JPH0633179A - Aluminum alloy sheet for press forming excellent in hardenability by high-temperature short-time baking and its production - Google Patents

Aluminum alloy sheet for press forming excellent in hardenability by high-temperature short-time baking and its production

Info

Publication number
JPH0633179A
JPH0633179A JP6600693A JP6600693A JPH0633179A JP H0633179 A JPH0633179 A JP H0633179A JP 6600693 A JP6600693 A JP 6600693A JP 6600693 A JP6600693 A JP 6600693A JP H0633179 A JPH0633179 A JP H0633179A
Authority
JP
Japan
Prior art keywords
aluminum alloy
press forming
range
low temperature
short time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6600693A
Other languages
Japanese (ja)
Other versions
JP2997146B2 (en
Inventor
Takeshi Fujita
毅 藤田
Masakazu Niikura
正和 新倉
Shinji Mitao
眞司 三田尾
Masataka Suga
正孝 須賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP5066006A priority Critical patent/JP2997146B2/en
Priority to EP93118682A priority patent/EP0613959B1/en
Priority to DE69311089T priority patent/DE69311089T2/en
Priority to US08/156,034 priority patent/US5580402A/en
Publication of JPH0633179A publication Critical patent/JPH0633179A/en
Application granted granted Critical
Publication of JP2997146B2 publication Critical patent/JP2997146B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To obtain the Al alloy sheet by adding Si to Al-Mg-Cu and allowing streaks to appear in an electron beam diffraction grating image after baking treatment under specific conditions. CONSTITUTION:An ingot of an Al alloy having a composition which consists of, by weight, 1.5-3.5% Mg, 0.3-1.0% Cu, 0.05-0.6% Si, and the balance Al and in which Mg/Cu is regulated to 2-7 is subjected to homogenizing treatment at 400-580 deg.C, hot-rolled, and cold-rolled to the desired sheet thickness. This sheet material is heated up to 500-580 deg.C at a rate of >=3 deg.C/sec, held at this temp. for 0-60sec, and cooled down to 100 deg.C at a rate of >=2 deg.C/sec. By this method, the Al alloy sheet where, in the electron beam diffraction grating image after baking treatment at 120-180 deg.C baking temp. for 5-40min baking time, a streaky modulation structure is allowed to appear in the position of the diffraction grating point of an Al-Mg-Cu compound can be obtained. Because this alloy sheet is reduced in strength before forming and excellent in delayed aging characteristic at ordinary temp., changes with the lapse of time before press forming can be prevented.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、プレス成形用アルミ
ニウム合金板及びその製造方法に関し、特に、焼付け温
度120〜180℃、焼付け時間5〜40分間の低温短
時間の焼付でも焼付硬化性に優れ、自動車車体等に好適
なアルミニウム合金板及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy sheet for press forming and a method for producing the same, and in particular, it has excellent bake hardenability even at a low temperature for a short time of 120 to 180 ° C. and a baking time of 5 to 40 minutes. The present invention relates to an aluminum alloy plate suitable for automobile bodies and the like and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来より自動車ボディーパネル用板材と
して表面処理冷間圧延鋼板が多用されているが、近年、
自動車の燃費向上のための軽量化の要望が高まってお
り、その要望を満たすべく自動車ボディーパネル用板材
にアルミニウム合金板が使用され始めてきている。
2. Description of the Related Art Conventionally, surface-treated cold-rolled steel sheets have been widely used as sheet materials for automobile body panels.
There is an increasing demand for weight reduction in order to improve the fuel efficiency of automobiles, and aluminum alloy sheets have begun to be used as sheet materials for automobile body panels to meet the demand.

【0003】最近では、プレス加工メーカーの要求も厳
しくなりつつあり、形状凍結性の点からプレス前の降伏
強度が低く(自動車技術Vol.45,No.6(1991),45) 、なお
かつ、深絞り、張り出し等の成形性及び耐デント性の点
から塗装焼付により強度が向上する材料が要求されてい
る。
In recent years, the demands of press working manufacturers have become strict, and the yield strength before pressing is low from the viewpoint of shape fixability (Automotive Technology Vol.45, No.6 (1991), 45), and yet deep. From the viewpoint of moldability such as drawing and overhanging and dent resistance, a material whose strength is improved by baking is demanded.

【0004】そこで、アルミニウム合金の中でも、特
に、成形性に優れる非熱処理型のAl−Mg系合金に対
し、CuやZnを添加し、時効硬化によって強度を高め
る工夫がなされている。例えばAl−Mg−Cu系合金
(特公昭62−42985、特開平1−22573
8)、Al−Mg−Cu−Zn系合金(特公昭56−3
1860)等がある。しかし、これらはAl−Mg−S
i系合金に比べて成形性が優れているものの、従来の表
面処理冷間圧延鋼板よりも劣り、プレス成形前の強度が
高いため形状凍結性にも劣る。さらには塗装焼付工程に
よる硬化は小さく、プレス時の加工硬化分の低下を防ぐ
程度である。特に、特公昭62−42985では、塗装
焼付時に強度上昇を目的としてAl−Cu−Mg系化合
物の析出を図っているが、いまだ不十分である。なお、
従来、焼付硬化に対するSiの効果は認められていない
ため、Siを微量に規制している。
Therefore, among aluminum alloys, in particular, a non-heat treatment type Al—Mg alloy having excellent formability is added with Cu or Zn, and the strength is strengthened by age hardening. For example, an Al-Mg-Cu alloy (Japanese Patent Publication No. 62-42985, JP-A 1-22573).
8), Al-Mg-Cu-Zn based alloy (Japanese Patent Publication No. 56-3
1860) and so on. However, these are Al-Mg-S
Although it is superior in formability to the i-based alloy, it is inferior to the conventional surface-treated cold-rolled steel sheet and is also inferior in shape fixability because of its high strength before press forming. Furthermore, the hardening by the paint baking process is small, and it is only to the extent that the work hardening during pressing is not reduced. In particular, in Japanese Examined Patent Publication No. 62-42985, precipitation of an Al-Cu-Mg-based compound is attempted for the purpose of increasing the strength during coating baking, but it is still insufficient. In addition,
Conventionally, the effect of Si on bake hardening has not been recognized, so Si is regulated to a very small amount.

【0005】また、従来からボディーパネル用材料とし
て用いられていた5052−0材は、プレス成形前の降
伏強度が低く形状凍結性に優れるが塗装焼付硬化性を有
しないため強度が低く耐デント性に劣るという問題があ
った。
Further, the 5052-0 material which has been conventionally used as a material for body panels has low yield strength before press molding and is excellent in shape fixability, but has low strength due to lack of paint bake hardenability and dent resistance. There was a problem that it was inferior to.

【0006】上記のAl−Mg系にCu、あるいはCu
及びZnを添加した焼付硬化タイプの合金は共通して、
最終熱処理後の常温時効によるプレス前の強度の経時変
化(住軽技報、32,1(1991),20 、軽金属学会第31回シ
ンポジウム、31ページ)の問題があり、素材の製造、
熱処理時期、実際のプレス加工までの期間のコントロー
ルが必要である。
Cu or Cu in the above Al-Mg system
Bake-hardening type alloys containing Zn and Zn are common,
After the final heat treatment, there is a problem of the change in strength before pressing due to room temperature aging (Sumilight Technical Report, 32, 1 (1991), 20, Japan Institute of Light Metals, 31st Symposium, page 31).
It is necessary to control the heat treatment period and the period until the actual press working.

【0007】この問題を改善した技術の一つに、Al−
Mg−Cu−Zn系において、常温時効を大きく支配す
るZn量を低下させて時効を抑制したものがある(特公
平4−69220)。
One of the techniques for improving this problem is Al-
There is a Mg-Cu-Zn system in which aging is suppressed by lowering the amount of Zn, which largely controls room temperature aging (Japanese Patent Publication No. 4-69220).

【0008】しかし、いずれの合金も比較的鋼板に近い
成形性を有するものの、焼付硬化性又は形状凍結性が満
足されず、あるいは常温時効が生じてしまう。
However, although each alloy has a formability relatively close to that of a steel plate, it does not satisfy the bake hardenability or shape fixability, or undergoes room temperature aging.

【0009】[0009]

【発明が解決しようとする課題】この発明はかかる事情
に鑑みてなされたものであって、その目的は、第1に低
温かつ短時間の焼付においても焼付硬化性が良好なプレ
ス成形用アルミニウム合金板及びその製造方法を提供す
ることにあり、第2に、さらにプレス成形前の強度を低
く保ち、なおかつ常温遅時効性に優れるためプレス成形
前の経時変化がないプレス成形用アルミニウム合金板及
びその製造方法を提供することにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and an object thereof is, firstly, an aluminum alloy for press forming which has good bake hardenability even at low temperature and in a short time. Secondly, it is to provide a plate and a method for producing the same, and secondly, an aluminum alloy plate for press forming which does not change with time before press forming because it further maintains the strength before press forming low and is excellent in room temperature delayed aging, and the same. It is to provide a manufacturing method.

