JPH04304339A - Aluminum alloy sheet for press forming excellent in balance between strength and ductility and baking hardenability and its production - Google Patents
Aluminum alloy sheet for press forming excellent in balance between strength and ductility and baking hardenability and its productionInfo
- Publication number
- JPH04304339A JPH04304339A JP9368491A JP9368491A JPH04304339A JP H04304339 A JPH04304339 A JP H04304339A JP 9368491 A JP9368491 A JP 9368491A JP 9368491 A JP9368491 A JP 9368491A JP H04304339 A JPH04304339 A JP H04304339A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- range
- balance
- less
- press forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 33
- 238000004519 manufacturing process Methods 0.000 title claims description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 26
- 229910052802 copper Inorganic materials 0.000 claims abstract description 20
- 238000011282 treatment Methods 0.000 claims abstract description 17
- 238000001816 cooling Methods 0.000 claims abstract description 15
- 239000012535 impurity Substances 0.000 claims abstract description 7
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims description 13
- 238000005097 cold rolling Methods 0.000 claims description 10
- 238000005096 rolling process Methods 0.000 claims description 10
- 238000000137 annealing Methods 0.000 claims description 9
- 238000000265 homogenisation Methods 0.000 claims description 9
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 238000005098 hot rolling Methods 0.000 claims description 7
- 229910052726 zirconium Inorganic materials 0.000 claims description 7
- 229910052748 manganese Inorganic materials 0.000 claims description 6
- 230000004323 axial length Effects 0.000 claims description 4
- 239000000203 mixture Substances 0.000 abstract description 11
- 229910052742 iron Inorganic materials 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 24
- 239000000956 alloy Substances 0.000 description 24
- 230000000694 effects Effects 0.000 description 12
- 239000013078 crystal Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 239000000463 material Substances 0.000 description 8
- 238000012360 testing method Methods 0.000 description 7
- 239000003973 paint Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229910052720 vanadium Inorganic materials 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 238000010791 quenching Methods 0.000 description 4
- 230000000171 quenching effect Effects 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000005496 eutectics Effects 0.000 description 3
- 230000002401 inhibitory effect Effects 0.000 description 3
- 238000001953 recrystallisation Methods 0.000 description 3
- 229910018134 Al-Mg Inorganic materials 0.000 description 2
- 229910018182 Al—Cu Inorganic materials 0.000 description 2
- 229910018467 Al—Mg Inorganic materials 0.000 description 2
- 229910019086 Mg-Cu Inorganic materials 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910018464 Al—Mg—Si Inorganic materials 0.000 description 1
- QYEXBYZXHDUPRC-UHFFFAOYSA-N B#[Ti]#B Chemical compound B#[Ti]#B QYEXBYZXHDUPRC-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229910017818 Cu—Mg Inorganic materials 0.000 description 1
- 229910019094 Mg-S Inorganic materials 0.000 description 1
- 229910019752 Mg2Si Inorganic materials 0.000 description 1
- 229910019397 Mg—S Inorganic materials 0.000 description 1
- -1 Ti-B Inorganic materials 0.000 description 1
- 229910033181 TiB2 Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Landscapes
- Shaping Metal By Deep-Drawing, Or The Like (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】この発明は、強度・延性バランス
及び焼付硬化性に優れたプレス成形用アルミニウム合金
板並びにその製造方法に関し、特に圧延後の熱処理のま
までの強度・延性バランスに優れ、しかも170℃程度
の低温の焼付塗装においても硬化能が高い自動車車体等
に好適なプレス成形用アルミニウム合金板及びその製造
方法に関する。[Field of Industrial Application] This invention relates to an aluminum alloy plate for press forming that has an excellent balance of strength and ductility and bake hardenability, and a method for manufacturing the same, and in particular, an aluminum alloy plate that has an excellent balance of strength and ductility even after being heat treated after rolling. Moreover, the present invention relates to an aluminum alloy plate for press forming suitable for automobile bodies, etc., which has a high hardening ability even in baking coating at a low temperature of about 170°C, and a method for manufacturing the same.
【0002】0002
【従来の技術】従来より自動車ボディーシート等の成形
加工用板材として表面処理冷延鋼板が多用されているが
、近年、自動車の燃費向上のための軽量化の要望が高ま
っており、その要望を満たすべく自動車ボディーシート
等にアルミニウム合金板が使用され始めてきている。[Prior Art] Surface-treated cold-rolled steel sheets have traditionally been widely used as plate materials for forming automobile body sheets, etc., but in recent years, there has been an increasing demand for weight reduction in automobiles to improve fuel efficiency. In order to meet these requirements, aluminum alloy plates are beginning to be used in automobile body seats and the like.
【0003】自動車ボディーシート用アルミニウム合金
としては、5182に代表される非熱処理型のAl−M
g系合金と、熱処理型のAl−Cu系、Al−Mg−S
i系に分けられる。非熱処理型のAl−Mg系合金とし
ては、CuやZnを微量添加し、熱処理して用いること
を前提としたものが開発されている(特開昭57−12
0648、特開昭 53−103914等)。[0003] As aluminum alloys for automobile body sheets, non-heat-treated Al-M typified by 5182 is used.
g-based alloys, heat-treated Al-Cu-based, Al-Mg-S
It is divided into i-series. As a non-heat treatment type Al-Mg alloy, one has been developed that is intended to be used after heat treatment with the addition of a small amount of Cu or Zn (Japanese Unexamined Patent Publication No. 57-12).
0648, Japanese Unexamined Patent Publication No. 53-103914, etc.).
【0004】しかし、これらは熱処理型のAl合金より
やや成形性が優れてはいるものの、従来の表面処理冷間
圧延鋼板よりも劣り、さらには塗装焼付工程により強度
の上昇が得られない。また、熱処理型であるAl−Cu
系の2036、Al−Mg−Si系の6009、601
0、6011では成形性が劣り、さらには欧米における
200℃での焼付けに対して省エネルギの観点から進め
られた日本国内で主流の170℃以下の温度で30分間
たらず保持する低温短時間の焼付けでは強度が上昇せず
、2000系においては逆に低下するという問題もあっ
た。However, although these have slightly better formability than heat-treated Al alloys, they are inferior to conventional surface-treated cold-rolled steel sheets, and furthermore, no increase in strength can be obtained through the paint baking process. In addition, heat-treated Al-Cu
system 2036, Al-Mg-Si system 6009, 601
0 and 6011 have poor formability, and furthermore, compared to the 200°C baking methods used in Europe and the United States, low-temperature short-time baking methods, which are mainstream in Japan and are held at temperatures below 170°C for less than 30 minutes, have been developed from the perspective of energy conservation. There was also the problem that the strength did not increase with baking, but on the contrary decreased in the 2000 series.
【0005】このように、従来のアルミニウム合金では
、自動車ボディシートに要求される特性、特に成形性と
焼付硬化性が十分に満足されていないのが現状である。[0005] As described above, at present, conventional aluminum alloys do not fully satisfy the properties required for automobile body sheets, particularly formability and bake hardenability.
