JPH04160131A - Al-mg-si alloy plate excellent in strength and formability, and its manufacture - Google Patents

Al-mg-si alloy plate excellent in strength and formability, and its manufacture

Info

Publication number
JPH04160131A
JPH04160131A JP28643890A JP28643890A JPH04160131A JP H04160131 A JPH04160131 A JP H04160131A JP 28643890 A JP28643890 A JP 28643890A JP 28643890 A JP28643890 A JP 28643890A JP H04160131 A JPH04160131 A JP H04160131A
Authority
JP
Japan
Prior art keywords
alloy
strength
formability
rolled
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP28643890A
Other languages
Japanese (ja)
Inventor
Takehiko Eto
武比古 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP28643890A priority Critical patent/JPH04160131A/en
Publication of JPH04160131A publication Critical patent/JPH04160131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To improve strength and formability of Al-Mg-Si alloy by adding specified amts. of Cu and Cr, Zr, Mn into the alloy to limit Fe amt. and controlling the volume proportion of intermetallic compd. CONSTITUTION:An alloy ingot used consists of, by wt.%, 0.6-1.2 Mg, 0.4-1.0 Si, 0.5-1.0 Cu, and at least one transition element of 0.10-0.25 Cr, 0.05-0.15 Zr, and 0.10-0.20 Mn, with Fe limited to <=0.10, and the balance Al. This ingot is subjected to heat treatment for homogenization at 450-560 deg.C, hot-rolled at 250-550 deg.C, cold-rolled to obtain a rolled material and then treated to make a solid soln. at 500-550 deg.C. The structure of the alloy is controlled to include a transition element intermetallic compd. by 0.05-0.1%. This alloy plate shows superior formability to that of T4 material of 6061 alloy which is conventionally a typical Al-Mg-Si alloy. When this alloy is treated for aging to change into T6 material, it shows higher strength than 6061-T6 material by 25% of durability.

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明はアルミニウム合金板及びその製造方法に係り、
更に詳しくは、強度及び成形性に優れるA Q −Mg
 −S i系合金板及びその製造方法に関する。 (従来の技術及び解決しようとする課題)従来から、A
fl−Mg−Si系合金(6000系アルミニウム合金
)板材としては、6061合金(標準組成:Al−1,
0Mg−0,6Si−0,30Cu −0、20Cr)
が知られている(例えば、(社)軽金属協会列「アルミ
ニウムハンドブックJ)、その標準的機械的性質を第1
表に示す、同表から明らかなように、6061合金はT
4調質では耐力が150MPaと低く、伸びが22%と
高く、成彫加工に適している。成形加工後に人工時効し
。 T6ml質(標準時効時間:160℃X18hr)にす
ると、引張強さ310MPa、耐力275MPaとかな
り高くなる。本系合金は溶接性が良好なために溶接材と
しても使用され、船舶、車両、陸上構造物等に数多く使
用されている。
(Industrial Application Field) The present invention relates to an aluminum alloy plate and a method for manufacturing the same.
More specifically, AQ-Mg has excellent strength and formability.
-Regarding an Si-based alloy plate and a method for manufacturing the same. (Conventional technology and problems to be solved) Traditionally, A.
The fl-Mg-Si alloy (6000 series aluminum alloy) plate material includes 6061 alloy (standard composition: Al-1,
0Mg-0,6Si-0,30Cu-0,20Cr)
is known (for example, "Aluminum Handbook J" published by the Light Metals Association), and its standard mechanical properties are
As shown in the table, as is clear from the table, 6061 alloy is T
4 heat treatment has a low yield strength of 150 MPa and a high elongation of 22%, making it suitable for finishing. Artificially aged after molding. If it is made of T6ml quality (standard aging time: 160°C x 18hr), the tensile strength will be 310MPa and the yield strength will be quite high, 275MPa. Because this alloy has good weldability, it is also used as a welding material, and is widely used in ships, vehicles, land structures, etc.

【以下余白】[Left below]

しかしながら、近年、輸送用機器の高速化や高性能化の
要求が強くなり、素材には薄肉化が可能な高強度材の開
発が要求されてきており、前述の6061合金の強度を
、例えば50%以上向上したAM−Mg−3i系合金の
開発が強く要望されていた。 本発明は、か5る要請に応えるべくなされたものであっ
て、従来の6061系合金の強度を大幅に向上させたA
 Q −Mg −S i系合金板及びその製造方法を提
供することを目的にするものである。 (課題を解決するための手段) 前記課題を解決するために、本発明者は、次の2点につ
き、鋭意研究開発に努めた。 (1)まず、6061合金に代表される従来のAl−M
g−Si系合金の強化機構は次のような時効硬化機構に
基づくものである。 S、S、(固溶体)→G、P、ゾーン→β′−Mg2S
j(T4状態)  (T6状態) したがって、単なるMg、Si量の増加では限界がある
ので(Mg+Si合計量で高々1%位)、別の強化機構
を付与し、複合強化を行う必要がある。 (2)成形性の目安になる伸びは、強度を極力低くする
こと、更に鋳造時に生成する晶出物(cons−tit
uents)及び構造材の結晶粒の微細化のために材料
中に生成させる金属間化合物(dispersoids
)の量を最適化し、成形加工中にこれらの硬い第2相粒
子の回りでの応力集中をできるだけ軽減し、成形中の加
工硬化を低減することが必要である。 応力集中及び加工硬化は第2相粒子の量の規制により低
減されることが知られている。 そこで、Al−Mg−Si系合金に上記2点の効果を付
与し、強度かつ成形性に優れたAl−Mg−3i系合金
を製造し得る冶金学的手段及び製造条件について鋭意研
究を重ねた結果、ここに本発明をなしたものである。 すなわち、本発明は、Mg:0.6〜1.2%、Si:
0.4−1.0%及びCu:0.5〜1.Q%を含有し
、更にCr:0.10〜0.25%、Zr:0.05〜
0.15%及びMn:0.10〜0.20%のうちの少
なくとも1種以上の遷移元素を含有し、不鈍物Feを0
.10%以下に規制し、残部が実質的にAlからなり、
遷移元素系金属間化合物の体積分率が0.05〜0.1
%に組織制御されていることを特徴とする強度かつ成形
性に優れるへ〇−Mg−Si系合金板を要旨とするもの
である。 また、その製造方法は、前記化学成分を有するアルミニ
ウム台金鋳塊を450〜560℃で均質化熱処理を行い
、250〜550℃の温度で熱間圧延し、必要に応じて
、350〜400℃の中間焼鈍を行い、冷間圧延により
圧延材とし、500〜550℃の温度で溶体化処理を行
うことにより。 遷移元素系金属間化合物の体積分率を0.05〜0.1
%に組織制御することを特徴とするものである。 以下に本発明を更に詳述する。 (作用) まず、本発明におけ暮合金の化学成分の限定理由につい
て説明する。 Mg: Mgは、それ自体の固溶体強化と、時効析出物β’ −
Mg2Si及び後述のCuと結合した時効析出物S’ 
−CuMgAl 2との析出硬化により、強度を付与す
るものである。しかし、0.6%未満では十分な強度が
得られず、また1、2%を超えて添加すると、鋳造時に
平衡相Mg2Siが晶出物として生成し、伸びの低下に
みられるように成形性が大きく低下する。よって、Mg
含有量は0.6〜1.2%の範囲とする。 Si: Siは主に時効析出物β’ −Mg2Siの析出硬化で
強度を付与するものである。しかし、0.4%未満では
十分な強度が得られず、また1、0%を超えて添加する
と平衡相Mg2Siが晶出し、伸びを大きく低下させる
。よって、Si含有量は0.4〜1.0%の範囲とする
。 Cu: Cuは時効析出物S’ −CuMgAI22により強度
を付与するものである。本発明では、MgはSiのみな
らずCuとも結合し、複合析出硬化作用をもたらしてい
る。しかし、0.5%未満では十分な強度が得られず、
また1、0%を超えて添加すると溶体化処理後に室温時
効現象が現れる。また。 鋳造時にCu2FeAl7が晶出し、伸び、成形性が大
きく低下する。よって、Cu含有量は0.5〜1゜0%
の範囲とする。 Cr、  Zr、 Mn: Cr、Zr、Mnの遷移元素は、鋳造後の均質化熱処理
時にAlと金属間化合物(dispersoids)の
Z r A (13、Cr2M gz A D 1s、
MnAn、を生成し。 構造用合金材に必要な強度、耐蝕性、疲労強度を付与す
る結晶粒の微細な材料を与えることができる。しかし、
Cr、Zr、Mnが各々0.10%、0゜05%、0.
10%未満では上記の効果が十分に得られず、また各々
0.25%−0,15%、0゜20%を超えて添加する
と粗大な金属間化合物が生成し、伸びを大きく低下させ
る。よって、Cr含有量は0.1−0.25%、Zr含
有量は0.05〜0.15%、Mn含有量は0.10〜
0.20%の範囲とする。但し、各々を少なくとも1種
以上添加すれば足りる。 Fe: Feは元来不純物としてAl地金に含有されるもので、
Fe量が0.10%より多く含有すると、Cu2FeA
l、が鋳造時に晶出し、伸びを大きく低下させる。よっ
て、不純物Fe量は0.10%以下に規制する。 次に、本発明の製造条件について説明する。 上記の化学成分を有するアルミニウム合金を鋳造して得
られた鋳塊は、内部に不均質に分布している主要元素の
均質化のため、並びに遷移元素とAlとの金属間化合物
、すなわち、 dispersoids、ZrAl3、
Cr2Mg5A Q 1.、M n A Q 6と呼ば
れる金属間化合物の直径が数100〜2000人の大き
さで、その体積分率を0.05〜0.1%に制御するた
めに、450〜560℃で均質化熱処理を施す。この温
度範囲外では上記効果が得られない。 なお、均質化熱処理時間は適宜決められるが、例えば4
50℃の低温度側では8〜12hrが必要で、高温度側
の560℃では4〜8hrで良い。金属間化合物の大き
さは低温・短時間程小さく、逆に高温・長時間程大きく
、且つ遷移元素でAl合金中の拡散係数や結晶構造が異
なるので、それぞれの大きさは、一般にはZrAl、<
Cr2MgzAlzm<MnAl、の順になる。 均質化熱処理後、550〜250℃の温度で熱間圧延を
行い、粗い鋳塊組織を展伸材組織に加工する。この際、
上記の金属間化合物dispersoidsが結晶粒の
粗大化を阻止し、未再結晶粒組織或いは細かい再結晶粒
組織を付与する。上記温度範囲外ではこのような効果が
得られない。 次いで、冷間圧延を行い、所望の板厚に加工する。この
時、必要に応じ、すなわち、圧延材に耳割れ等が発生す
る場合や結晶粒を制御したい場合は、冷間圧延開始前或
いは途中で350〜400℃の温度で中間焼鈍により軟
質材にし、再度冷間圧延を実施することができる。中間
焼鈍の温度が350℃未満では十分な軟化が得られず、
逆に400℃を超えると主要添加元素の固溶により材料
が固くなるので、上記温度が好ましい。 最後に溶体化処理を500〜550℃の温度で実施し、
主要元素を固溶させる。温度が500”C未満では主要
添加元素Mg、Si、Cuが十分固溶せず、また550
℃を超えると共晶溶融(バーニング)の恐れがあるので
、500〜550℃の範囲とする。溶体化処理時間はJ
IS等に規定の熱処理用のアルミニウム合金の例に準じ
れば良く、例えば1鳳■程度の板厚材では高々30m1
nまでで良い。なお、この溶体化処理により、冷間圧延
により導入された転位は転位密度が減少し、次の成形時
にこの材料が比較的低耐力材となり、加工に供される。 また、この工程でも前記金属間化合物disperso
idsは未再結晶或いは微細な再結晶粒組織を保持し、
成形加工中の材料の肌あれ等を防止できる。 この後、通常の工程に従い成形加工又は熱処理(調質)
を施すことにより、高強度材料が得られる。 例えば、直接或いは所望の曲げ、プレス等の成形加工を
行った後、標準的には160℃で18hr程度の時効処
理を施し、用途に供される。この時、材料中には析出強
化相であるβ’ −Mg2SiやS’−CuMgAl、
が生成し、材料に高強度が付与される。 (実施例) 次に本発明の実施例を示す。 1厳貫よ 第2表に示す成分組成を有するNn 1〜&18のアル
ミニウム合金鋳塊に480℃X12hrの均質化熱処理
を施し、450〜300℃の温度で熱間圧延を行って4
麗鳳厚の板材とした。更に冷間圧延にて1mmの板材に
仕上げた。次いで530℃×30 winの溶体化処理
を施し、水冷後、約1週間室温に放置してT4材にし、
JISS号試験片を作成して機械的性質を求めた。更に
、160℃×18hrの時効を施してT6材とし、同様
に機械的性質を求めた。また、T4材から透過電子顕微
鏡観察により、試料厚さ約2000人の部位で観察を行
い、金属間化合物の体積分率を求めた。これらの結果を
第2表に併記する。 第2表より明らかなように、本発明例&1〜Nl115
は、金属間化合物の体積分率が0.05〜0.09に制
御され、T4材の伸びは24〜26%と、6061合金
の伸び22%に比べ、高い成形性を示した。更に、T6
に時効処理したものは、耐力が348〜363MPaと
なり、6061合金の耐力275MPaを25〜30%
以上も上回る高強度を示している。 一方、比較例では、T4材の伸びで6061合金を上回
るのはNa 6、&8.11kilOのみであり、更に
これらのT6材の耐力は何れも300MPa以下であり
、高強度は得られていない。 失五員又 実施例1の&1〜&3のアルミニウム合金鋳塊を用い、
第3表に示す製造条件で最終板厚1■の冷延板にした後
、溶体化処理を施し、実施例1と同じ方法で機械的性質
及び金属間化合物の体積分率を測定した。その結果を第
3表に併記する。 第3表より明らかなように、本発明例Nα1〜Nα6は
、金属間化合物の体積分率が0.05〜0.09%に制
御され、T4材の伸びは23〜26%と、6061合金
の伸び22%に比べ、高い成形性を示した。更に、T6
に時効処理したものは、耐力が350〜360MPaで
あり、6061の耐力275MPaを27〜30%以上
も上回る高強度を示している。 一方、比較例では、T4材の伸びで6061合金と同等
のものはNα9のみであり、しかもT6材の耐力は、何
れも300MPa以下で、高強度が得られていない。
However, in recent years, there has been a strong demand for higher speeds and higher performance in transportation equipment, and there has been a demand for the development of high-strength materials that can be made thinner. There has been a strong demand for the development of an AM-Mg-3i alloy with an improvement of more than %. The present invention was made in response to these demands, and is an A
The object of the present invention is to provide a Q-Mg-Si alloy plate and a method for manufacturing the same. (Means for Solving the Problems) In order to solve the above problems, the present inventors have devoted themselves to research and development on the following two points. (1) First, conventional Al-M represented by 6061 alloy
The strengthening mechanism of g-Si alloys is based on the following age hardening mechanism. S, S, (solid solution) → G, P, zone → β'-Mg2S
j (T4 state) (T6 state) Therefore, since there is a limit to simply increasing the amounts of Mg and Si (the total amount of Mg+Si is about 1% at most), it is necessary to provide another strengthening mechanism and perform composite strengthening. (2) Elongation, which is a guideline for formability, should be determined by keeping the strength as low as possible.
intermetallic compounds (dispersoids) formed in materials to refine the crystal grains of structural materials.
) to reduce as much as possible the stress concentration around these hard second phase particles during the molding process and to reduce work hardening during the molding process. It is known that stress concentration and work hardening can be reduced by controlling the amount of second phase particles. Therefore, we have conducted extensive research on metallurgical means and manufacturing conditions that can provide the above two effects to Al-Mg-Si alloys and produce Al-Mg-3i alloys with excellent strength and formability. As a result, the present invention has been achieved here. That is, in the present invention, Mg: 0.6 to 1.2%, Si:
0.4-1.0% and Cu: 0.5-1. Contains Q%, further Cr: 0.10~0.25%, Zr: 0.05~
0.15% and Mn: 0.10 to 0.20%, and contains at least one transition element of
.. Regulated to 10% or less, with the remainder essentially consisting of Al,
The volume fraction of the transition element-based intermetallic compound is 0.05 to 0.1
The gist of this invention is a 〇-Mg-Si based alloy plate which has excellent strength and formability and is characterized by a microstructure controlled to %. In addition, the manufacturing method includes homogenizing an aluminum base metal ingot having the above chemical components at 450 to 560°C, hot rolling at a temperature of 250 to 550°C, and rolling the ingot at 350 to 400°C as necessary. By performing intermediate annealing, cold rolling to obtain a rolled material, and solution treatment at a temperature of 500 to 550°C. The volume fraction of the transition element-based intermetallic compound is 0.05 to 0.1.
It is characterized by controlling the structure to %. The present invention will be explained in further detail below. (Function) First, the reason for limiting the chemical components of the metal alloy in the present invention will be explained. Mg: Mg strengthens itself through solid solution strengthening and aging precipitates β' −
Aging precipitate S' combined with Mg2Si and Cu (described later)
- Strength is imparted by precipitation hardening with CuMgAl 2. However, if it is less than 0.6%, sufficient strength cannot be obtained, and if it is added in excess of 1 or 2%, the equilibrium phase Mg2Si will be formed as a crystallized substance during casting, resulting in poor formability as seen in the decrease in elongation. decreases significantly. Therefore, Mg
The content is in the range of 0.6 to 1.2%. Si: Si mainly imparts strength through precipitation hardening of aging precipitates β'-Mg2Si. However, if it is less than 0.4%, sufficient strength cannot be obtained, and if it is added in excess of 1.0%, equilibrium phase Mg2Si will crystallize, greatly reducing elongation. Therefore, the Si content is in the range of 0.4 to 1.0%. Cu: Cu imparts strength through aging precipitates S'-CuMgAI22. In the present invention, Mg combines not only with Si but also with Cu, resulting in a composite precipitation hardening effect. However, if it is less than 0.5%, sufficient strength cannot be obtained;
Moreover, if it is added in an amount exceeding 1.0%, a room temperature aging phenomenon will appear after solution treatment. Also. During casting, Cu2FeAl7 crystallizes, resulting in elongation and greatly reduced formability. Therefore, the Cu content is 0.5~1゜0%
The range shall be . Cr, Zr, Mn: Transition elements of Cr, Zr, and Mn are mixed with Al and intermetallic compounds (dispersoids) Z r A (13, Cr2M gz A D 1s,
Generate MnAn. It is possible to provide a material with fine grains that provides the strength, corrosion resistance, and fatigue strength necessary for structural alloy materials. but,
Cr, Zr, and Mn are 0.10%, 0°05%, and 0.05%, respectively.
If it is less than 10%, the above effect cannot be obtained sufficiently, and if it is added in excess of 0.25% to 0.15% or 0.20%, coarse intermetallic compounds are formed, which greatly reduces elongation. Therefore, the Cr content is 0.1-0.25%, the Zr content is 0.05-0.15%, and the Mn content is 0.10-0.15%.
The range is 0.20%. However, it is sufficient to add at least one of each. Fe: Fe is originally contained in Al base metal as an impurity.
When the amount of Fe is more than 0.10%, Cu2FeA
l, crystallizes during casting and greatly reduces elongation. Therefore, the amount of impurity Fe is regulated to 0.10% or less. Next, the manufacturing conditions of the present invention will be explained. The ingot obtained by casting an aluminum alloy having the above chemical composition is used to homogenize the main elements that are heterogeneously distributed inside, and to form intermetallic compounds between transition elements and Al, that is, dispersoids. , ZrAl3,
Cr2Mg5A Q1. , the diameter of the intermetallic compound called M n A Q 6 is several 100 to 2000 people, and it is homogenized at 450 to 560 °C to control its volume fraction to 0.05 to 0.1%. Apply heat treatment. The above effects cannot be obtained outside this temperature range. Note that the homogenization heat treatment time can be determined as appropriate, for example, 4
At a low temperature of 50°C, 8 to 12 hours is required, and at a high temperature of 560°C, 4 to 8 hours is sufficient. The size of the intermetallic compound is smaller at lower temperatures and for a shorter period of time, and conversely becomes larger at higher temperatures and for a longer period of time, and the diffusion coefficient and crystal structure in the Al alloy differ depending on the transition element, so the respective sizes are generally ZrAl, <
The order is Cr2MgzAlzm<MnAl. After the homogenization heat treatment, hot rolling is performed at a temperature of 550 to 250°C to process the rough ingot structure into a wrought material structure. On this occasion,
The above-mentioned intermetallic compounds dispersoids prevent coarsening of crystal grains and provide an unrecrystallized grain structure or a fine recrystallized grain structure. Such an effect cannot be obtained outside the above temperature range. Next, cold rolling is performed to process the sheet into a desired thickness. At this time, if necessary, that is, if edge cracks etc. occur in the rolled material or if it is desired to control crystal grains, intermediate annealing is performed at a temperature of 350 to 400 ° C. before or during cold rolling to make the material soft. Cold rolling can be performed again. If the temperature of intermediate annealing is less than 350°C, sufficient softening cannot be obtained,
On the other hand, if the temperature exceeds 400°C, the material becomes hard due to solid solution of the main additive elements, so the above temperature is preferable. Finally, solution treatment is carried out at a temperature of 500 to 550 °C,
Make the main elements a solid solution. If the temperature is less than 500"C, the main additive elements Mg, Si, and Cu will not dissolve sufficiently in solid solution.
If the temperature exceeds .degree. C., there is a risk of eutectic melting (burning), so the temperature should be in the range of 500 to 550.degree. The solution treatment time is J
It is sufficient to follow the example of aluminum alloy for heat treatment prescribed by IS, etc. For example, for a plate with a thickness of about 1.
Up to n is fine. By this solution treatment, the dislocation density of the dislocations introduced by cold rolling is reduced, and this material becomes a relatively low-yield material during the next forming process, and is used for processing. Also, in this step, the intermetallic compound disperso
ids are unrecrystallized or retain a fine recrystallized grain structure,
