JPH08269608A - High strength aluminum alloy excellent in formability and corrosion resistance - Google Patents

High strength aluminum alloy excellent in formability and corrosion resistance

Info

Publication number
JPH08269608A
JPH08269608A JP9802895A JP9802895A JPH08269608A JP H08269608 A JPH08269608 A JP H08269608A JP 9802895 A JP9802895 A JP 9802895A JP 9802895 A JP9802895 A JP 9802895A JP H08269608 A JPH08269608 A JP H08269608A
Authority
JP
Japan
Prior art keywords
less
aluminum alloy
formability
corrosion resistance
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9802895A
Other languages
Japanese (ja)
Inventor
Hidetoshi Uchida
秀俊 内田
Tetsuya Motoi
徹也 本居
Hideo Yoshida
英雄 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP9802895A priority Critical patent/JPH08269608A/en
Publication of JPH08269608A publication Critical patent/JPH08269608A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

PURPOSE: To produce a high strength Al alloy excellent in formability and corrosion resistance by specifying its compsn. constituted of Si, Mg, Cu, Cr and Al and limiting the content of Mn as impurities. CONSTITUTION: This Al alloy is the one having a compsn. contg., by weight, 0.5 to 1.6% Si, 0.9 top 1.5% Mg and 1.2 to 2.4% Cu so as to satisfy 3<=Si+Mg+ Cu<=4%, Mg<=1.7×Si and Cu/2<=Mg<=Cu/2+0.6%, furthermore contg. 0.02 to 0.4% Cr, moreover contg., at need, one or more kinds among 0.03 to 0.2% Zr, 0.03 to 0.2% V and 0.03 to 2.0% Zn or one or two kinds of 0.005 to 0.1% Ti and 1 to 50ppm B, in which the content of Mn as impurities is limited to <=0.05%, and the balance Al with inevitable impurities, and in the structure, preferably, the precipitates of intermetallic compounds having <=0.01μm diameter and <=0.3μm length are distributed by >=2000 pieces/μm<2> . Moreover, the Al alloy is subjected to prescribed solution treatment, hardening treatment, aging treatment and heat treatment according to necessary.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、成形性および耐食性に
優れた高強度アルミニウム合金、とくに輸送機器の外板
や構造材として好適に使用される成形性、耐食性および
強度に優れたアルミニウム合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength aluminum alloy excellent in formability and corrosion resistance, and particularly to an aluminum alloy excellent in formability, corrosion resistance and strength, which is preferably used as an outer plate or structural material of transportation equipment. .

【0002】[0002]

【従来の技術】自動車その他の輸送機器の外板や構造材
に要求される性能としては、1)強度、2)耐食性、3)破壊
力学特性( 耐疲労亀裂伝播、破壊靭性など) 、4)プレス
成形性などが挙げられ、最近の材料の開発動向として
は、強度だけでなく、材料の製造から部材の組立、運用
も含めた総合的な評価が行われている。
2. Description of the Related Art 1) Strength, 2) Corrosion resistance, 3) Fracture mechanical properties (fatigue crack propagation resistance, fracture toughness, etc.), 4) are required for outer panels and structural materials of automobiles and other transportation equipment. Press formability is mentioned, and recent development trends of materials include not only strength but also comprehensive evaluation including material manufacturing, assembly of members, and operation.

【0003】高強度アルミニウム合金としては、従来か
らAl−Cu−Mg系(2000系) あるいはAl−Zn−
Mg−Cu系(7000系) のアルミニウム合金が知られて
いるが、これらの合金は強度面では優れているものの加
工性、耐食性が必ずしも十分ではなく、製造上の難点も
ある。一方、Al−Mg−Si系(6000系) のアルミニ
ウム合金は、一般的に、強度は上記高強度アルミニウム
合金に劣るが、耐食性や成形加工性の面で優れており、
また、2000系や7000系合金が、O調質状態で成形を行
い、成形後に溶体化処理、焼入れ、歪矯正する工程をと
らざるを得ないのに対し、6000系合金ではT4 調質で成
形を行うことができ、成形後に焼戻し処理を行うだけで
実用化できるため、製造コストの低減を図ることが可能
となるという利点もある。
Conventionally, as a high strength aluminum alloy, Al--Cu--Mg (2000 series) or Al--Zn-- has been used.
Although Mg—Cu (7000 series) aluminum alloys are known, these alloys are excellent in strength, but they are not necessarily sufficient in workability and corrosion resistance, and there are difficulties in production. On the other hand, Al-Mg-Si-based (6000 series) aluminum alloys are generally inferior in strength to the above high-strength aluminum alloys, but are superior in terms of corrosion resistance and moldability,
In addition, 2000 series and 7000 series alloys must be molded in the O tempered state, and after the molding, solution treatment, quenching, and strain correction must be taken, whereas 6000 series alloys are molded with T4 tempering. Since it can be carried out and can be put into practical use only by performing a tempering treatment after molding, there is also an advantage that the manufacturing cost can be reduced.

【0004】このことから、6000系アルミニウム合金の
強度特性を改良する試みが行われており、従来の6061合
金より高強度が得られる6013合金、6056合金、6082合金
などが開発されている。強度と靭性をそなえたアルミニ
ウム合金として、Si:0.9〜1.8 %、Mg:0.8〜1.4
%、Cu:0.4〜1.8 %を含有(但し、Si含有量−Mg
含有量/1.73≧0.3 %)すると共に、Mn:0.05 〜0.8
%、Cr:0.05 〜0.35%、Zr:0.05 〜0.20%のうち2
種以上を含有し、残部アルミニウムおよび不可避的不純
物からなる合金も開発されている。(特開昭59-50147号
公報)
Under the circumstances, attempts have been made to improve the strength characteristics of 6000 series aluminum alloys, and 6013 alloy, 6056 alloy, 6082 alloy and the like, which have higher strength than the conventional 6061 alloy, have been developed. As an aluminum alloy with strength and toughness, Si: 0.9-1.8%, Mg: 0.8-1.4
%, Cu: 0.4 to 1.8% (however, Si content-Mg
Content / 1.73 ≧ 0.3%) and Mn: 0.05-0.8
%, Cr: 0.05 to 0.35%, Zr: 0.05 to 0.20% of 2
Alloys containing more than one species and the balance aluminum and inevitable impurities have also been developed. (Japanese Patent Laid-Open No. 59-50147)