【0006】[0006]
【発明が解決しようとする課題】この発明はかかる事情
に鑑みてなされたものであって、強度・延性バランスが
良く自動車車体用等として十分なプレス成形性を有し、
低温かつ短時間の焼付においても焼付硬化性が良好なア
ルミニウム合金板及びその製造方法を提供することを目
的とする。[Problems to be Solved by the Invention] This invention has been made in view of the above circumstances, and has a good balance of strength and ductility and sufficient press formability for use in automobile bodies, etc.
An object of the present invention is to provide an aluminum alloy plate that has good bake hardenability even at low temperatures and for a short time, and a method for manufacturing the same.
【0007】[0007]
【課題を解決するための手段及び作用】本願発明者等は
、上記目的を達成するために種々検討を重ねた結果、化
学成分組成を適切に調整し、製造条件を適正化すること
により、熱処理後の伸びが30%以上で、かつ170℃
で30分間といった低温・短時間の焼付処理においても
焼付後の降伏強度を焼付前よりも3〜5kgf /mm
2 以上硬化することを見出し、本発明を完成するに至
った。
すなわち、本発明は、強度・延性バランスの向上、成形
性の向上、及び塗装焼付後の耐デント性の向上を図るべ
く、材料特性としての破断伸びと、低温・短時間焼付後
の降伏強度との両特性を改善させたものである。[Means and effects for solving the problem] In order to achieve the above object, the inventors of the present application have conducted various studies, and as a result, the present inventors have succeeded in heat treatment by appropriately adjusting the chemical composition and optimizing the manufacturing conditions. The elongation after is 30% or more and 170℃
Even with low-temperature and short-time baking treatment such as 30 minutes, the yield strength after baking is 3 to 5 kgf/mm higher than before baking.
2 or more, and completed the present invention. That is, the present invention aims to improve the balance of strength and ductility, improve formability, and improve dent resistance after paint baking. This improves both characteristics.
【0008】特に、化学成分組成については、塗装焼付
後における高強度化の観点から、Al−Mg系合金にC
uを意図的に適量添加し、Mg及びCuの量の組合せを
制御すると共に、さらに、成形性改善のため、結晶粒を
等軸化し、かつ極微量のSi,Fe,Ti,Bを添加し
たものである。In particular, regarding the chemical composition, carbon is added to the Al-Mg alloy from the viewpoint of increasing the strength after baking the paint.
In addition to intentionally adding an appropriate amount of u and controlling the combination of Mg and Cu amounts, in order to improve formability, the crystal grains were made equiaxed and extremely small amounts of Si, Fe, Ti, and B were added. It is something.
【0009】すなわち、この発明に係る強度・延性バラ
ンス及び焼付硬化性に優れたプレス成形用アルミニウム
合金板は、重量%、Mgを1.5〜8.0%、Cuを0
.25〜3.0、Siを0.02〜0.15%、Feを
0.03〜0.25%、Tiを0.005〜0.15%
、Bを0.0002〜0.05%、Znを0.10%以
下の範囲で含有し、かつMg及びCuが、Mg−Cuの
座標において、その座標点を(Mg%,Cu%)で表し
た場合に、図1に示す(8.0,0.25)、(4.0
,0.25)、(1.5,0.8)、(1.5,3.0
)、(8.0,1.0)の5点で囲まれる範囲であり、
残部がAl及び0.1%以下の不可避的不純物からなり
、結晶粒における圧延方向の軸長をL、Lに対して垂直
の板厚方向の軸長をHとした場合に、その平均アスペク
ト比L/Hが1.3以下であることを特徴とする。
また、この組成に対し、0.01〜0.15%のMn、
0.01〜0.15%のCr、0.01〜0.12%の
Zr、及び0.01〜0.18%のVのうち1種又は2
種以上をさらに含んでいてもよい。これらは、再結晶抑
制元素であるから、異常粒成長を抑制する目的で添加し
てもよいが、その量は成形性向上の観点から従来よりも
低い上述の範囲に限定される。That is, the aluminum alloy plate for press forming according to the present invention, which has excellent strength/ductility balance and bake hardenability, contains 1.5 to 8.0% Mg and 0% Cu by weight.
.. 25-3.0, Si 0.02-0.15%, Fe 0.03-0.25%, Ti 0.005-0.15%
, contains B in the range of 0.0002 to 0.05%, Zn in the range of 0.10% or less, and Mg and Cu are at the coordinate point of (Mg%, Cu%) in the Mg-Cu coordinates. When expressed as (8.0, 0.25), (4.0
,0.25), (1.5,0.8), (1.5,3.0
), (8.0, 1.0),
The balance consists of Al and 0.1% or less of unavoidable impurities, and when the axial length of the crystal grain in the rolling direction is L, and the axial length in the plate thickness direction perpendicular to L is H, the average aspect ratio It is characterized in that L/H is 1.3 or less. In addition, with respect to this composition, 0.01 to 0.15% Mn,
One or two of 0.01 to 0.15% Cr, 0.01 to 0.12% Zr, and 0.01 to 0.18% V
It may further contain more than one species. Since these are recrystallization-inhibiting elements, they may be added for the purpose of suppressing abnormal grain growth, but their amounts are limited to the above-mentioned range, which is lower than conventional ones, from the viewpoint of improving formability.
【0010】また、この発明に係る強度・延性バランス
及び焼付硬化性に優れたプレス成形用アルミニウム合金
板の製造方法は、上記組成のアルミニウム合金鋳塊に対
して450〜580℃の範囲内の温度で1段又は多段の
均質化処理を施した後、この鋳塊を熱間圧延及び冷間圧
延することにより所望の板厚とし、次いで440〜58
0℃の範囲内の温度まで3℃/秒以上の加熱速度で加熱
してその温度で0〜120秒間保持し、その後100℃
まで2℃/秒以上の冷却速度で冷却することを特徴とす
る。これにより、平均アスペクト比L/Hが1.3以下
の結晶粒の上記アルミニウム合金板が得られる。[0010] Furthermore, the method for producing an aluminum alloy plate for press forming with excellent strength/ductility balance and bake hardenability according to the present invention is characterized in that an aluminum alloy ingot having the above composition is heated at a temperature within the range of 450 to 580°C. After performing one-stage or multi-stage homogenization treatment, the ingot is hot-rolled and cold-rolled to a desired thickness, and then 440-58
Heat to a temperature within the range of 0℃ at a heating rate of 3℃/second or more, hold at that temperature for 0 to 120 seconds, then 100℃
It is characterized by cooling at a cooling rate of 2° C./sec or more. As a result, the aluminum alloy plate having crystal grains having an average aspect ratio L/H of 1.3 or less is obtained.
