JPH04147936A - High strength aluminum alloy sheet for drawing and its manufacture - Google Patents
High strength aluminum alloy sheet for drawing and its manufactureInfo
- Publication number
- JPH04147936A JPH04147936A JP27163090A JP27163090A JPH04147936A JP H04147936 A JPH04147936 A JP H04147936A JP 27163090 A JP27163090 A JP 27163090A JP 27163090 A JP27163090 A JP 27163090A JP H04147936 A JPH04147936 A JP H04147936A
- Authority
- JP
- Japan
- Prior art keywords
- less
- aluminum alloy
- strength
- ingot
- cold rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000838 Al alloy Inorganic materials 0.000 title claims abstract description 27
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 238000005097 cold rolling Methods 0.000 claims abstract description 13
- 238000001816 cooling Methods 0.000 claims abstract description 13
- 229910052802 copper Inorganic materials 0.000 claims abstract description 9
- 238000011282 treatment Methods 0.000 claims abstract description 9
- 229910052742 iron Inorganic materials 0.000 claims abstract description 8
- 238000005098 hot rolling Methods 0.000 claims abstract description 6
- 238000000137 annealing Methods 0.000 claims abstract description 5
- 238000000034 method Methods 0.000 claims abstract description 5
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 5
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 3
- 239000013078 crystal Substances 0.000 claims description 16
- 238000010438 heat treatment Methods 0.000 claims description 14
- 239000000126 substance Substances 0.000 claims description 10
- 238000005482 strain hardening Methods 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 5
- 238000000265 homogenisation Methods 0.000 claims description 4
- 229910052782 aluminium Inorganic materials 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 abstract description 7
- 229910045601 alloy Inorganic materials 0.000 abstract description 6
- 239000000956 alloy Substances 0.000 abstract description 6
- 230000001105 regulatory effect Effects 0.000 abstract description 4
- 229910052804 chromium Inorganic materials 0.000 abstract description 3
- 229910052720 vanadium Inorganic materials 0.000 abstract description 3
- 238000002791 soaking Methods 0.000 abstract 2
- 229910019086 Mg-Cu Inorganic materials 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 13
- 238000012545 processing Methods 0.000 description 6
- 239000000047 product Substances 0.000 description 5
- 238000010422 painting Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000002844 melting Methods 0.000 description 3
- 230000008018 melting Effects 0.000 description 3
- 238000007670 refining Methods 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 239000010960 cold rolled steel Substances 0.000 description 2
- 230000005496 eutectics Effects 0.000 description 2
- 238000009776 industrial production Methods 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 229920006395 saturated elastomer Polymers 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 230000037303 wrinkles Effects 0.000 description 1
Landscapes
- Metal Rolling (AREA)
Abstract
Description
(産業上の利用分野)
本発明は、絞り加工用高強度アルミニウム合金板に係り
、より詳細には、自動車ボディーパネルやドアーのイン
ナーパネル材、オイルパン等のように絞り成形加工の後
、焼付塗装が行われる製品に適し、絞り加工性に優れ、
焼付塗装後の強度が高い絞り加工用高強度アルミニウム
合金板とその製造方法に関する。
(従来の技術及び解決しようとする課題)一般に、自動
車ボディパネル、ドアーのインナーパネル材、オイルパ
ン等の部品用材料としては冷延鋼板が多用されていたが
、自動車の高級化。
高機能化に伴って車両重量が増加してきており、性能維
持のため、更には、最近の炭酸ガスによる地球温暖化問
題に起因する北米CAFE規制強化に対応するため、車
体の軽量化が行われており。
従来の冷延鋼板に代えて、各種部材にアルミニウム合金
板を使用する要望が高まっている。
このような用途に使用されるアルミニウム合金板におい
ては、絞り加工性が良く、塗装焼付後の強度が高いこと
が要求されている。
ところが、従来、これらの用途にはMgを2.4〜5%
含有するAl−Mg系合金(5052,5154,51
82,5083)などの軟質材が実用化されようとして
いる。
しかし、上述の5052.5154合金等は、比較的絞
り加工性は良好であるものの1強度が十分とは云えず、
強度確保のためには板厚を厚くせざるを得ない。また、
5086.5182.5083合金は、強度は比較的高
いが、絞り加工性が十分とは云えず、最近の成形加工品
の形状の複雑化には対応できず、加工が厳しい場合には
割れが発生すると云う問題がある。
また、加工後の塗装焼付けで加工歪の緩和により強度が
低下したり、更には耐糸錆性も悪くなり易いと云う問題
がある。
本発明は、上記従来技術の問題点を解決して。
従来材の5052.5154合金と同等以上の絞り加工
性を有し、更に5086.5182,5083合金と同
等以上の強度を有する絞り加工用アルミニウム合金板を
提供し、またその製造方法を提供することを目的とする
ものである。
(課題を解決するための手段)
本発明者は、か)る目的を達成するために鋭意研究を重
ねた結果、Mg、Cuを含む成分組成の最適化、及び板
表面及び断面の結晶粒の大きさの最適化、更には鋳塊の
結晶粒度、冷間圧延加工率、最終板厚での熱処理条件等
を規制することにより、可能であることを見い出し、こ
こに本発明をなしたものである。
すなわち、本発明は、Mg:4〜8%、Cu:O。
05〜0.7%、Mn:0.01−0.3%及びBe:
0.002〜0.01%を含有し、且つ、Fe:0゜1
%以下、Si:0.1%以下で、Fe+Si:0.15
%以下に規制し、必要に応じて更にCr:0.2%以下
、Zr:0.2%以下及びV:0.2%以下のうちの1
種又は2種以上の合計が0.2%以下で含有し、残部が
Al及び不可避的不純物からなるアルミニウム合金板で
あって、結晶粒が等軸粒で且つ板表面及び断面の平均結
晶粒径が30〜100μ園の範囲であることを特徴とす
る絞り加工性に優れた高強度アルミニウム合金板を要旨
とするものである。
また、その製造方法は、上記化学成分を有するアルミニ
ウム合金について、結晶粒径が500μ■以下の鋳塊を
用い、均質化処理後、熱間圧延、冷間圧延し、中間焼鈍
を行い1次いで最終の冷間加工率10〜50%を与えて
所定の板厚とし、最終熱処理として450〜540℃の
加熱を行った後、200℃/■in以上で冷却すること
を特徴とするものである。
以下に本発明を更に詳細に説明する。
(作用)
まず、本発明における化学成分の限定理由を示す。
Mg:
Mgは本発明で対象とする系のアルミニウム合金におい
て必須の基本成分であり1強度及び絞り加工性の向上に
寄与する元素である。しかし、Mg量が4%未満ではそ
の効果が十分に得られず。
また8%を超えると、強度は高くなるものの、圧延加工
性が悪くなり、圧延時に割れが起り易く、通常の工業的
製造が難゛シくなる。したがって、Mg量は4〜8%の
範囲とする。
Cu:
Cuは、Mgと同様に、強度、絞り加工性向上に寄与す
る元素であり、特にMgと共存させるとその効果は一層
大きくなる。特に焼付塗装時の軟化を低減する効果が大
きい。しかし、Cu量が0.05%未満ではその効果は
小さく、また0、7%を超えると、強度向上には効果が
あるものの、共晶融解を起し易く、工業的製造が難しく
なる。したがって、Cu量は0.05〜0.7%の範囲
とする。
Mn:
Mnは強度向上、再結晶粒微細化に寄与する元素である
が、0.01%未満ではその効果が少なく、一方、0.
3%を超えると、強度は高くなるものの、再結晶粒が微
細化しすぎ、更に粗大な晶出物を生成し、絞り加工性を
劣化させるため好ましくない。したがって、Mn量は0
.01〜0.3%の範囲とする。
Be:
Beは溶解鋳造時の溶湯の酸化防止に寄与する元素であ
り、特にMg量が多くなるほどその効果は大きい。しか
し、0.002%未満ではその効果は小さく、また0、
01%を超えるとその効果が飽和し、絞り加工性が劣化
する傾向になり好ましくない。したがって、BeJiは
0.OQ 2〜0゜01%の範囲とする。
Fe、Si:
Fe、Siは強度を付与する元素であるが、含有量が増
加するにつれて粗大な晶出物が生し、絞り加工性を低下
させるようになる。特に各々0.1%を超えて含有する
と、絞り加工性の低下が大きくなる。したがって、Fe
、Si量がそれぞれ0゜1%以下で、かつFe十Si量
を0.15%以下に規制する。
Cr、 Zr、V :
Cr、Zr、Vは強度向上及び再結晶粒微細化に有効な
元素であるので、必要に応じて、それらの1種以上を適
量で添加できる。各々の単独添加では0.2%以下でそ
の効果が得られるが、2種以上の合計含有量が0.2%
以下では絞り加工性に影響を及ぼさないものの、0.2
%を超えると粗大な晶出物を生成し、絞り加工性を劣化
させるため好ましくない。
次に、上記化学成分を有するアルミニウム合金板の組織
(結晶粒径)について説明する6結晶粒径は成形性、特
に絞り加工性に影響を及ぼす因子である。本発明では、
板表面及び板断面で等軸粒であり、且つその平均結晶粒
径が30〜100μ腸の範囲である必要がある。平均結
晶粒径が30μm未満では絞り加工性が悪く、また高M
g特有のストレッチャーストレインマーク(ssマーク
)が発生し易くなる。一方、100μmを超えると絞り
加工性の改善効果は飽和するし、逆に絞り加工後の表面
に肌荒れを生じ好ましくない。
このため、平均結晶粒径は30〜100μmの範囲とし
、好ましくは40〜80μ■の範囲である。
更に、本発明の製造プロセスについて説明する。
まず、上記化学成分を有するアルミニウム合金は、常法
により溶製し、鋳造して鋳塊を得る。
但し、鋳塊の結晶粒径は、製品の結晶粒微細化に大きく
影響を及ぼすので、500μI以下とする必要がある。
これは、上記組成のアルミニウム合金鋳塊を均質化処理
し、熱間圧延、冷間圧延をして所定の板厚にする時、鋳
塊の結晶粒径が5゜Oμ量を超えるものでは、その後の
工程によっても製品の結晶粒の微細化の効果が少なく、
絞り加工性を悪くするためである。
この鋳塊に対する均質化処理、熱間圧延までは、通常の
方法を用いれば良い。例えば、上記鋳塊に必要に応じて
400〜520℃で2〜48時間の1段或いは2段の均
質化処理を施し、常法に従って熱間圧延を行う。なお、
その後、必要に応じて350〜b
ても良い。
次いで冷間圧延を行う。但し、冷間圧延は再私有の冷間
加工率10〜50%の範囲で圧延し、所定の板厚とする
。冷間加工率が10%未満ではその後の熱処理により均
一な結晶粒のものが得られず、絞り加工性が不均一にな
ったり、肌荒れ等を起し易くなる。また50%を超える
と再結晶粒径が微細化されすぎ、絞り加工性が劣るよう
になる。
なお、この場合、冷間圧延の途中で、中間焼鈍を常法の
条件(330〜b
行っても良い。
次に最終熱処理として450〜540℃の温度範囲で溶
体化処理し、200℃/+++in以上の冷却速度で冷
却する。この熱処理は、絞り加工性1強度への寄与が大
きく、結晶粒径の均一化、並びにMg、Cuの固溶化に
より焼付塗装時の強度軟化を少なくすることを目的とす
るものである。
溶体化温度が450℃未満では、Mg、Cu等の固溶体
化や、再結晶粒径微細化が不十分となり、絞り加工性が
悪くなると共に、強度が低下する。
また540℃を超えると、共晶融解を生しる恐れがある
ので避けるべきである。
溶体化処理後の冷却では、Mg、Cu等の固溶体化を図
り、絞り加工性の向上、強度軟化の防止のために、20
0℃/+min以上の冷却速度とする必要がある。20
0℃/min未満では、Mg、Cuの化合物が粒界及び
粒内に析出し、絞り加工性を低下させると共に強度軟化
防止の効果が少なくなるので好ましくない。なお、この
ような冷却速度を得るための方法としては、強制空冷や
水冷等があるが、焼入れ時の歪低減の観点からすると強
制空冷を適用するのが望ましい。
(実施例)
次に本発明の実施例を示す。
夫庭貫↓
第1表及び第2表に示す化学成分及び結晶粒径を有する
アルミニウム合金の500mm厚の鋳塊に480℃X4
時間の均質化処理を施した後、500〜280℃間で板
厚3.5mmまで熱間圧延し、続いて板厚1.5+am
まで冷間圧延を行い、その後中間焼鈍として400〜5
00℃に急速加熱し30秒以下保持後、400℃/wi
nの平均冷却速度で急冷した。次いで板厚1smまで冷
間圧延(最終冷間加工率30%)を行った。
この1n+m厚のアルミニウム合金板を530℃に急速
加熱し、その温度に30秒間保持した後、6oO℃/w
inの平均冷却速度で急冷する最終熱処理を施し、供試
材とした。
得られた供試材について、素材の機械的性質及び小型試
験片による絞り加工性を調べると共に、5%ストレッチ
後の強度、この加工後で焼付塗装に相当する加熱(17
5℃×20分)後の強度について調べた。その結果を第
2表に併記する。
なお、絞り加工性は、エリクセン試験機を使用して以下
の条件で絞り加工を行い、絞り深さ(mm)にて評価し
た。
絞り加工条件
ブランク径:90++uo口
ポンチ径:40+c++ロ
ダイス径:42゜4)口
rP:4.5mm
rd:3.0mm
しわ押え力=2.0tOn
第2表より明らかなように、本発明例はいずれも、絞り
深さが深く、且つ加工後の加熱による強度低下が少なく
、絞り加工性及び強度が優れている。
一方、比較例は、絞り深さ、強度、加工後の加熱による
強度低下のいずれかが劣っていることがわかる。(Industrial Application Field) The present invention relates to a high-strength aluminum alloy plate for drawing, and more specifically, it is used for drawing and forming, such as automobile body panels, door inner panel materials, oil pans, etc. Suitable for products that will be painted, with excellent drawing processability.
The present invention relates to a high-strength aluminum alloy plate for drawing that has high strength after baking coating, and a method for manufacturing the same. (Prior art and problems to be solved) Generally, cold-rolled steel sheets have been widely used as materials for parts such as automobile body panels, door inner panel materials, and oil pans, but as automobiles become more sophisticated. The weight of vehicles is increasing with the increase in functionality, and in order to maintain performance and to comply with the recent tightening of North American CAFE regulations due to the issue of global warming due to carbon dioxide gas, the weight of the vehicle body has been reduced. I'm here. There is an increasing demand for using aluminum alloy plates in various parts instead of conventional cold-rolled steel plates. Aluminum alloy plates used in such applications are required to have good drawing workability and high strength after baking the paint. However, conventionally, Mg was added at 2.4 to 5% for these applications.
Containing Al-Mg alloy (5052, 5154, 51
Soft materials such as 82, 5083) are about to be put into practical use. However, although the above-mentioned 5052.5154 alloy has relatively good drawability, it cannot be said that the strength is sufficient.
In order to ensure strength, the plate thickness must be increased. Also,
5086.5182.5083 alloy has relatively high strength, but its drawability is not sufficient, and it cannot handle the increasingly complex shapes of molded products these days, and cracks occur when processing is severe. Then there is a problem. In addition, there is a problem that strength decreases due to relaxation of processing strain during painting baking after processing, and furthermore, thread rust resistance tends to deteriorate. The present invention solves the problems of the prior art described above. To provide an aluminum alloy plate for drawing which has drawability equal to or higher than that of conventional 5052.5154 alloy and strength equal to or higher than 5086.5182,5083 alloy, and to provide a method for producing the same. The purpose is to (Means for Solving the Problems) As a result of intensive research to achieve the above object, the present inventor has optimized the component composition including Mg and Cu, and improved the crystal grains on the plate surface and cross section. We have discovered that this is possible by optimizing the size and further regulating the grain size of the ingot, cold rolling rate, heat treatment conditions at the final plate thickness, etc., and have hereby made the present invention. be. That is, in the present invention, Mg: 4 to 8%, Cu:O. 05-0.7%, Mn: 0.01-0.3% and Be:
Contains 0.002 to 0.01%, and Fe: 0°1
% or less, Si: 0.1% or less, Fe+Si: 0.15
% or less, and if necessary, one of Cr: 0.2% or less, Zr: 0.2% or less, and V: 0.2% or less.
An aluminum alloy plate containing a seed or a total of two or more types at 0.2% or less, and the remainder consisting of Al and unavoidable impurities, the crystal grains are equiaxed grains, and the average crystal grain size of the plate surface and cross section The object of the present invention is to provide a high-strength aluminum alloy plate with excellent drawing workability, which is characterized by a hardness in the range of 30 to 100 μm. In addition, the manufacturing method uses an aluminum alloy having the above-mentioned chemical composition, using an ingot with a crystal grain size of 500μ■ or less, followed by homogenization treatment, hot rolling, cold rolling, intermediate annealing, and then final It is characterized by giving a cold working rate of 10 to 50% to obtain a predetermined plate thickness, heating at 450 to 540°C as a final heat treatment, and then cooling at 200°C/inch or more. The present invention will be explained in more detail below. (Function) First, the reason for limiting the chemical components in the present invention will be explained. Mg: Mg is an essential basic component in the aluminum alloy targeted by the present invention, and is an element that contributes to improving strength and drawability. However, if the amount of Mg is less than 4%, the effect cannot be sufficiently obtained. If it exceeds 8%, although the strength increases, rolling workability deteriorates and cracks tend to occur during rolling, making normal industrial production difficult. Therefore, the Mg amount is in the range of 4 to 8%. Cu: Similar to Mg, Cu is an element that contributes to improving strength and drawing workability, and especially when it coexists with Mg, the effect becomes even greater. It is particularly effective in reducing softening during baking painting. However, if the Cu content is less than 0.05%, the effect is small, and if it exceeds 0.7%, although it is effective in improving strength, eutectic melting tends to occur, making industrial production difficult. Therefore, the amount of Cu is in the range of 0.05 to 0.7%. Mn: Mn is an element that contributes to improving strength and refining recrystallized grains, but if it is less than 0.01%, its effect is small;
If it exceeds 3%, although the strength increases, the recrystallized grains become too fine, producing even coarser crystallized substances, which deteriorates drawing workability, which is not preferable. Therefore, the amount of Mn is 0
.. The range is 0.01 to 0.3%. Be: Be is an element that contributes to preventing oxidation of the molten metal during melting and casting, and the effect is particularly great as the amount of Mg increases. However, the effect is small below 0.002%, and 0,
If it exceeds 0.01%, the effect will be saturated and drawing workability will tend to deteriorate, which is not preferable. Therefore, BeJi is 0. OQ shall be in the range of 2 to 0°01%. Fe, Si: Fe and Si are elements that impart strength, but as their content increases, coarse crystallized substances are formed, which reduces drawing workability. In particular, if each content exceeds 0.1%, the drawability will be significantly reduced. Therefore, Fe
, Si content is 0.1% or less, and Fe and Si content is regulated to 0.15% or less. Cr, Zr, V: Since Cr, Zr, and V are elements effective for improving strength and refining recrystallized grains, one or more of them can be added in an appropriate amount if necessary. The effect can be obtained when each individual addition is 0.2% or less, but the total content of two or more types is 0.2%.
Although it does not affect drawing workability below, 0.2
%, it is not preferable because coarse crystallized substances are produced and the drawing workability is deteriorated. Next, we will explain the structure (crystal grain size) of the aluminum alloy plate having the above chemical components.The grain size is a factor that affects formability, particularly drawing workability. In the present invention,
It is necessary that the grains are equiaxed on the plate surface and in the plate cross section, and that the average crystal grain size is in the range of 30 to 100 μm. If the average crystal grain size is less than 30 μm, drawing workability is poor and high M
Stretcher strain marks (SS marks) peculiar to G are more likely to occur. On the other hand, if it exceeds 100 μm, the effect of improving drawing workability is saturated, and on the other hand, the surface after drawing becomes rough, which is not preferable. Therefore, the average crystal grain size is in the range of 30 to 100 μm, preferably in the range of 40 to 80 μm. Furthermore, the manufacturing process of the present invention will be explained. First, an aluminum alloy having the above chemical components is melted by a conventional method and cast to obtain an ingot. However, since the crystal grain size of the ingot has a large effect on the grain refinement of the product, it needs to be 500 μI or less. This means that when an aluminum alloy ingot with the above composition is homogenized and then hot-rolled and cold-rolled to a predetermined thickness, if the crystal grain size of the ingot exceeds 5゜Oμ, Subsequent processes have little effect on refining the crystal grains of the product.
This is to worsen drawing workability. Conventional methods may be used for the homogenization treatment and hot rolling of this ingot. For example, if necessary, the ingot is subjected to one or two stages of homogenization treatment at 400 to 520°C for 2 to 48 hours, and then hot rolled according to a conventional method. In addition,
After that, it may be adjusted to 350-b as needed. Next, cold rolling is performed. However, the cold rolling is performed at a re-proprietary cold working ratio of 10 to 50% to obtain a predetermined thickness. If the cold working ratio is less than 10%, it will not be possible to obtain uniform crystal grains through subsequent heat treatment, and drawing workability will become uneven and roughness will likely occur. Moreover, if it exceeds 50%, the recrystallized grain size becomes too fine, resulting in poor drawing workability. In this case, in the middle of cold rolling, intermediate annealing may be performed under conventional conditions (330~B).Next, as a final heat treatment, solution treatment is performed at a temperature range of 450~540℃, followed by 200℃/+++in. Cool at the cooling rate above.This heat treatment has a large contribution to drawing workability 1 strength, and is aimed at reducing strength softening during baking painting by making the crystal grain size uniform and making Mg and Cu a solid solution. If the solution temperature is less than 450°C, the conversion of Mg, Cu, etc. into a solid solution and the recrystallization grain size refinement will be insufficient, resulting in poor drawing workability and a decrease in strength. If the temperature exceeds ℃, it should be avoided as it may cause eutectic melting.In cooling after solution treatment, Mg, Cu, etc. are made into a solid solution to improve drawing workability and prevent strength softening. for 20
It is necessary to set the cooling rate to 0° C./+min or more. 20
If it is less than 0° C./min, Mg and Cu compounds will precipitate at the grain boundaries and within the grains, reducing drawing workability and reducing the effect of preventing strength softening, which is not preferable. Note that methods for obtaining such a cooling rate include forced air cooling, water cooling, etc., but from the viewpoint of reducing strain during quenching, it is desirable to apply forced air cooling. (Example) Next, an example of the present invention will be shown. Fubainuki ↓ 480℃
After homogenizing for a long time, hot rolling was carried out between 500 and 280°C to a thickness of 3.5mm, and then the thickness was 1.5+am.
cold rolling to 400~5 as intermediate annealing.
After rapidly heating to 00℃ and holding for 30 seconds or less, 400℃/wi
It was rapidly cooled at an average cooling rate of n. Then, cold rolling was performed (final cold working rate: 30%) to a plate thickness of 1 sm. This 1n+m thick aluminum alloy plate was rapidly heated to 530℃, held at that temperature for 30 seconds, and then heated to 6oO℃/w.
A final heat treatment was performed to rapidly cool the sample at an average cooling rate of 1.5 in, and a test material was obtained. The mechanical properties of the obtained test material and the drawing workability using small test pieces were investigated, and the strength after 5% stretching and heating (17
The strength after 5°C x 20 minutes was examined. The results are also listed in Table 2. Note that drawing workability was evaluated by drawing depth (mm) by performing drawing using an Erichsen tester under the following conditions. Drawing processing conditions Blank diameter: 90++ UO punch diameter: 40+C++ Rodice diameter: 42° 4) Opening rP: 4.5mm rd: 3.0mm Wrinkle pressing force = 2.0tOn As is clear from Table 2, the present invention example All of them have a deep drawing depth, less decrease in strength due to heating after processing, and are excellent in drawing workability and strength. On the other hand, it can be seen that the comparative example is inferior in any of drawing depth, strength, and strength reduction due to heating after processing.
失】1引圀
第1表に示した化学成分を有するアルミニウム合金NQ
2(本発明範囲内)の鋳塊を使用し、実施例1と同一条
件で均質化処理、熱間圧延し、冷間圧延の最終加工率と
最終熱処理条件を変えて各々平均結晶粒径の異なる板を
製造し、絞り加工性、SSマーク等の影響を調査した。
その結果を第3表に示す。
第3表より明らかなように、本発明例はいずれも、絞り
深さが深く優れた絞り加工性を示すと共に、SSマーク
、肌あれとも良好である。
一方、比較例は、絞り加工性に劣っているが、或いは絞
り深さが深くとも肌あれが発生し、強度も低い。Aluminum alloy NQ having the chemical composition shown in Table 1
2 (within the scope of the present invention) was homogenized and hot-rolled under the same conditions as in Example 1, and the final reduction rate of cold rolling and final heat treatment conditions were changed to reduce the average grain size. Different plates were manufactured and the influence of drawability, SS mark, etc. was investigated. The results are shown in Table 3. As is clear from Table 3, all of the examples of the present invention have a deep drawing depth and exhibit excellent drawing workability, and are also good in terms of SS mark and surface roughness. On the other hand, the comparative example has poor drawing workability, or even if the drawing depth is deep, roughness occurs and the strength is low.
去】1(去
第1表に示した化学成分を有するアルミニウム合金Na
2 (本発明範囲内)について、第4表に示す種々の
条件(鋳塊結晶粒径、最終冷間加工率、溶体化処理温度
、冷却速度)にてアルミニウム合金板を製造し、それら
の条件の及ぼす影響について調査した。なお、他の条件
は実施例1と同様とした。
その結果を第5表に示す。
第5表より明らかなように、本発明例は強度及び絞り加
工性とも優れているのに対し、第4表の製造条件のうち
いずれかが本発明範囲外である比較例の場合は、強度や
絞り加工性が劣っている。1 (Aluminum alloy Na having the chemical components shown in Table 1)
2 (within the scope of the present invention), aluminum alloy plates were manufactured under various conditions (ingot crystal grain size, final cold working rate, solution treatment temperature, cooling rate) shown in Table 4, and those conditions were We investigated the influence of Note that other conditions were the same as in Example 1. The results are shown in Table 5. As is clear from Table 5, the examples of the present invention have excellent strength and drawing workability, whereas the comparative examples in which any of the manufacturing conditions in Table 4 are outside the scope of the present invention have excellent strength and drawability. Also, the drawability is poor.
(発明の効果)
以上詳述したように、本発明によれば、絞り加工性、塗
装焼付後の高強度が要求される成形加工品に使用される
アルミニウム合金板として、従来材の5052.515
4等々よりも優れた絞り加工性を有し、しかも塗装焼付
後の強度低下も少ないため、自動車のボディパネルやそ
の他の部品に適しており、自動車の軽量化に寄与すると
ころが大きい。(Effects of the Invention) As detailed above, according to the present invention, 5052.515 of the conventional material can be used as an aluminum alloy plate used for formed products that require drawing workability and high strength after painting baking.
It has better drawing workability than 4, etc., and has less strength loss after paint baking, so it is suitable for automobile body panels and other parts, and greatly contributes to reducing the weight of automobiles.
第1図は絞り深さを説明する図である。 特許出願人 株式会社神戸製鋼所 代理人弁理士 中 村 尚 FIG. 1 is a diagram illustrating drawing depth. Patent applicant: Kobe Steel, Ltd. Representative Patent Attorney Takashi Nakamura
Claims (3)
:0.05〜0.7%、Mn:0.01〜0.3%及び
Be:0.002〜0.01%を含有し、且つ、Fe:
0.1%以下、Si:0.1%以下で、Fe+Si:0
.15%以下に規制し、残部がAl及び不可避的不純物
からなるアルミニウム合金板であって、結晶粒が等軸粒
で且つ板表面及び断面の平均結晶粒径が30〜100μ
mの範囲であることを特徴とする絞り加工性に優れた高
強度アルミニウム合金板。(1) In weight% (the same applies hereinafter), Mg: 4 to 8%, Cu
:0.05-0.7%, Mn:0.01-0.3% and Be:0.002-0.01%, and Fe:
0.1% or less, Si: 0.1% or less, Fe+Si: 0
.. 15% or less, with the remainder consisting of Al and unavoidable impurities, the crystal grains are equiaxed grains, and the average crystal grain size on the plate surface and cross section is 30 to 100μ
A high-strength aluminum alloy plate with excellent drawing workability, which is characterized by a drawability in the range of m.
、Zr:0.2%以下及びV:0.2%以下のうちの1
種又は2種以上の合計が0.2%以下で含有する請求項
1に記載のアルミニウム合金板。(2) The aluminum alloy further contains one of Cr: 0.2% or less, Zr: 0.2% or less, and V: 0.2% or less.
The aluminum alloy plate according to claim 1, wherein the total content of one or more species is 0.2% or less.
ニウム合金について、結晶粒径が500μm以下の鋳塊
を用い、均質化処理後、熱間圧延、冷間圧延し、中間焼
鈍を行い、次いで最終の冷間加工率10〜50%を与え
て所定の板厚とし、最終熱処理として450〜540℃
の加熱を行った後、200℃/min以上で冷却するこ
とを特徴とする絞り加工性に優れた高強度アルミニウム
合金板の製造方法。(3) For an aluminum alloy having the chemical composition according to claim 1 or 2, using an ingot with a grain size of 500 μm or less, after homogenization treatment, hot rolling, cold rolling, and intermediate annealing, Next, a final cold working rate of 10 to 50% is applied to obtain a predetermined plate thickness, and a final heat treatment is performed at 450 to 540°C.
A method for producing a high-strength aluminum alloy plate with excellent drawing workability, the method comprising heating the plate and then cooling the plate at a rate of 200° C./min or more.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27163090A JPH04147936A (en) | 1990-10-09 | 1990-10-09 | High strength aluminum alloy sheet for drawing and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27163090A JPH04147936A (en) | 1990-10-09 | 1990-10-09 | High strength aluminum alloy sheet for drawing and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH04147936A true JPH04147936A (en) | 1992-05-21 |
Family
ID=17502753
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27163090A Pending JPH04147936A (en) | 1990-10-09 | 1990-10-09 | High strength aluminum alloy sheet for drawing and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH04147936A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0594509A1 (en) * | 1992-10-23 | 1994-04-27 | The Furukawa Electric Co., Ltd. | Process for manufacturing Al-Mg alloy sheets for press forming |
EP0681034A1 (en) * | 1994-05-06 | 1995-11-08 | The Furukawa Electric Co., Ltd. | A method of manufacturing an aluminum alloy sheet for body panel and the alloy sheet manufactured thereby |
US5516374A (en) * | 1992-11-12 | 1996-05-14 | The Furukawa Electric Co., Ltd. | Method of manufacturing an aluminum alloy sheet for body panel and the alloy sheet manufactured thereby |
JP2008025957A (en) * | 2006-07-25 | 2008-02-07 | Showa Denko Kk | Rolled plate |
CN102453821A (en) * | 2010-10-19 | 2012-05-16 | 株式会社神户制钢所 | Aluminum alloy board |
-
1990
- 1990-10-09 JP JP27163090A patent/JPH04147936A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0594509A1 (en) * | 1992-10-23 | 1994-04-27 | The Furukawa Electric Co., Ltd. | Process for manufacturing Al-Mg alloy sheets for press forming |
US5516374A (en) * | 1992-11-12 | 1996-05-14 | The Furukawa Electric Co., Ltd. | Method of manufacturing an aluminum alloy sheet for body panel and the alloy sheet manufactured thereby |
EP0681034A1 (en) * | 1994-05-06 | 1995-11-08 | The Furukawa Electric Co., Ltd. | A method of manufacturing an aluminum alloy sheet for body panel and the alloy sheet manufactured thereby |
JP2008025957A (en) * | 2006-07-25 | 2008-02-07 | Showa Denko Kk | Rolled plate |
CN102453821A (en) * | 2010-10-19 | 2012-05-16 | 株式会社神户制钢所 | Aluminum alloy board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4645544A (en) | Process for producing cold rolled aluminum alloy sheet | |
JP2614686B2 (en) | Manufacturing method of aluminum alloy for forming process excellent in shape freezing property and paint bake hardenability | |
JP4308834B2 (en) | Method for continuously producing cast aluminum sheets | |
WO1995022634A1 (en) | Method of manufacturing aluminum alloy plate for molding | |
JPH0127146B2 (en) | ||
WO2020120267A1 (en) | Method of making 6xxx aluminium sheets with high surface quality | |
US20200216938A1 (en) | 6xxxx-series rolled sheet product with improved formability | |
US5441582A (en) | Method of manufacturing natural aging-retardated aluminum alloy sheet exhibiting excellent formability and excellent bake hardenability | |
JPH0747807B2 (en) | Method for producing rolled aluminum alloy plate for forming | |
JPH07197219A (en) | Production of aluminum alloy sheet for forming | |
EP0480402A1 (en) | Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability | |
JPH06256917A (en) | Production of aluminum alloy sheet having delayed aging characteristic at ordinary temperature | |
JPH09137243A (en) | Aluminum alloy sheet excellent in bendability after press forming and its production | |
JPS6339655B2 (en) | ||
JP2004238657A (en) | Method of manufacturing aluminum alloy plate for outer panel | |
JPH0257655A (en) | Foamable aluminum alloy having excellent surface treating characteristics and its manufacture | |
JPH04147936A (en) | High strength aluminum alloy sheet for drawing and its manufacture | |
JPH03294456A (en) | Production of aluminum alloy sheet excellent in formability and baking hardenability | |
JPH0480979B2 (en) | ||
JPH04263034A (en) | Aluminum alloy sheet for press forming excellent in baking hardenability and its production | |
JPH04365834A (en) | Aluminum alloy sheet for press forming excellent in hardenability by low temperature baking and its production | |
JPH04304339A (en) | Aluminum alloy sheet for press forming excellent in balance between strength and ductility and baking hardenability and its production | |
JPH01225738A (en) | Heat treatment-type aluminum alloy rolled plate for forming and its manufacture | |
JPH04214834A (en) | Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture | |
JPH04276048A (en) | Production of aluminum alloy sheet for forming excellent in baking hardenability |