It is possible to prevent roughness of the material during molding. After this, molding processing or heat treatment (tempering) according to the normal process
By applying this, a high-strength material can be obtained. For example, after being directly or subjected to a desired forming process such as bending or pressing, it is typically subjected to an aging treatment at 160° C. for about 18 hours, and then used for use. At this time, β'-Mg2Si and S'-CuMgAl, which are precipitation strengthening phases, are present in the material.
is generated, imparting high strength to the material. (Example) Next, an example of the present invention will be shown. 1. Strictly adhere to Nn 1 to &18 aluminum alloy ingots having the compositions shown in Table 2. Homogenization heat treatment at 480°C x 12 hours is carried out, followed by hot rolling at a temperature of 450 to 300°C.
Made of Reiho thick plate material. Furthermore, it was finished into a 1 mm plate material by cold rolling. Next, it was subjected to solution treatment at 530℃ x 30wins, cooled with water, and left at room temperature for about a week to become a T4 material.
A JISS No. test piece was prepared and its mechanical properties were determined. Furthermore, it was aged at 160° C. for 18 hours to obtain a T6 material, and its mechanical properties were determined in the same manner. In addition, the T4 material was observed using a transmission electron microscope at a portion having a sample thickness of about 2000 people, and the volume fraction of the intermetallic compound was determined. These results are also listed in Table 2. As is clear from Table 2, invention examples &1 to Nl115
The volume fraction of the intermetallic compound was controlled to 0.05 to 0.09, and the elongation of the T4 material was 24 to 26%, which showed high formability compared to the 22% elongation of the 6061 alloy. Furthermore, T6
After aging, the yield strength is 348 to 363 MPa, which is 25 to 30% of the 275 MPa yield strength of 6061 alloy.
It shows high strength that exceeds the above. On the other hand, in the comparative example, only Na 6, &8.11 kilO exceeds the 6061 alloy in elongation of T4 materials, and furthermore, the yield strength of these T6 materials is all 300 MPa or less, and high strength is not obtained. Using the aluminum alloy ingots &1 to &3 of Example 1,
A cold-rolled plate having a final thickness of 1 inch was prepared under the manufacturing conditions shown in Table 3, and then subjected to solution treatment, and the mechanical properties and volume fraction of intermetallic compounds were measured in the same manner as in Example 1. The results are also listed in Table 3. As is clear from Table 3, in the invention examples Nα1 to Nα6, the volume fraction of the intermetallic compound was controlled to 0.05 to 0.09%, the elongation of the T4 material was 23 to 26%, and the 6061 alloy It showed high formability compared to the elongation of 22%. Furthermore, T6
The material subjected to aging treatment has a yield strength of 350 to 360 MPa, showing high strength exceeding the yield strength of 6061, 275 MPa, by 27 to 30% or more. On the other hand, in the comparative example, the only T4 material with an elongation equivalent to that of the 6061 alloy is Nα9, and the yield strength of the T6 material is all 300 MPa or less, and high strength is not obtained.

【以下余白】[Left below]

(発明の効果) 以上詳述したように、本発明によれば、従来の代表的A
l−Mg−Si系合金である6061合金のT4材の成
形性より同等以上に優れた成形性を有し、時効処理によ
りT6材にすると耐力で6061−T6材の25%以上
も上回る高強度を有するアルミニウム合金板材が得られ
る。したがって、高強度化、薄肉化に対して寄与する効
果が顕著である。 特許出願人  株式会社神戸製鋼所 代理人弁理士 中  村   尚
(Effects of the Invention) As detailed above, according to the present invention, the conventional representative A
It has formability that is equal to or better than the formability of T4 material of 6061 alloy, which is an l-Mg-Si alloy, and when made into T6 material by aging treatment, it has high strength that exceeds the yield strength by more than 25% of 6061-T6 material. An aluminum alloy plate material having the following properties is obtained. Therefore, the effect of contributing to higher strength and thinner walls is significant. Patent applicant Hisashi Nakamura, patent attorney representing Kobe Steel, Ltd.

Claims (3)

【特許請求の範囲】[Claims] (1)重量%で(以下、同じ)、Mg:0.6〜1.2
%、Si:0.4〜1.0%及びCu:0.5〜1.0
%を含有し、更にCr:0.10〜0.25%、Zr:
0.05〜0.15%及びMn:0.10〜0.20%
のうちの少なくとも1種以上の遷移元素を含有し、不純
物Feを0.10%以下に規制し、残部が実質的にAl
からなり、遷移元素系金属間化合物の体積分率が0.0
5〜0.1%に組織制御されていることを特徴とする強
度かつ成形性に優れるAl−Mg−Si系合金板。
(1) In weight% (the same applies hereinafter), Mg: 0.6 to 1.2
%, Si: 0.4-1.0% and Cu: 0.5-1.0
%, further Cr: 0.10 to 0.25%, Zr:
0.05-0.15% and Mn: 0.10-0.20%
The impurity Fe is controlled to 0.10% or less, and the remainder is substantially Al.
The volume fraction of the transition element-based intermetallic compound is 0.0.
An Al-Mg-Si alloy sheet with excellent strength and formability, characterized by a controlled structure of 5 to 0.1%.
(2)前記化学成分を有するアルミニウム合金鋳塊を4
50〜560℃で均質化熱処理を行い、250〜550
℃の温度で熱間圧延し、冷間圧延により圧延材とし、5
00〜550℃の温度で溶体化処理を行うことにより、
遷移元素系金属間化合物の体積分率を0.05〜0.1
%に組織制御することを特徴とする強度かつ成形性に優
れるAl−Mg−Si系合金板の製造方法。
(2) 4 aluminum alloy ingots having the above chemical components
Homogenization heat treatment at 50-560℃, 250-550℃
Hot rolled at a temperature of ℃, cold rolled to form a rolled material, 5
By performing solution treatment at a temperature of 00 to 550°C,
The volume fraction of the transition element-based intermetallic compound is 0.05 to 0.1.
A method for manufacturing an Al-Mg-Si alloy sheet having excellent strength and formability, characterized by controlling the structure to %.
(3)冷間圧延において350〜400℃の中間焼鈍を
行う請求項2に記載の方法。
(3) The method according to claim 2, wherein intermediate annealing at 350 to 400°C is performed during cold rolling.
JP28643890A 1990-10-23 1990-10-23 Al-mg-si alloy plate excellent in strength and formability, and its manufacture Pending JPH04160131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28643890A JPH04160131A (en) 1990-10-23 1990-10-23 Al-mg-si alloy plate excellent in strength and formability, and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28643890A JPH04160131A (en) 1990-10-23 1990-10-23 Al-mg-si alloy plate excellent in strength and formability, and its manufacture

Publications (1)

Publication Number Publication Date
JPH04160131A true JPH04160131A (en) 1992-06-03

Family

ID=17704390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28643890A Pending JPH04160131A (en) 1990-10-23 1990-10-23 Al-mg-si alloy plate excellent in strength and formability, and its manufacture

Country Status (1)

Country Link
JP (1) JPH04160131A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024225A (en) * 2007-07-20 2009-02-05 Furukawa Sky Kk Aluminum alloy for storage container of high-pressure hydrogen gas
CN103993208A (en) * 2014-05-29 2014-08-20 合肥工业大学 Al-Mg-Si-Cu-Mn-Er alloy material and preparation method thereof
EP2548984A4 (en) * 2010-03-18 2015-06-24 Kobe Steel Ltd Aluminum alloy material for storage container for high-pressure hydrogen gas
WO2016190409A1 (en) * 2015-05-28 2016-12-01 株式会社神戸製鋼所 High-strength aluminum alloy plate
JP2020519772A (en) * 2017-05-26 2020-07-02 ノベリス・インコーポレイテッドNovelis Inc. High-strength corrosion resistance 6xxx series aluminum alloy and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009024225A (en) * 2007-07-20 2009-02-05 Furukawa Sky Kk Aluminum alloy for storage container of high-pressure hydrogen gas
EP2548984A4 (en) * 2010-03-18 2015-06-24 Kobe Steel Ltd Aluminum alloy material for storage container for high-pressure hydrogen gas
US9249483B2 (en) 2010-03-18 2016-02-02 Kobe Steel, Ltd. Aluminum alloy material for storage container for high-pressure hydrogen gas
CN103993208A (en) * 2014-05-29 2014-08-20 合肥工业大学 Al-Mg-Si-Cu-Mn-Er alloy material and preparation method thereof
CN103993208B (en) * 2014-05-29 2015-12-30 合肥工业大学 A kind of Al-Mg-Si-Cu-Mn-Er alloy material and preparation method thereof
WO2016190409A1 (en) * 2015-05-28 2016-12-01 株式会社神戸製鋼所 High-strength aluminum alloy plate
JP2016222959A (en) * 2015-05-28 2016-12-28 株式会社神戸製鋼所 High-strength aluminum alloy sheet
CN107532247A (en) * 2015-05-28 2018-01-02 株式会社神户制钢所 high-strength aluminium alloy plate
CN107532247B (en) * 2015-05-28 2019-07-05 株式会社神户制钢所 High-strength aluminium alloy plate
JP2020519772A (en) * 2017-05-26 2020-07-02 ノベリス・インコーポレイテッドNovelis Inc. High-strength corrosion resistance 6xxx series aluminum alloy and manufacturing method thereof
EP3631030B1 (en) 2017-05-26 2022-06-29 Novelis Inc. High-strength corrosion-resistant 6xxx series aluminum alloys and methods of making the same

Similar Documents

Publication Publication Date Title
JP3194742B2 (en) Improved lithium aluminum alloy system
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
KR101950595B1 (en) Aluminium alloy and methods of fabricating the same
US5441582A (en) Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardenability
US5460666A (en) Method of manufacturing natural aging-retardated aluminum alloy sheet
US5580402A (en) Low baking temperature hardenable aluminum alloy sheet for press-forming
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JP2831157B2 (en) Al-Mg based superplastic aluminum alloy sheet excellent in strength and corrosion resistance and method for producing the same
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
JPH0547615B2 (en)
JPH04365834A (en) Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production
JPH08269608A (en) High strength aluminum alloy excellent in formability and corrosion resistance
JPH06228696A (en) Aluminum alloy sheet for di can body
JPH0547616B2 (en)
JP2997146B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature short-time baking and method for producing the same
JPH04304339A (en) Aluminum alloy sheet for press forming excellent in balance between strength and ductility and baking hardenability and its production
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JP2007131881A (en) Method of producing aluminum alloy sheet for forming and aluminum alloy sheet for forming
JPH0718389A (en) Production of al-mg series alloy sheet for forming
KR102566987B1 (en) High strength aluminum-zinc-magnesium-cooper alloy thick plate and method of manufacturing the same
JPH07173565A (en) Aluminum alloy sheet for press forming excellent in curability for coating/baking
JP3539996B2 (en) Manufacturing method of high strength aluminum alloy sheet for forming
JP3069008B2 (en) Method for manufacturing aluminum alloy DI can body
JPH06287670A (en) Al-mg alloy having high corrosion resistance and high strength and its production