【0011】この場合に、熱間圧延と冷間圧延との間、
又は冷間圧延と冷間圧延との間、又はその両方で、32
0〜580℃の範囲内の温度における中間焼鈍処理を1
回又は2回以上実施することが好ましい。In this case, between hot rolling and cold rolling,
or between cold rolling, or both, 32
Intermediate annealing treatment at a temperature within the range of 0 to 580°C
It is preferable to carry out the process once or twice or more.
【0012】以下、この発明について詳細に説明する。 なお、以下の説明において%表示は重量%を表わす。The present invention will be explained in detail below. Note that in the following description, % indicates weight %.
【0013】先ず、この発明に係るアルミニウム合金の
成分組成の限定理由について説明する。First, the reasons for limiting the composition of the aluminum alloy according to the present invention will be explained.
【0014】Mg: Mgは本発明に係る合金におけ
る必須の基本成分であり、適量合金されることにより合
金の強度及び延性の向上に大きく寄与する。しかし、M
gが1.5%未満では十分な強度および焼付け硬化性が
得られず、逆に8.0%を超えると熱間圧延時の割れが
顕著となり、熱間加工性が劣化する。従って、Mgの含
有量を1.5〜8.0%の範囲に規定する。Mg: Mg is an essential basic component in the alloy according to the present invention, and when alloyed in an appropriate amount, it greatly contributes to improving the strength and ductility of the alloy. However, M
If g is less than 1.5%, sufficient strength and bake hardenability cannot be obtained, whereas if it exceeds 8.0%, cracking during hot rolling becomes noticeable and hot workability deteriorates. Therefore, the Mg content is defined in the range of 1.5 to 8.0%.
【0015】Cu: Cuは主としてAl−Mgと結
びつき、Al2 CuMg系析出物を形成し、焼付けに
よる硬化に寄与する成分である。しかし、Cuの含有量
が0.25%未満ではその効果が十分に得られず、逆に
3.0%を超えると成形性及び耐食性を劣化させる。従
って、Cuの含有量を0.25〜3.0%の範囲に規定
する。Cu: Cu is a component that mainly combines with Al--Mg to form Al2CuMg-based precipitates and contributes to hardening by baking. However, if the Cu content is less than 0.25%, the effect will not be sufficiently obtained, and if it exceeds 3.0%, the moldability and corrosion resistance will deteriorate. Therefore, the content of Cu is defined in the range of 0.25 to 3.0%.
【0016】また、Mg及びCuの量は、さらに上述し
た図1における座標点を結ぶ線に囲まれる範囲に限定さ
れるのは、この範囲を外れると素材の強度、延性及び焼
付後の強度が不十分になるからである。すなわち、図1
の座標において、B(4.0,0.25)とC(1.5
,0.8)とを結ぶ線よりも、Mg又はCuの量が少な
い場合には十分な強度が得られない。また、E(8.0
,1.0)とD(1.5,3.0)とを結ぶ線よりもM
g又はCuの量が多い場合には延性すなわち成形性が低
下する。さらに、C(1.5,0.8)とD(1.5,
3.0)とで規定される範囲よりもMg又はCuの量が
少ない場合には延性(すなわち成形性)及び焼付後の強
度が十分でない。Furthermore, the amount of Mg and Cu is further limited to the range surrounded by the line connecting the coordinate points in FIG. This is because it will be insufficient. That is, Figure 1
At the coordinates of B(4.0, 0.25) and C(1.5
, 0.8), sufficient strength cannot be obtained if the amount of Mg or Cu is smaller than the line connecting them. Also, E(8.0
, 1.0) and D(1.5, 3.0).
When the amount of g or Cu is large, ductility, that is, formability decreases. Furthermore, C(1.5, 0.8) and D(1.5,
If the amount of Mg or Cu is less than the range specified by 3.0), the ductility (namely formability) and strength after baking will not be sufficient.
【0017】Si: Siは通常不可避的不純物とし
て含有される元素であるが、微量添加であれば成形性の
向上に寄与する重要な元素である。しかし、Siの含有
量が0.02%未満ではその効果が十分ではなく、逆に
0.15%を超えると溶体化処理においても熱間圧延等
で析出していた粗大なMg2 Si系析出物が固溶せず
、成形性を低下させる。従って、Siの含有量を0.0
2〜0.15%の範囲に規定する。望ましくは0.02
〜0.1%である。Si: Si is an element normally contained as an unavoidable impurity, but if added in a small amount, it is an important element that contributes to improving formability. However, if the Si content is less than 0.02%, the effect is not sufficient, and on the contrary, if it exceeds 0.15%, coarse Mg2Si-based precipitates that are precipitated during hot rolling etc. may occur even during solution treatment. does not form a solid solution, reducing moldability. Therefore, the Si content is 0.0
It is defined in the range of 2 to 0.15%. Preferably 0.02
~0.1%.
【0018】Fe: Feは不可避的不純物として
通常アルミニウム合金に含有されるものであり、含有量
が0.25%を超えるとAlとの共存により粗大な晶出
物が生成されやすくプレス成形性に悪影響を及ぼす。し
かし、微量の添加により成形性の向上に寄与し、これら
の含有量が0.02%未満と少なすぎると成形性が劣化
する。従って、Feの含有量を0.02〜0.25%の
範囲に規定する。Fe: Fe is normally contained in aluminum alloys as an unavoidable impurity, and if the content exceeds 0.25%, coarse crystallized substances are likely to be formed due to coexistence with Al, which impairs press formability. Adversely affect. However, addition of a small amount contributes to improving moldability, and if their content is too small, such as less than 0.02%, moldability deteriorates. Therefore, the content of Fe is defined in the range of 0.02 to 0.25%.
【0019】Ti,B: Ti及びBはTiB2 等
として存在し、鋳塊の結晶粒を微細化して熱間での加工
性等を改善する効果を有するので、これらを複合添加す
るのが極めて重要である。しかしながら、これらを過剰
に添加すると粗大な晶出物を生成し、成形性を劣化させ
るのでTi及びBの含有量を、夫々0.005〜0.1
5%、及び0.0002〜0.05%の範囲に規定する
。Ti, B: Ti and B exist as TiB2, etc., and have the effect of refining the crystal grains of the ingot and improving hot workability, etc., so it is extremely important to add them in combination. It is. However, if these are added in excess, coarse crystallized substances are generated and the formability is deteriorated, so the content of Ti and B should be adjusted to 0.005 to 0.1, respectively.
5%, and within the range of 0.0002 to 0.05%.
【0020】Zn: Znは強度の向上に寄与する元
素であるが、その含有量が0.1%を超えると延性及び
焼付後の硬化性を低減させるため、その含有量を0.1
%以下に規定する。Zn: Zn is an element that contributes to improving strength, but if its content exceeds 0.1%, it reduces ductility and hardenability after baking, so the content should be reduced to 0.1%.
% or less.
【0021】本発明においては、以上の元素の他に、必
要に応じて、Mn,Cr,ZrおよびVのうち1種また
は2種以上を適量添加してもよい。In the present invention, in addition to the above-mentioned elements, one or more of Mn, Cr, Zr and V may be added in appropriate amounts, if necessary.
【0022】Mn,Cr,Zr,V: これらの元素
は再結晶抑制元素であるから、異常粒成長を抑制する目
的で適量添加してもよい。しかし、これらの合金成分は
、再結晶粒の等軸化に対し負の効果があり成形性を低下
させるため、これらの含有量は従来のアルミニウム合金
よりも少ない範囲に規定する必要がある。従って、Mn
,Cr、Zr、Vの含有量を夫々0.01〜0.15%
、0.01〜0.15%、0.01〜0.12%、0.
01〜0.18%に規定する。Mn, Cr, Zr, V: Since these elements are recrystallization inhibiting elements, they may be added in appropriate amounts for the purpose of inhibiting abnormal grain growth. However, these alloy components have a negative effect on equiaxed recrystallized grains and reduce formability, so their content needs to be defined in a smaller range than in conventional aluminum alloys. Therefore, Mn
, Cr, Zr, and V content from 0.01 to 0.15%, respectively.
, 0.01-0.15%, 0.01-0.12%, 0.
01 to 0.18%.
【0023】上記元素の他、通常のアルミニウム合金と
同様、不可避的不純物が含有されるが、その量は本発明
の効果が損なわれない範囲であれば許容される。例えば
、Be、Na,K等は、それぞれ0.001%以下程度
、合計で0.1%以下ならばこれらを含有していても、
特性上の支障はない。[0023] In addition to the above elements, unavoidable impurities are contained as in ordinary aluminum alloys, but the amount thereof is allowed as long as the effects of the present invention are not impaired. For example, Be, Na, K, etc. may contain 0.001% or less each and 0.1% or less in total.
There are no problems with the characteristics.
【0024】次に、組織について説明する。Next, the organization will be explained.
【0025】アルミニウム合金の成形性は、結晶粒形状
に大きく依存している。等軸平均アスペクト比L/H(
L:圧延方向の結晶粒軸長、H:Lに対し垂直の板厚方
向軸長)が1.3を超えるとプレス加工時に歪模様が現
出し、成形性も低下するため、等軸平均アスペクト比は
1.3以下であることが必要である。The formability of aluminum alloys largely depends on the shape of the crystal grains. Equiaxed average aspect ratio L/H (
If L: grain axis length in the rolling direction, H: axis length in the plate thickness direction perpendicular to L) exceeds 1.3, a distorted pattern will appear during press forming and formability will decrease, so the equiaxed average aspect The ratio needs to be 1.3 or less.
【0026】次に、この発明の合金の製造条件について
説明する。Next, the manufacturing conditions for the alloy of the present invention will be explained.
【0027】上記範囲に成分・組成が規定されたアルミ
ニウム合金を常法により溶解・鋳造し、その鋳塊に対し
て450〜580℃の範囲内の温度で1段又は多段の均
質化熱処理を施す。このような均質化処理を施すことに
より、鋳造時に晶出した共晶化合物の拡散固溶を促進し
、局部的ミクロ偏析を軽減する。また、この処理により
、最終製品の結晶粒の異常粒成長を抑制し、均一化を図
るうえで重要な役割を果たすMn,Cr,Zr,Vの化
合物を微細に析出させることができる。しかし、この処
理の温度が450℃未満の場合には上述したような効果
が不十分であり、一方580℃を超えると共晶融解が生
じる。従って、均質化処理の温度を450〜580℃の
範囲とした。なお、この温度範囲内での保持時間が1時
間未満では上述の効果が十分に得られず、72時間を超
える長時間の加熱はその効果が飽和してしまうため、こ
の均質化処理の保持時間は1〜72時間が望ましい。[0027] An aluminum alloy whose components and composition are specified in the above range is melted and cast by a conventional method, and the ingot is subjected to one or more stages of homogenization heat treatment at a temperature within the range of 450 to 580°C. . By performing such homogenization treatment, the diffusion solid solution of the eutectic compound crystallized during casting is promoted, and local micro-segregation is reduced. Furthermore, this treatment makes it possible to finely precipitate Mn, Cr, Zr, and V compounds, which play an important role in suppressing abnormal grain growth and achieving uniformity of crystal grains in the final product. However, if the temperature of this treatment is less than 450°C, the above-mentioned effects are insufficient, while if it exceeds 580°C, eutectic melting occurs. Therefore, the temperature of the homogenization treatment was set in the range of 450 to 580°C. Note that if the holding time within this temperature range is less than 1 hour, the above-mentioned effect will not be sufficiently obtained, and if the heating time is longer than 72 hours, the effect will be saturated. is preferably 1 to 72 hours.
【0028】次いで、このような均質化処理が施された
鋳塊に対し、常法に従って所定の板厚を得るために熱間
圧延及び冷間圧延を行う。また、歪矯正又は表面粗度調
整のため、以下に示す熱処理の前後両方、又はいずれか
一方で5%以下のストレッチング、レベリング、又はス
キンパス圧延を実施してもよい。Next, the ingot subjected to such homogenization treatment is subjected to hot rolling and cold rolling according to a conventional method to obtain a predetermined thickness. Further, for strain correction or surface roughness adjustment, stretching of 5% or less, leveling, or skin pass rolling may be carried out both before and after the heat treatment shown below, or either one of them.
【0029】圧延終了後、このような圧延板材に対し、
440〜580℃の範囲内の温度に3℃/秒以上の加熱
速度で加熱して、その温度に達して後即座に、又は12
0秒間以下の期間保持した後、100℃まで2℃/秒以
上の冷却速度で急速冷却するといった条件の熱処理を施
す。この処理により組織が均一化し、結晶粒の平均アス
ペクト比が1.3以下に調整され、さらに加工歪が除去
され、結果としてプレス成形性を向上させることができ
る。また、この熱処理は、焼付硬化に対する寄与が大き
いAl−Cu−Mg系の金属間化合物の溶体化を図り、
焼付硬化性の向上を達成するものである。この場合に、
加熱温度が440℃未満では、上述のような効果を十分
に得ることができない。また、加熱速度が3℃/秒未満
であったり、加熱温度が580℃を超えたり、保持時間
が120秒よりも長かったりすると、結晶粒の一部が異
常粒成長を起こしてしまう。さらに、100℃までの冷
却速度が2℃/秒未満では、冷却中に上述の化合物が粗
大に析出し、プレス成形性及び焼付硬化性の点で望まし
くない。従って、上述のように製造条件が規定される。After rolling, for such a rolled plate material,
Heating to a temperature within the range of 440 to 580 °C at a heating rate of 3 °C/second or more, and immediately after reaching that temperature, or 12
After holding for a period of 0 seconds or less, heat treatment is performed under conditions of rapid cooling to 100° C. at a cooling rate of 2° C./second or more. This treatment makes the structure uniform, adjusts the average aspect ratio of crystal grains to 1.3 or less, and further eliminates processing strain, resulting in improved press formability. In addition, this heat treatment aims to solutionize the Al-Cu-Mg-based intermetallic compound that greatly contributes to bake hardening.
This achieves improved bake hardenability. In this case,
If the heating temperature is less than 440°C, the above-mentioned effects cannot be sufficiently obtained. Further, if the heating rate is less than 3° C./sec, the heating temperature exceeds 580° C., or the holding time is longer than 120 seconds, some of the crystal grains will undergo abnormal grain growth. Furthermore, if the cooling rate to 100° C. is less than 2° C./sec, the above-mentioned compounds will coarsely precipitate during cooling, which is undesirable in terms of press formability and bake hardenability. Therefore, the manufacturing conditions are defined as described above.
【0030】このような工程に加えて、上述の熱間圧延
と冷間圧延との間、又は冷間圧延と冷間圧延との間、又
はその両方で、1回又は2回以上の中間焼鈍を施すこと
が望ましい。この中間焼鈍を施すことにより、冷間圧延
において強圧下する際のエッジ割れを防止することがで
き、また再結晶核として機能するMg化合物が析出して
組織が均一化し、結果として成形性を向上させることが
できる。しかし、この際の温度が320℃未満ではその
効果が十分ではなく、また580℃を超えると共晶融解
が生じる。従って、中間焼鈍は320〜580℃の範囲
で行う。なお、この中間焼鈍は必須のプロセスではなく
、省プロセスの観点からはこの中間焼鈍を省略しても構
わない。[0030] In addition to such a step, one or more intermediate annealing may be performed between the hot rolling and the cold rolling described above, or between the cold rolling and the cold rolling, or both. It is desirable to apply By performing this intermediate annealing, it is possible to prevent edge cracking during heavy reduction during cold rolling, and Mg compounds that function as recrystallization nuclei are precipitated to homogenize the structure, resulting in improved formability. can be done. However, if the temperature at this time is less than 320°C, the effect is not sufficient, and if it exceeds 580°C, eutectic melting occurs. Therefore, intermediate annealing is performed in the range of 320 to 580°C. Note that this intermediate annealing is not an essential process, and may be omitted from the viewpoint of process saving.
【0031】このようにして得られたアルミニウム合金
板は、強度・延性バランスに優れ、破断伸びが30%以
上となり、また低温焼付による硬化性にも優れている。
従って、このようなアルミニウム合金板は自動車ボディ
−シ−ト用として好適である。The aluminum alloy plate thus obtained has an excellent balance of strength and ductility, has an elongation at break of 30% or more, and is also excellent in hardenability by low-temperature baking. Therefore, such an aluminum alloy plate is suitable for use in automobile body seats.
【0032】[0032]
【実施例】以下、この発明の実施例について説明する。
(実施例1)表1、表2に示すような成分・組成を有す
る合金を溶解−連続鋳造し、得られた鋳塊を面削した後
、530℃で10時間、さらに冷却の途中で450℃で
4時間の2段の均質化処理を実施し、次いで鋳片を40
0℃に加熱し、板厚4mmまで熱間圧延を行い、350
℃で1時間の中間焼鈍を施した。その後、室温に冷却し
、圧延率75%の冷間圧延を行って厚さ1mmの板材と
した。なお、熱間圧延の仕上り温度は280℃であった
。また、中間焼鈍は昇温・冷却ともに50℃/時間の徐
加熱及び徐冷で行った。この厚さ1mmの板材を530
℃まで10℃/秒の速度で加熱し、10秒間保持後、1
00℃まで20℃/秒の冷却速度で強制空冷を行った。[Embodiments] Examples of the present invention will be described below. (Example 1) An alloy having the components and compositions shown in Tables 1 and 2 was melted and continuously cast, and the resulting ingot was faced, heated to 530°C for 10 hours, and further heated to 450°C during cooling. A two-stage homogenization process was carried out for 4 hours at ℃, and then the slab was
Heated to 0℃, hot rolled to a plate thickness of 4mm,
Intermediate annealing was performed at ℃ for 1 hour. Thereafter, it was cooled to room temperature and cold-rolled at a rolling rate of 75% to obtain a plate material with a thickness of 1 mm. Note that the finishing temperature of hot rolling was 280°C. Further, intermediate annealing was performed by gradual heating and cooling at a rate of 50° C./hour for both heating and cooling. 530 pieces of this 1mm thick plate material
℃ at a rate of 10℃/sec, and after holding for 10 seconds,
Forced air cooling was performed at a cooling rate of 20°C/sec to 00°C.
【0033】このようにして製造した板材を室温で30
日間放置後、所定形状に切出し、引張試験(JIS5号
,引張方向:圧延方向)及びコニカルカップ試験(JI
SZ2249:試験工具17型)を実施し、結晶粒の平
均アスペクト比L/Hを測定した。なお、コニカルカッ
プ試験はプレス成形のシミュレ−トとして行い、張出し
と深絞りとの複合成形性をCCV(mm)により評価し
た(CCVが小さいほど成形性に優れている)。また、
結晶粒形状はGa処理によりミクロ組織を現出し、サン
プル数50として切断法により求めた。さらに、プレス
成形後の塗装焼付をシミュレ−トするために、170℃
で30分間の熱処理(焼付に対応)を行い、その後もう
一度上述した熱処理後の試験と同一条件で引張試験を行
った。[0033] The plate material thus produced was heated at room temperature for 30 minutes.
After standing for several days, it was cut into a predetermined shape and subjected to a tensile test (JIS No. 5, tensile direction: rolling direction) and a conical cup test (JIS No. 5, tensile direction: rolling direction).
SZ2249: test tool type 17) was carried out to measure the average aspect ratio L/H of crystal grains. The conical cup test was conducted as a simulation of press forming, and the combined formability of overhang and deep drawing was evaluated by CCV (mm) (the smaller the CCV, the better the formability). Also,
The crystal grain shape was determined by a cutting method using 50 samples after exposing the microstructure by Ga treatment. Furthermore, in order to simulate paint baking after press forming, the temperature was 170°C.
A heat treatment (corresponding to baking) was performed for 30 minutes, and then a tensile test was performed once again under the same conditions as the test after the heat treatment described above.
【0034】これらの試験結果を表3、4に示す。また
、コニカルカップ試験後の表面性状も併記した。なお、
焼付シミュレ−ト後の降伏強度から、最終熱処理後の降
伏強度を引いた値で焼付硬化を把握した。The results of these tests are shown in Tables 3 and 4. The surface properties after the conical cup test are also listed. In addition,
Bake hardening was determined by subtracting the yield strength after final heat treatment from the yield strength after simulated baking.
【0035】なお、表1の合金番号1〜17は本発明の
組成範囲内の実施例であり、表2の合金番号18〜35
はその範囲から外れる比較例である。なお、合金番号3
3〜35は従来からボディ−シ−ト用に用いられている
合金であり、夫々2036,5182,6010に相当
するものである。Alloy numbers 1 to 17 in Table 1 are examples within the composition range of the present invention, and alloy numbers 18 to 35 in Table 2
is a comparative example that falls outside the range. In addition, alloy number 3
3 to 35 are alloys conventionally used for body seats, and correspond to 2036, 5182, and 6010, respectively.
【0036】表3から明らかなように、実施例である合
金番号1〜17は平均アスペクト比が1.3以下で、破
断伸びが30%以上と高く、CCVも良好で優れた成形
性が得られた。また、焼付硬化も降伏強度で3kgf
/mm2 以上と高い値を有し、焼付後の強度と焼付前
の伸びのバランスを表わすYSBH×El(降伏強度×
伸び)及びTSBH×El(引張強度×伸び)が高いこ
とが確認された。As is clear from Table 3, alloy numbers 1 to 17, which are examples, have an average aspect ratio of 1.3 or less, a high elongation at break of 30% or more, a good CCV, and excellent formability. It was done. In addition, the bake hardening has a yield strength of 3 kgf.
YSBH x El (yield strength x
Elongation) and TSBH x El (tensile strength x elongation) were confirmed to be high.
【0037】これに対して、表2に示す比較例の合金番
号18〜35は、表4から明らかなように、平均アスペ
クト比が1.3以下であっても、成形性及び焼付硬化性
のうち双方又は一方が実施例よりも劣っていた。例えば
焼付硬化に寄与する成分であるMg及びCuの含有量が
低い合金番号18、及び焼付硬化性を低下させる成分で
あるZnの含有量が多い合金番号25は、焼付硬化性が
低く、2kgf /mm2 程度であった。また、Si
,Mn,Cr,Zr,V,Ti−B,Feの量が多い合
金番号22,24,26,27,28,29,31は伸
びが低く、平均アスペクト比が1.3以上であるため、
成形性に劣り、歪模様が生じやすい。On the other hand, as is clear from Table 4, alloy numbers 18 to 35 of the comparative examples shown in Table 2 have poor formability and bake hardenability even if the average aspect ratio is 1.3 or less. Both or one of them was inferior to the example. For example, alloy number 18, which has a low content of Mg and Cu, which are components that contribute to bake hardening, and alloy number 25, which has a high content of Zn, which reduces bake hardenability, has low bake hardenability and has a 2 kgf/ It was about mm2. Also, Si
, Mn, Cr, Zr, V, Ti-B, and alloy numbers 22, 24, 26, 27, 28, 29, and 31, which have large amounts of Fe, have low elongation and average aspect ratios of 1.3 or more.
It has poor moldability and tends to produce distorted patterns.
【0038】合金番号33,34,35の従来材は、焼
付硬化性がなく、また破断伸びも低いため、強度・伸び
バランスに劣っていた。Conventional materials with alloy numbers 33, 34, and 35 lacked bake hardenability and had low elongation at break, resulting in poor strength/elongation balance.
【0039】図1の座標で示すように、本発明で規定し
たMg−Cuの範囲よりもMg,Cuの量が多い合金番
号19,20は伸びが低かった。また、この範囲よりも
Mg,Cuが低い合金番号18は逆に強度が不十分であ
った。すなわち、図1の範囲を外れると、強度・伸びバ
ランスの値が低いことが確認された。As shown by the coordinates in FIG. 1, Alloy Nos. 19 and 20, which contained more Mg and Cu than the Mg-Cu range specified in the present invention, had low elongation. On the other hand, alloy No. 18 with Mg and Cu lower than this range had insufficient strength. That is, it was confirmed that the value of the strength/elongation balance is low when the thickness falls outside the range shown in FIG.
【0040】図2にSi量とCCVとの関係を示すが、
この図に示すように、Si量が本発明の範囲外の場合(
合金番号21,22)に、CCV特性が低く、成形性に
劣ることが確認された。
(実施例2)次に、表1に示した合金のうち、合金番号
4の組成を有する鋳塊を使用し、表5に示す製造条件で
合金板材を製造した。なお、表5に特に記載されていな
い処理については実施例1の条件を採用した(圧延条件
等)。なお、表3中記号A〜Eは本発明に係る製造方法
の範囲内の実施例であり、記号F〜Mはその範囲から外
れる比較例である。FIG. 2 shows the relationship between Si content and CCV.
As shown in this figure, when the amount of Si is outside the range of the present invention (
It was confirmed that alloy numbers 21 and 22) had low CCV properties and poor formability. (Example 2) Next, an alloy plate material was manufactured under the manufacturing conditions shown in Table 5 using an ingot having the composition of alloy number 4 among the alloys shown in Table 1. Note that for treatments not specifically listed in Table 5, the conditions of Example 1 were adopted (rolling conditions, etc.). Note that symbols A to E in Table 3 are examples within the range of the manufacturing method according to the present invention, and symbols F to M are comparative examples outside of that range.
【0041】このようにして製造した板材について実施
例1と同様の評価試験を行った。その結果も表5に併記
する。[0041] Evaluation tests similar to those in Example 1 were conducted on the plate material thus produced. The results are also listed in Table 5.
【0042】表5から明らかなように、本発明の条件を
満足しない比較例は伸び及び成形性、あるいは焼付硬化
性が不十分であることが確認された。As is clear from Table 5, it was confirmed that the comparative examples that did not satisfy the conditions of the present invention had insufficient elongation, formability, or bake hardenability.
【0043】例えば、比較例のG,I,Lのように均質
化処理温度、中間焼鈍処理温度あるいは溶体化焼入の加
熱温度が高いと成形性に劣りGとIでは歪模様が発生し
、比較例Jのように溶体化焼入の冷却速度が低かったり
、Fのように均質化処理温度が低いと、焼付硬化性に劣
ることが確認された。また、溶体化焼入の加熱温度が低
い比較例Mでは平均アスペクト比が1.3を超えており
伸びも低いため、成形性に劣り歪模様が発生した。また
、十分な焼付硬化性が得られないため、強度・伸びバラ
ンスが低かった。溶体化焼入の加熱時間が長い比較例K
及び溶体化焼入における加熱速度が小さいHの場合には
、異常粒成長が生じ、成形性が劣っており、歪模様が発
生していることが確認された。For example, when the homogenization treatment temperature, intermediate annealing treatment temperature, or solution quenching heating temperature is high, as in Comparative Examples G, I, and L, the formability is poor and distortion patterns occur in G and I. It was confirmed that when the cooling rate of solution hardening was low as in Comparative Example J, or when the homogenization temperature was low as in Comparative Example F, the bake hardenability was poor. Furthermore, in Comparative Example M, in which the heating temperature for solution quenching was low, the average aspect ratio exceeded 1.3 and the elongation was low, resulting in poor formability and distortion patterns. Furthermore, since sufficient bake hardenability was not obtained, the balance between strength and elongation was low. Comparative example K with long heating time for solution quenching
In the case of H, in which the heating rate in solution quenching is low, it was confirmed that abnormal grain growth occurred, the formability was poor, and a distorted pattern was generated.
【0044】[0044]
【発明の効果】この発明によれば、強度−延性バランス
、プレス成形性、及び低温・短時間の塗装焼付の際の焼
付硬化能が従来のアルミニウム合金板よりも優れており
、プレス成形性と塗装焼付後の耐デント性が要求される
自動車ボディ−シ−ト用等として好適なアルミニウム合
金板及びその製造方法が提供される。Effects of the Invention According to the present invention, strength-ductility balance, press formability, and bake hardening ability during low-temperature, short-time paint baking are superior to conventional aluminum alloy plates, and press formability and Provided are an aluminum alloy plate suitable for use in automobile body seats, etc., which requires dent resistance after paint baking, and a method for manufacturing the same.
【0045】[0045]
【表1】[Table 1]
【0046】[0046]
【表2】[Table 2]
【0047】[0047]
【表3】[Table 3]
【0048】[0048]
【表4】[Table 4]
【0049】[0049]
【表5】[Table 5]
【図1】Mg及びCuの含有量の範囲を示す図。FIG. 1 is a diagram showing the range of Mg and Cu contents.
【図2】Si含有量とCCV特性との関係を示す図。FIG. 2 is a diagram showing the relationship between Si content and CCV characteristics.
Claims (5)
Cuを0.25〜3.0、Siを0.02〜0.15%
、Feを0.03〜0.25%、Tiを0.005〜0
.15%、Bを0.0002〜0.05%、Znを0.
10%以下の範囲で含有し、かつMg及びCuが、Mg
−Cuの座標において、その座標点を(Mg%,Cu%
)で表した場合に、図1に示す(8.0,0.25)、
(4.0,0.25)、(1.5,0.8)、(1.5
,3.0)、(8.0,1.0)の5点で囲まれる範囲
であり、残部がAl及び0.1%以下の不可避的不純物
からなり、結晶粒における圧延方向の軸長をL、Lに対
して垂直の板厚方向の軸長をHとした場合に、その平均
アスペクト比L/Hが1.3以下であることを特徴とす
る強度・延性バランス及び焼付硬化性に優れたプレス成
形用アルミニウム合金板。Claim 1: 1.5 to 8.0% Mg by weight;
Cu 0.25-3.0%, Si 0.02-0.15%
, Fe 0.03~0.25%, Ti 0.005~0
.. 15%, B 0.0002-0.05%, Zn 0.
Mg and Cu are contained within a range of 10% or less, and Mg and Cu are
-Cu coordinates, set the coordinate point to (Mg%, Cu%
), as shown in Figure 1 (8.0, 0.25),
(4.0, 0.25), (1.5, 0.8), (1.5
, 3.0), (8.0, 1.0), the remainder consists of Al and unavoidable impurities of 0.1% or less, and the axial length of the grain in the rolling direction is Excellent strength/ductility balance and bake hardenability characterized by an average aspect ratio L/H of 1.3 or less, where H is the axial length in the plate thickness direction perpendicular to L and L. Aluminum alloy plate for press forming.
n、0.01〜0.15%のCr、0.01〜0.12
%のZr、及び0.01〜0.18%のVのうち1種又
は2種以上をさらに含んでいることを特徴とする請求項
1に記載の強度・延性バランス及び焼付硬化性に優れた
プレス成形用アルミニウム合金板。2. 0.01 to 0.15% M by weight %
n, 0.01-0.15% Cr, 0.01-0.12
% of Zr, and 0.01 to 0.18% of V. Aluminum alloy plate for press forming.
Cuを0.25〜3.0、Siを0.02〜0.15%
、Feを0.03〜0.25%、Tiを0.005〜0
.15%、Bを0.0002〜0.05%、Znを0.
10%以下の範囲で含有し、かつMg及びCuが、Mg
−Cuの座標において、その座標点を(Mg%,Cu%
)で表した場合に、図1に示す(8.0,0.25)、
(4.0,0.25)、(1.5,0.8)、(1.5
,3.0)、(8.0,1.0)の5点で囲まれる範囲
であり、残部がAl及び0.1%以下の不可避的不純物
からなるアルミニウム合金の鋳塊に対し、450〜58
0℃の範囲内の温度で1段又は多段の均質化処理を施し
た後、この鋳塊を熱間圧延及び冷間圧延することにより
所望の板厚とし、次いで440〜580℃の範囲内の温
度まで3℃/秒以上の加熱速度で加熱してその温度で0
〜120秒間保持し、その後100℃まで2℃/秒以上
の冷却速度で冷却することを特徴とする強度・延性バラ
ンス及び焼付硬化性に優れたプレス成形用アルミニウム
合金板の製造方法。3. 1.5 to 8.0% Mg by weight;
Cu 0.25-3.0%, Si 0.02-0.15%
, Fe 0.03~0.25%, Ti 0.005~0
.. 15%, B 0.0002-0.05%, Zn 0.
Mg and Cu are contained within a range of 10% or less, and Mg and Cu are
-Cu coordinates, set the coordinate point to (Mg%, Cu%
), as shown in Figure 1 (8.0, 0.25),
(4.0, 0.25), (1.5, 0.8), (1.5
, 3.0), (8.0, 1.0), and the balance is Al and 0.1% or less of unavoidable impurities for an aluminum alloy ingot. 58
After one-stage or multi-stage homogenization treatment at a temperature within the range of 0°C, the ingot is hot-rolled and cold-rolled to a desired thickness, and then homogenized at a temperature within the range of 440 to 580°C. Heating at a heating rate of 3℃/second or higher until the temperature reaches 0.
A method for producing an aluminum alloy plate for press forming with excellent strength/ductility balance and bake hardenability, which comprises holding the plate for ~120 seconds and then cooling to 100°C at a cooling rate of 2°C/second or more.
%で、0.01〜0.15%のMn、0.01〜0.1
5%のCr、0.01〜0.12%のZr、及び0.0
1〜0.18%のVのうち1種又は2種以上をさらに含
んでいることを特徴とする請求項3に記載の強度・延性
バランス及び焼付硬化性に優れたプレス成形用アルミニ
ウム合金板の製造方法。4. The aluminum alloy ingot contains 0.01 to 0.15% Mn, 0.01 to 0.1% by weight.
5% Cr, 0.01-0.12% Zr, and 0.0
The aluminum alloy plate for press forming with excellent strength/ductility balance and bake hardenability according to claim 3, further comprising one or more types of V in an amount of 1 to 0.18%. Production method.
圧延と冷間圧延との間、又はその両方で、320〜58
0℃の範囲内の温度における中間焼鈍処理を1回又は2
回以上実施することを特徴とする請求項3又は4に記載
の強度・延性バランス及び焼付硬化性に優れたプレス成
形用アルミニウム合金板の製造方法。5. 320 to 58 between hot rolling and cold rolling, or between cold rolling and cold rolling, or both.
Intermediate annealing treatment at a temperature within the range of 0°C once or twice
The method for producing an aluminum alloy plate for press forming with excellent strength/ductility balance and bake hardenability according to claim 3 or 4, wherein the method is carried out at least once.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3093684A JP2856936B2 (en) | 1991-03-30 | 1991-03-30 | Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3093684A JP2856936B2 (en) | 1991-03-30 | 1991-03-30 | Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04304339A true JPH04304339A (en) | 1992-10-27 |
JP2856936B2 JP2856936B2 (en) | 1999-02-10 |
Family
ID=14089239
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3093684A Expired - Fee Related JP2856936B2 (en) | 1991-03-30 | 1991-03-30 | Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2856936B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0613959A1 (en) * | 1993-03-03 | 1994-09-07 | Nkk Corporation | An aluminium alloy sheet for use in press forming , exhibiting excellent hardening property obtained by baking at low temperature for a short period of time and a method of manufacturing the same |
EP0616044A2 (en) * | 1993-03-03 | 1994-09-21 | Nkk Corporation | Method of manufacturing natural aging retardated aluminum alloy sheet |
EP0646655A1 (en) * | 1993-09-30 | 1995-04-05 | Nkk Corporation | Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardening ability |
EP0773303A1 (en) | 1995-11-10 | 1997-05-14 | Nkk Corporation | Aluminium alloy sheet manufacturing method therefor |
JP2007077485A (en) * | 2005-09-16 | 2007-03-29 | Kobe Steel Ltd | Aluminum alloy sheet for forming |
CN109825746A (en) * | 2019-04-10 | 2019-05-31 | 中铝瑞闽股份有限公司 | A kind of aluminium veneer curtain wall anodic oxidation aluminium base and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0247234A (en) * | 1988-08-09 | 1990-02-16 | Sumitomo Light Metal Ind Ltd | High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture |
JPH02118049A (en) * | 1988-10-27 | 1990-05-02 | Sky Alum Co Ltd | Aluminum alloy rolled sheet for forming and its manufacture |
JPH02118050A (en) * | 1988-10-27 | 1990-05-02 | Sky Alum Co Ltd | Aluminum alloy rolled sheet for forming and its manufacture |
JPH04246148A (en) * | 1991-01-31 | 1992-09-02 | Sky Alum Co Ltd | Rolled aluminum alloy sheet excellent in formability and its manufacture |
-
1991
- 1991-03-30 JP JP3093684A patent/JP2856936B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0247234A (en) * | 1988-08-09 | 1990-02-16 | Sumitomo Light Metal Ind Ltd | High strength aluminum alloy for forming having suppressed age hardenability at room temperature and its manufacture |
JPH02118049A (en) * | 1988-10-27 | 1990-05-02 | Sky Alum Co Ltd | Aluminum alloy rolled sheet for forming and its manufacture |
JPH02118050A (en) * | 1988-10-27 | 1990-05-02 | Sky Alum Co Ltd | Aluminum alloy rolled sheet for forming and its manufacture |
JPH04246148A (en) * | 1991-01-31 | 1992-09-02 | Sky Alum Co Ltd | Rolled aluminum alloy sheet excellent in formability and its manufacture |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0613959A1 (en) * | 1993-03-03 | 1994-09-07 | Nkk Corporation | An aluminium alloy sheet for use in press forming , exhibiting excellent hardening property obtained by baking at low temperature for a short period of time and a method of manufacturing the same |
EP0616044A2 (en) * | 1993-03-03 | 1994-09-21 | Nkk Corporation | Method of manufacturing natural aging retardated aluminum alloy sheet |
US5580402A (en) * | 1993-03-03 | 1996-12-03 | Nkk Corporation | Low baking temperature hardenable aluminum alloy sheet for press-forming |
EP0616044A3 (en) * | 1993-03-03 | 1997-05-02 | Nippon Kokan Kk | Method of manufacturing natural aging retardated aluminum alloy sheet. |
EP0646655A1 (en) * | 1993-09-30 | 1995-04-05 | Nkk Corporation | Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardening ability |
US5441582A (en) * | 1993-09-30 | 1995-08-15 | Nkk Corporation | Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardenability |
EP0773303A1 (en) | 1995-11-10 | 1997-05-14 | Nkk Corporation | Aluminium alloy sheet manufacturing method therefor |
JP2007077485A (en) * | 2005-09-16 | 2007-03-29 | Kobe Steel Ltd | Aluminum alloy sheet for forming |
JP4542004B2 (en) * | 2005-09-16 | 2010-09-08 | 株式会社神戸製鋼所 | Aluminum alloy sheet for forming |
CN109825746A (en) * | 2019-04-10 | 2019-05-31 | 中铝瑞闽股份有限公司 | A kind of aluminium veneer curtain wall anodic oxidation aluminium base and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP2856936B2 (en) | 1999-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5441582A (en) | Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardenability | |
US5460666A (en) | Method of manufacturing natural aging-retardated aluminum alloy sheet | |
EP0480402A1 (en) | Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability | |
JPH08232052A (en) | Production of aluminum alloy sheet for automobile outer sheet | |
US5580402A (en) | Low baking temperature hardenable aluminum alloy sheet for press-forming | |
JPH04304339A (en) | Aluminum alloy sheet for press forming excellent in balance between strength and ductility and baking hardenability and its production | |
JPH05112840A (en) | Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture | |
JP2595836B2 (en) | Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same | |
JPS61272342A (en) | Aluminum alloy sheet excelling in formability and baking hardening and its production | |
JPH0543974A (en) | Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production | |
JPH0547615B2 (en) | ||
JPH04263034A (en) | Aluminum alloy sheet for press forming excellent in baking hardenability and its production | |
JPH04214834A (en) | Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture | |
JPS6227544A (en) | Heat-treated-type aluminum alloy rolled sheet for forming working and its production | |
JP3686146B2 (en) | Method for producing aluminum alloy sheet for forming | |
JP3218099B2 (en) | Method for producing aluminum alloy sheet with low ear ratio and excellent formability | |
JP3359428B2 (en) | Manufacturing method of aluminum alloy sheet for forming | |
JPH07173565A (en) | Aluminum alloy sheet for press forming excellent in curability for coating/baking | |
JPH0633179A (en) | Aluminum alloy sheet for press forming excellent in hardenability by high-temperature short-time baking and its production | |
JPH01225738A (en) | Heat treatment-type aluminum alloy rolled plate for forming and its manufacture | |
JP3543362B2 (en) | Method for producing aluminum alloy sheet excellent in formability and bake hardenability | |
JPH0860314A (en) | Production of aluminum alloy sheet for forming | |
JP3539996B2 (en) | Manufacturing method of high strength aluminum alloy sheet for forming | |
JPH10310835A (en) | Aluminum alloy sheet excellent in strength, stretcher strain mark resistance and bendability and its production | |
JPH04147936A (en) | High strength aluminum alloy sheet for drawing and its manufacture |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |