JP2000212673A - Aluminum alloy sheet for aircraft stringer excellent in stress corrosion cracking resistance and its production - Google Patents

Aluminum alloy sheet for aircraft stringer excellent in stress corrosion cracking resistance and its production

Info

Publication number
JP2000212673A
JP2000212673A JP32909099A JP32909099A JP2000212673A JP 2000212673 A JP2000212673 A JP 2000212673A JP 32909099 A JP32909099 A JP 32909099A JP 32909099 A JP32909099 A JP 32909099A JP 2000212673 A JP2000212673 A JP 2000212673A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
average
temperature
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32909099A
Other languages
Japanese (ja)
Other versions
JP4229307B2 (en
Inventor
Tadashi Minoda
正 箕田
Hideo Yoshida
英雄 吉田
Keiichi Sakai
圭一 酒井
Ichiro Minami
一郎 南
Hidetoshi Uchida
秀俊 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP10-330948 external-priority
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP32909099A priority Critical patent/JP4229307B2/en
Publication of JP2000212673A publication Critical patent/JP2000212673A/en
Application granted granted Critical
Publication of JP4229307B2 publication Critical patent/JP4229307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce an aluminum alloy sheet for an aircraft stringer in which the average thickness of crystal grains after a stringer stock is subjected to step cold rolling, preheating treatment and solution treatment is <=40 μm even in the part high in a step cold rolling working degree, also aspect ratio is >=4 over the whole length and having excellent stress corrosion cracking resistance of >=250 MPa threshold stress, and to provide a method for producing the same. SOLUTION: This invention is an aluminum alloy sheet having a compsn. contg. 5.1 to 8.4% Zn, 1.8 to 3.0% Mg and 1.2 to 2.6% Cu, moreover contg. one or >= two kinds among <=0.35% Cr, <=0.35% Mn and <=0.25% Zr, and the balance Al with impurities, in which the average thickness of crystal grains is <=25 μm, and aspect ratio is >=4. Even in the case the alloy sheet is subjected to cold rolling at partially different working degrees in the range of <=90% working degrees, is subjected to preheating treatment at 350 to 400 deg.C and is thereafter subjected to solution treatment, the average thickness of the crystal grains is <=25 μm in the case of <30% working degree and <=40 μm in the case of 30 to 90% working degree, and the aspect ratio is maintained to >=4 in both cases.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐応力腐食割れ性
に優れた航空機ストリンガー用アルミニウム合金板およ
びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy sheet for aircraft stringers having excellent resistance to stress corrosion cracking and a method for producing the same.

【0002】[0002]

【従来の技術】航空機のストリンガーは、航空機の胴体
内部の長手方向および円周方向に取り付けられる断面ハ
ット型、Z型、J型などの形状を有する7000系アル
ミニウム合金材からなる補強材である。従来、この航空
機ストリンンガー材には、材質、製造方法について多く
の提案がなされており(特許第1405136号、13
37646〜1337649号、1339927号な
ど)、代表的な製造工程は以下のとおりである。
2. Description of the Related Art A stringer of an aircraft is a reinforcing material made of a 7000 series aluminum alloy material having a hat-shaped, Z-shaped or J-shaped cross-section, which is attached in the longitudinal direction and the circumferential direction inside the fuselage of the aircraft. Conventionally, many proposals have been made on the material and manufacturing method of this aircraft stringer material (Japanese Patent No. 1405136, 13).
37646-1337649, 1339927, etc.) and typical production steps are as follows.

【0003】JIS A7075合金の鋳塊を、約45
0℃で約16時間均質化処理した後、約400℃の温度
で熱間圧延を行って6mm程度の厚さの板とし、約41
0℃で約1時間の中間焼鈍を行った後、炉冷し、さら
に、冷間圧延を行って厚さ3〜4mmとし、11℃/分
を越える平均昇温速度で320〜500℃の温度に加熱
し1時間程度保持して軟化した後、冷却し、この冷却の
際の冷却速度を30℃/時以上として、200〜500
℃の温度に再加熱し、再加熱温度が200℃以上350
℃未満の場合には、空冷または30℃/時以下の平均冷
却速度で冷却し、再加熱温度が350〜500℃の場合
には、30℃/時以下の平均冷却速度で冷却することに
よりストリンガー素材を製造する。
[0003] An ingot of JIS A7075 alloy is used for about 45 minutes.
After homogenizing at 0 ° C. for about 16 hours, hot rolling is performed at a temperature of about 400 ° C. to obtain a plate having a thickness of about 6 mm,
After the intermediate annealing at 0 ° C. for about 1 hour, the furnace is cooled, and further cold-rolled to a thickness of 3 to 4 mm, and a temperature of 320 to 500 ° C. at an average heating rate exceeding 11 ° C./min. After heating for about 1 hour to soften by holding for about 1 hour, it is cooled.
Reheat to a temperature of 200 ° C and a reheat temperature of 200 ° C or more and 350 ° C.
When the temperature is lower than 30 ° C., the stringer is cooled by air cooling or at an average cooling rate of 30 ° C./hour or less, and when the reheating temperature is 350 to 500 ° C., the stringer is cooled at an average cooling rate of 30 ° C./hour or less. Manufacture materials.

【0004】ついで、このストリンガー素材に、例えば
図1に示すように、長さ方向に圧延加工度を変え、加工
度0の部分A、比較的低加工度の部分B、中間の加工度
の部分C、高加工度の部分Dなどを有する形態に加工す
る加工度0〜90%の段付き冷間圧延を施した後、溶体
化処理を行ってストリンガー材とし、さらに、セクショ
ンロール成形によりハット型などの断面に成形し、T6
に調質することによりストリンガーとしている。
Then, as shown in FIG. 1, for example, as shown in FIG. 1, the rolling degree of the stringer material is changed in the longitudinal direction, and a part A having a degree of working zero, a part B having a relatively low degree of working, and a part having an intermediate degree of working are formed. C, stepwise cold rolling at a working ratio of 0 to 90% for working into a form having a high working degree portion D, etc., and then a solution treatment is performed to obtain a stringer material. Molded into a cross section such as T6
Stringer by refining.

【0005】上記の工程により製造されたストリンガー
は、段付き冷間加工前の素材において25μm以下の平
均結晶粒径を有し、この素材に加工度0〜90%の段付
き冷間圧延を施した後、溶体化処理を行っても、加工度
が30%未満では25μm以下、加工度が30〜90%
の範囲では40μm以下の平均結晶粒径が維持されるた
め、セクションロール成形時に肌荒れや割れを生じるこ
とがなく、すぐた機械的性質、伸び、破壊靱性値、ケミ
カルミーリング性、疲労強度などが得られる。
The stringer manufactured by the above process has an average crystal grain size of 25 μm or less in the raw material before the stepped cold working, and is subjected to stepped cold rolling at a working ratio of 0 to 90%. After performing the solution treatment, if the working degree is less than 30%, the working degree is 25 μm or less, and the working degree is 30 to 90%.
In the range, the average crystal grain size of 40 μm or less is maintained, so that rough surface and cracking do not occur during section roll forming, and excellent mechanical properties, elongation, fracture toughness, chemical milling properties, fatigue strength, etc. are obtained. Can be

【0006】しかしながら、T6調質で使用されるJI
S A7075合金など7000系アルミニウム合金材
は、T7調質と比較すると耐応力腐食割れ性が劣る傾向
にあり、実験室で十分な耐応力腐食割れ性を有している
と判断された場合でも、想定された以上に厳しい環境下
で使用された場合、問題が生じるおそれがあることか
ら、ストリンガー材の耐応力腐食割れ性をさらに改善す
ることが要求されている。7000系アルミニウム合金
においては、図2に示すように、結晶粒のアスペクト比
(結晶粒長さ÷結晶粒厚さ)と応力腐食割れ性との関係
が明らかにされており、アスペクト比が大きいほど応力
腐食割れの敷居応力が高くなるため、アスペクト比が大
きい材料が耐応力腐食割れ性を与える上で好ましいこと
が知られている。
However, JI used in T6 tempering
7000 series aluminum alloy materials such as SA7075 alloy tend to have lower stress corrosion cracking resistance than T7 temper, and even if it is judged in the laboratory that they have sufficient stress corrosion cracking resistance, If used in an environment that is harsher than expected, problems may occur. Therefore, it is required to further improve the stress corrosion cracking resistance of stringer materials. In the 7000 series aluminum alloy, as shown in FIG. 2, the relationship between the aspect ratio of crystal grains (crystal grain length ÷ crystal grain thickness) and stress corrosion cracking has been clarified. It is known that a material having a large aspect ratio is preferable in providing the stress corrosion cracking resistance because the threshold stress of the stress corrosion cracking increases.

【0007】上記従来の製造工程により製造されたスト
リンガー材のアスペクト比を調査した結果では、段付冷
間圧延加工度0〜90%の加工後において、アスペクト
比が2.1〜4.2で、応力腐食割れの敷居応力の最低
値は150MPa程度であり、さらに改善の余地があ
る。段付冷間圧延工程と溶体化処理工程との間で予加熱
処理工程を行ってアスペクト比を大きくし、耐効力腐食
割れ性を向上させようとする提案も行われている(特開
平9−241811号公報)が、0〜90%の段付冷間
圧延後、350〜375℃で1〜2時間の予加熱を行
い、溶体化処理したものの結晶粒を調査した結果、平均
結晶粒厚さは、加工度が30%未満では25μm以下、
加工度が30〜90%の範囲では40μm以下と小さか
ったが、アスペクト比は2.4〜15.6の範囲で、加
工度によってはアスペクト比の改善が認められない。
[0007] As a result of examining the aspect ratio of the stringer material manufactured by the above-mentioned conventional manufacturing process, it was found that the aspect ratio was 2.1 to 4.2 after the stepped cold rolling reduction of 0 to 90%. The minimum value of the threshold stress for stress corrosion cracking is about 150 MPa, and there is room for further improvement. A proposal has been made to increase the aspect ratio by performing a preheating treatment step between the stepped cold rolling step and the solution treatment step to improve the effective corrosion cracking resistance. No. 241811), after performing stepwise cold rolling of 0 to 90%, preheating at 350 to 375 ° C. for 1 to 2 hours, and examining the crystal grains of the solution-treated one. Is 25 μm or less when the degree of processing is less than 30%,
Although the workability was as small as 40 μm or less in the range of 30 to 90%, the aspect ratio was in the range of 2.4 to 15.6, and no improvement in the aspect ratio was observed depending on the workability.

【0008】[0008]

【発明が解決しようとする課題】本発明は、航空機スト
リンガー用アルミニウム合金板における上記従来の問題
点を解消して、耐応力腐食割れ性をさらに高めたアルミ
ニウム合金板を得るために、7000系アルミニウム合
金の合金成分とその組合わせ、ストリンガー素材の製造
工程を見直し、これらとアスペクト比の関連について多
角的な実験、検討を行った結果としてなされたものであ
り、その目的は、段付冷間圧延加工後のアスペクト比を
改善し、優れた耐応力腐食割れ性を有する航空機ストリ
ンガー用アルミニウム合金板およびその製造方法を提供
することにある。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems in aluminum alloy sheets for aircraft stringers and to obtain an aluminum alloy sheet with further enhanced resistance to stress corrosion cracking. The purpose of this study was to review the alloying components of the alloys, their combinations, and the manufacturing process of the stringer material, and to conduct various experiments and studies on the relationship between these and the aspect ratio. An object of the present invention is to provide an aluminum alloy plate for an aircraft stringer having an improved aspect ratio after processing and having excellent stress corrosion cracking resistance, and a method for producing the same.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの請求項1に記載の本発明による耐応力腐食割れ性に
優れた航空機ストリンガー用アルミニウム合金板は、Z
n:5.1〜8.4 %、Mg:1.8〜3.0 %、Cu:1.2〜2.6 %
を含有し、さらにCr:0.35 %以下、Mn:0.35 %以
下、Zr:0.25 %以下のうちの1種または2種以上を含
有し、残部Alおよび不純物からなり、結晶粒の平均厚
さが25μm以下で、アスペクト比が4以上のアルミニ
ウム合金板であり、該アルミニウム合金板に加工度90
%以下の範囲で部分的に異なる加工度の冷間圧延を行
い、その後、350〜400℃の温度での予加熱処理後
溶体化処理を行っても、前記加工度が30%未満では結
晶粒の平均厚さ25μm以下、アスペクト比4以上を維
持し、前記加工度が30〜90%の範囲では結晶粒の平
均厚さ40μm以下、アスペクト比4以上を維持するこ
とを特徴とする。
According to the first aspect of the present invention, there is provided an aluminum alloy sheet for an aircraft stringer having excellent stress corrosion cracking resistance according to the present invention.
n: 5.1 to 8.4%, Mg: 1.8 to 3.0%, Cu: 1.2 to 2.6%
And further contains one or more of Cr: 0.35% or less, Mn: 0.35% or less, Zr: 0.25% or less, the balance being Al and impurities, and the average thickness of crystal grains is 25 μm. Hereinafter, an aluminum alloy plate having an aspect ratio of 4 or more and a workability of 90%
% Cold rolling of a different degree of work within a range of not more than 30%, and then a solution treatment after a preheating treatment at a temperature of 350 to 400 ° C. , An average thickness of 25 μm or less and an aspect ratio of 4 or more are maintained, and when the workability is in the range of 30 to 90%, an average thickness of crystal grains of 40 μm or less and an aspect ratio of 4 or more are maintained.

【0010】請求項2に記載の航空機ストリンガー用ア
ルミニウム合金板は、請求項1記載のアルミニウム合金
が、さらにTi:0.2%以下、B:0.001%以下を含有して
いることを特徴とする。
An aluminum alloy plate for an aircraft stringer according to a second aspect is characterized in that the aluminum alloy according to the first aspect further contains Ti: 0.2% or less and B: 0.001% or less.

【0011】請求項3に記載の耐応力腐食割れ性に優れ
た航空機ストリンガー用アルミニウム合金板の製造方法
は、請求項1または2に記載のアルミニウム合金を常法
に従って均質化処理、熱間圧延および冷間圧延した後、
200〜350℃の温度で軟化処理を行い、5〜40%
の加工度で冷間圧延して所定の厚さとし、ついで、32
0〜500℃の温度域に11℃/分を越える平均昇温速
度で加熱し、30℃/時以下の平均冷却速度で冷却する
ことにより軟化することを特徴とする。
According to a third aspect of the present invention, there is provided a method for producing an aluminum alloy sheet for an aircraft stringer having excellent resistance to stress corrosion cracking, wherein the aluminum alloy according to the first or second aspect is homogenized, hot-rolled and treated in a conventional manner. After cold rolling,
Perform softening treatment at a temperature of 200 to 350 ° C., 5 to 40%
Cold-rolled to a predetermined thickness with a working degree of
It is characterized by heating to a temperature range of 0 to 500 ° C. at an average heating rate exceeding 11 ° C./min and softening by cooling at an average cooling rate of 30 ° C./hour or less.

【0012】請求項4に記載の航空機ストリンガー用ア
ルミニウム合金板の製造方法は、請求項1または2に記
載のアルミニウム合金を常法に従って均質化処理、熱間
圧延および冷間圧延した後、200〜350℃の温度で
軟化処理を行い、5〜40%の加工度で冷間圧延して所
定の厚さとし、ついで、320〜500℃の温度域に1
1℃/分を越える平均昇温速度で加熱することにより軟
化させ、30℃/時を越える平均冷却速度で冷却した
後、さらに200℃以上350℃未満の温度に再加熱
し、空冷あるいは30℃/時以下の平均冷却速度で冷却
することを特徴とする。
A method for producing an aluminum alloy sheet for an aircraft stringer according to a fourth aspect of the present invention is a method for homogenizing, hot rolling and cold rolling the aluminum alloy according to the first or second aspect according to a conventional method. A softening treatment is performed at a temperature of 350 ° C., and cold-rolled at a working degree of 5 to 40% to a predetermined thickness.
After softening by heating at an average heating rate exceeding 1 ° C./min, cooling at an average cooling rate exceeding 30 ° C./hour, reheating to a temperature of 200 ° C. or more and less than 350 ° C., air cooling or 30 ° C. Cooling at an average cooling rate of not more than / hour.

【0013】また、請求項5に記載の航空機ストリンガ
ー用アルミニウム合金板の製造方法は、請求項1または
2に記載のアルミニウム合金を常法に従って均質化処
理、熱間圧延および冷間圧延した後、200〜350℃
の温度で軟化処理を行い、5〜40%の加工度で冷間圧
延して所定の厚さとし、ついで、320〜500℃の温
度域に11℃/分を越える平均昇温速度で加熱すること
により軟化させ、30℃/時を越える平均冷却速度で冷
却した後、さらに350〜500℃の温度に再加熱し、
30℃/時以下の平均冷却速度で冷却することを特徴と
する。
According to a fifth aspect of the present invention, there is provided a method for manufacturing an aluminum alloy sheet for an aircraft stringer, comprising the steps of homogenizing, hot rolling and cold rolling the aluminum alloy according to the first or second aspect according to a conventional method. 200-350 ° C
Softening at a temperature of 5%, cold rolling at a working ratio of 5 to 40% to a predetermined thickness, and then heating to a temperature range of 320 to 500 ° C at an average temperature rising rate exceeding 11 ° C / min. And cooled at an average cooling rate exceeding 30 ° C./hour, and then reheated to a temperature of 350 to 500 ° C.,
It is characterized by cooling at an average cooling rate of 30 ° C./hour or less.

【0014】[0014]

【発明の実施の形態】本発明による航空機ストリンガー
用アルミニウム合金板における合金成分の意義およびそ
の限定理由について説明する。Znは強度向上に寄与す
る元素であり、好ましい含有量は5.1 〜8.4 %の範囲で
ある。5.1 %未満ではT6処理後の強度が十分でなく、
8.4 %を越えて含有すると、靱性が低下し、応力腐食割
れを起こし易くなる。
BEST MODE FOR CARRYING OUT THE INVENTION The significance of alloy components in an aluminum alloy sheet for aircraft stringers according to the present invention and the reasons for limiting the same will be described. Zn is an element that contributes to strength improvement, and its preferred content is in the range of 5.1 to 8.4%. If it is less than 5.1%, the strength after T6 treatment is not sufficient,
If the content exceeds 8.4%, toughness is reduced and stress corrosion cracking is liable to occur.

【0015】MgはZnと同様、強度向上のために機能
する元素であり、好ましい含有量は1.8 〜3.0 %の範囲
である。1.8 %未満ではT6処理後の強度が低く、3.0
%を越えると軟化材の冷間加工性が悪くなり、T6処理
後の素材の靱性が低下する。
Mg, like Zn, is an element that functions to improve the strength, and its preferable content is in the range of 1.8 to 3.0%. If it is less than 1.8%, the strength after T6 treatment is low,
%, The cold workability of the softened material deteriorates, and the toughness of the material after T6 treatment decreases.

【0016】Cuは、Zn、Mgと同じく合金の強度を
高める元素であり、好ましい含有量は1.2 〜2.6 %の範
囲である。1.2 %未満ではT6処理後の強度が低く、2.
6 %を越えるとT6処理後の靱性が低下する。
Cu, like Zn and Mg, is an element that increases the strength of the alloy, and the preferred content is in the range of 1.2 to 2.6%. If it is less than 1.2%, the strength after T6 treatment is low, and 2.
If it exceeds 6%, the toughness after T6 treatment decreases.

【0017】TiおよびBは、鋳造組織の微細化および
鋳造時の鋳塊割れの防止に有効に作用するもので、好ま
しい含有範囲は、それぞれ0.2 %以下および0.001 %以
下である。Ti、Bが上限を越えて含有すると、巨大な
金属間化合物が晶出して加工性を害する。
[0017] Ti and B effectively act to refine the casting structure and prevent ingot cracking during casting. The preferred content ranges are 0.2% or less and 0.001% or less, respectively. When Ti and B are contained in excess of the upper limits, a huge intermetallic compound is crystallized and impairs workability.

【0018】Cr、MnおよびZrは、いずれも結晶粒
微細化のために有効に機能する元素であり、好ましい含
有量は、Cr:0.35 %以下、Mn:0.35 %以下、Zr:
0.25%以下、さらに好ましい含有量は、Cr:0.18 〜0.
25%、Mn:0.10 〜0.30%、Zr:0.05 〜0.25%の範囲
であり、それぞれ上限を越えると巨大な金属間化合物が
晶出して鋳造性や加工性を害する。
Each of Cr, Mn and Zr is an element which functions effectively for refining crystal grains. The preferred contents are Cr: 0.35% or less, Mn: 0.35% or less, and Zr:
0.25% or less, a more preferable content is Cr: 0.18 to 0.
25%, Mn: 0.10 to 0.30%, and Zr: 0.05 to 0.25%. If the respective upper limits are exceeded, a huge intermetallic compound is crystallized to impair castability and workability.

【0019】また、本発明においては、溶湯の酸化防止
のために、Beを0.005 %以下の範囲で添加することが
できる。不純物としてFeは、0.50%を越えると、合金
材中の不溶性化合物の量が増加し靱性が低下し易くなる
ため、0.50%以下、好ましくは0.30%以下に規制するの
が好ましい。Siについても、0.40%を越えると、合金
材中の不溶性化合物の量が増加し靱性が低下し易くなる
ため、0.40%以下、好ましくは0.15%以下に規制するの
が好ましい。
In the present invention, Be can be added in a range of 0.005% or less to prevent oxidation of the molten metal. If the content of Fe as an impurity exceeds 0.50%, the amount of insoluble compounds in the alloy material increases, and the toughness tends to decrease. Therefore, the content of Fe is preferably regulated to 0.50% or less, preferably 0.30% or less. If the content of Si exceeds 0.40%, the amount of insoluble compounds in the alloy material increases, and the toughness tends to decrease. Therefore, the content of Si is preferably restricted to 0.40% or less, preferably 0.15% or less.

【0020】本発明の航空機ストリンガー用アルミニウ
ム合金板を製造するには、まず、上記の組成を有するア
ルミニウム合金鋳塊を常法に従って均質化処理、熱間圧
延および冷間圧延する。均質化処理は、400〜490
℃で2〜48時間加熱する条件で行うのが好ましく、均
質化処理により、Zn、Mg、Cuなどの元素を十分に
固溶させるとともに、Cr、Mn、Zrを微細な金属間
化合物として析出させる。400℃未満の低温加熱、短
時間加熱では熱間加工性が劣り、耐応力腐食割れ性の低
下、結晶粒の粗大化を招く。490℃を越える高温加熱
では共晶融解を生じるおそれがある。
In order to manufacture the aluminum alloy sheet for an aircraft stringer of the present invention, first, an aluminum alloy ingot having the above composition is subjected to a homogenization treatment, hot rolling and cold rolling according to a conventional method. The homogenization treatment is 400 to 490
The heating is preferably performed at a temperature of 2 ° C. for 2 to 48 hours. By homogenizing treatment, elements such as Zn, Mg, and Cu are sufficiently dissolved, and Cr, Mn, and Zr are precipitated as fine intermetallic compounds. . Heating at a low temperature of less than 400 ° C. or short-time heating results in poor hot workability, lowering of stress corrosion cracking resistance and coarsening of crystal grains. High-temperature heating exceeding 490 ° C. may cause eutectic melting.

【0021】熱間圧延は350〜470℃の温度で開始
するのが好ましく、350℃未満では変形抵抗が大きく
なって圧延加工性が低下し、470℃を越えると、脆化
のため加工割れが生じ易くなる。
Hot rolling is preferably started at a temperature of 350 to 470 ° C. If the temperature is lower than 350 ° C., deformation resistance is increased and rolling workability is reduced. If the temperature exceeds 470 ° C., work cracking is caused due to embrittlement. It is easy to occur.

【0022】熱間圧延後、必要に応じて軟化処理を行
う。軟化処理は300〜460℃の温度に加熱保持後、
平均冷却速度30℃/時以下の冷却速度で260℃程度
の温度まで冷却することにより行われる。この軟化処理
はつぎの冷間圧延工程の加工度を高くとる場合には特に
重要である。冷間圧延の加工度は20%以上が望まし
く、加工度が低い場合には製造されるストリンガー材の
結晶粒が粗大化して、加工性低下、性能低下の原因とな
る。
After the hot rolling, a softening treatment is performed if necessary. After the softening treatment is heated and held at a temperature of 300 to 460 ° C,
This is performed by cooling to a temperature of about 260 ° C. at a cooling rate of 30 ° C./hour or less. This softening treatment is particularly important when the degree of work in the next cold rolling step is increased. The working ratio of the cold rolling is desirably 20% or more. If the working ratio is low, the crystal grains of the stringer material to be produced become coarse, which causes deterioration in workability and performance.

【0023】本発明においては、冷間圧延後、200〜
350℃の温度で軟化処理を行い、5〜40%の加工度
で冷間圧延して所定の厚さとし、ついで、320〜50
0℃の温度域に11℃/分を越える平均昇温速度で加熱
し、30℃/時以下の平均冷却速度で冷却することによ
り軟化することを製造上の第1の特徴とする。
In the present invention, after cold rolling, 200 to
A softening treatment is performed at a temperature of 350 ° C., and cold-rolled to a predetermined thickness at a working ratio of 5 to 40%, and then a thickness of 320 to 50%.
The first characteristic in manufacturing is that the material is softened by heating to a temperature range of 0 ° C. at an average heating rate exceeding 11 ° C./min and cooling at an average cooling rate of 30 ° C./hour or less.

【0024】冷間圧延後の軟化処理はストリンガー材の
アスペクト比を大きくし、さらに段付冷間圧延材の加工
度が、例えば20%前後のように比較的小さい場合の結
晶粒の異常成長を防止するために必要な処理であり、軟
化処理の温度が200℃未満では、アスペクト比の向上
および結晶粒の異常成長の抑制に十分な効果が得難く、
350℃を越えると、最終軟化処理後の耐力が高くな
り、O材規格から外れ易くなるとともに、ストリンガー
へのテーパーロール加工(段付冷間圧延加工)で割れが
生じ易くなる。
The softening treatment after the cold rolling increases the aspect ratio of the stringer material, and prevents abnormal growth of crystal grains when the workability of the stepped cold-rolled material is relatively small, for example, about 20%. If the temperature of the softening treatment is lower than 200 ° C., it is difficult to obtain a sufficient effect for improving the aspect ratio and suppressing abnormal growth of crystal grains.
If the temperature exceeds 350 ° C., the proof stress after the final softening treatment is increased, easily deviating from the O material standard, and cracks are easily generated by taper roll processing (stepped cold rolling) on stringers.

【0025】軟化処理後の冷間圧延は5〜40%の加工
度で行われる。加工度が下限未満および上限を越えた場
合には、ストリンガー材のアスペクト比が小さくなり、
所望の耐応力腐食割れ性が得られない。
The cold rolling after the softening treatment is performed at a working ratio of 5 to 40%. When the working ratio is less than the lower limit and exceeds the upper limit, the aspect ratio of the stringer material becomes small,
The desired stress corrosion cracking resistance cannot be obtained.

【0026】冷間圧延終了後、320〜500℃の温度
域に11℃/分を越える平均昇温速度で急速加熱し、3
0℃/時以下の平均冷却速度で冷却することにより軟化
処理を行う。上記の冷間圧延後の軟化処理工程、冷間圧
延工程に、この軟化処理工程を組合わせることによっ
て、結晶粒の平均厚さが25μm以下で、アスペクト比
が4以上の再結晶粒を有するストリンガー素材が得られ
る。
After the completion of the cold rolling, the steel sheet is rapidly heated to a temperature range of 320 to 500 ° C. at an average heating rate exceeding 11 ° C./min.
The softening treatment is performed by cooling at an average cooling rate of 0 ° C./hour or less. A stringer having recrystallized grains having an average crystal grain thickness of 25 μm or less and an aspect ratio of 4 or more by combining this softening treatment step with the softening treatment step after the cold rolling and the cold rolling step. The material is obtained.

【0027】加熱温度が320℃未満では軟化、再結晶
が十分でないためストリンガーへのテーパーロール加工
(段付冷間圧延)で割れが生じ易く、500℃を越える
と、材料の融解が生じるおそれがあり、異常結晶粒成長
が起こり再結晶粒が著しく粗大化するおそれもある。
If the heating temperature is lower than 320 ° C., softening and recrystallization are not sufficient, so that cracks are liable to occur in the taper roll processing (cold rolling with steps) on the stringer, and if it exceeds 500 ° C., the material may be melted. There is a possibility that abnormal crystal grain growth occurs and recrystallized grains become extremely coarse.

【0028】平均昇温速度が11℃/分を越える加熱速
度で急速加熱を行った場合には、加熱途上におけるMg
−Zn系化合物の析出が少なく、冷間圧延により導入さ
れる転位組織が、急速加熱による軟化を行うことにより
均一なセル組織に変化する。このような組織を有する材
料に、弱加工のテーパーロール加工(加工度5%以上3
0%未満)を行い、ついで350〜400℃での予加熱
処理後、溶体化処理を行った場合には、均一微細なセル
組織を核として再結晶が進行するため、再結晶粒の平均
厚さが25μm以下で、アスペクト比が4以上の均一微
細な再結晶組織が得られる。30%以上の加工度でテー
パーロール加工を行い、上記の予加熱処理および溶体化
処理を行った場合にも、再結晶粒の平均厚さが40μm
以下で、アスペクト比が4以上の均一微細な再結晶組織
が得ることができる。
When rapid heating is performed at a heating rate at which the average temperature rise rate exceeds 11 ° C./min, Mg
-The precipitation of the Zn-based compound is small, and the dislocation structure introduced by cold rolling changes to a uniform cell structure by softening by rapid heating. A material having such a structure may be subjected to a weak taper roll process (working degree 5% or more 3
0%) and then a solution treatment after preheating at 350 to 400 ° C., since recrystallization proceeds with a uniform fine cell structure as a nucleus, the average thickness of recrystallized grains And a uniform fine recrystallized structure with an aspect ratio of 4 or more is obtained. The average thickness of the recrystallized grains is 40 μm even when the taper roll processing is performed at a processing degree of 30% or more and the above-mentioned preheating treatment and solution treatment are performed.
In the following, a uniform fine recrystallized structure having an aspect ratio of 4 or more can be obtained.

【0029】これに対して、平均昇温速度が11℃/分
以下の場合には、加熱中にMg−Zn系化合物の不均一
な析出が生じるとともに、転位組織が完全に消滅するか
あるいは粗大且つ不均一なセル組織が残留する。このよ
うな組織の材料に、弱加工のテーパーロール加工を行
い、ついで350〜400℃での予加熱処理後、溶体化
処理を行った場合には、結晶粒は著しく粗大化し、結晶
粒厚さが25μmを越えることが少なくない。30%以
上の加工度でテーパーロール加工を行い、上記の予加熱
処理および溶体化処理を行った場合には、再結晶粒の平
均厚さは40μm以下となるが、結晶粒長さが小さくな
るため、アスペクト比は4未満となり易く、耐応力腐食
割れ性が不十分なものとなる。
On the other hand, when the average heating rate is 11 ° C./min or less, the Mg—Zn-based compound precipitates non-uniformly during heating, and the dislocation structure disappears completely or becomes coarse. In addition, a non-uniform cell structure remains. When the material having such a structure is subjected to a weak taper roll process, followed by a preheating process at 350 to 400 ° C., and then a solution treatment, the crystal grains are significantly coarsened, and the crystal grain thickness is increased. Often exceeds 25 μm. When the taper roll processing is performed at a processing degree of 30% or more and the above-mentioned preheating treatment and solution treatment are performed, the average thickness of the recrystallized grains is 40 μm or less, but the crystal grain length is reduced. Therefore, the aspect ratio tends to be less than 4, and the stress corrosion cracking resistance becomes insufficient.

【0030】上記急速加熱による軟化処理後の冷却速度
が大きい場合には、焼きが入って時効硬化し、通常の焼
鈍材(O材)より強度が高くなるため、比較的加工度の
低いストリンガー材としては適用し得るが、高加工度を
必要とするストリンガー材への適用には加工度の点で問
題がある。
When the cooling rate after the softening treatment by the rapid heating is high, aging hardens due to quenching, and the strength becomes higher than that of a normal annealed material (O material). However, application to a stringer material requiring a high degree of processing has a problem in terms of the degree of processing.

【0031】このため、本発明においては、軟化処理
後、30℃/時を越える平均冷却速度で冷却し、さらに
200℃以上350℃未満の温度に再加熱して、空冷あ
るいは30℃/時以下の平均冷却速度で冷却することを
製造上の第2の特徴とし、軟化処理後、30℃/時を越
える平均冷却速度で冷却した後、さらに350〜500
℃の温度に再加熱し、30℃/時以下の平均冷却速度で
冷却することを製造上の第3の特徴とする。
For this reason, in the present invention, after the softening treatment, the steel sheet is cooled at an average cooling rate exceeding 30 ° C./hour and further reheated to a temperature of 200 ° C. or more and less than 350 ° C. to be air-cooled or 30 ° C./hour or less. Cooling at an average cooling rate of 30 ° C./hour after the softening treatment, and then 350-500.
A third manufacturing feature is to re-heat to a temperature of ° C. and cool at an average cooling rate of 30 ° C./hour or less.

【0032】すなわち、再加熱後に再び焼きが入らない
ようにするために、再加熱後の冷却速度を小さくして、
急速加熱による軟化処理後の冷却速度が大きい場合で
も、高加工度の圧延加工を可能とする。
That is, in order to prevent burning after reheating, the cooling rate after reheating is reduced,
Even when the cooling rate after the softening treatment by rapid heating is high, rolling at a high degree of working is enabled.

【0033】上記の合金組成および製造工程の組合わせ
により、段付冷間圧延前の素材の状態で、厚さ方向の結
晶粒の平均厚さが25μm以下で、結晶粒のアスペクト
比が4以上であり、0〜90%のテーパーロール加工、
350〜400℃の温度での予加熱処理および溶体化処
理後の結晶粒が、加工度が30%未満では平均厚さ25
μm以下、アスペクト比4以上であり、加工度が30〜
90%の範囲では平均厚さ40μm以下、アスペクト比
4以上で、敷居応力が250MPa以上の優れた耐応力
腐食割れ性を有し、セクションロール成形性も良好なス
トリンガー用アルミニウム合金板を得ることができる。
By the combination of the alloy composition and the manufacturing process described above, in the state of the raw material before the stepped cold rolling, the average thickness of the crystal grains in the thickness direction is 25 μm or less, and the aspect ratio of the crystal grains is 4 or more. 0-90% taper roll processing,
When the crystal grains after the preheating treatment and the solution treatment at a temperature of 350 to 400 ° C. have a workability of less than 30%, the average thickness is 25%.
μm or less, aspect ratio 4 or more, and processing degree is 30 ~
In the range of 90%, it is possible to obtain an aluminum alloy sheet for stringers having an average thickness of 40 μm or less, an aspect ratio of 4 or more, a threshold stress of 250 MPa or more, excellent stress corrosion cracking resistance, and good section roll formability. it can.

【0034】[0034]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 半連続鋳造により、表1に示す組成のアルミニウム合金
を造塊し、460℃で16時間の均質化処理後、400
℃の温度で熱間圧延して厚さ6mmの板材とし、室温ま
で冷却後、冷間圧延して厚さ3.7mmとし、ついで2
50℃で1時間の軟化処理後、炉冷し、さらに加工度1
9%の冷間圧延を行って厚さ3mmとした。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1 An aluminum alloy having the composition shown in Table 1 was ingoted by semi-continuous casting, and after homogenizing at 460 ° C. for 16 hours, 400
Hot-rolled to a thickness of 6 mm at a temperature of 400 ° C., cooled to room temperature, and then cold-rolled to a thickness of 3.7 mm.
After a softening treatment at 50 ° C for 1 hour, the furnace was cooled, and the degree of processing was 1
9% cold rolling was performed to a thickness of 3 mm.

【0035】得られた板材を、平均昇温速度1200℃
/分で450℃に加熱し、3分間保持した後、25℃/
時の冷却速度で冷却しO材とした。これを加工度20
%、40%、60%および80%で冷間圧延し、加工し
ないもの(加工度0%)も併せて、375℃で1時間の
予加熱処理後、ソルトバス中で470℃で40分間の溶
体化処理を行い、水焼入れした。水焼入れ後、さらに、
室温で4日間の自然時効を行い、120℃で24時間の
人工時効処理を行ってT6調質材とした。
The obtained plate was heated at an average heating rate of 1200 ° C.
/ Min. And heated to 450 ° C for 3 minutes.
It cooled at the cooling rate at the time, and was set as the O material. This is processed 20
%, 40%, 60%, and 80%, and those not processed (0% workability) were pre-heated at 375 ° C. for 1 hour, and then heated at 470 ° C. for 40 minutes in a salt bath. A solution treatment was performed and water quenching was performed. After water quenching,
Natural aging was performed at room temperature for 4 days, and artificial aging treatment was performed at 120 ° C. for 24 hours to obtain a T6 tempered material.

【0036】得られたO材について、室温での引張耐力
を測定した。また、T6調質材について、結晶粒の平均
厚さおよびアスペクト比を測定し、冷間加工度が80%
のものについては、室温での引張強さを測定した。測定
結果を表2および表3に示す。表2にみられるように、
本発明に従う試験材No.1〜6はいずれも、全ての加
工度において結晶粒のアスペクト比は4以上で、結晶粒
厚さは、加工度が0%および20%(30%未満)では
25μm以下、加工度が40%、60%および80%
(30〜90%)では40μm以下であり、表3にみら
れるように、引張強度も優れていた。
With respect to the obtained O material, the tensile strength at room temperature was measured. The average thickness and the aspect ratio of the crystal grains of the T6 tempered material were measured, and the degree of cold work was 80%.
With respect to the above, the tensile strength at room temperature was measured. The measurement results are shown in Tables 2 and 3. As seen in Table 2,
Test material No. In all of Examples 1 to 6, the aspect ratio of the crystal grains is 4 or more at all the working degrees, and the crystal grain thickness is 25 μm or less when the working degree is 0% and 20% (less than 30%), and the working degree is 40%. , 60% and 80%
(30-90%), it was 40 μm or less, and as shown in Table 3, the tensile strength was also excellent.

【0037】[0037]

【表1】 [Table 1]

【0038】[0038]

【表2】 [Table 2]

【0039】[0039]

【表3】 [Table 3]

【0040】比較例1 半連続鋳造により、表4に示す組成のアルミニウム合金
を造塊し、実施例1と同じ工程によりO材およびT6調
質材を製造した。得られたO材について、室温での引張
耐力を測定し、T6調質材について、結晶粒の平均厚さ
およびアスペクト比を測定した。冷間加工度が80%の
ものについては、室温での引張強さを測定した。測定結
果を表5および表6に示す。
Comparative Example 1 An aluminum alloy having the composition shown in Table 4 was formed by semi-continuous casting, and an O material and a T6 tempered material were produced in the same steps as in Example 1. For the obtained O material, the tensile strength at room temperature was measured, and for the T6 tempered material, the average thickness of crystal grains and the aspect ratio were measured. For those having a cold work degree of 80%, the tensile strength at room temperature was measured. The measurement results are shown in Tables 5 and 6.

【0041】表5に示すように、試験材No.7はMn
量、Cr量、Zr量が下限値未満であるため、結晶粒が
微細化せず、等軸晶に近い結晶となったため、アスペク
ト比が小さく、結晶粒の厚さが大きいものとなった。試
験材No.8は、Mn量、Cr量、Zr量が上限値を越
えているため、巨大な金属間化合物が晶出し、健全な鋳
塊が製造できなかった。試験材No.9はZn量、Mg
量、Cu量が上限値を越えているため鋳塊が時期割れを
起こし、板材の製造ができなかった。試験材No.10
はZn量、Mg量、Cu量が下限値未満であるため、T
6調質材の強度が劣っている。
As shown in Table 5, the test material No. 7 is Mn
Since the amount, the amount of Cr, and the amount of Zr were less than the lower limit values, the crystal grains did not become finer and became crystals close to equiaxed crystals, so that the aspect ratio was small and the thickness of the crystal grains was large. Test material No. In No. 8, since the amounts of Mn, Cr, and Zr exceeded the upper limits, a huge intermetallic compound was crystallized, and a sound ingot could not be produced. Test material No. 9 is Zn content, Mg
Since the amount and the amount of Cu exceeded the upper limit, the ingot was cracked at the time, and the plate could not be manufactured. Test material No. 10
Is less than the lower limit because Zn content, Mg content, and Cu content are less than the lower limit.
6 The temper is inferior in strength.

【0042】[0042]

【表4】 [Table 4]

【0043】[0043]

【表5】 [Table 5]

【0044】[0044]

【表6】 [Table 6]

【0045】比較例2 半連続鋳造により、表1に示す試験材No.1と同じ組
成のアルミニウム合金を造塊し、460℃で16時間の
均質化処理後、400℃の温度で熱間圧延して厚さ6m
mの板材とし、冷間圧延を行わずに、250℃で1時間
の軟化処理後、炉冷し、さらに加工度50%の冷間圧延
を行って厚さ3mmとした。
Comparative Example 2 Test material Nos. Shown in Table 1 were obtained by semi-continuous casting. An aluminum alloy having the same composition as in Example 1 was ingoted, homogenized at 460 ° C. for 16 hours, and hot-rolled at a temperature of 400 ° C. to a thickness of 6 m.
m, a softening treatment was performed at 250 ° C. for 1 hour without cooling, followed by furnace cooling and cold rolling at a workability of 50% to a thickness of 3 mm.

【0046】得られた板材を、平均昇温速度1200℃
/分で450℃に加熱し、3分間保持した後、25℃/
時の冷却速度で冷却しO材とした。これを加工度20
%、40%、60%および80%で冷間圧延し、加工し
ないもの(加工度0%)も併せて、375℃で1時間の
予加熱処理後、ソルトバス中で470℃で40分間の溶
体化処理を行い、水焼入れした。
The obtained plate was heated at an average heating rate of 1200 ° C.
/ Min. And heated to 450 ° C for 3 minutes.
It cooled at the cooling rate at the time, and was set as the O material. This is processed 20
%, 40%, 60%, and 80%, and those not processed (0% workability) were pre-heated at 375 ° C. for 1 hour, and then heated at 470 ° C. for 40 minutes in a salt bath. A solution treatment was performed and water quenching was performed.

【0047】得られた焼入れ材について、結晶粒の平均
厚さおよびアスペクト比を測定した結果は、表7に示す
ように、加工度が20%の場合において、結晶粒の異常
成長が生じ、健全なストリンガー材が得られなかった。
With respect to the obtained quenched material, the average thickness and aspect ratio of crystal grains were measured. As shown in Table 7, when the degree of work was 20%, abnormal growth of crystal grains occurred, No stringer material was obtained.

【0048】[0048]

【表7】 [Table 7]

【0049】比較例3 半連続鋳造により、表1に示す試験材No.1と同じ組
成のアルミニウム合金を造塊し、460℃で16時間の
均質化処理後、400℃の温度で熱間圧延して厚さ6m
mの板材とし、室温まで冷却後、冷間圧延して厚さ3.
7mmとし、ついで250℃で1時間の軟化処理後、炉
冷し、さらに加工度19%の冷間圧延を行って厚さ3m
mとした。
Comparative Example 3 The test material No. shown in Table 1 was obtained by semi-continuous casting. An aluminum alloy having the same composition as in Example 1 was ingoted, homogenized at 460 ° C. for 16 hours, and hot-rolled at a temperature of 400 ° C. to a thickness of 6 m.
m, cooled to room temperature, and then cold-rolled to a thickness of 3.
7 mm, and then softened at 250 ° C. for 1 hour, cooled in a furnace, and cold-rolled at a workability of 19% to a thickness of 3 m.
m.

【0050】得られた板材を、平均昇温速度50℃/時
で450℃に加熱し、3分間保持した後、25℃/時の
冷却速度で冷却しO材とした。これを加工度20%、4
0%、60%および80%で冷間圧延し、加工しないも
の(加工度0%)も併せて、375℃で1時間の予加熱
処理後、ソルトバス中で470℃で40分間の溶体化処
理を行い、水焼入れした。
The obtained plate was heated to 450 ° C. at an average temperature rising rate of 50 ° C./hour, held for 3 minutes, and then cooled at a cooling rate of 25 ° C./hour to obtain an O material. This is processed 20%, 4
Cold-rolled at 0%, 60% and 80%, including those not processed (0% workability), after pre-heating at 375 ° C for 1 hour, and then solutioning at 470 ° C for 40 minutes in a salt bath It was treated and water-quenched.

【0051】得られた焼入れ材について、結晶粒の平均
厚さおよびアスペクト比を測定した結果は、表8に示す
ように、結晶粒厚さは、いずれも25μm以下であった
が、アスペクト比は一部4未満であった。
The average thickness of crystal grains and the aspect ratio of the obtained quenched material were measured. As shown in Table 8, the crystal grain thickness was 25 μm or less in all cases. Some were less than 4.

【0052】[0052]

【表8】 [Table 8]

【0053】比較例4 半連続鋳造により、表1に示す試験材No.1と同じ組
成のアルミニウム合金を造塊し、460℃で16時間の
均質化処理後、400℃の温度で熱間圧延して厚さ8m
mの板材とし、続いて冷間圧延して厚さ6.0mmと
し、ついで250℃で1時間の軟化処理後、炉冷し、さ
らに加工度50%の冷間圧延を行って厚さ3mmとし
た。
Comparative Example 4 Test material Nos. Shown in Table 1 were obtained by semi-continuous casting. An aluminum alloy having the same composition as in No. 1 was ingoted, homogenized at 460 ° C. for 16 hours, and hot-rolled at a temperature of 400 ° C. to a thickness of 8 m.
m, then cold-rolled to a thickness of 6.0 mm, softened at 250 ° C. for 1 hour, cooled in a furnace, and cold-rolled to a workability of 50% to a thickness of 3 mm. did.

【0054】得られた板材を、平均昇温速度1200℃
/分で450℃に加熱し、3分間保持した後、25℃/
時の冷却速度で冷却しO材とした。これを加工度20
%、40%、60%および80%で冷間圧延し、加工し
ないもの(加工度0%)も併せて、375℃で1時間の
予加熱処理後、ソルトバス中で470℃で40分間の溶
体化処理を行い、水焼入れした。
The obtained plate was heated at an average heating rate of 1200 ° C.
/ Min. And heated to 450 ° C for 3 minutes.
It cooled at the cooling rate at the time, and was set as the O material. This is processed 20
%, 40%, 60%, and 80%, and those not processed (0% workability) were pre-heated at 375 ° C. for 1 hour, and then heated at 470 ° C. for 40 minutes in a salt bath. A solution treatment was performed and water quenching was performed.

【0055】得られた焼入れ材について、結晶粒の平均
厚さおよびアスペクト比を測定した結果は、表9に示す
ように、結晶粒厚さはいずれも25μm以下であった
が、アスペクト比は一部4未満であった。
With respect to the obtained quenched material, the average thickness and the aspect ratio of the crystal grains were measured. As shown in Table 9, the crystal grain thickness was 25 μm or less in all cases. Less than 4 parts.

【0056】[0056]

【表9】 [Table 9]

【0057】比較例5 半連続鋳造により、表1に示す試験材No.1と同じ組
成のアルミニウム合金を造塊し、460℃で16時間の
均質化処理後、400℃の温度で熱間圧延して厚さ6m
mの板材とし、続いて冷間圧延して厚さ3.0mmと
し、250℃で1時間の軟化処理後、炉冷した。その後
の冷間圧延は行わなかった。
Comparative Example 5 Test material Nos. Shown in Table 1 were obtained by semi-continuous casting. An aluminum alloy having the same composition as in Example 1 was ingoted, homogenized at 460 ° C. for 16 hours, and hot-rolled at a temperature of 400 ° C. to a thickness of 6 m.
m, then cold-rolled to a thickness of 3.0 mm, softened at 250 ° C. for 1 hour, and then cooled in a furnace. No subsequent cold rolling was performed.

【0058】得られた板材を、平均昇温速度1200℃
/分で450℃に加熱し、3分間保持した後、25℃/
時の冷却速度で冷却しO材とした。これを加工度20
%、40%、60%および80%で冷間圧延し、加工し
ないもの(加工度0%)も併せて、375℃で1時間の
予加熱処理後、ソルトバス中で470℃で40分間の溶
体化処理を行い、水焼入れした。
The obtained plate was heated at an average heating rate of 1200 ° C.
/ Min. And heated to 450 ° C for 3 minutes.
It cooled at the cooling rate at the time, and was set as the O material. This is processed 20
%, 40%, 60%, and 80%, and those not processed (0% workability) were pre-heated at 375 ° C. for 1 hour, and then heated at 470 ° C. for 40 minutes in a salt bath. A solution treatment was performed and water quenching was performed.

【0059】得られた焼入れ材について、結晶粒の平均
厚さおよびアスペクト比を測定した結果は、表10に示
すように、結晶粒厚さは、加工度が0%および20%
(30%未満)では25μm以下、40%、60%およ
び80%(30〜90%)では40μm以下であった
が、アスペクト比は一部4未満であった。
With respect to the obtained quenched material, the average thickness and aspect ratio of the crystal grains were measured. As shown in Table 10, the crystal grain thickness was 0% and 20%.
(30% or less), 40%, 60% and 80% (30 to 90%) had a value of 40 μm or less, but the aspect ratio was partly less than 4.

【0060】[0060]

【表10】 [Table 10]

【0061】比較例6 半連続鋳造により、表1に示す試験材No.1と同じ組
成のアルミニウム合金を造塊し、460℃で16時間の
均質化処理後、400℃の温度で熱間圧延して厚さ6m
mの板材とし、続いて冷間圧延して厚さ3.7mmと
し、410℃で1時間の軟化処理後、炉冷し、さらに1
9%の冷間圧延を行って厚さ3mmとした。
Comparative Example 6 Test material Nos. Shown in Table 1 were obtained by semi-continuous casting. An aluminum alloy having the same composition as in Example 1 was ingoted, homogenized at 460 ° C. for 16 hours, and hot-rolled at a temperature of 400 ° C. to a thickness of 6 m.
m, then cold-rolled to a thickness of 3.7 mm, softened at 410 ° C. for 1 hour, cooled in a furnace, and further cooled for 1 hour.
9% cold rolling was performed to a thickness of 3 mm.

【0062】得られた板材を、平均昇温速度1200℃
/分で450℃に加熱し、3分間保持した後、25℃/
時の冷却速度で冷却しO材とした。これを加工度20
%、40%、60%および80%で冷間圧延し、加工し
ないもの(加工度0%)も併せて、375℃で1時間の
予加熱処理後、ソルトバス中で470℃で40分間の溶
体化処理を行い、水焼入れした。水焼入れ後、さらに室
温で4日間自然時効を行い、120℃の温度で24時間
の人工時効処理を行いT6調質材とした。
The obtained plate was heated at an average heating rate of 1200 ° C.
/ Min. And heated to 450 ° C for 3 minutes.
It cooled at the cooling rate at the time, and was set as the O material. This is processed 20
%, 40%, 60%, and 80%, and those not processed (0% workability) were pre-heated at 375 ° C. for 1 hour, and then heated at 470 ° C. for 40 minutes in a salt bath. A solution treatment was performed and water quenching was performed. After water quenching, natural aging was further performed at room temperature for 4 days, and artificial aging treatment was performed at a temperature of 120 ° C. for 24 hours to obtain a T6 tempered material.

【0063】得られたO材について、室温での引張耐力
を測定し、T6調質材について、結晶粒の平均厚さおよ
びアスペクト比を測定した。冷間加工度が80%のもの
については、室温での引張強さを測定した。
The tensile strength at room temperature of the obtained O material was measured, and the average thickness and aspect ratio of crystal grains of the T6 tempered material were measured. For those having a cold work degree of 80%, the tensile strength at room temperature was measured.

【0064】測定結果は、表11に示すように、結晶粒
の厚さ、アスペクト比は、全ての加工度において満足す
べきものであったが、O材の耐力が165MPaと大き
く、JIS規格を外れる結果となった。なお、T6調質
材の引張強さは570MPaであった。
As shown in Table 11, as shown in Table 11, the thickness and aspect ratio of the crystal grains were satisfactory in all the working ratios, but the proof stress of the O material was as large as 165 MPa, which was outside the JIS standard. The result was. In addition, the tensile strength of the T6 tempered material was 570 MPa.

【0065】[0065]

【表11】 [Table 11]

【0066】実施例2〜3 半連続鋳造により、表1に示す試験材No.1と同じ組
成のアルミニウム合金を造塊し、実施例1と同様に、4
60℃で16時間の均質化処理後、400℃の温度で熱
間圧延して厚さ6mmの板材とし、室温まで冷却後、冷
間圧延して厚さ3.7mmとし、ついで、250℃の温
度で1時間の軟化処理を行った後、炉冷し、さらに19
%の冷間圧延を行って厚さ3mmとした。
Examples 2 to 3 By semi-continuous casting, test material Nos. An aluminum alloy having the same composition as in Example 1 was ingoted and, as in Example 1,
After a homogenization treatment at 60 ° C. for 16 hours, a hot-rolled sheet is formed at a temperature of 400 ° C. to a thickness of 6 mm. After cooling to room temperature, the sheet is cold-rolled to a thickness of 3.7 mm. After a softening treatment at a temperature for 1 hour, the furnace was cooled and further cooled for 19 hours.
% Cold rolling to a thickness of 3 mm.

【0067】続いて、平均昇温速度1200℃/分で4
50℃に加熱し、3分間保持した後、50℃/時の冷却
速度で冷却した。得られた板材を、280℃の温度に再
加熱して1時間保持した後、空冷しO材とした。また、
得られた板材を、400℃の温度に再加熱して1時間保
持した後、25℃/時の冷却速度で冷却してO材とし
た。
Subsequently, an average heating rate of 1200 ° C./min.
After heating to 50 ° C. and holding for 3 minutes, it was cooled at a cooling rate of 50 ° C./hour. The obtained plate material was reheated to a temperature of 280 ° C. and maintained for 1 hour, and then air-cooled to obtain an O material. Also,
The obtained sheet material was reheated to a temperature of 400 ° C. and maintained for 1 hour, and then cooled at a cooling rate of 25 ° C./hour to obtain an O material.

【0068】これらのO材を、加工度20%、40%、
60%および80%で冷間圧延し、加工しないもの(加
工度0%)も併せて、375℃で1時間の予加熱処理
後、ソルトバス中で470℃で40分間の溶体化処理を
行い、水焼入れした。水焼入れ後、さらに室温で4日間
自然時効を行い、120℃の温度で24時間の人工時効
処理を行いT6調質材とした。
These O materials were processed at a working ratio of 20%, 40%,
Cold-rolled at 60% and 80%, and those that are not processed (deformation 0%) are also subjected to a preheating treatment at 375 ° C for 1 hour, followed by a solution treatment at 470 ° C for 40 minutes in a salt bath. , Water quenched. After water quenching, natural aging was further performed at room temperature for 4 days, and artificial aging treatment was performed at a temperature of 120 ° C. for 24 hours to obtain a T6 tempered material.

【0069】得られたO材について、室温での引張耐力
を測定し、T6調質材について、結晶粒の平均厚さおよ
びアスペクト比を測定した。冷間加工度が80%のもの
については、室温での引張強さを測定した。結果を表1
2および表13に示す。
The tensile strength at room temperature of the obtained O material was measured, and the average thickness and aspect ratio of crystal grains of the T6 tempered material were measured. For those having a cold work degree of 80%, the tensile strength at room temperature was measured. Table 1 shows the results
2 and Table 13.

【0070】[0070]

【表12】 《表注》試験材No.16:280 ℃に再加熱した試験材 試験材No.17:400 ℃に再加熱した試験材[Table 12] 《Table Note》 Test material No.16: Test material reheated to 280 ℃ Test material No.17: Test material reheated to 400 ℃

【0071】[0071]

【表13】 [Table 13]

【0072】表12および表13にみられるように、本
発明に従う試験材No.16、試験材No.17は、結
晶粒の厚さはいずれも25μm以下、アスペクト比4以
上の満足すべき特性をそなえている。
As can be seen from Tables 12 and 13, the test materials No. 16, test material No. No. 17 has satisfactory characteristics with a crystal grain thickness of 25 μm or less and an aspect ratio of 4 or more.

【0073】[0073]

【発明の効果】本発明によれば、段付冷間圧延前の素材
の状態で、厚さ方向の結晶粒の平均厚さが25μm以下
で、結晶粒のアスペクト比が4以上であり、段付冷間圧
延、予加熱処理および溶体化処理後の結晶粒において、
段付冷間圧延の加工度が30%未満では結晶粒の平均厚
さ25μm以下、アスペクト比4以上を維持し、加工度
が30〜90%の範囲では結晶粒の平均厚さ40μm以
下、アスペクト比4以上を維持し、敷居応力が250M
Pa以上の優れた耐応力腐食割れ性を有し、セクション
ロール成形性も良好なストリンガー用アルミニウム合金
板およびその製造方法が提供される。
According to the present invention, in the state of the raw material before the stepped cold rolling, the average thickness of the crystal grains in the thickness direction is 25 μm or less, and the aspect ratio of the crystal grains is 4 or more. In the cold-rolled, preheated and solution-treated crystal grains,
When the working degree of the stepped cold rolling is less than 30%, the average thickness of the crystal grains is maintained at 25 μm or less and the aspect ratio is 4 or more. When the working degree is in the range of 30 to 90%, the average thickness of the crystal grains is 40 μm or less. Maintain ratio 4 or more, threshold stress is 250M
Provided is an aluminum alloy plate for a stringer having excellent stress corrosion cracking resistance of not less than Pa and good section roll formability, and a method for producing the same.

【図面の簡単な説明】[Brief description of the drawings]

【図1】ストリンガー材の加工状態を示す斜視図であ
る。
FIG. 1 is a perspective view showing a processing state of a stringer material.

【図2】7000系アルミニウム合金材の結晶粒のアス
ペクト比と耐応力腐食割れ性の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the aspect ratio of crystal grains of a 7000 series aluminum alloy material and stress corrosion cracking resistance.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C22F 1/00 686 C22F 1/00 686B 691 691B 691A 692 692A 694 694A (72)発明者 酒井 圭一 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 (72)発明者 南 一郎 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内 (72)発明者 内田 秀俊 東京都港区新橋5丁目11番3号 住友軽金 属工業株式会社内──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI Theme coat ゛ (Reference) C22F 1/00 686 C22F 1/00 686B 691 691B 691A 692 692A 694 694A (72) Inventor Keiichi Sakai Port of Tokyo 5-11-3 Shimbashi, Ward Sumitomo Light Metal Industries, Ltd. (72) Inventor Minami Ichiro 5-11-3 Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industries, Ltd. (72) Inventor Hidetoshi Uchida Tokyo 5-11-3 Shimbashi, Minato-ku, Tokyo Sumitomo Light Metal Industries Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 Zn:5.1〜8.4 %(重量%、以下同
じ)、Mg:1.8〜3.0 %、Cu:1.2〜2.6 %を含有し、
さらにCr:0.35 %以下(0%を含まず、以下同じ)、
Mn:0.35 %以下、Zr:0.25 %以下のうちの1種また
は2種以上を含有し、残部Alおよび不純物からなり、
結晶粒の平均厚さが25μm以下で、アスペクト比(平
均結晶粒長さ/平均結晶粒厚さ)が4以上のアルミニウ
ム合金板であり、該アルミニウム合金板に加工度90%
以下の範囲で部分的に異なる加工度の冷間圧延を行い、
その後、350〜400℃の温度での予加熱処理後溶体
化処理を行っても、前記加工度が30%未満では結晶粒
の平均厚さ25μm以下、アスペクト比4以上を維持
し、前記加工度が30〜90%の範囲では結晶粒の平均
厚さ40μm以下、アスペクト比4以上を維持すること
を特徴とする耐応力腐食割れ性に優れた航空機ストリン
ガー用アルミニウム合金板。
Claims: 1. A composition comprising: Zn: 5.1 to 8.4% (% by weight, hereinafter the same), Mg: 1.8 to 3.0%, Cu: 1.2 to 2.6%,
Cr: 0.35% or less (excluding 0%, the same applies hereinafter),
Mn: 0.35% or less, Zr: 0.25% or less of one or more of the following, the balance consisting of Al and impurities,
An aluminum alloy plate having an average thickness of crystal grains of 25 μm or less and an aspect ratio (average crystal grain length / average crystal grain thickness) of 4 or more;
Perform cold rolling with different working degrees partially in the following range,
Thereafter, even if solution treatment after preheating at a temperature of 350 to 400 ° C. is performed, if the degree of work is less than 30%, the average thickness of crystal grains is 25 μm or less and the aspect ratio is 4 or more. An aluminum alloy sheet for an aircraft stringer having excellent stress corrosion cracking resistance, wherein the average grain thickness is maintained at 40 μm or less and the aspect ratio is at least 4 in the range of 30 to 90%.
【請求項2】 アルミニウム合金板が、さらにTi:0.2
%以下、B:0.001%以下を含有することを特徴とする請
求項1記載の耐応力腐食割れ性に優れた航空機ストリン
ガー用アルミニウム合金板。
2. An aluminum alloy plate further comprising: Ti: 0.2
% Or less, B: 0.001% or less, The aluminum alloy sheet for aircraft stringers excellent in stress corrosion cracking resistance according to claim 1.
【請求項3】 請求項1または2記載のアルミニウム合
金を常法に従って均質化処理、熱間圧延および冷間圧延
した後、200〜350℃の温度で軟化処理を行い、5
〜40%の加工度で冷間圧延して所定の厚さとし、つい
で、320〜500℃の温度域に11℃/分を越える平
均昇温速度で加熱し、30℃/時以下の平均冷却速度で
冷却することにより軟化することを特徴とする耐応力腐
食割れ性に優れた航空機ストリンガー用アルミニウム合
金板の製造方法。
3. After homogenizing, hot rolling and cold rolling the aluminum alloy according to claim 1 or 2 in a conventional manner, the aluminum alloy is softened at a temperature of 200 to 350 ° C.
Cold-rolled at a working ratio of 加工 40% to a predetermined thickness, and then heated to a temperature range of 320 to 500 ° C. at an average heating rate exceeding 11 ° C./min, and an average cooling rate of 30 ° C./hour or less A method for producing an aluminum alloy sheet for an aircraft stringer having excellent resistance to stress corrosion cracking, characterized by softening by cooling at a temperature.
【請求項4】 請求項1または2記載のアルミニウム合
金を常法に従って均質化処理、熱間圧延および冷間圧延
した後、200〜350℃の温度で軟化処理を行い、5
〜40%の加工度で冷間圧延して所定の厚さとし、つい
で、320〜500℃の温度域に11℃/分を越える平
均昇温速度で加熱することにより軟化させ、30℃/時
を越える平均冷却速度で冷却した後、さらに200℃以
上350℃未満の温度に再加熱し、空冷あるいは30℃
/時以下の平均冷却速度で冷却することを特徴とする耐
応力腐食割れ性に優れた航空機ストリンガー用アルミニ
ウム合金板の製造方法。
4. After homogenizing, hot rolling and cold rolling the aluminum alloy according to claim 1 or 2, the aluminum alloy is softened at a temperature of 200 to 350 ° C.
Cold-rolled at a working ratio of 4040% to a predetermined thickness, then softened by heating to a temperature range of 320 to 500 ° C. at an average heating rate exceeding 11 ° C./min. After cooling at an average cooling rate exceeding that, it is further reheated to a temperature of 200 ° C or more and less than 350 ° C, and air-cooled or 30 ° C.
A method for producing an aluminum alloy plate for an aircraft stringer having excellent stress corrosion cracking resistance, wherein the aluminum alloy sheet is cooled at an average cooling rate of not more than / h.
【請求項5】 請求項1または2記載のアルミニウム合
金を常法に従って均質化処理、熱間圧延および冷間圧延
した後、200〜350℃の温度で軟化処理を行い、5
〜40%の加工度で冷間圧延して所定の厚さとし、つい
で、320〜500℃の温度域に11℃/分を越える平
均昇温速度で加熱することにより軟化させ、30℃/時
を越える平均冷却速度で冷却した後、さらに350〜5
00℃の温度に再加熱し、30℃/時以下の平均冷却速
度で冷却することを特徴とする耐応力腐食割れ性に優れ
た航空機ストリンガー用アルミニウム合金板の製造方
法。
5. The aluminum alloy according to claim 1, which is subjected to a homogenization treatment, a hot rolling and a cold rolling according to a conventional method, and then subjected to a softening treatment at a temperature of 200 to 350 ° C.
Cold-rolled at a working ratio of 4040% to a predetermined thickness, then softened by heating to a temperature range of 320 to 500 ° C. at an average heating rate exceeding 11 ° C./min. After cooling at an average cooling rate exceeding
A method for producing an aluminum alloy sheet for an aircraft stringer having excellent stress corrosion cracking resistance, comprising reheating to a temperature of 00 ° C and cooling at an average cooling rate of 30 ° C / hour or less.
JP32909099A 1998-11-20 1999-11-19 Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same Expired - Fee Related JP4229307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32909099A JP4229307B2 (en) 1998-11-20 1999-11-19 Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-330948 1998-11-20
JP33094898 1998-11-20
JP32909099A JP4229307B2 (en) 1998-11-20 1999-11-19 Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same

Publications (2)

Publication Number Publication Date
JP2000212673A true JP2000212673A (en) 2000-08-02
JP4229307B2 JP4229307B2 (en) 2009-02-25

Family

ID=26573081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32909099A Expired - Fee Related JP4229307B2 (en) 1998-11-20 1999-11-19 Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same

Country Status (1)

Country Link
JP (1) JP4229307B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306455A1 (en) * 2000-08-01 2003-05-02 Federalnoe Gosudarstvennoe Unitarnoe Predpryatie "Vserossiysky Nauchno-Issledovatelsky Institut Aviatsionnykh Materialov" High-strength alloy based on aluminium and a product made of said alloy
JP2006504871A (en) * 2002-09-21 2006-02-09 ユニヴァーサル アロイ コーポレイション Extruded aluminum-zinc-magnesium-copper alloy
JP2009144190A (en) * 2007-12-12 2009-07-02 Kobe Steel Ltd High-strength and high-ductility aluminum alloy sheet and manufacturing method therefor
US7678205B2 (en) 2000-12-21 2010-03-16 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
CN102337435A (en) * 2011-10-31 2012-02-01 哈尔滨中飞新技术股份有限公司 Aluminum alloy pipe and manufacture method thereof
CN107385295A (en) * 2017-08-02 2017-11-24 东北轻合金有限责任公司 One plants case tank car anti-corrosion weldable aluminium sheet material and its manufacture method
JP2018501401A (en) * 2014-12-11 2018-01-18 アレリス、アルミナム、デュッフェル、ベスローテン、フェンノートシャップ、メット、ベペルクテ、アーンスプラケレイクヘイトAleris Alminum Duffel Bvba Method for continuously heat treating 7000-series aluminum alloy sheet material
WO2018080708A1 (en) * 2016-10-27 2018-05-03 Novelis Inc. High strength 7xxx series aluminum alloys and methods of making the same
US10913107B2 (en) 2016-10-27 2021-02-09 Novelis Inc. Metal casting and rolling line
JP2022532347A (en) * 2019-06-03 2022-07-14 ノベリス・インコーポレイテッド Ultra-high-strength aluminum alloy products and their manufacturing methods

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1306455A4 (en) * 2000-08-01 2004-10-20 Federalnoe G Unitarnoe Predpr High-strength alloy based on aluminium and a product made of said alloy
EP1306455A1 (en) * 2000-08-01 2003-05-02 Federalnoe Gosudarstvennoe Unitarnoe Predpryatie "Vserossiysky Nauchno-Issledovatelsky Institut Aviatsionnykh Materialov" High-strength alloy based on aluminium and a product made of said alloy
US8524014B2 (en) 2000-12-21 2013-09-03 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
US7678205B2 (en) 2000-12-21 2010-03-16 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
US8083870B2 (en) 2000-12-21 2011-12-27 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
JP2006504871A (en) * 2002-09-21 2006-02-09 ユニヴァーサル アロイ コーポレイション Extruded aluminum-zinc-magnesium-copper alloy
JP2009144190A (en) * 2007-12-12 2009-07-02 Kobe Steel Ltd High-strength and high-ductility aluminum alloy sheet and manufacturing method therefor
CN102337435A (en) * 2011-10-31 2012-02-01 哈尔滨中飞新技术股份有限公司 Aluminum alloy pipe and manufacture method thereof
JP2018501401A (en) * 2014-12-11 2018-01-18 アレリス、アルミナム、デュッフェル、ベスローテン、フェンノートシャップ、メット、ベペルクテ、アーンスプラケレイクヘイトAleris Alminum Duffel Bvba Method for continuously heat treating 7000-series aluminum alloy sheet material
WO2018080708A1 (en) * 2016-10-27 2018-05-03 Novelis Inc. High strength 7xxx series aluminum alloys and methods of making the same
CN109890536A (en) * 2016-10-27 2019-06-14 诺维尔里斯公司 High-intensitive 7XXX series alloys and its manufacturing method
US10913107B2 (en) 2016-10-27 2021-02-09 Novelis Inc. Metal casting and rolling line
CN107385295A (en) * 2017-08-02 2017-11-24 东北轻合金有限责任公司 One plants case tank car anti-corrosion weldable aluminium sheet material and its manufacture method
CN107385295B (en) * 2017-08-02 2019-01-18 东北轻合金有限责任公司 One plants case tank car anti-corrosion weldable aluminium plate and its manufacturing method
JP2022532347A (en) * 2019-06-03 2022-07-14 ノベリス・インコーポレイテッド Ultra-high-strength aluminum alloy products and their manufacturing methods

Also Published As

Publication number Publication date
JP4229307B2 (en) 2009-02-25

Similar Documents

Publication Publication Date Title
US4645544A (en) Process for producing cold rolled aluminum alloy sheet
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
JP4939093B2 (en) Method for producing 6000 series aluminum alloy plate for automobile panel having excellent hem bendability and bake hardness
EP3464659A1 (en) 6xxx-series aluminium alloy forging stock material and method of manufacting thereof
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
WO2016190409A1 (en) High-strength aluminum alloy plate
EP0030070B1 (en) Method for producing aircraft stringer material
US4410370A (en) Aircraft stringer material and method for producing the same
JP4229307B2 (en) Aluminum alloy plate for aircraft stringers having excellent stress corrosion cracking resistance and method for producing the same
JP3022922B2 (en) Method for producing plate or strip material with improved cold rolling characteristics
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JP2004124213A (en) Aluminum alloy sheet for panel forming, and its manufacturing method
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
WO2019167469A1 (en) Al-mg-si system aluminum alloy material
JPH08269608A (en) High strength aluminum alloy excellent in formability and corrosion resistance
JPH08232035A (en) High strength aluminum alloy material for bumper, excellent in bendability, and its production
JPH10259464A (en) Production of aluminum alloy sheet for forming
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
KR850001234B1 (en) Method for producing aircraft stringer material(o-material)
JPH06228696A (en) Aluminum alloy sheet for di can body
EP4083242A1 (en) Aluminum casting alloy for near net shaped casting of structural or non-structural components
JPH08296011A (en) Production of aluminum alloy sheet for high speed forming excellent in baking hardenability of coating film and cold stability

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061018

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080911

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081030

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081127

R150 Certificate of patent or registration of utility model

Ref document number: 4229307

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111212

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121212

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131212

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees