low strength at the time of DI forming and having good formability, an intermediate annealing by CAL, which has a small strength reduction due to the baking treatment, is used. By controlling the elements and selecting the manufacturing conditions other than the intermediate annealing, the amount of Mn solid solution can be suppressed low. Cold rolling (secondary cold rolling): After the above-mentioned annealing, secondary cold rolling (final cold rolling) with a rolling ratio of 40% or more is performed. If the rolling reduction is less than 40%, sufficient strength cannot be obtained. In addition, improvement of deep drawability can be expected by performing final annealing at about 100 to 200 ° C. as necessary.

【0010】[0010]

【実施例】次に本発明の実施例について説明する。実施
例に用いた合金成分組成を表1に、また、各々のMn/
Fe,Mn/SiおよびFe+Mnの値を表2に示す。
各々について説明すると、合金Aは、Crを多めに添加
した発明合金である。合金Bは、Crを含まない発明合
金である。合金Cは各成分は本発明の請求の範囲に含ま
れるが、(Mn/Si)の値が外れている比較合金であ
る。合金DはMn量がやや低いものの各成分は本発明の
請求の範囲に含まれるが、(Fe+Mn)の値が外れて
いる比較合金である。合金Eは各成分はSi量が低く、
また(Mn/Fe)および(Mn/Si)の値が外れて
いる比較合金である。合金Fは各成分は本発明の請求の
範囲に含まれるが、(Fe*Mn)の値が外れている比
較合金である。合金GはMn量がやや低いものの各成分
は本発明の請求の範囲に含まれるが、(Mn/Fe)の
値が外れている比較合金である。合金Hは従来合金であ
り、(Mn/Fe)および(Mn/Si)の値が外れて
いる。
Next, an embodiment of the present invention will be described. Table 1 shows the composition of the alloy components used in the examples.
Table 2 shows the values of Fe, Mn / Si, and Fe + Mn.
Describing each of them, the alloy A is an inventive alloy to which Cr is added in a large amount. Alloy B is an inventive alloy containing no Cr. Alloy C is a comparative alloy in which each component is included in the claims of the present invention, but the value of (Mn / Si) is out of the range. Alloy D is a comparative alloy having a slightly lower Mn content, but each component is included in the scope of the present invention, but the value of (Fe + Mn) is out of the range. Alloy E has a low Si content in each component,
This is a comparative alloy in which the values of (Mn / Fe) and (Mn / Si) are out of range. Alloy F is a comparative alloy in which each component is included in the scope of the present invention, but the value of (Fe * Mn) is out of the range. Although the alloy G has a slightly lower Mn content, each component is included in the claims of the present invention, but is a comparative alloy in which the value of (Mn / Fe) is out of the range. Alloy H is a conventional alloy, and the values of (Mn / Fe) and (Mn / Si) are out of order.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【表2】 [Table 2]

【0014】表1に示す化学成分を有する各アルミニウ
ム合金を用いて、常法によって得られたDC鋳塊を60
5℃で10時間の均熱を行い、その後常法に従い熱間圧
延を行って、厚さ4mmの熱延コイルを得た。No1お
よび3〜9は板厚0.75mmまで1次冷間圧延を行っ
た後CALによる中間焼鈍を施したものであり、その条
件は加熱・冷却速度が約20℃/s、到達温度が530
℃とし、到達後即時に冷却した。その後2次冷間圧延
(最終冷間圧延)を行って0.3mmの板を得て最終焼
鈍を100℃2時間で行った。No2はNo1と同じ合
金を用いたもので、中間焼鈍をCALではなくバッチ焼
鈍炉による焼鈍とした比較例である。中間焼鈍条件は加
熱・冷却速度が35℃/h、到達温度が350℃とし、
温度到達後2時間保持した後冷却した。
Using each of the aluminum alloys having the chemical components shown in Table 1, a DC ingot obtained by a usual method was
After soaking at 5 ° C. for 10 hours, hot rolling was performed according to a conventional method to obtain a hot-rolled coil having a thickness of 4 mm. Nos. 1 and 3 to 9 were subjected to primary cold rolling to a sheet thickness of 0.75 mm and then subjected to intermediate annealing by CAL under the conditions that the heating / cooling rate was about 20 ° C./s and the ultimate temperature was 530.
° C and cooled immediately upon reaching. Thereafter, secondary cold rolling (final cold rolling) was performed to obtain a 0.3 mm plate, and final annealing was performed at 100 ° C. for 2 hours. No. 2 is a comparative example in which the same alloy as that of No. 1 was used, and the intermediate annealing was performed not by CAL but by a batch annealing furnace. The intermediate annealing conditions were a heating / cooling rate of 35 ° C./h and an ultimate temperature of 350 ° C.
After the temperature reached, it was kept for 2 hours and then cooled.

【0015】得られた試料について元板と塗装ベーキン
グ相当の200℃20分の熱処理後の各々の引張強さ
(TS:N/mm2)、耐力(YS:N/mm2)、伸び
(EL:%)を調べ、元板について耳率(%)を測定し
た。耳率は、38mmφ、肩R2.5mmのポンチを用
いて66mmφサークルをクリアランス30%で深絞り
を行って測定した。また実際のDI成形を行って、DI
缶の外観を観察して潤滑不良による黒筋状の外観欠陥の
有無を缶外観として評価した。さらにDI缶をベーキン
グ後、図2に示す17Rの治具でフランジ部の穴拡げ性
を測定し限界フランジ伸びとして評価した。単位は破断
時の広がり長さP(mm)である。また板表面のミクロ
組織の観察により5μm以上の晶出物の個数(個/0.
2mm2)を測定し、またMn固溶量(%)についても
測定した。その結果を表3に示す。
The tensile strength (TS: N / mm 2 ), proof stress (YS: N / mm 2 ), and elongation (EL) of the obtained sample after heat treatment at 200 ° C. for 20 minutes corresponding to the base plate and coating baking. :%), And the ear ratio (%) of the original plate was measured. The ear ratio was measured by deep drawing a 66 mmφ circle with a clearance of 30% using a punch of 38 mmφ and a shoulder R2.5 mm. In addition, the actual DI molding
The appearance of the can was observed, and the presence or absence of black streak-like appearance defects due to poor lubrication was evaluated as the can appearance. Further, after baking the DI can, the hole expandability of the flange portion was measured with a jig of 17R shown in FIG. 2 and evaluated as the limit flange elongation. The unit is the spread length P (mm) at break. Further, the number of crystallized substances having a size of 5 μm or more (pieces / 0.
2 mm 2 ), and the Mn solid solution amount (%) was also measured. Table 3 shows the results.

【0015】[0015]

【表3】 [Table 3]

【0016】各々について説明すると、No1は発明例
であり、従来例No9と比較して元板の引張強さ、耐
力、伸びおよびベーキング後の引張強さ、耐力、伸びと
もに同等であり、また耳率においては発明例は3%と小
さくなっている。またDI缶の外観不良は生じておら
ず、さらに限界フランジ伸びは6mmと従来例よりはる
かに優れている。No2はNo1の中間焼鈍をバッチ焼
鈍とした比較例であるが、耳率、限界フランジ伸びはN
o1と同等であるもののベーキング後の耐力の低下が大
きく強度不足となっている。No3は合金Bを用いた発
明例であり、No1とは成分が若干異なるが同様に従来
材よりフランジ伸びが良好である。No4はMn/Si
の値が小さい合金を用いた比較例で、5μm以上の晶出
物数が少なく細かい晶出物が多く存在する組織となって
いる。このため限界フランジ伸びは発明例と同等である
ものの外観不良が発生している。No5はFe+Mn量
が少ない合金を用いた比較例であり、表3に示すように
5μm以上の晶出物の個数が少なく、また晶出物の総個
数が不足している組織となっている。このため限界フラ
ンジ伸びは発明例と同等であるものの外観不良が発生し
ている。No6はMn/Si、Mn/Feの値が大きい
合金を用いた比較例で、5μm以上の晶出物個数は本発
明の範囲に入るがMn固溶量が0.20%と多くなって
いる。このため外観不良は生じていないものの限界フラ
ンジ伸びが4mmと小さくなっておりフランジ成形性が
良くない。No7はFe+Mn量が多い合金を用いた比
較例で、表3に示すように5μm以上の晶出物の個数が
本発明の範囲を超えているとともに晶出物の総個数が過
多となった組織となっている。またMn固溶量も本発明
の範囲を超えている。このため元板の伸びが小さく成形
性に劣るとともに、耳率が5%と大きく、さらに限界フ
ランジ伸びが小さくなっておりフランジ成形性が極めて
劣るものとなっている。No8はMn/Feが小さい合
金を用いた比較例で、Mn固溶量は本発明の範囲を満た
しているものの、細かい晶出物が多く存在し5μm以上
の晶出物が少なく、このため限界フランジ伸びは発明例
と同等の値であるが外観不良が生じている。No9は従
来例であり、Mn/Si,Mn/Feが大きな合金であ
る。このためりMn固溶量も多くなっており限界フラン
ジ伸びが小さくフランジ成形性に劣るものとなってい
る。
To explain each of them, No. 1 is an invention example, and the tensile strength, proof stress and elongation of the base plate and the tensile strength, proof stress and elongation after baking are equal to those of the conventional example No. 9 and In the ratio, the invention example is as small as 3%. Further, the appearance of the DI can was not poor, and the limit flange elongation was 6 mm, which is far better than the conventional example. No. 2 is a comparative example in which the intermediate annealing of No. 1 was performed by batch annealing.
Although it is equivalent to o1, the decrease in proof stress after baking is large and the strength is insufficient. No. 3 is an invention example using alloy B and has slightly different components from No. 1 but also has better flange elongation than the conventional material. No. 4 is Mn / Si
In a comparative example using an alloy having a small value of, the number of crystallized substances of 5 μm or more is small, and the structure has many fine crystallized substances. For this reason, the limit flange elongation is equivalent to that of the invention example, but appearance failure occurs. No. 5 is a comparative example using an alloy having a small amount of Fe + Mn, and as shown in Table 3, has a structure in which the number of crystallized substances of 5 μm or more is small and the total number of crystallized substances is insufficient. For this reason, the limit flange elongation is equivalent to that of the invention example, but appearance failure occurs. No. 6 is a comparative example using an alloy having large values of Mn / Si and Mn / Fe, and the number of crystallized substances of 5 μm or more falls within the range of the present invention, but the Mn solid solution amount is as large as 0.20%. . For this reason, although the appearance defect does not occur, the limit flange elongation is as small as 4 mm, and the flange formability is not good. No. 7 is a comparative example using an alloy having a large amount of Fe + Mn. As shown in Table 3, the structure in which the number of crystallized substances exceeding 5 μm exceeds the range of the present invention and the total number of crystallized substances is excessive. It has become. Also, the amount of Mn solid solution exceeds the range of the present invention. For this reason, the elongation of the base plate is small and the formability is inferior, the ear ratio is as large as 5%, and the limit flange elongation is small, and the flange formability is extremely poor. No. 8 is a comparative example using an alloy having a small Mn / Fe. Although the amount of Mn solid solution satisfies the range of the present invention, there are many fine crystals and few crystals of 5 μm or more. Although the flange elongation is the same value as that of the invention, the appearance is poor. No. 9 is a conventional example, in which Mn / Si and Mn / Fe are large alloys. As a result, the amount of solid solution Mn increases and the critical flange elongation is small, resulting in poor flange formability.

【0017】[0017]

【効果】以上詳述したように、本発明により製造された
アルミニウム合金板は、特にDI缶胴用の材料として、
DI加工が施された後に塗装焼付け処理が施される用途
に適したものである。すなわち、元板強度はあまり強く
ないので成形加工しやすく、一方、強度が必要とされる
ベーキング後においては、溶体化効果により強度が向上
しているという強度的に優れた特性を有している。ま
た、DI成形時の耳率は3%と極めて低く耳率の点でも
優れた材料である。さらに、限界フランジ伸びも6mm
となっておりフランジ成形性に特に優れている。また黒
筋等の外観不良も発生しない。したがって本発明によれ
ば、強度的に優れしかも塗装焼付け後の成形性、特にフ
ランジ成形性に優れたDI缶用アルミニウム合金板を容
易にかつ効果的に製造することができるものである。
As described in detail above, the aluminum alloy plate manufactured according to the present invention is particularly useful as a material for a DI can body.
It is suitable for use in which a baking treatment is performed after the DI processing. In other words, since the original plate strength is not so strong, it is easy to form, and on the other hand, after baking where strength is required, it has excellent strength properties that the strength is improved by the solution effect. . Further, the ear ratio at the time of DI molding is extremely low at 3%, which is an excellent material in terms of ear ratio. Furthermore, the limit flange elongation is 6mm
It is particularly excellent in flange formability. Also, appearance defects such as black streaks do not occur. Therefore, according to the present invention, it is possible to easily and effectively produce an aluminum alloy plate for a DI can which is excellent in strength and excellent in formability after paint baking, particularly excellent in flange formability.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Mn固溶量と限界フランジ伸びの関係を示すグ
ラフである。
FIG. 1 is a graph showing the relationship between the Mn solid solution amount and the limit flange elongation.

【図2】本発明の実施例における治具を用いたフランジ
部の穴拡げ過程を示す断面図である。
FIG. 2 is a cross-sectional view illustrating a process of expanding a hole in a flange portion using a jig according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

10 缶胴 11 穴拡げ治具 P 限界フランジ伸び 10 Can body 11 Hole expanding jig P Limit flange elongation

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C22F 1/00 673 C22F 1/00 673 686 686A 691 691A 693 693A 693B 1/04 1/04 C (58)調査した分野(Int.Cl.7,DB名) C22C 21/00 - 21/18 C22F 1/04 - 1/057 ────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 7 Identification code FI C22F 1/00 673 C22F 1/00 673 686 686A 691 691A 693 693A 693B 1/04 1/04 C (58) .Cl. 7 , DB name) C22C 21/00-21/18 C22F 1/04-1/057

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で(以下、同じ)、Mg:0.5
〜2.0%、Mn:0.6〜1.4%、Cu:0.05
〜0.5%、Fe:0.3〜1.0%、Si:0.15
〜0.5%、組織微細化・安定化のためにTi:0.0
05〜0.2%を単独であるいはB:0.0001〜
0.05%とともに含有し、1≦Mn/Fe≦2.5、
3≦Mn/Si≦4、1%≦Fe+Mn≦2%の条件を
満たし、さらにCr:0.05〜0.3%、Zn:0.
1〜0.5%のうちの1種または2種を含有し、残部が
Alおよび不可避的不純物からなり、板表面における5
μm以上の金属間化合物が100〜200個/0.2m
2 存在し、Mn固溶量が0.16%以下であることを
特徴とする成形性特にDI成形加工後のフランジ成形性
に優れたDI缶用アルミニウム合金板。
1. Mg: 0.5% by weight (hereinafter the same).
To 2.0%, Mn: 0.6 to 1.4%, Cu: 0.05
0.5%, Fe: 0.3 to 1.0%, Si: 0.15
~ 0.5%, Ti: 0.0 for finer structure and stabilization
0.05 to 0.2% alone or B: 0.0001 to
0.05%, 1 ≦ Mn / Fe ≦ 2.5,
3 ≦ Mn / Si ≦ 4, 1% ≦ Fe + Mn ≦ 2%, Cr: 0.05-0.3%, Zn: 0.
1 to 0.5%, and the balance consists of Al and unavoidable impurities.
100-200 intermetallic compounds of 0.2 μm or more / 0.2 m
An aluminum alloy sheet for a DI can excellent in formability, particularly in flange formability after DI forming, characterized in that m 2 is present and the Mn solid solution amount is 0.16% or less.
【請求項2】 請求項1記載の化学成分を有するアルミ
ニウム合金の鋳塊に、均熱を施してその後熱間圧延を行
ない、さらに冷間圧延を行なった後に、1℃/s以上の
加熱・冷却速度で400〜600℃の到達温度で10分
以内の保持時間の焼鈍を施し、次いで40%以上の圧延
率の冷間圧延を施し、板表面における5μm以上の金属
間化合物が100〜200個/0.2mm2 存在し、M
n固溶量が0.16%以下であることを特徴とする成形
性特にDI成形加工後のフランジ成形性に優れたDI缶
用アルミニウム合金板の製造方法。
2. An ingot of an aluminum alloy having the chemical composition according to claim 1 is subjected to soaking, hot rolling is performed, and then cold rolling is performed. Annealing is performed at a cooling rate of 400 to 600 ° C. at an reaching temperature of 10 minutes or less, and then cold rolling is performed at a rolling reduction of 40% or more, and 100 to 200 intermetallic compounds of 5 μm or more on the sheet surface are obtained. /0.2mm 2 exists, M
A method for producing an aluminum alloy sheet for a DI can having excellent moldability, particularly excellent in flange formability after DI molding, characterized in that the amount of n solid solution is 0.16% or less.
JP16697392A 1992-06-01 1992-06-01 Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same Expired - Lifetime JP3210419B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16697392A JP3210419B2 (en) 1992-06-01 1992-06-01 Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16697392A JP3210419B2 (en) 1992-06-01 1992-06-01 Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05331588A JPH05331588A (en) 1993-12-14
JP3210419B2 true JP3210419B2 (en) 2001-09-17

Family

ID=15841053

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16697392A Expired - Lifetime JP3210419B2 (en) 1992-06-01 1992-06-01 Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same

Country Status (1)

Country Link
JP (1) JP3210419B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4205458B2 (en) * 2002-03-20 2009-01-07 株式会社神戸製鋼所 Aluminum-based hot rolled plate and can body plate using the same
WO2007015560A1 (en) * 2005-08-04 2007-02-08 Universal Can Corporation Aluminum alloy sheet for can body, di can, and method for manufacture of the di can
JP5247996B2 (en) * 2005-12-28 2013-07-24 三菱アルミニウム株式会社 Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
JP5247994B2 (en) * 2005-12-28 2013-07-24 三菱アルミニウム株式会社 Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
JP5247995B2 (en) * 2005-12-28 2013-07-24 三菱アルミニウム株式会社 Aluminum alloy plate for can body excellent in circulation pinhole resistance and method for producing can body excellent in distribution pinhole resistance
CN109371266B (en) * 2018-12-05 2020-08-18 中南大学 Production method of high-strength corrosion-resistant weldable Al-Mg-Si series alloy extrusion material
CN114182144A (en) * 2021-12-14 2022-03-15 中铝瑞闽股份有限公司 Aluminum plate for anodic oxidation with excellent surface quality after thinning and preparation method thereof

Also Published As

Publication number Publication date
JPH05331588A (en) 1993-12-14

Similar Documents

Publication Publication Date Title
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
EP0616044A2 (en) Method of manufacturing natural aging retardated aluminum alloy sheet
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
EP0613959B1 (en) An aluminium alloy sheet for use in press forming , exhibiting excellent hardening property obtained by baking at low temperature for a short period of time and a method of manufacturing the same
JP2000212673A (en) Aluminum alloy sheet for aircraft stringer excellent in stress corrosion cracking resistance and its production
JP4257135B2 (en) Aluminum alloy hard plate for can body
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP2862198B2 (en) Aluminum alloy plate for DI can body
JPH10259464A (en) Production of aluminum alloy sheet for forming
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JP3066091B2 (en) Aluminum alloy rolled plate for hole enlarging and method for producing the same
JP3260227B2 (en) Al-Mg-Si based alloy sheet excellent in formability and bake hardenability by controlling crystal grains and method for producing the same
JPH11256290A (en) Manufacture of aluminum alloy sheet for can body
JPH073409A (en) Heat treatment for extruded billet of al-mg-si based aluminum alloy
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JP3218099B2 (en) Method for producing aluminum alloy sheet with low ear ratio and excellent formability
JPH04214834A (en) Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH0723160B2 (en) DI can body made of aluminum alloy with excellent necking and flange formability
JP4034904B2 (en) Hot rolled plate for aluminum can body and can body plate using the same
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JP3247447B2 (en) Manufacturing method of aluminum alloy sheet for forming with low ear ratio
JP3069008B2 (en) Method for manufacturing aluminum alloy DI can body
JPH0660366B2 (en) Aluminum alloy sheet for zinc phosphate treatment and method for producing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

EXPY Cancellation because of completion of term