【0005】また、成形性、焼付硬化性に優れ、自動車
部品などの用途に適した6000系アルミニウム合金とし
て、Cu:1.5〜2.5wt %、Mg:0.5〜1.0wt %、Si:
0.3〜1.0wt %、Ti:0.005〜0.05wt%、B:0.0005 〜
0.03wt%を含み、Mn、Cr、V、Zrを単独で0.04wt
%以下、2種以上を合計で0.09wt%以下およびFeを0.
25wt%以下に規制し、かつSi/Mgの重量比が1.1 以
下である残部実質的にAlからなる合金であって、晶出
物の最長辺長さが13μm 以下であるアルミニウム合金も
提案されている。( 特公昭61-39391号公報)
Further, as a 6000 series aluminum alloy which is excellent in formability and bake hardenability and is suitable for applications such as automobile parts, Cu: 1.5 to 2.5 wt%, Mg: 0.5 to 1.0 wt%, Si:
0.3-1.0wt%, Ti: 0.005-0.05wt%, B: 0.0005-
0.03wt% included, Mn, Cr, V, Zr 0.04wt alone
% Or less, two or more kinds in total of 0.09 wt% or less and Fe of 0.
An aluminum alloy which is regulated to 25 wt% or less and whose balance of Si / Mg is 1.1 or less and which consists essentially of Al and whose longest side length of crystallized substance is 13 μm or less is also proposed. There is. (Japanese Patent Publication No. 61-39391)

【0006】自動車など輸送機器の外板は、優れた強度
特性を要求されることは勿論であるが、種々の条件下で
プレス成形を受けるものであるから良好な加工性も必要
とされ、さらに走行中、厳しい腐食環境に曝されること
があるため耐食性に優れ腐食環境下で疲労破壊などを生
じないものでなければならない。外板用材料はこれらの
特性をバランス良く具備していることが必要である。技
術の高度化により僅かの差異でも無視できない重要性を
持つ場合もあり、いずれかの特性が少しでも劣ると材料
としての総合的な評価が得られないということになる。
このような観点から上記の6000系アルミニウム合金をみ
た場合、とくに自動車用外板として適用する場合、必ず
しも満足すべき性能をそなえているとはいえない。
Outer panels of transportation equipment such as automobiles are of course required to have excellent strength characteristics, but are also required to have good workability because they are subjected to press molding under various conditions. Since it may be exposed to a severe corrosive environment during driving, it must have excellent corrosion resistance and should not cause fatigue failure in a corrosive environment. It is necessary for the material for the outer plate to have these properties in a well-balanced manner. Due to the sophistication of technology, there are cases where even a slight difference has an importance that cannot be ignored, and if any of the characteristics is inferior even a little, it means that comprehensive evaluation as a material cannot be obtained.
From such a viewpoint, it cannot be said that the above 6000 series aluminum alloy does not necessarily have satisfactory performance, particularly when it is applied as an automobile outer plate.

【0007】発明者の1人は、先に開発された上記6000
系アルミニウム合金の特性の改良を目的として、Si:
0.5〜1.5 %、Mg:0.9〜1.6 %、Cu:1.2〜2.5 %を
含有し、これらの合金元素の量的関係を、3 ≦Si%+
Mg%+Cu%≦4 、Mg%≦1.7 ×Si%、Cu%/2
≦Mg%≦(Cu%/2) +0.6 を満足する関係に特定し
た組成を基本構成とする成形性、耐食性に優れた高強度
アルミニウム合金を提案した。(特願平6-121937号)
[0007] One of the inventors is the above-mentioned 6000
Si:
It contains 0.5-1.5%, Mg: 0.9-1.6%, Cu: 1.2-2.5%, and the quantitative relationship of these alloying elements is 3 ≤ Si% +
Mg% + Cu% ≦ 4, Mg% ≦ 1.7 × Si%, Cu% / 2
A high-strength aluminum alloy excellent in formability and corrosion resistance, which has a composition specified as a relationship satisfying ≦ Mg% ≦ (Cu% / 2) +0.6, is proposed. (Japanese Patent Application No. 6-121937)

【0008】[0008]

【発明が解決しようとする課題】本発明は、上記提案さ
れた高強度アルミニウム合金の特性、とくに耐食性をさ
らに改良するために、上記合金をベースとして含有成分
の組み合わせ、組成範囲、成分相互の関係についてさら
に検討を加えた結果としてなされたものであり、その目
的は、とくに耐食性に優れるとともに、成形加工性およ
び高強度をそなえたアルミニウム合金を提供することに
ある。
SUMMARY OF THE INVENTION The present invention is based on the above alloys in order to further improve the properties of the above-proposed high-strength aluminum alloys, particularly the combination of the components contained, the composition range, and the relationship among the components. The present invention has been made as a result of further studies, and its purpose is to provide an aluminum alloy having particularly excellent corrosion resistance, as well as formability and high strength.

【0009】[0009]

【課題を解決するための手段】上記の目的を達成するた
めの本発明による成形性および耐食性に優れた高強度ア
ルミニウム合金は、重量%で、Si:0.5〜1.5 %、M
g:0.9〜1.5 %、Cu:1.2〜2.4 %で、条件式、3 ≦S
i%+Mg%+Cu%≦4 、Mg%≦1.7 ×Si%、C
u%/2≦Mg%≦(Cu%/2) +0.6 を満足するSi、
MgおよびCuを含有し、さらにCr:0.02 〜0.4 %を
含み、且つ不純物としてのMnを0.05%以下に制限し、
残部Alと不可避的不純物からなることを構成上の基本
的特徴とする。
The high-strength aluminum alloy excellent in formability and corrosion resistance according to the present invention for achieving the above-mentioned object is a weight percentage of Si: 0.5 to 1.5%, M:
g: 0.9-1.5%, Cu: 1.2-2.4%, conditional expression, 3 ≤ S
i% + Mg% + Cu% ≦ 4, Mg% ≦ 1.7 × Si%, C
Si satisfying u% / 2 ≦ Mg% ≦ (Cu% / 2) +0.6,
Contains Mg and Cu, further contains Cr: 0.02 to 0.4%, and limits Mn as an impurity to 0.05% or less,
The basic characteristic of the structure is that the balance is Al and unavoidable impurities.

【0010】また、当該アルミニウム合金に選択成分と
してZr:0.03 〜0.2 %、V:0.03〜0.2 %およびZn:
0.03 〜2.0 %の1種以上を含有すること、および他の
選択成分としてTi:0.005〜0.1 %、B:1〜50ppm の1
種または2種を含有すること、さらに当該アルミニウム
合金の組織中に直径0.01μm 以下、長さ0.3 μm 以下の
析出物が2000本/ μm2以上分布していることを構成上の
第2、第3および第4の特徴とする。
In addition, Zr: 0.03 to 0.2%, V: 0.03 to 0.2% and Zn:
One or more of 0.03 to 2.0%, and Ti: 0.005 to 0.1% and B: 1 to 50 ppm as other optional components.
The second and the first structural elements that contain at least 2000 species / two species, and that the precipitates having a diameter of 0.01 μm or less and a length of 0.3 μm or less are distributed in the structure of the aluminum alloy in an amount of 2000 / μm 2 or more. The third and fourth characteristics.

【0011】さらに、500 〜580 ℃の温度域に加熱して
60分以下の時間保持する溶体化処理を行い、10℃/s以上
の冷却速度で冷却する焼入れ処理を施し、常温で2週間
時効処理したのちの伸び率が26%以上、180 °曲げ試験
における限界曲げ半径が1T以下(Tは板厚) であること、
500 〜580 ℃の温度域に加熱して60分以下の時間保持す
る溶体化処理を行い、10℃/s以上の冷却速度で冷却する
焼入れ処理後、成形加工を行いまたは行うことなしに、
170 〜200 ℃で2 〜24h の熱処理を施し、JIS W
1103に規定された粒界腐食試験における腐食減量が
0.6 %以下であることを発明構成上の第5および第6の
特徴とする。
Further, by heating to a temperature range of 500 to 580 ° C
Solution treatment is performed for 60 minutes or less, quenching treatment is performed at a cooling rate of 10 ° C / s or more, and aging is performed for 2 weeks at room temperature. The limit bending radius is 1T or less (T is the plate thickness),
After the solution treatment that is heated in the temperature range of 500 to 580 ℃ and kept for 60 minutes or less, and cooled at a cooling rate of 10 ℃ / s or more, after quenching treatment, with or without forming,
Heat treated at 170-200 ℃ for 2-24h, JIS W
The corrosion weight loss in the intergranular corrosion test specified in 1103
The fifth and sixth features of the invention are that it is 0.6% or less.

【0012】本発明のアルミニウム合金における各成分
添加の意義および限定理由について説明すると、Siは
Mgと共存して微細な金属間化合物Mg2 Siを形成し
て合金の強度を高める。Siの含有量が0.5 %未満では
十分な強度が得られず、1.5%を越えて含有すると合金
の耐食性が低下する。従ってSiの含有範囲は0.5 〜1.
5 %が好ましい。より好ましくは0.7 〜1.2 %の範囲と
する。
[0012] Explaining the significance of each component addition and the reason for limitation in the aluminum alloy of the present invention, Si coexists with Mg to form a fine intermetallic compound Mg 2 Si to enhance the strength of the alloy. If the Si content is less than 0.5%, sufficient strength cannot be obtained, and if the Si content exceeds 1.5%, the corrosion resistance of the alloy decreases. Therefore, the Si content range is 0.5-1.
5% is preferred. The range is more preferably 0.7 to 1.2%.

【0013】MgはSiと共存してMg2 Siを析出さ
せ、またCuと共存して化合物CuMgAl2 を微細析
出させることにより合金の強度を向上させる。Mgの含
有量が0.9 %未満では十分な効果が得られず、1.5 %を
越えると耐食性が低下する。従ってMgの含有範囲は0.
9 〜1.5 %が好ましい。より好ましくは1.0 〜1.2 %の
範囲とする。
Mg coexists with Si to precipitate Mg 2 Si, and coexists with Cu to finely precipitate the compound CuMgAl 2 to improve the strength of the alloy. If the content of Mg is less than 0.9%, a sufficient effect cannot be obtained, and if it exceeds 1.5%, the corrosion resistance decreases. Therefore, the content range of Mg is 0.
9 to 1.5% is preferable. More preferably, it is in the range of 1.0 to 1.2%.

【0014】CuはSi、Mgと同様、合金の強度向上
に寄与する元素である。含有量が1.2 %未満では効果が
十分でなく、2.4 %を越えて含有すると合金の耐食性が
低下する。従ってCuの含有範囲は1.2 〜2.4 %が好ま
しい。より好ましくは1.5 〜2.0 %の範囲とする。Cr
は、合金の組織を微細化して成形性を向上させるととも
に、耐食性向上に寄与する。好ましい含有範囲は0.02〜
0.4 %で、0.02%未満ではその効果が十分でなく、0.4
%を越えると粗大な金属間化合物が形成し易くなり成形
性が低下する。
Cu, like Si and Mg, is an element that contributes to improving the strength of the alloy. If the content is less than 1.2%, the effect is not sufficient, and if it exceeds 2.4%, the corrosion resistance of the alloy decreases. Therefore, the Cu content range is preferably 1.2 to 2.4%. It is more preferably in the range of 1.5 to 2.0%. Cr
Improves the formability by refining the structure of the alloy and contributes to the improvement of corrosion resistance. The preferred content range is 0.02
0.4%, the effect is not sufficient below 0.02%, 0.4
If it exceeds%, a coarse intermetallic compound is likely to be formed and the formability is deteriorated.

【0015】Mnは、結晶粒を微細にして合金強度を向
上させるが、Mn系の金属間化合物が生成し、このMn
系化合物が孔食の起点となって腐食を促進するから、本
発明においては、Mnを0.05%以下、好ましくは0.02%
以下、さらに好ましくは0.01%以下に制限することが重
要である。
[0015] Mn refines the crystal grains to improve the alloy strength, but Mn-based intermetallic compounds are generated, and this Mn
In the present invention, Mn is 0.05% or less, preferably 0.02%, because the system compound serves as a starting point of pitting corrosion and accelerates corrosion.
It is important to limit the content to 0.01% or less, more preferably 0.01% or less.

【0016】本発明は、上記のように、Si、Mg、C
uを必須成分として含有するものであるが、これらの成
分については、条件式、3 ≦Si%+Mg%+Cu%≦
4 、Mg%≦1.7 ×Si%、Cu%/2≦Mg%≦(Cu
%/2)+0.6 を満足することが必須の要件となり、この
条件で合金材料の耐食性を低下させることなく、合金に
強度、成形性を与える金属間化合物の好ましい分散状態
が得られる。Si、Mg、Cuの合計含有量が3 %未満
では化合物の好ましい分散が得難く、4 %を越えると合
金の耐食性を劣化させる。また、MgとSiの量的関係
をMg%≦1.7×Si%、MgとCuの量的関係をCu
%/2≦Mg≦(Cu%/2) +0.6 とすることによって、
金属間化合物の生成量、分布状態が制御され、合金にバ
ランスの良い強度特性、成形加工性、耐食性を与えるこ
とができる。
In the present invention, as described above, Si, Mg, C
Although u is contained as an essential component, regarding these components, the conditional expression, 3 ≦ Si% + Mg% + Cu% ≦
4, Mg% ≦ 1.7 × Si%, Cu% / 2 ≦ Mg% ≦ (Cu
% / 2) +0.6 is an essential requirement, and under these conditions, a preferable dispersed state of the intermetallic compound that gives strength and formability to the alloy can be obtained without lowering the corrosion resistance of the alloy material. If the total content of Si, Mg and Cu is less than 3%, it is difficult to obtain a preferable dispersion of the compound, and if it exceeds 4%, the corrosion resistance of the alloy is deteriorated. In addition, the quantitative relationship between Mg and Si is Mg% ≦ 1.7 × Si%, and the quantitative relationship between Mg and Cu is Cu.
% / 2 ≦ Mg ≦ (Cu% / 2) +0.6
The amount of the intermetallic compound produced and the distribution state are controlled, and the alloy can be provided with well-balanced strength characteristics, formability, and corrosion resistance.

【0017】選択成分として添加させるZr、Vおよび
Znは、金属間化合物を形成して、合金の結晶粒度を微
細にするとともに合金の強度を向上させる。好ましい添
加量は、Zr:0.03 〜0.2 %、V:0.03 〜0.2 %、Z
n:0.03 〜2.0 %である。これらの成分の添加量が下限
未満ではその効果が小さく、上限をこえて添加される
と、粗大な金属間化合物の生成が増加し、成形性、耐食
性が劣化する。
Zr, V and Zn added as selective components form an intermetallic compound to make the grain size of the alloy fine and improve the strength of the alloy. The preferable addition amount is Zr: 0.03 to 0.2%, V: 0.03 to 0.2%, Z
n: 0.03 to 2.0%. If the added amount of these components is less than the lower limit, the effect is small, and if added in excess of the upper limit, the formation of coarse intermetallic compounds increases and the formability and corrosion resistance deteriorate.

【0018】他の選択成分として添加されるTi、B
は、鋳造組織を微細化して鋳塊割れを防ぐ。また成形性
を向上させ、とくにTiは合金の耐食特性を変えること
なく成形性を高める。好ましい添加範囲は、Ti:0.005
〜0.1 %、B:1〜50ppm の範囲であり、添加量が下限値
未満では効果が小さく、上限を越えると粗大な金属間化
合物の生成が増加して成形性が低下する。
Ti and B added as other optional components
Prevents the ingot cracking by refining the cast structure. It also improves the formability, especially Ti improves the formability without changing the corrosion resistance of the alloy. The preferable addition range is Ti: 0.005
.About.0.1%, B: 1 to 50 ppm. If the amount added is less than the lower limit, the effect is small, and if it exceeds the upper limit, the formation of coarse intermetallic compounds increases and the formability decreases.

【0019】本発明では、必須合金成分としてSi、M
g、Cu、Crを含有させ、Mnを一定量以下に限定
し、選択成分としてZr、V、ZnおよびTi、Bを添
加することにより、合金組織中に各成分間で形成される
金属間化合物を微細に析出させ、それらの析出量、分布
状態を制御することによって、強度、成形性、耐食性と
もに優れた材料を得るものであるが、好ましくは、直径
0.01μm 以下、長さ0.3μm 以下の大きさの析出物を、
析出量として2000本/ μm2以上分布させることにより合
金材料に一層優れた性状バランスを与えることができ
る。
In the present invention, Si and M are used as essential alloy components.
g, Cu, Cr are contained, Mn is limited to a certain amount or less, and Zr, V, Zn, and Ti, B are added as selective components to form an intermetallic compound between the respective components in the alloy structure. By finely precipitating and controlling their precipitation amount and distribution state, it is possible to obtain a material excellent in strength, formability, and corrosion resistance.
Precipitates with a size of 0.01 μm or less and a length of 0.3 μm or less
By distributing a precipitation amount of 2000 particles / μm 2 or more, it is possible to give the alloy material a better balance of properties.

【0020】本発明のアルミニウム合金は、板材のみで
なく、押出材、鍛造材などとしても供給し得るものであ
るが、板材の好ましい製造方法について説明すると、上
記組成のアルミニウム合金の溶湯を、例えば半連続鋳造
により造塊し、得られた鋳塊を500 ℃以上融点未満の温
度で均質化処理する。均質化処理温度が500 ℃未満で
は、鋳塊偏析の除去が十分でなく、強度に寄与するMg
2 SiやCuの固溶が不十分となり、強度低くなり、成
形性も低下し易い。ついで400 ℃以上の温度で熱間圧延
を開始し、熱間圧延を200 〜350 ℃の温度で終了する。
熱間圧延の開始温度が400 ℃未満では、熱間圧延時にM
2 Siが粗大に析出し易く溶体化処理での固溶が困難
となって強度低下の原因となる。熱間圧延の終了温度が
200 ℃未満では熱間圧延において使用される水溶性圧延
油のステンが残留し易く表面品質が劣る。350 ℃を越え
ると圧延時に2次再結晶により組織が粗大化し異方性を
大きくする。
The aluminum alloy of the present invention can be supplied not only as a plate material, but also as an extruded material, a forged material, etc. A preferred method for producing a plate material will be described. An ingot is made by semi-continuous casting, and the obtained ingot is homogenized at a temperature of 500 ° C or higher and lower than the melting point. If the homogenization temperature is less than 500 ° C, the ingot segregation is not sufficiently removed, and Mg that contributes to the strength
2 The solid solution of Si and Cu becomes insufficient, the strength becomes low, and the moldability tends to decrease. Then, hot rolling is started at a temperature of 400 ° C or higher, and hot rolling is ended at a temperature of 200 to 350 ° C.
If the starting temperature of hot rolling is less than 400 ℃, M
G 2 Si is likely to be coarsely precipitated, which makes it difficult to form a solid solution in the solution treatment, which causes a decrease in strength. The end temperature of hot rolling is
If it is less than 200 ° C, the surface of the water-soluble rolling oil used in hot rolling tends to remain, resulting in poor surface quality. If the temperature exceeds 350 ° C, the structure becomes coarse due to secondary recrystallization during rolling and the anisotropy increases.

【0021】熱間圧延したのち中間焼鈍を行いあるいは
行うことなく、または熱間圧延材を冷間圧延して所定の
厚さとした後中間焼鈍し、最終的に加工度60%以上の冷
間圧延を行う。冷間圧延の加工度が60%未満では、結晶
粒が粗大になり易く、成形加工時に肌荒れが生じ易い。
また、熱間圧延組織の分解が不十分で成形性が劣る。冷
間圧延後、5 ℃/s以上の昇温速度で500 〜580 ℃の温度
域に加熱して60分以下保持する溶体化処理を行い、つい
で10℃/s以上の冷却速度で冷却する焼入れ処理を行う。
After hot rolling, with or without intermediate annealing, or by cold rolling the hot rolled material to a predetermined thickness, then intermediate annealing, and finally cold rolling with a workability of 60% or more. I do. If the workability of cold rolling is less than 60%, the crystal grains are likely to become coarse, and roughening is likely to occur during the forming process.
Further, the decomposition of the hot-rolled structure is insufficient and the formability is poor. After cold rolling, heat treatment at a temperature rising rate of 5 ° C / s or more to a temperature range of 500 to 580 ° C and holding for 60 minutes or less is subjected to solution treatment, and then quenching is performed at a cooling rate of 10 ° C / s or more. Perform processing.

【0022】溶体化処理における昇温速度が5 ℃/s未満
では結晶粒が粗大化し、成形加工時に肌荒れが生じ易
い。保持温度が500 ℃未満では、析出物の固溶が不十分
となり強度、成形性が劣る。580 ℃を越えると、局部的
な共晶融解により加工性を害する場合がある。また溶体
化処理における保持時間が60分を越えると達せられる性
能が飽和するため、60分以上の保持は生産性を低下させ
ることになる。焼入れ処理時の冷却速度が10℃/s未満で
は、化合物が望ましくない分布状態に析出して延性が低
下し、耐食性、強度、成形性を害する。
If the temperature rising rate in the solution treatment is less than 5 ° C./s, the crystal grains become coarse and the skin is likely to be roughened during the molding process. If the holding temperature is less than 500 ° C, the solid solution of precipitates becomes insufficient, resulting in poor strength and moldability. If it exceeds 580 ° C, local eutectic melting may impair the workability. Further, since the performance that can be reached is saturated when the holding time in the solution heat treatment exceeds 60 minutes, holding for 60 minutes or more reduces productivity. If the cooling rate during the quenching treatment is less than 10 ° C / s, the compound precipitates in an undesired distribution state, the ductility decreases, and the corrosion resistance, strength, and formability are impaired.

【0023】本発明のアルミニウム合金材料は、焼入れ
後室温時効した状態(T4調質)でも優れた成形加工性
を有するが、必要に応じて焼入れ後に成形加工を行い、
170〜200 ℃で2 〜24h の熱処理を施す。熱処理温度が1
70 ℃未満では、所望の性能を得るために長時間の熱処
理が必要となるから工業生産上好ましくなく、200 ℃を
越える温度での熱処理は強度を低下させる。熱処理時間
が2h未満では十分な強度が得られず、24hを越えると強
度が低下し始める。以上の合金組成、製造条件の組合わ
せによって、直径0.01μm 以下、長さ0.3 μm 以下の析
出物を2000本/μm2以上分布した組織を有し、強度、成
形性、耐食性ともに優れたアルミニウム合金材料が得ら
れる。
The aluminum alloy material of the present invention has excellent formability even after being aged at room temperature (T4 temper) after quenching.
Heat treatment at 170-200 ℃ for 2-24h. Heat treatment temperature is 1
If the temperature is lower than 70 ° C, heat treatment for a long time is required to obtain the desired performance, which is not preferable in industrial production, and heat treatment at a temperature higher than 200 ° C lowers the strength. If the heat treatment time is less than 2 hours, sufficient strength cannot be obtained, and if it exceeds 24 hours, the strength begins to decrease. An aluminum alloy that has a structure in which precipitates with a diameter of 0.01 μm or less and a length of 0.3 μm or less are 2000 pieces / μm 2 or more are distributed by combining the above alloy composition and manufacturing conditions, and that strength, formability and corrosion resistance are excellent. The material is obtained.

【0024】[0024]

【作用】本発明においては、特定量のSi、Mg、Cu
およびCrを必須成分として含有させ、Mn量を制限
し、Zr、VおよびZn,さらにTi、Bを選択的に添
加し、Si、Mg,Cu相互の含有範囲を所定の関係式
により限定することにより、マトリックスのAlおよび
合金成分の間で形成される金属間化合物の望ましい析出
状態が得られ、この成分と組織の組合わせにより、優れ
た強度、成形性を維持したまま、耐食性がさらに向上す
る。とくに直径0.01μm 以下、長さ0.3 μm以下の析出
物を2000本/ μm2以上分布させた組織とすることによっ
て、さらに優れた材料特性が達成される。
In the present invention, specific amounts of Si, Mg, Cu
And Cr are contained as essential components, the amount of Mn is limited, Zr, V and Zn, and Ti and B are selectively added, and the content range of Si, Mg and Cu is limited by a predetermined relational expression. Provides a desirable precipitation state of the intermetallic compound formed between the Al and alloy components of the matrix, and the combination of this component and the structure further improves corrosion resistance while maintaining excellent strength and formability. . Particularly excellent material properties can be achieved by using a structure in which precipitates having a diameter of 0.01 μm or less and a length of 0.3 μm or less are distributed in 2000 or more / μm 2 .

【0025】[0025]

【実施例】以下、本発明の実施例を比較例と対比して説
明する。 実施例1 表1に示すアルミニウム合金を半連続鋳造で造塊し、鋳
塊の鋳肌部の表面切削後、525 ℃の温度で8hの均質化処
理を行い、ついでこの温度で熱間圧延を開始して厚さ4.
5 mmとし、325 ℃で熱間圧延を終了した。続いて冷間圧
延を行って、最終板厚1.0mm とした。引続いて530 ℃で
10分の溶体化処理後、水冷により焼入れ処理を行った。
Hereinafter, examples of the present invention will be described in comparison with comparative examples. Example 1 The aluminum alloys shown in Table 1 were ingot-cast by semi-continuous casting, after the surface cutting of the casting surface of the ingot, homogenization treatment was performed at a temperature of 525 ° C for 8 hours, and then hot rolling was performed at this temperature. Start and thickness 4.
It was set to 5 mm, and hot rolling was completed at 325 ° C. Subsequently, cold rolling was performed to obtain a final plate thickness of 1.0 mm. At 530 ° C
After the solution treatment for 10 minutes, quenching treatment was performed by cooling with water.

【0026】[0026]

【表1】 《表注》B 含有量はppm [Table 1] << Table Note >> B content is ppm

【0027】焼入れ処理後、室温時効2週間後にT4調
質として引張試験および曲げ試験を行い、焼入れ処理
後、180 ℃で6hの焼戻し処理後にT6調質として引張試
験を行った。また、T6調質材について、JIS W 1103に
規定される粒界腐食試験を行った。試験結果を表2に示
す。表2にみられるように、本発明に従う合金材は、い
ずれも優れた引張特性、成形性、耐食性を示し、とくに
T4調質材では26%以上の伸び率、1.0mm 以下の180 °
限界曲げ半径をそなえていた。代表例として、合金材N
o.1のT4調質材およびT6調質材の組織を電子顕微鏡
で観察し、組織中の析出物を観察したところ、直径0.01
μm 以下、長さ0.3 μm 以下の析出物はいずれも2000本
/ μm2を越えていた。
After the hardening treatment, two weeks after aging at room temperature, a tensile test and a bending test were performed as a T4 temper, and after the hardening treatment, a tensile test was performed as a T6 temper after a tempering treatment at 180 ° C. for 6 hours. Further, the T6 tempered material was subjected to an intergranular corrosion test specified in JIS W 1103. The test results are shown in Table 2. As can be seen from Table 2, the alloy materials according to the present invention all exhibit excellent tensile properties, formability and corrosion resistance, and particularly T4 tempered materials have an elongation of 26% or more and a 180 ° of 1.0 mm or less.
It had a limit bending radius. As a typical example, alloy material N
When the structures of o.1 T4 tempered material and T6 tempered material were observed with an electron microscope and precipitates in the structure were observed, the diameter was 0.01
2000 deposits with μm or less and 0.3 μm or less in length
/ μm 2 was exceeded.

【0028】なお、JIS W 1103に従う粒界腐食試験の詳
細は以下のとおりである。合金材を洗浄後、NaCl57
g と30%H2 2 を水で1lに調整した30℃の試験液に
6 時間浸漬した後、腐食減量を測定する。
The details of the intergranular corrosion test according to JIS W 1103 are as follows. After cleaning the alloy material, NaCl57
g and 30% H 2 O 2 in 30 ℃ test solution adjusted to 1 liter with water
After soaking for 6 hours, measure the corrosion weight loss.

【0029】[0029]

【表2】 [Table 2]

【0030】比較例1 実施例1と同一の工程で表3に示す組成のアルミニウム
合金の板材(板厚1.2mm)を製造し、実施例1と同様にし
て引張試験、曲げ試験および粒界腐食試験を行った。結
果を表4に示す。なお本発明の条件を外れるものには下
線を付した。
Comparative Example 1 Aluminum alloy sheet materials (sheet thickness: 1.2 mm) having the compositions shown in Table 3 were produced in the same steps as in Example 1, and the tensile test, bending test and intergranular corrosion were performed in the same manner as in Example 1. The test was conducted. The results are shown in Table 4. Those that do not satisfy the conditions of the present invention are underlined.

【0031】[0031]

【表3】 《表注》(1) B 量はppm (2) 合金材No.7はSi+Mg+Cu>4 (3) 合金材No.8はSi+Mg+Cu<3 (4) 合金材No.9はMg>1.7 ×Si (5) 合金材No.10 はCu/2<Mg (6) 合金材No.11 はMg>(Cu/2)+0.6[Table 3] << Table Note >> (1) B content is ppm (2) Alloy material No. 7 is Si + Mg + Cu> 4 (3) Alloy material No. 8 is Si + Mg + Cu <3 (4) Alloy material No. 9 is Mg> 1.7 × Si (5) alloy material No.10 is Cu / 2 <Mg (6) alloy material No.11 is Mg> (Cu / 2) +0.6

【0032】[0032]

【表4】 [Table 4]

【0033】表4にみられるように、本発明の合金組成
の限界を外れるものは、強度、成形性、あるいは耐食性
が劣っている。合金材No.7は、Si、Mg、Cuの合計
量が4 を越えるため、耐食性がわるく、成形性にも劣
る。合金材No.8はSi、Mg、Cuの合計量が3 未満の
ため強度が低い。合金材No.9は、MgとSiの関係式を
満足しないため成形性、耐食性ともにわるい。合金材N
o.10 〜11はMgとCuとの関係式を満足しないため成
形性、耐食性ともに劣り、合金材No.11 は強度も十分で
ない。合金材No.12 はMn量が限界値を越えているため
耐食性が劣り、合金材No.13 はCr量が少なく、合金材
No.14 〜17は、選択成分の含有量が限界値を越えている
ため、成形性、耐食性のいずれかがわるくなっている。
これらの合金材について、T6調質材の組織を電子顕微
鏡で観察したところ、合金材No.7〜11においては、直径
0.01μm 以下、長さ0.3 μm 以下の析出物はいずれも20
00本/μm2未満であった。
As can be seen from Table 4, those which deviate from the alloy composition limits of the present invention are inferior in strength, formability, or corrosion resistance. Alloy material No. 7 has a total amount of Si, Mg, and Cu of more than 4, and therefore has poor corrosion resistance and poor formability. Alloy material No. 8 has a low strength because the total amount of Si, Mg and Cu is less than 3. Alloy material No. 9 does not satisfy the relational expression between Mg and Si, and therefore has poor formability and corrosion resistance. Alloy material N
Since o.10 to 11 do not satisfy the relational expression between Mg and Cu, formability and corrosion resistance are poor, and alloy material No. 11 has insufficient strength. Alloy material No. 12 has a poor Mn content because the Mn content exceeds the limit value, and alloy material No. 13 has a small amount of Cr and is an alloy material.
In Nos. 14 to 17, the content of the selected component exceeds the limit value, so that either moldability or corrosion resistance is poor.
When the texture of the T6 tempered material was observed with an electron microscope for these alloy materials, the alloy material Nos.
20 precipitates with a size of 0.01 μm or less and a length of 0.3 μm or less
It was less than 00 lines / μm 2 .

【0034】[0034]

【発明の効果】以上のとおり、本発明によれば、強度、
成形性、耐食性ともに優れたアルミニウム合金材料が提
供され、自動車など輸送機器の外板として有用である。
As described above, according to the present invention, strength,
An aluminum alloy material having excellent formability and corrosion resistance is provided, and it is useful as an outer plate for transportation equipment such as automobiles.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 重量%(以下同じ)で、Si:0.5〜1.5
%、Mg:0.9〜1.5%、Cu:1.2〜2.4 %で、条件式、3
≦Si%+Mg%+Cu%≦4 、Mg%≦1.7 ×Si
%、Cu%/2≦Mg%≦(Cu%/2)+0.6 を満足する
Si、MgおよびCuを含有し、さらにCr:0.02 〜0.
4 %を含み、且つ不純物としてのMnを0.05%以下の制
限し、残部アルミニウムと不可避的不純物からなる成形
性および耐食性に優れた高強度アルミニウム合金。
1. Si: 0.5 to 1.5 in% by weight (the same applies hereinafter)
%, Mg: 0.9 to 1.5%, Cu: 1.2 to 2.4%, conditional expression, 3
≦ Si% + Mg% + Cu% ≦ 4, Mg% ≦ 1.7 × Si
%, Cu% / 2 ≦ Mg% ≦ (Cu% / 2) +0.6, Si, Mg and Cu are contained, and Cr: 0.02 to 0.
A high-strength aluminum alloy that contains 4%, limits Mn as an impurity to 0.05% or less, and is composed of the balance aluminum and unavoidable impurities and has excellent formability and corrosion resistance.
【請求項2】 アルミニウム合金がZr:0.03 〜0.2
%、V:0.03 〜0.2 %およびZn:0.03 〜2.0 %のうち
の1種以上を含有することを特徴とする請求項1記載の
成形性および耐食性に優れた高強度アルミニウム合金。
2. The aluminum alloy contains Zr: 0.03 to 0.2.
%, V: 0.03 to 0.2% and Zn: 0.03 to 2.0%, at least one of which is contained in the high strength aluminum alloy excellent in formability and corrosion resistance.
【請求項3】 アルミニウム合金がTi:0.005〜0.1
%、B:1〜50ppm のうちの1種または2種を含有するこ
とを特徴とする請求項1〜2記載の成形性および耐食性
に優れた高強度アルミニウム合金。
3. The aluminum alloy contains Ti: 0.005 to 0.1.
%, B: 1 type or 2 types of 1 to 50 ppm are contained, The high strength aluminum alloy excellent in formability and corrosion resistance according to claim 1 or 2.
【請求項4】 アルミニウム合金の組織中に、直径0.01
μm 以下、長さ0.3μm 以下の析出物が2000本/μm2
上分布していることを特徴とする請求項1〜3記載の成
形性および耐食性に優れた高強度アルミニウム合金。
4. The diameter of 0.01 in the structure of the aluminum alloy.
The high-strength aluminum alloy excellent in formability and corrosion resistance according to claim 1, wherein precipitates having a size of less than or equal to μm and a length of less than or equal to 0.3 μm are distributed in a number of 2000 / μm 2 .
【請求項5】 500 〜580 ℃の温度域に加熱して60分以
下の時間保持する溶体化処理を行い、10℃/s 以上の冷
却速度で冷却する焼入れ処理を施し、室温で2週間時効
処理した後の伸び率が26%以上、180 °限界曲げ半径が
1T以下(Tは板厚) であることを特徴とする請求項1〜4
記載の成形性および耐食性に優れた高強度アルミニウム
合金。
5. A solution treatment of heating to a temperature range of 500 to 580 ° C. and holding for 60 minutes or less, a quenching treatment of cooling at a cooling rate of 10 ° C./s or more, and an aging at room temperature for 2 weeks. The elongation after processing is 26% or more, and the 180 ° critical bending radius is
It is 1T or less (T is the plate thickness), which is characterized in that
A high-strength aluminum alloy having excellent formability and corrosion resistance as described.
【請求項6】 500 〜580 ℃の温度域に加熱して60分以
下の時間保持する溶体化処理を行い、10℃/s以上の冷
却速度で冷却する焼入れ処理後、成形加工を行い、また
は行うことなく、170 〜200 ℃の温度で2 〜24hの熱処
理を施したのち、JIS W 1103に従う粒界腐食
試験における腐食減量が0.6 %以下であることを特徴と
する請求項1〜4記載の高強度アルミニウム合金。
6. A solution treatment for heating to a temperature range of 500 to 580 ° C. and holding for 60 minutes or less, a quenching treatment for cooling at a cooling rate of 10 ° C./s or more, and a molding process, or 5. After performing a heat treatment for 2 to 24 hours at a temperature of 170 to 200 [deg.] C. without performing it, the corrosion weight loss in the intergranular corrosion test according to JIS W 1103 is 0.6% or less. High strength aluminum alloy.
JP9802895A 1995-03-30 1995-03-30 High strength aluminum alloy excellent in formability and corrosion resistance Pending JPH08269608A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9802895A JPH08269608A (en) 1995-03-30 1995-03-30 High strength aluminum alloy excellent in formability and corrosion resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9802895A JPH08269608A (en) 1995-03-30 1995-03-30 High strength aluminum alloy excellent in formability and corrosion resistance

Publications (1)

Publication Number Publication Date
JPH08269608A true JPH08269608A (en) 1996-10-15

Family

ID=14208519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9802895A Pending JPH08269608A (en) 1995-03-30 1995-03-30 High strength aluminum alloy excellent in formability and corrosion resistance

Country Status (1)

Country Link
JP (1) JPH08269608A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319741A (en) * 1998-09-10 2000-11-21 Kobe Steel Ltd Al-Mg-Si BASED ALLOY SHEET
WO2004090186A1 (en) * 2003-04-07 2004-10-21 The Society Of Japanese Aerospace Companies High-strength aluminum-alloy extruded material with excellent corrosion resistance and method of producing the same
JP2006527792A (en) * 2003-06-18 2006-12-07 アルカン レナリュ Automotive body exterior member made of Al-Si-Mg alloy plate fixed to steel structure
WO2012160720A1 (en) * 2011-05-20 2012-11-29 住友軽金属工業株式会社 Aluminum alloy material with excellent bendability and process for producing same
CN102978490A (en) * 2012-12-08 2013-03-20 包头吉泰稀土铝业股份有限公司 High-strength, high-conductivity and heat-resisting aluminum alloy bus and production method thereof
CN106834835A (en) * 2016-11-28 2017-06-13 佛山市尚好门窗有限责任公司 A kind of high-strength aluminum alloy material
CN108893660A (en) * 2018-07-11 2018-11-27 合肥华盖光伏科技有限公司 A kind of high-conductivity aluminum alloy conducting wire and preparation method thereof

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319741A (en) * 1998-09-10 2000-11-21 Kobe Steel Ltd Al-Mg-Si BASED ALLOY SHEET
WO2004090186A1 (en) * 2003-04-07 2004-10-21 The Society Of Japanese Aerospace Companies High-strength aluminum-alloy extruded material with excellent corrosion resistance and method of producing the same
EP1630241A4 (en) * 2003-04-07 2007-08-22 Of Japanese Aerospace Companie High-strength aluminum-alloy extruded material with excellent corrosion resistance and method of producing the same
JP2006527792A (en) * 2003-06-18 2006-12-07 アルカン レナリュ Automotive body exterior member made of Al-Si-Mg alloy plate fixed to steel structure
WO2012160720A1 (en) * 2011-05-20 2012-11-29 住友軽金属工業株式会社 Aluminum alloy material with excellent bendability and process for producing same
US9834833B2 (en) 2011-05-20 2017-12-05 Uacj Corporation Aluminum alloy material exhibiting excellent bendability and method for producing the same
CN102978490A (en) * 2012-12-08 2013-03-20 包头吉泰稀土铝业股份有限公司 High-strength, high-conductivity and heat-resisting aluminum alloy bus and production method thereof
CN106834835A (en) * 2016-11-28 2017-06-13 佛山市尚好门窗有限责任公司 A kind of high-strength aluminum alloy material
CN108893660A (en) * 2018-07-11 2018-11-27 合肥华盖光伏科技有限公司 A kind of high-conductivity aluminum alloy conducting wire and preparation method thereof

Similar Documents

Publication Publication Date Title
JP4577218B2 (en) Method for producing Al-Mg-Si alloy sheet excellent in bake hardness and hemmability
JP7044863B2 (en) Al-Mg-Si based aluminum alloy material
EP0480402A1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH0718390A (en) Production of aluminum alloy sheet material for forming
KR20230043868A (en) New 6XXX aluminum alloy and its manufacturing method
JPH06240424A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JP2008190022A (en) Al-Mg-Si-BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME
JP2000212673A (en) Aluminum alloy sheet for aircraft stringer excellent in stress corrosion cracking resistance and its production
JPH08269608A (en) High strength aluminum alloy excellent in formability and corrosion resistance
JP2003221637A (en) Aluminum alloy plate for fabrication and its manufacturing process
JPS58171547A (en) Aluminum alloy material for forming with superior bendability and its manufacture
JP3516566B2 (en) Aluminum alloy for cold forging and its manufacturing method
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JPH08176764A (en) Production of aluminum alloy sheet for forming
JP3853021B2 (en) Method for producing Al-Cu-Mg-Si alloy hollow extruded material excellent in strength and corrosion resistance
JPH0547615B2 (en)
JPH07305135A (en) High strength aluminum alloy excellent in formability and corrosion resistance and its production
KR102312430B1 (en) Aluminum alloy and method of manufacturing the same
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
JPH10259464A (en) Production of aluminum alloy sheet for forming
JPH06272000A (en) Production of al alloy sheet excellent in formability and baking hardenability
JPS6227544A (en) Heat-treated-type aluminum alloy rolled sheet for forming working and its production
JPH04304339A (en) Aluminum alloy sheet for press forming excellent in balance between strength and ductility and baking hardenability and its production
JP3208234B2 (en) Aluminum alloy sheet for forming process excellent in formability and method for producing the same