【0010】[0010]

【課題を解決するための手段及び作用】本願発明者等
は、上記目的を達成するために種々検討を重ねた結果、
Al−Mg−Cu系合金において、Al−Cu−Mg系
化合物の析出相であるS´相の析出前段階の変調構造G
PBの生成が促進され、電子線回折格子像においてスト
リークが表われる場合に、十分な焼付硬化性が得られる
ことを見出した。すなわち、焼付け温度120〜180
℃、焼付け時間5〜40分間の低温短時間の焼付処理後
の電子線回折格子像においてAl−Cu−Mg系化合物
の回折格子点位置にストリーク状の変調構造を示せば、
その範囲の低温短時間の焼付処理における焼付硬化性が
優れたものとなる。この発明は本願発明者らのこのよう
な知見に基づいてなされたものであり、Al−Mg−C
u系にSiを添加した組成を有し、焼付温度120〜1
80℃、焼付け時間5〜40分間の焼付処理後の電子線
回折格子像において、Al−Cu−Mg系化合物の回折
格子点位置にストリーク状の変調構造を示すことを特徴
とする低温短時間焼付けによる硬化性に優れたプレス成
形用アルミニウム合金板を提供するものである。
Means and Actions for Solving the Problems As a result of various studies conducted by the inventors of the present application to achieve the above object,
In the Al-Mg-Cu based alloy, the modulation structure G of the S'phase which is the precipitation phase of the Al-Cu-Mg based compound before the precipitation
It has been found that sufficient bake hardenability can be obtained when PB generation is promoted and streaks appear in an electron beam diffraction grating image. That is, the baking temperature 120 to 180
If a streak-like modulation structure is shown at the diffraction grating point position of the Al—Cu—Mg-based compound in the electron diffraction grating image after the baking treatment at a low temperature for a baking time of 5 to 40 minutes at ℃,
In this range, the bake hardenability in the low temperature and short time bake treatment becomes excellent. The present invention has been made based on such findings of the inventors of the present application. Al-Mg-C
It has a composition in which Si is added to the u system and has a baking temperature of 120 to 1
An electron beam diffraction grating image after baking treatment at 80 ° C. for 5 to 40 minutes shows a streaky modulation structure at a diffraction grating point position of an Al—Cu—Mg-based compound, and low temperature short time baking. The present invention provides an aluminum alloy plate for press molding having excellent curability.

【0011】上述のようなストリークは、Al−Mg−
Cu系合金のCu及びMgの量を特定の範囲にし、特定
量のSiを添加することにより現出させることができ
る。具体的には、重量%で、Mgを1.5〜3.5%、
Cuを0.3〜1.0%、Siを0.05〜0.6%の
範囲で含有し、かつMg/Cuの値が2〜7であり、残
部がAl及び不可避的不純物からなる組成の場合に、最
も効果的に上述のような構成を実現することができる。
The streak as described above is caused by Al--Mg--
It can be made to appear by adjusting the amount of Cu and Mg of the Cu-based alloy to a specific range and adding a specific amount of Si. Specifically, Mg is 1.5 to 3.5% by weight,
A composition containing Cu in an amount of 0.3 to 1.0%, Si in an amount of 0.05 to 0.6%, a Mg / Cu value of 2 to 7, and the balance being Al and inevitable impurities. In this case, the above configuration can be realized most effectively.

【0012】Al−Cu−Mg系化合物の析出相である
S´相の析出前段階の変調構造の電子線回折格子像の例
を図1に示す。図1はAl(100)回折パターンを示
すものであり、矢印で示すようにAl−Cu−Mg系化
合物の回折格子点位置にストリークが認められる。ま
た、図2は電子線透過像であるが、図2には図1に示さ
れているような変調構造は認められない。すなわち、上
述の変調構造は電子線透過像では観察することができな
いほど微細であり、いわゆる析出物とは異なる。このよ
うに非常に微細であるため、極めて強化作用が大きく、
それゆえ焼付硬化を示すのである。
FIG. 1 shows an example of an electron diffraction grating image of the modulation structure of the S'phase, which is the precipitation phase of the Al-Cu-Mg compound, before the precipitation. FIG. 1 shows an Al (100) diffraction pattern, and streaks are observed at the diffraction grating point positions of the Al—Cu—Mg-based compound as indicated by the arrow. 2 is an electron beam transmission image, the modulation structure as shown in FIG. 1 is not recognized in FIG. That is, the above-mentioned modulation structure is so fine that it cannot be observed in an electron beam transmission image, and is different from a so-called precipitate. Since it is extremely fine as described above, it has a very strong reinforcing effect,
Therefore, it shows bake hardening.

【0013】Al−Mg−Cu系合金の常温時効を遅延
させる観点からは、上記Al−Mg−Cu系にSiを添
加した組成に対し、重量%で、0.01〜0.50%の
Sn、0.01〜0.50%のCd、0.01〜0.5
0%のInから選択される1種又は2種以上をさらに含
有する組成とすることが好ましい。すなわち、焼付硬化
タイプのアルミニウム合金板は、常温で放置することに
より強度が上昇する常温時効の問題が生じるが、これら
の1種又は2種以上を含有することにより、常温時効の
影響が実質的に存在しなくなる程度に常温時効を遅延さ
せることができるのである。
From the viewpoint of delaying the room temperature aging of the Al-Mg-Cu alloy, 0.01 to 0.50% by weight of Sn is added to the above Al-Mg-Cu-based composition containing Si. , 0.01 to 0.50% Cd, 0.01 to 0.5
It is preferable that the composition further contains one or more selected from 0% In. That is, the bake hardening type aluminum alloy plate has a problem of room temperature aging in which the strength increases when left at room temperature, but the effect of room temperature aging is substantially caused by containing one or more of these. The normal temperature aging can be delayed to such an extent that it no longer exists.

【0014】また、Al−Mg−Cu系にSiを添加し
た組成に対し、あるいはこれに上記常温時効遅延成分を
添加した組成に対し、重量%で、0.03〜0.50%
のFe、0.005〜0.15%のTi、0.0002
〜0.05%のB、0.01〜0.50%のMn、0.
01〜0.15%のCr、0.01〜0.12%のZ
r、0.01〜0.18%のV、及び0.5%以下のZ
nのうち1種又は2種以上をさらに含んでいてもこの発
明の効果が損なわれることはない。
In addition, 0.03 to 0.50% by weight relative to the composition in which Si is added to the Al-Mg-Cu system or the composition in which the above-mentioned room temperature aging retarding component is added.
Fe, 0.005-0.15% Ti, 0.0002
.About.0.05% B, 0.01 to 0.50% Mn, 0.
01-0.15% Cr, 0.01-0.12% Z
r, 0.01 to 0.18% V, and 0.5% or less Z
Even if one or more of n is further contained, the effect of the present invention is not impaired.

【0015】さらにまた、Al−Mg−Cu系合金の常
温時効を遅延させる観点から、Mgを1.5〜3.5
%、Cuを0.3〜0.7%、Siを0.05〜0.3
5%の範囲とし、かつMg/Cuの値が2〜7とするこ
とが好ましい。
Furthermore, from the viewpoint of delaying the room temperature aging of the Al--Mg--Cu alloy, the Mg content is 1.5 to 3.5.
%, Cu 0.3 to 0.7%, Si 0.05 to 0.3
It is preferable that the range is 5% and the value of Mg / Cu is 2 to 7.

【0016】次に、組成の限定理由について説明する。
なお、%表示は全て重量%を示す。
Next, the reasons for limiting the composition will be described.
In addition, all percentages indicate% by weight.

【0017】Mg: Mgは本発明におけるAl−Cu
−Mg系変調構造の構成元素である。しかし、その含有
量が1.5%未満では変調構造の生成が遅くなり、焼付
け温度120〜180℃、焼付け時間5〜40分間の焼
付け処理条件では変調構造が生成しない。また、1.5
%未満では延性が低下する。一方、その含有量が3.5
%を超えるとやはり変調構造の生成が遅くなり、焼付け
温度120〜180℃、焼付け時間5〜40分間の焼付
け処理条件では変調構造が生成しない。従って、Mgの
含有量は1.5〜3.5%の範囲であることが望まし
い。
Mg: Mg is Al-Cu in the present invention.
-Mg-based modulation structure constituent element. However, if the content is less than 1.5%, the formation of the modulation structure is delayed, and the modulation structure does not form under the baking conditions of a baking temperature of 120 to 180 ° C. and a baking time of 5 to 40 minutes. Also, 1.5
If it is less than%, the ductility decreases. On the other hand, its content is 3.5
If it exceeds%, the formation of the modulation structure is also delayed, and the modulation structure is not formed under the baking conditions of a baking temperature of 120 to 180 ° C. and a baking time of 5 to 40 minutes. Therefore, the Mg content is preferably in the range of 1.5 to 3.5%.

【0018】Cu: Cuは本発明におけるAl−Cu
−Mg系変調構造の構成元素である。しかし、その含有
量が0.3%未満では変調構造が生成せず、一方1.0
%を超えると耐食性が著しく劣化する。従って、Cuの
含有量は0.3〜1.0%であることが望ましい。ま
た、Cuの含有量が0.7%を超えると常温においても
Al−Cu−Mg系変調構造が生成して強度が上昇し、
経時変化を生じる。また、耐食性も多少劣化する。従っ
て、常温遅時効性及び耐食性の観点から、0.3〜0.
7%が特に望ましい。
Cu: Cu is Al-Cu in the present invention
-Mg-based modulation structure constituent element. However, if the content is less than 0.3%, no modulation structure is generated, while 1.0%
If it exceeds%, the corrosion resistance is significantly deteriorated. Therefore, the Cu content is preferably 0.3 to 1.0%. Further, when the Cu content exceeds 0.7%, an Al—Cu—Mg-based modulation structure is generated even at room temperature to increase the strength,
Change over time. In addition, the corrosion resistance is somewhat deteriorated. Therefore, from the viewpoint of room temperature delayed aging and corrosion resistance, 0.3 to 0.
7% is particularly desirable.

【0019】なお、Mgの含有量とCuの含有量との比
Mg/Cuは、2〜7の範囲であることが望ましい。こ
の範囲内においてAl−Cu−Mg系変調構造を有効に
生成させることができる。
The ratio Mg / Cu of the content of Mg and the content of Cu is preferably in the range of 2 to 7. Within this range, an Al-Cu-Mg based modulation structure can be effectively generated.

【0020】図3はMg及びCu含有量と電子線回折に
よるストリーク発生の有無との関係を示す図である。こ
の図からMg及びCuの含有量が上述の範囲であれば、
ストリークが発生することが理解される。
FIG. 3 is a diagram showing the relationship between the Mg and Cu contents and the presence or absence of streaks due to electron beam diffraction. From this figure, if the contents of Mg and Cu are in the above range,
It is understood that streaks occur.

【0021】Si: SiはAl−Cu−Mg系変調構
造の生成を促進させて硬化能を高めかつ常温時効を抑制
する元素であり、その機能を発揮するためにはその含有
量が0.05%以上であることが望ましい。一方、その
含有量が0.6%を超えた場合には、上記変調構造は生
成されるものの、一方でMg2 SiのGP(1)変調構
造を生成し、常温時効を促進し、焼付け前の強度が時効
と共に顕著に増大するため、焼付け硬化量がかえって減
少してしまう。従って、Siの含有量は0.6%以下で
あることが望ましい。
Si: Si is an element that promotes the formation of an Al--Cu--Mg type modulation structure to enhance the hardening ability and suppresses room temperature aging, and its content is 0.05 in order to exert its function. % Or more is desirable. On the other hand, when the content exceeds 0.6%, the above-mentioned modulation structure is generated, but on the other hand, a GP (1) modulation structure of Mg 2 Si is generated, which promotes normal temperature aging and before baking. Since the strength of No. 2 increases remarkably with aging, the amount of bake hardening decreases rather. Therefore, the Si content is preferably 0.6% or less.

【0022】図4に焼付け硬化量に及ぼすSi含有量の
影響を示す。この図は合金板の製造において中間焼鈍を
行わなかった場合について示すものである。なお、焼付
け硬化量は焼付け処理後の降伏強度から処理前の降伏強
度を引いた値である。この図に示すように上記範囲にお
いて高い焼付け硬化量を示す。
FIG. 4 shows the effect of the Si content on the bake hardening amount. This figure shows the case where the intermediate annealing was not performed in the production of the alloy sheet. The bake hardening amount is a value obtained by subtracting the yield strength before the treatment from the yield strength after the bake treatment. As shown in this figure, a high bake hardening amount is exhibited in the above range.

【0023】また、Mg2 SiのGP(1)変調構造を
生成させずに常温時効を遅延させる観点からは、Siの
含有量は0.35%以下が特に望ましい。
From the viewpoint of delaying the room temperature aging without generating the GP (1) modulation structure of Mg 2 Si, the Si content is particularly preferably 0.35% or less.

【0024】図5に常温時効、焼付硬化性に及ぼすSi
量の影響を示す。この図から、Si量が0.05〜0.
35%の範囲で、約5Kgf /mm2 以上の焼付硬化性を保
持しつつ、常温時効が抑制されていることがわかる。
FIG. 5 shows the effect of Si on room temperature aging and bake hardenability.
The effect of quantity is shown. From this figure, the Si amount is 0.05-0.
It can be seen that in the range of 35%, the room temperature aging is suppressed while maintaining the bake hardenability of about 5 kgf / mm 2 or more.

【0025】これら基本成分の他の成分の限定理由は以
下の通りである。
The reasons for limiting the other components of these basic components are as follows.

【0026】Sn,In,Cd: これらの合金成分は
溶体化処理後の焼入れによって生じる凍結原子空孔と強
く結合する元素である。そのため、Al−Cu−Mg系
化合物のGPBゾーンの形成サイトである原子空孔の数
が減少し、常温での時効を遅延させることができるので
ある。しかし、これらの含有量が各々0.01%未満で
はその効果を発揮させることができず、また0.50%
を超えると効果が飽和し、添加量に応じた効果が得られ
ずコスト高となってしまう。
Sn, In, Cd: These alloy components are elements that strongly bond with frozen atomic vacancies generated by quenching after solution treatment. Therefore, the number of atomic vacancies, which are the formation sites of the GPB zone of the Al-Cu-Mg-based compound, is reduced, and the aging at room temperature can be delayed. However, if the content of each of these is less than 0.01%, the effect cannot be exerted, and 0.50%
If it exceeds, the effect is saturated, the effect corresponding to the added amount cannot be obtained, and the cost becomes high.

【0027】図6に常温時効に及ぼすSnの影響を示
す。この図から、0.05%以上のSn添加により、常
温時効が遅延されることがわかる。
FIG. 6 shows the effect of Sn on room temperature aging. From this figure, it can be seen that the addition of 0.05% or more of Sn delays the room temperature aging.

【0028】Fe: Feの含有量が0.50%を超え
るとAlとの共存により成形性に悪影響を及ぼす粗大な
晶出物が生成されやすく、また、Siと結び付いて変調
構造の生成に有用なSiの量を低下させる。従って、F
eの含有量は0.5%以下であることが望ましい。しか
し、微量添加することにより成形性の向上に寄与し、
0.03%未満になるとその効果が得られないため、
0.03%以上であることが望ましい。
Fe: When the Fe content exceeds 0.50%, coarse crystallized substances which adversely affect the formability are likely to be produced due to the coexistence with Al, and are useful for producing a modulation structure in association with Si. And reduce the amount of Si. Therefore, F
The content of e is preferably 0.5% or less. However, adding a small amount contributes to the improvement of moldability,
If less than 0.03%, the effect cannot be obtained,
It is preferably 0.03% or more.

【0029】Ti,B: Ti及びBはTiB2 等とし
て存在し、鋳塊の結晶粒を微細化して熱間での加工性等
を改善する効果を有する。従って、これらを複合添加す
ることが重要である。しかしながら、これらを過剰に添
加すると粗大な晶出物を生成し、成形性を劣化させる。
従って、Ti及びBの含有量を上記効果を有効に得るこ
とができる範囲、すなわち夫々0.005〜0.15%
及び0.0002〜0.05%の範囲であることが望ま
しい。
Ti, B: Ti and B are present as TiB 2 and the like, and have the effect of refining the crystal grains of the ingot and improving the hot workability and the like. Therefore, it is important to add them together. However, if these are added excessively, coarse crystallized substances are generated and the formability is deteriorated.
Therefore, the content of Ti and B is in the range where the above effects can be effectively obtained, that is, 0.005 to 0.15%, respectively.
And 0.0002 to 0.05% is preferable.

【0030】Mn,Cr,Zr,V: これらの元素は
再結晶抑制元素であるから、異常粒成長を抑制する目的
で適量添加してもよい。しかし、これらの合金成分は、
再結晶粒の等軸化に対し負の効果があり成形性を低下さ
せるため、これらの含有量は従来のアルミニウム合金よ
りも少ない範囲に規定する必要がある。従って、これら
を添加する場合には、Mn,Cr、Zr、及びVの含有
量を夫々0.01〜0.50%、0.01〜0.15
%、0.01〜0.12%、及び0.01〜0.18%
に規定される。
Mn, Cr, Zr, V: Since these elements are recrystallization suppressing elements, they may be added in appropriate amounts for the purpose of suppressing abnormal grain growth. However, these alloy components are
Since they have a negative effect on the equiaxing of recrystallized grains and reduce the formability, their contents must be specified in a range smaller than that of conventional aluminum alloys. Therefore, when these are added, the contents of Mn, Cr, Zr, and V are 0.01 to 0.50% and 0.01 to 0.15, respectively.
%, 0.01 to 0.12%, and 0.01 to 0.18%
Stipulated in.

【0031】Zn: Znは強度の向上に寄与する元素
であるが、0.5%を超えると焼付け硬化量が低下して
しまう。すなわち、0.5%を超えるとAl−Zn系化
合物の析出前段階の変調構造を生成するが、この変調構
造は常温においても生成し、焼付け前の強度が時効に伴
って顕著に増大するため、焼付け硬化量がかえって低下
するのである。従って、Znを添加する場合でも0.5
%を超えないことが必須である。
Zn: Zn is an element that contributes to the improvement of strength, but if it exceeds 0.5%, the bake hardening amount decreases. That is, if it exceeds 0.5%, a modulation structure in the pre-precipitation stage of the Al-Zn compound is generated, but this modulation structure is also generated at room temperature, and the strength before baking remarkably increases with aging. However, the amount of baking and hardening rather decreases. Therefore, even if Zn is added, 0.5
It is essential not to exceed%.

【0032】なお、さらに他の元素としてBeを0.0
1%まで添加してもよい。Beは鋳造時の酸化を防止
し、鋳造性及び熱間加工性を向上させ、合金板の成形性
を向上させる元素である。ただし、0.01%を超える
と、その効果が飽和するばかりでなく、毒性の強い元素
であることから鋳造作業環境を害する恐れがあるので好
ましくない。従って、Beを添加する場合でも、その量
は0.01%までに規定される。
Further, Be is 0.0 as another element.
You may add up to 1%. Be is an element that prevents oxidation during casting, improves castability and hot workability, and improves the formability of the alloy sheet. However, if it exceeds 0.01%, not only is the effect saturated, but since it is a highly toxic element, it may harm the casting work environment, which is not preferable. Therefore, even when Be is added, the amount is specified up to 0.01%.

【0033】上記元素の他、通常のアルミニウム合金と
同様、不可避的不純物が含有されるが、その量は本発明
の効果が損なわれない範囲であれば許容される。例え
ば、Na,K等は、それぞれ0.001%以下程度なら
含有していても特性上の支障はない。
In addition to the above-mentioned elements, inevitable impurities are contained as in the case of ordinary aluminum alloys, but the amount thereof is acceptable as long as the effects of the present invention are not impaired. For example, even if each of Na and K is contained in an amount of 0.001% or less, there is no problem in characteristics.

【0034】次に、この発明の合金板を得るための製造
条件について説明する。
Next, the manufacturing conditions for obtaining the alloy sheet of the present invention will be described.

【0035】上記範囲に成分・組成が規定されたアルミ
ニウム合金を常法により溶解・鋳造し、その鋳塊に対し
て400〜580℃の範囲内の温度で1段又は多段の均
質化熱処理を施す。このような均質化処理を施すことに
より、鋳造時に晶出した共晶化合物の拡散固溶を促進
し、局部的ミクロ偏析を軽減する。また、この処理によ
り、最終製品の結晶粒の異常粒成長を抑制し、均一化を
図るうえで重要な役割を果たすMn,Cr,Zr,Vの
化合物を微細に析出させることができる。しかし、この
処理の温度が400℃未満の場合には上述したような効
果が不十分であり、一方580℃を超えると共晶融解が
生じる。従って、均質化処理の温度を400〜580℃
の範囲とした。なお、この温度範囲内での保持時間が1
時間未満では上述の効果が十分に得られず、72時間を
超える長時間の加熱はその効果が飽和してしまうため、
この均質化処理の保持時間は1〜72時間が望ましい。
An aluminum alloy having the components and compositions defined in the above range is melted and cast by a conventional method, and the ingot is subjected to one-step or multi-step homogenization heat treatment at a temperature in the range of 400 to 580 ° C. . By performing such homogenization treatment, diffusion solid solution of the eutectic compound crystallized during casting is promoted and local microsegregation is reduced. Further, by this treatment, it is possible to finely precipitate the compounds of Mn, Cr, Zr, and V that play an important role in suppressing the abnormal grain growth of the crystal grains of the final product and achieving uniformity. However, if the temperature of this treatment is lower than 400 ° C, the above-mentioned effects are insufficient, while if it exceeds 580 ° C, eutectic melting occurs. Therefore, the temperature of the homogenization treatment is 400-580 ° C
And the range. Note that the holding time within this temperature range is 1
If the time is less than the above, the above-mentioned effect cannot be sufficiently obtained, and if the heating for a long time exceeding 72 hours is saturated, the effect is saturated.
The holding time of this homogenization treatment is preferably 1 to 72 hours.

【0036】次いで、このような均質化処理が施された
鋳塊に対し、常法に従って所定の板厚を得るために熱間
圧延及び冷間圧延を行う。また、歪矯正又は表面粗度調
整のため、次に行われる熱処理の前後両方又はいずれか
で5%以下のレベリング、ストレッチング、あるいはス
キンパス圧延を実施してもよい。
Next, the ingot subjected to the homogenizing treatment is subjected to hot rolling and cold rolling in order to obtain a predetermined plate thickness according to a conventional method. Further, in order to correct the strain or adjust the surface roughness, 5% or less of leveling, stretching, or skin pass rolling may be performed before or after the subsequent heat treatment, or either of them.

【0037】圧延終了後、このような圧延板材に対し、
500〜580℃の範囲内の温度に3℃/秒以上の加熱
速度で加熱して、その温度に達した後即座に、又は60
秒間以下の期間保持した後、100℃まで2℃/秒以上
の冷却速度で急速冷却するといった条件の熱処理を施
す。この熱処理は、Al−Cu−Mg系化合物の変調構
造を構成するCu,Mgの溶体化を図り、十分な焼付け
硬化を得るために行うものである。この場合に、加熱温
度が500℃未満では、上述のような効果を十分に得る
ことができない。また、加熱温度が580℃を超えた
り、加熱速度が3℃/秒未満であったり、保持時間が6
0秒を超えると、結晶粒の一部が異常粒成長を起こしや
すなる。さらに、100℃までの冷却速度が2℃/秒未
満では、冷却中に粗大なAl−Cu−Mg化合物が析出
し焼付硬化性を向上させる点から好ましくない。
After completion of rolling, the rolled plate material
Heating to a temperature in the range of 500 to 580 ° C. at a heating rate of 3 ° C./sec or more and immediately after reaching that temperature, or 60
After being held for a period of not more than 2 seconds, heat treatment is performed under the condition of being rapidly cooled to 100 ° C. at a cooling rate of 2 ° C./second or more. This heat treatment is carried out in order to achieve solution hardening of Cu and Mg forming the modulation structure of the Al-Cu-Mg-based compound and to obtain sufficient bake hardening. In this case, if the heating temperature is less than 500 ° C., the above effect cannot be sufficiently obtained. Also, the heating temperature exceeds 580 ° C, the heating rate is less than 3 ° C / sec, and the holding time is 6
If it exceeds 0 seconds, some of the crystal grains are likely to cause abnormal grain growth. Further, if the cooling rate up to 100 ° C. is less than 2 ° C./sec, a coarse Al—Cu—Mg compound precipitates during cooling, which is not preferable because the bake hardenability is improved.

【0038】このような工程に加えて、中間板厚まで圧
延した後、500〜580℃の範囲内の温度まで3℃/
秒以上の加熱速度で加熱してその温度で0〜60秒間保
持し、その後100℃まで2℃/秒以上の冷却速度で冷
却する中間焼鈍を行い、その後に圧延率5〜45%の範
囲内で冷間圧延を施して所望の板厚とすることが好まし
い。このような工程を付加することにより、Al−Cu
−Mg系化合物の変調構造の生成が促進され、焼付硬化
性が増大する。
In addition to the above steps, after rolling to an intermediate plate thickness, the temperature in the range of 500 to 580 ° C. is 3 ° C. /
It is heated at a heating rate of 2 seconds or more, held at that temperature for 0 to 60 seconds, and then subjected to intermediate annealing in which it is cooled to 100 ° C. at a cooling rate of 2 ° C./second or more, and then within a range of rolling rate of 5 to 45%. It is preferable to apply cold rolling to obtain a desired plate thickness. By adding such a step, Al--Cu
-The generation of the modulation structure of the Mg-based compound is promoted, and the bake hardenability is increased.

【0039】図7は中間焼鈍を行う際の中間板厚と焼付
け硬化量との関係を示す図であり、最終板厚を1.0mm
と一定にした場合について示すものである。なお、横軸
には中間板厚の他に中間焼鈍後の冷間圧延の圧延率を併
記している。また、この図においても焼付け硬化量は焼
付け処理後の降伏強度から処理前の降伏強度を引いた値
である。この図から明らかなように、最終圧延率が5〜
45%になるような中間板厚で中間焼鈍を行うことによ
り焼付け硬化量が7kg/mm2 程度と極めて高い値とな
る。最終圧延率が5%以下ではAl−Cu−Mg系化合
物の変調構造の生成が促進されず、焼付け硬化能が低
く、異常粒成長も生じて成形性を害する虞がある。な
お、この中間焼鈍の条件は、圧延後の熱処理条件と同じ
である。この際の加熱速度及び冷却速度が下限値未満の
場合には、粗大なAl−Cu−Mg化合物が析出して焼
付け硬化能が低下する。
FIG. 7 is a diagram showing the relationship between the intermediate plate thickness and the amount of bake hardening during intermediate annealing. The final plate thickness is 1.0 mm.
It shows the case where it is made constant. In addition to the intermediate plate thickness, the horizontal axis also shows the rolling ratio of cold rolling after intermediate annealing. Also in this figure, the bake hardening amount is a value obtained by subtracting the yield strength before the treatment from the yield strength after the bake treatment. As is clear from this figure, the final rolling rate is 5 to
By performing intermediate annealing with an intermediate plate thickness of 45%, the bake hardening amount becomes an extremely high value of about 7 kg / mm 2 . If the final rolling rate is 5% or less, the formation of the modulation structure of the Al-Cu-Mg-based compound is not promoted, the bake hardenability is low, and abnormal grain growth may occur, impairing the formability. The conditions of this intermediate annealing are the same as the heat treatment conditions after rolling. When the heating rate and the cooling rate at this time are less than the lower limit values, coarse Al—Cu—Mg compounds are precipitated and the bake hardenability is reduced.

【0040】このようにして得られたアルミニウム合金
板は、低温短時間焼付けによる硬化性に優れており、自
動車ボディ−シ−ト用として好適である。
The aluminum alloy sheet thus obtained is excellent in curability by baking at low temperature for a short time, and is suitable for automobile body sheet.

【0041】[0041]

【実施例】以下、この発明の実施例について説明する。 (実施例1)表1、表2に示すような成分・組成を有す
る合金を溶解−連続鋳造し、得られた鋳塊を面削した
後、440℃で4時間その後510℃で10時間の2段
均質化処理を実施し、次いで鋳片を460℃に加熱し、
板厚4mmまで熱間圧延を行い、室温に冷却した後、板厚
1.4mmまで冷間圧延を行った。その後、加熱温度3℃
/秒で550℃まで加熱し、その温度で10秒間保持し
た後、100℃まで20℃/秒の冷却速度で強制空冷す
るという中間焼鈍を行った。次いで、室温に冷却した後
最終板厚まで冷間圧延を行って厚さ1mmの板材とした。
なお、熱間圧延の仕上り温度は280℃であった。この
厚さ1mmの板材を550℃まで10℃/秒の速度で加熱
し、10秒間保持後、100℃まで20℃/秒の冷却速
度で強制空冷を行った。
Embodiments of the present invention will be described below. Example 1 Alloys having the components and compositions shown in Tables 1 and 2 were melt-continuously cast, the obtained ingots were chamfered, and then 440 ° C. for 4 hours and 510 ° C. for 10 hours. Perform a two-stage homogenization treatment, then heat the slab to 460 ° C,
After hot rolling to a plate thickness of 4 mm and cooling to room temperature, cold rolling was performed to a plate thickness of 1.4 mm. After that, heating temperature 3 ℃
The intermediate annealing was carried out by heating to 550 ° C./sec, holding at that temperature for 10 seconds, and then forced air cooling to 100 ° C. at a cooling rate of 20 ° C./sec. Then, after cooling to room temperature, cold rolling was performed to a final plate thickness to obtain a plate material having a thickness of 1 mm.
The finishing temperature of hot rolling was 280 ° C. The plate material having a thickness of 1 mm was heated to 550 ° C. at a rate of 10 ° C./second, held for 10 seconds, and then forcedly cooled to 100 ° C. at a cooling rate of 20 ° C./second.

【0042】このようにして製造した板材を室温で一週
間放置後、所定形状に切出し、引張試験(JIS5号,
引張方向:圧延方向)及びコニカルカップ試験(JIS
Z2249:試験工具17型)を実施した。なお、コ
ニカルカップ試験はプレス成形のシミュレ−トとして行
い、張出しと深絞りとの複合成形性をCCV(mm)によ
り評価した(CCVが小さいほど成形性に優れてい
る)。また、プレス成形後の焼付塗装をシミュレ−トす
るために、170℃で20分間の熱処理(焼付に対応)
を行い、その後もう一度、上述の試験と同一条件で引張
試験を行った。さらに電子顕微鏡観察を行った。
The plate material thus produced was left at room temperature for one week, cut into a predetermined shape, and subjected to a tensile test (JIS No. 5,
Tensile direction: rolling direction) and conical cup test (JIS
Z2249: test tool type 17) was carried out. The conical cup test was carried out as a simulation of press molding, and the composite formability of overhanging and deep drawing was evaluated by CCV (mm) (the smaller the CCV, the better the formability). Also, in order to simulate baking coating after press molding, heat treatment at 170 ° C for 20 minutes (corresponding to baking)
After that, the tensile test was performed again under the same conditions as the above-mentioned test. Further, an electron microscope observation was performed.

【0043】これらの試験結果を表3、4に示す。な
お、「焼付硬化」の欄は、焼付シミュレ−ト後の降伏強
度から、最終熱処理後の降伏強度を引いた値を示してい
る。また、Al−Cu−Mg系化合物の変調構造に対応
するストリークの有無も併記した。
The results of these tests are shown in Tables 3 and 4. The column of "bake hardening" shows a value obtained by subtracting the yield strength after the final heat treatment from the yield strength after the baking simulation. The presence / absence of streaks corresponding to the modulation structure of the Al-Cu-Mg-based compound is also shown.

【0044】なお、表1の番号1〜15は本発明の請求
項2及び3の組成範囲内のものであり、表2の番号16
〜30はその範囲から外れるものである。
The numbers 1 to 15 in Table 1 are within the composition range of claims 2 and 3 of the present invention, and the number 16 in Table 2 is
-30 is out of the range.

【0045】[0045]

【表1】 [Table 1]

【0046】[0046]

【表2】 [Table 2]

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 表3から明らかなように、番号1〜15は、伸びが30
%以上であり、CCVも良好で優れた成形性が得られる
ことが確認された。また、焼付け処理によりAl−Cu
−Mg系化合物の変調構造に対応するストリークが生成
され、焼付硬化が降伏強度で6.5kgf /mm2 以上と高
い値を有していることが確認された。
[Table 4] As is clear from Table 3, the numbers 1 to 15 have an elongation of 30.
%, The CCV was good, and it was confirmed that excellent moldability was obtained. In addition, by baking treatment, Al-Cu
It was confirmed that streaks corresponding to the modulation structure of the Mg-based compound were generated and the bake hardening had a high yield strength of 6.5 kgf / mm 2 or more.

【0049】一方、表2に示す番号16〜30は、表4
から明らかなように、成形性及び焼付硬化性のいずれか
が不十分であった。例えば、焼付硬化に寄与する成分で
あるMg、Si、Cuのいずれかの含有量が低い番号1
6,18,20、あるいはこれらが高い番号17,1
9,21は、焼付け処理後の電子線回折においてストリ
ークを示さず、焼付硬化性が高々4kgf /mm2 程度であ
った。また、Znが高い番号25は焼付硬化性が2.4
kgf /mm2 と低い値であった。Fe,Ti−B,Mn,
Cr,Zr,V,の量が好ましい範囲から外れている番
号22,23,24,26,27,28,29は成形性
が低くかった。さらに、Mg/Cuが2〜7の範囲から
外れている番号30は焼付硬化が3.6kgf /mm2 であ
った。 (実施例2)ここでは、表1、2に示す番号1〜30と
同一の組成を用いて、中間焼鈍を行わないこと以外は、
実施例1と同様の条件で製造した合金板について、実施
例1と同様の試験を行った。その結果を表5、6に示
す。なお、表5、6では番号1〜30と同様の組成に対
応して番号1´〜30´で示した。
On the other hand, the numbers 16 to 30 shown in Table 2 are shown in Table 4.
As is clear from the above, either the moldability or the bake hardenability was insufficient. For example, the number 1 which has a low content of Mg, Si, or Cu, which is a component contributing to bake hardening,
6,18,20 or higher numbers 17,1
Nos. 9 and 21 did not show streaks in the electron beam diffraction after the baking treatment, and the bake hardenability was at most about 4 kgf / mm 2 . Further, No. 25 having a high Zn has a bake hardenability of 2.4.
The value was as low as kgf / mm 2 . Fe, Ti-B, Mn,
The numbers 22, 23, 24, 26, 27, 28, and 29 in which the amounts of Cr, Zr, and V were out of the preferable ranges had low moldability. Further, No. 30 in which Mg / Cu was out of the range of 2 to 7 had bake hardening of 3.6 kgf / mm 2 . (Example 2) Here, using the same composition as the numbers 1 to 30 shown in Tables 1 and 2, except that the intermediate annealing is not performed,
The same test as in Example 1 was performed on the alloy plate manufactured under the same conditions as in Example 1. The results are shown in Tables 5 and 6. In Tables 5 and 6, the numbers 1'to 30 'are shown corresponding to the compositions similar to the numbers 1 to 30.

【0050】[0050]

【表5】 [Table 5]

【0051】[0051]

【表6】 表5に示すように、番号1´〜15´は番号1〜15と
同様30%以上の高い伸びを有していることが確認され
た。また、焼付け処理によりAl−Cu−Mg系化合物
の変調構造に対応するストリークが生成され、焼付硬化
が中間焼鈍ありの場合よりも低いものの、降伏強度で
5.2kgf /mm2 以上と高い値を有していることが確認
された。
[Table 6] As shown in Table 5, it was confirmed that Nos. 1 ′ to 15 ′ had a high elongation of 30% or more like Nos. 1 to 15. In addition, the streak corresponding to the modulation structure of the Al-Cu-Mg-based compound is generated by the baking treatment, and the bake hardening is lower than that with the intermediate annealing, but the yield strength is as high as 5.2 kgf / mm 2 or more. It was confirmed to have.

【0052】また、番号16´〜30´についても、表
6で示すように、焼付硬化性が番号16〜30よりも若
干低下することが確認された。 (実施例3)次に、表1に示した合金のうち、番号1に
対応する組成を有する鋳塊を使用し、表7に示す製造条
件で合金板材を製造した。なお、表7に特に記載されて
いない処理については実施例1の条件を採用した(圧延
条件等)。なお、実施例1と同様の評価試験を行った結
果も表7に併記した。表7中記号A〜Eは本発明に係る
製造方法の範囲内のものであり、記号F〜Lはその範囲
から外れるものである。
Also, as shown in Table 6, it was confirmed that the bake hardenability of Nos. 16 'to 30' was slightly lower than that of Nos. 16 to 30. (Example 3) Next, among the alloys shown in Table 1, an ingot having a composition corresponding to No. 1 was used to produce an alloy plate material under the production conditions shown in Table 7. The conditions of Example 1 were adopted for the treatments not particularly described in Table 7 (rolling conditions, etc.). The results of the same evaluation test as in Example 1 are also shown in Table 7. In Table 7, symbols A to E are within the range of the manufacturing method according to the present invention, and symbols F to L are out of the range.

【0053】このようにして製造した板材について実施
例1と同様の評価試験を行った。その結果も表7に併記
する。
The same evaluation test as in Example 1 was conducted on the plate material thus manufactured. The results are also shown in Table 7.

【0054】[0054]

【表7】 表7から明らかなように、本発明の条件を満足しない記
号F〜Lは、伸び及び成形性、あるいは焼付硬化性が不
十分であることが確認された。
[Table 7] As is apparent from Table 7, it was confirmed that symbols F to L that do not satisfy the conditions of the present invention have insufficient elongation and moldability, or bake hardenability.

【0055】例えば、比較例のF,G,I,Jのように
均質化温度、熱処理温度が高かったり、あるいは中間焼
鈍後の冷間圧延率が低い、熱処理の加熱速度が小さい場
合には異常粒成長が生じ、伸び及び成形性が劣る。ま
た、Hのように中間焼鈍後の冷間圧延率が高かったり、
Lのように溶体化焼入れ条件における冷却速度が低い場
合には、電子線回折パターンにおいてAl−Cu−Mg
系化合物の変調構造に対応するストリークが表われず、
焼付硬化性に劣る。また、Kのように溶体化焼き入れ条
件の加熱保持温度が低い場合には、伸びが低いため成形
性に劣り、また十分な焼付硬化が得られない。 (実施例4)この実施例では、番号1に対応する組成の
鋳塊を用い、中間焼鈍を行わない他は、実施例3のA〜
Lと同様の条件にて合金板を製造し、実施例3と同様の
試験を行った。その結果を表8に示す。なお、表8では
記号A〜Lに対応してA´〜L´で示した。
For example, when the homogenization temperature and the heat treatment temperature are high as in Comparative Examples F, G, I, and J, or the cold rolling rate after the intermediate annealing is low, and the heating rate of the heat treatment is small, it is abnormal. Grain growth occurs, resulting in poor elongation and moldability. In addition, as in H, the cold rolling rate after intermediate annealing is high,
When the cooling rate under the solution hardening condition is low as in L, the electron diffraction pattern shows Al-Cu-Mg.
The streak corresponding to the modulation structure of the compound does not appear,
Inferior to bake hardenability. Further, when the heating and holding temperature of the solution quenching condition is low as in the case of K, the elongation is low and the formability is poor, and sufficient bake hardening cannot be obtained. (Example 4) In this example, ingots having a composition corresponding to No. 1 were used, and no intermediate annealing was performed.
An alloy plate was manufactured under the same conditions as for L, and the same test as in Example 3 was performed. The results are shown in Table 8. In Table 8, the symbols A to L are indicated by A'to L '.

【0056】[0056]

【表8】 表8に示すように、記号A´〜E´はいずれも焼付硬化
性がA〜Eよりも若干劣るものの、依然として高い値を
示していることが確認された。また、記号F´〜L´に
ついても、F〜Lよりも若干低い焼付硬化性を示した。 (実施例5)この実施例では、表1の番号1と同一の組
成で、表8の記号A´の条件で製造した合金板を用い、
焼付条件を変化させた場合の焼付後の特性について試験
を行った。その結果を表9及び図8に示す。
[Table 8] As shown in Table 8, it was confirmed that all of the symbols A ′ to E ′ were still inferior in bake hardenability to A to E, but still showed high values. The symbols F ′ to L ′ also showed a slightly lower bake hardenability than F to L. (Example 5) In this example, an alloy plate having the same composition as No. 1 in Table 1 and manufactured under the condition of symbol A'in Table 8 was used.
Tests were performed on the characteristics after baking when the baking conditions were changed. The results are shown in Table 9 and FIG.

【0057】[0057]

【表9】 これらから明らかなように、焼付け温度120〜180
℃、焼付け時間5〜40分間の焼付け処理によりAl−
Cu−Mg系化合物の変調構造に対応するストリークが
発生し、高い焼付硬化性を示すことが確認された。 (実施例6)この実施例では、基本的にSn、In、C
dを添加したものについて試験を行った。
[Table 9] As is clear from these, the baking temperature of 120 to 180
℃, baking time 5-40 minutes Al-
It was confirmed that streaks corresponding to the modulation structure of the Cu-Mg-based compound were generated, and high bake hardenability was exhibited. (Embodiment 6) In this embodiment, basically Sn, In, C
The test was conducted on the one to which d was added.

【0058】表10、表11に示すような成分・組成を
有する合金を実施例1と同様の条件で厚さ1mmの板材と
し、実施例1と同様の条件で熱処理を行った。
Alloys having the components and compositions shown in Tables 10 and 11 were made into a plate material having a thickness of 1 mm under the same conditions as in Example 1, and heat treatment was performed under the same conditions as in Example 1.

【0059】この熱処理の後、室温で1日間、及び、常
温時効の影響を調査するため60日間放置し、所定形状
に切出し、実施例1と同様に引張試験及びコニカルカッ
プ試験を実施した。また、実施例1と同様にプレス成形
後の焼付塗装をシミュレ−トし、焼付硬化性を把握し
た。さらに電子顕微鏡観察を行った。
After this heat treatment, it was left at room temperature for 1 day and left for 60 days in order to investigate the influence of normal temperature aging, cut into a predetermined shape, and subjected to a tensile test and a conical cup test as in Example 1. Further, similarly to Example 1, the bake coating after press molding was simulated to grasp the bake hardenability. Further, an electron microscope observation was performed.

【0060】これらの結果を表12、13に示す。The results are shown in Tables 12 and 13.

【0061】なお、表10の番号31〜46は本発明の
請求項4及び5の組成範囲内のものであり、表11の番
号47〜61はその範囲から外れるものである。
The numbers 31 to 46 in Table 10 are within the composition range of claims 4 and 5 of the present invention, and the numbers 47 to 61 in Table 11 are out of the range.

【0062】[0062]

【表10】 [Table 10]

【0063】[0063]

【表11】 [Table 11]

【0064】[0064]

【表12】 [Table 12]

【0065】[0065]

【表13】 表12から明らかなように、番号31〜46は、伸びが
30%以上であり、CCVも良好で優れた成形性が得ら
れることが確認された。また、焼付け処理によりAl−
Cu−Mg系化合物の変調構造に対応するストリークが
生成され、焼付硬化が降伏強度で6.5kgf /mm2 以上
と高い値を有していることが確認された。さらに、常温
で60日間保持した後でも、降伏強度が高々0.5kgf
/mm2 程度の上昇に止まっており、常温時効が遅延され
ていることが確認された。
[Table 13] As is clear from Table 12, it was confirmed that Nos. 31 to 46 had an elongation of 30% or more, a good CCV, and excellent moldability. Also, due to the baking treatment, Al-
It was confirmed that streaks were generated corresponding to the modulation structure of the Cu-Mg-based compound, and the bake hardening had a high yield strength of 6.5 kgf / mm 2 or more. Furthermore, the yield strength is 0.5 kgf at most even after it is kept at room temperature for 60 days.
It was confirmed that the aging was delayed only at about / mm 2 and the room temperature aging was delayed.

【0066】一方、表11に示す番号47〜61は、表
13から明らかなように、成形性、焼付硬化性、常温遅
時効性のいずれかが不十分であった。例えば焼付硬化に
寄与する成分であるMg、Si、Cuのいずれかの含有
量が低い番号47,49,51、あるいはこれらが高い
番号48,50は、焼付け処理後の電子線回折において
ストリークを示さず、焼付硬化性が高々4kgf /mm2
度であった。また、Si,Cu,Znが高い番号50,
52,55、あるいはSn,In,Cdのいずれも低い
番号60、は常温で60日間保持することにより、降伏
強度が5kgf /mm2 以上上昇し、常温時効が顕著である
ことが確認された。
On the other hand, as is clear from Table 13, the numbers 47 to 61 shown in Table 11 were insufficient in formability, bake hardenability, and room temperature delayed aging. For example, the numbers 47, 49, 51 having a low content of Mg, Si, or Cu, which are components contributing to bake hardening, or the numbers 48, 50 having a high content thereof show streaks in the electron beam diffraction after the baking treatment. However, the bake hardenability was at most about 4 kgf / mm 2 . Moreover, Si, Cu, and Zn are high numbers 50,
It was confirmed that 52, 55 or No. 60, which has a low Sn, In, Cd content, increased the yield strength by 5 kgf / mm 2 or more by holding it at room temperature for 60 days, and the aging at room temperature was remarkable.

【0067】なお、実施例1と同様に、Fe,Ti−
B,Mn,Cr,Zr,V,の量が好ましい範囲から外
れている番号53,54,56,57,58,59は成
形性が低く、Mg/Cuが2〜7の範囲から外れている
番号61は焼付硬化が3.6kgf /mm2 であった。 (実施例7)次に、表10に示した合金のうち、番号3
1に対応する組成を有する鋳塊を使用し、表14に示す
製造条件で合金板材を製造した。なお、表14に特に記
載されていない処理については実施例6の条件を採用し
た(圧延条件等)。なお、実施例6と同様の評価試験を
行った結果も表14に併記した。表14中記号M〜Qは
本発明に係る製造方法の範囲内のものであり、記号R〜
Xはその範囲から外れるものである。
As in the first embodiment, Fe, Ti-
The amounts of B, Mn, Cr, Zr, and V deviate from the preferable ranges. Numbers 53, 54, 56, 57, 58, and 59 have low moldability, and Mg / Cu deviates from the range of 2 to 7. The number 61 had bake hardening of 3.6 kgf / mm 2 . (Example 7) Next, among the alloys shown in Table 10, No. 3
Using an ingot having a composition corresponding to No. 1, alloy plate materials were manufactured under the manufacturing conditions shown in Table 14. Note that the conditions of Example 6 were adopted for the treatments not particularly described in Table 14 (rolling conditions, etc.). The results of the same evaluation test as in Example 6 are also shown in Table 14. The symbols M to Q in Table 14 are within the range of the manufacturing method according to the present invention, and the symbols R to
X is outside the range.

【0068】このようにして製造した板材について実施
例6と同様の評価試験を行った。その結果も表14に併
記する。
The plate material thus manufactured was subjected to the same evaluation test as in Example 6. The results are also shown in Table 14.

【0069】[0069]

【表14】 表14から明らかなように、本発明の条件を満足しない
記号R〜Xは、伸び及び成形性、あるいは焼付硬化性が
不十分であることが確認された。
[Table 14] As is clear from Table 14, it was confirmed that symbols R to X that do not satisfy the conditions of the present invention have insufficient elongation and moldability, or bake hardenability.

【0070】例えば、比較例のR,G,U,Vのように
均質化温度、熱処理温度が高かったり、あるいは中間焼
鈍後の冷間圧延率が低い、熱処理の加熱速度が小さい場
合には異常粒成長が生じ、伸び及び成形性が劣る。ま
た、Tのように中間焼鈍後の冷間圧延率が高かったり、
Xのように溶体化焼入れ条件における冷却速度が低い場
合には、電子線回折パターンにおいてAl−Cu−Mg
系化合物の変調構造に対応するストリークが表われず、
焼付硬化性に劣る。また、Wのように溶体化焼き入れ条
件の加熱保持温度が低い場合には、伸びが低いため成形
性に劣り、また十分な焼付硬化が得られない。 (実施例8)この実施例では、Mg:1.5〜3.5
%、Cu:0.3〜0.7%、Si:0.05〜0.3
5%に規定した効果を把握した。既述した合金のうち、
この範囲内に含まれる合金番号1,4,6及びこの範囲
からは外れる合金番号5,7について、実施例1と同様
の条件で厚さ1mmの板材とし、実施例1と同様の条件
で熱処理を行った。
For example, when the homogenization temperature and the heat treatment temperature are high like R, G, U and V of the comparative example, or the cold rolling rate after the intermediate annealing is low, and the heating rate of the heat treatment is small, it is abnormal. Grain growth occurs, resulting in poor elongation and moldability. In addition, as in T, the cold rolling rate after the intermediate annealing is high,
When the cooling rate under the solution hardening condition is low like X, the electron diffraction pattern shows Al-Cu-Mg.
The streak corresponding to the modulation structure of the compound does not appear,
Inferior to bake hardenability. Further, when the heating and holding temperature of the solution quenching condition is low like W, the elongation is low and the formability is poor, and sufficient bake hardening cannot be obtained. (Example 8) In this example, Mg: 1.5 to 3.5.
%, Cu: 0.3 to 0.7%, Si: 0.05 to 0.3
The effect prescribed to 5% was grasped. Of the alloys already mentioned,
Alloy Nos. 1, 4, 6 included in this range and Alloy Nos. 5, 7 deviating from this range were made into a plate material having a thickness of 1 mm under the same conditions as in Example 1, and heat treated under the same conditions as in Example 1. I went.

【0071】この熱処理後、室温で1日間及び常温時効
の影響を調査するために30日及び90日間放置し、実
施例1と同様に引張試験及びコニカルカップ試験を実施
した。表15にその結果を示す。
After this heat treatment, it was left for 1 day at room temperature and left for 30 days and 90 days in order to investigate the influence of room temperature aging, and a tensile test and a conical cup test were carried out as in Example 1. Table 15 shows the results.

【0072】[0072]

【表15】 表15から明らかなように、上記組成範囲に含まれる番
号1,4,6は常温において90日間保持した後でも、
降伏強度の上昇がほとんどないことがなく、また、CC
Vにも優れており、常温時効が遅延されていることが確
認された。
[Table 15] As is clear from Table 15, the numbers 1, 4, and 6 included in the above composition range were retained at room temperature for 90 days,
There is almost no increase in yield strength, and CC
It was also confirmed that V was also excellent and that the room temperature aging was delayed.

【0073】一方、上記組成範囲から外れる番号5,7
は常温保持日数にともない降伏強度が上昇し、成形性も
低下することが確認された。
On the other hand, the numbers 5 and 7 out of the above composition range
It was confirmed that the yield strength increased and the formability also decreased with the number of days kept at room temperature.

【0074】[0074]

【発明の効果】この発明によれば、低温かつ短時間の焼
付においても焼付硬化性が良好な成形用アルミニウム合
金板及びその製造方法、及び、さらにプレス成形前の強
度を低く保ち、なおかつ常温遅時効性に優れるためプレ
ス成形前の経時変化がないプレス成形用アルミニウム合
金板及びその製造方法が提供される。このアルミニウム
合金板は自動車車体に好適である。
According to the present invention, an aluminum alloy sheet for forming which has a good bake hardenability even at low temperature and for a short time, and a method for producing the same, and further, the strength before press forming is kept low and the temperature is slow at room temperature. Provided are an aluminum alloy sheet for press forming and a method for producing the same, which is excellent in aging property and does not change with time before press forming. This aluminum alloy plate is suitable for automobile bodies.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明に係るアルミニウム合金板の結晶構造
を示す写真。
FIG. 1 is a photograph showing a crystal structure of an aluminum alloy plate according to the present invention.

【図2】この発明に係るアルミニウム合金板の金属組織
を示す写真。
FIG. 2 is a photograph showing a metallographic structure of an aluminum alloy plate according to the present invention.

【図3】電子線回折格子像において、Al−Cu−Mg
系化合物の変調構造に対応するストリークの発生に及ぼ
すMg及びCuの影響を示す図。
FIG. 3 is an electron diffraction grating image showing Al-Cu-Mg.
The figure which shows the influence of Mg and Cu on the generation | occurrence | production of the streak corresponding to the modulation | alteration structure of a system compound.

【図4】焼付硬化量に及ぼすSiの影響を示す図。FIG. 4 is a diagram showing the effect of Si on the bake-hardening amount.

【図5】焼付硬化量及び常温時効量に及ぼすSiの影響
を示す図。
FIG. 5 is a diagram showing the influence of Si on the bake hardening amount and the room temperature aging amount.

【図6】常温時効に及ぼすSnの影響を示す図。FIG. 6 is a diagram showing the effect of Sn on room temperature aging.

【図7】焼付硬化量に及ぼす中間焼鈍後の圧延率の影響
を示す図。
FIG. 7 is a diagram showing the effect of the rolling ratio after intermediate annealing on the bake hardening amount.

【図8】焼付け温度及び時間と焼付け処理後のビッカー
ス硬度との関係を示す図。
FIG. 8 is a diagram showing a relationship between baking temperature and time and Vickers hardness after baking.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 須賀 正孝 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masataka Suga 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Steel Pipe Co., Ltd.

Claims (15)

【特許請求の範囲】[Claims] 【請求項1】 Al−Mg−Cu系にSiを添加した組
成を有し、焼付け温度120〜180℃、焼付け時間5
〜40分間の焼付け処理後の電子線回折格子像におい
て、Al−Cu−Mg系化合物の回折格子点位置にスト
リーク状の変調構造を示すことを特徴とする低温短時間
焼付けによる硬化性に優れたプレス成形用アルミニウム
合金板。
1. A composition having a composition in which Si is added to an Al—Mg—Cu system, a baking temperature of 120 to 180 ° C., and a baking time of 5
In the electron beam diffraction grating image after the baking treatment for -40 minutes, the streak-like modulation structure was exhibited at the diffraction grating point position of the Al-Cu-Mg-based compound, which was excellent in the curability by the low temperature short time baking. Aluminum alloy plate for press forming.
【請求項2】 重量%で、Mgを1.5〜3.5%、C
uを0.3〜1.0%、Siを0.05〜0.6%の範
囲で含有し、かつMg/Cuの値が2〜7であり、残部
がAl及び不可避的不純物からなることを特徴とする請
求項1に記載の低温短時間焼付けによる硬化性に優れた
プレス成形用アルミニウム合金板。
2. Mg is 1.5 to 3.5% by weight, and C
u is included in the range of 0.3 to 1.0%, Si is included in the range of 0.05 to 0.6%, the value of Mg / Cu is 2 to 7, and the balance is Al and inevitable impurities. An aluminum alloy plate for press forming which is excellent in curability by low temperature short time baking according to claim 1.
【請求項3】 重量%で、0.01〜0.50%のS
n、0.01〜0.50%のCd、0.01〜0.50
%のInから選択される1種又は2種以上をさらに含有
することを特徴とする請求項2に記載の低温短時間焼付
けによる硬化性に優れたプレス成形用アルミニウム合金
板。
3. 0.01 to 0.50% S by weight.
n, 0.01 to 0.50% Cd, 0.01 to 0.50
The aluminum alloy plate for press forming having excellent curability by low temperature short time baking according to claim 2, further containing one or two or more selected from In.
【請求項4】 重量%で、0.03〜0.50%のF
e、0.005〜0.15%のTi、0.0002〜
0.05%のB、0.01〜0.50%のMn、0.0
1〜0.15%のCr、0.01〜0.12%のZr、
0.01〜0.18%のV、及び0.5%以下のZnの
うち1種又は2種以上をさらに含有することを特徴とす
る請求項2又は3に記載の低温短時間焼付けによる硬化
性に優れたプレス成形用アルミニウム合金板。
4. 0.03 to 0.50% by weight of F
e, 0.005 to 0.15% Ti, 0.0002 to
0.05% B, 0.01-0.50% Mn, 0.0
1 to 0.15% Cr, 0.01 to 0.12% Zr,
Curing by low temperature short-time baking according to claim 2 or 3, further comprising one or more of 0.01 to 0.18% V and 0.5% or less Zn. Aluminum alloy plate for press forming with excellent properties.
【請求項5】 重量%で、Mgを1.5〜3.5%、C
uを0.3〜0.7%、Siを0.05〜0.35%の
範囲で含有し、かつMg/Cuの値が2〜7であり、残
部がAl及び不可避的不純物からなることを特徴とする
請求項1に記載の低温短時間焼付けによる硬化性に優れ
たプレス成形用アルミニウム合金板。
5. A Mg content of 1.5 to 3.5% and a C content of C.
u is included in the range of 0.3 to 0.7%, Si is included in the range of 0.05 to 0.35%, the value of Mg / Cu is 2 to 7, and the balance is Al and inevitable impurities. An aluminum alloy plate for press forming which is excellent in curability by low temperature short time baking according to claim 1.
【請求項6】 重量%で、0.01〜0.50%のS
n、0.01〜0.50%のCd、0.01〜0.50
%のInから選択される1種又は2種以上をさらに含有
することを特徴とする請求項5に記載の低温短時間焼付
けによる硬化性に優れたプレス成形用アルミニウム合金
板。
6. 0.01 to 0.50% S by weight.
n, 0.01 to 0.50% Cd, 0.01 to 0.50
The aluminum alloy plate for press forming having excellent curability by low temperature short time baking according to claim 5, further containing one or more selected from In.
【請求項7】 重量%で、0.03〜0.50%のF
e、0.005〜0.15%のTi、0.0002〜
0.05%のB、0.01〜0.50%のMn、0.0
1〜0.15%のCr、0.01〜0.12%のZr、
0.01〜0.18%のV、及び0.5%以下のZnの
うち1種又は2種以上をさらに含有することを特徴とす
る請求項5又は6に記載の低温短時間焼付けによる硬化
性に優れたプレス成形用アルミニウム合金板。
7. 0.03 to 0.50% by weight of F
e, 0.005 to 0.15% Ti, 0.0002 to
0.05% B, 0.01-0.50% Mn, 0.0
1 to 0.15% Cr, 0.01 to 0.12% Zr,
Hardening by low temperature short time baking according to claim 5 or 6, further comprising one or more of 0.01 to 0.18% V and 0.5% or less Zn. Aluminum alloy plate for press forming with excellent properties.
【請求項8】 重量%で、Mgを1.5〜3.5%、C
uを0.3〜1.0%、Siを0.05〜0.6%の範
囲で含有し、かつMg/Cuの値が2〜7であり、残部
がAl及び不可避的不純物からなるアルミニウム合金の
鋳塊に対し、400〜580℃の範囲内の温度で1段又
は多段の均質化処理を施した後、この鋳塊を熱間圧延及
び冷間圧延することにより所望の板厚とし、次いで50
0〜580℃の範囲内の温度まで3℃/秒以上の加熱速
度で加熱してその温度で0〜60秒間保持し、その後1
00℃まで2℃/秒以上の冷却速度で冷却することを特
徴とする低温短時間焼付けによる硬化性に優れたプレス
成形用アルミニウム合金板の製造方法。
8. The weight percentage of Mg is 1.5 to 3.5%, and C
Aluminum containing u in an amount of 0.3 to 1.0%, Si in an amount of 0.05 to 0.6%, a Mg / Cu value of 2 to 7, and the balance Al and inevitable impurities. The alloy ingot is subjected to a one-stage or multi-stage homogenization treatment at a temperature in the range of 400 to 580 ° C., and then this ingot is hot-rolled and cold-rolled to a desired plate thickness, Then 50
It is heated to a temperature in the range of 0 to 580 ° C. at a heating rate of 3 ° C./sec or more and held at that temperature for 0 to 60 seconds, and then 1
A method for producing an aluminum alloy sheet for press forming which is excellent in hardenability by low temperature short time baking, which comprises cooling to 00 ° C at a cooling rate of 2 ° C / sec or more.
【請求項9】 前記アルミニウム合金の鋳塊は、重量%
で、0.01〜0.50%のSn、0.01〜0.50
%のCd、0.01〜0.50%のInから選択される
1種又は2種以上をさらに含有することを特徴とする請
求項8に記載の低温短時間焼付けによる硬化性に優れた
プレス成形用アルミニウム合金板の製造方法。
9. The aluminum alloy ingot has a weight% of
, 0.01 to 0.50% Sn, 0.01 to 0.50
% Cd and 0.01 to 0.50% In selected from the group of 1 or 2 or more, and the press excellent in curability by low temperature short time baking according to claim 8. Manufacturing method of aluminum alloy sheet for forming.
【請求項10】 前記アルミニウム合金の鋳塊は、重量
%で、0.03〜0.50%のFe、0.005〜0.
15%のTi、0.0002〜0.05%のB、0.0
1〜0.50%のMn、0.01〜0.15%のCr、
0.01〜0.12%のZr、0.01〜0.18%の
V、及び0.5%以下のZnのうち1種又は2種以上を
さらに含んでいることを特徴とする請求項8又は9に記
載の低温短時間焼付けによる硬化性に優れたプレス成形
用アルミニウム合金板の製造方法。
10. The ingot of the aluminum alloy is 0.03 to 0.50% Fe, and 0.005 to 0.
15% Ti, 0.0002-0.05% B, 0.0
1 to 0.50% Mn, 0.01 to 0.15% Cr,
One or two or more of 0.01 to 0.12% Zr, 0.01 to 0.18% V, and 0.5% or less Zn are further contained. 8. A method for producing an aluminum alloy plate for press forming, which is excellent in curability by low temperature short time baking according to 8 or 9.
【請求項11】 前記所望の板厚に圧延される前の中間
板厚まで圧延した後、500〜580℃の範囲内の温度
まで3℃/秒以上の加熱速度で加熱してその温度で0〜
60秒間保持し、その後100℃まで2℃/秒以上の冷
却速度で冷却する中間焼鈍を行い、その後に圧延率5〜
45%の範囲内で冷間圧延を施して所望の板厚とするこ
とを特徴とする請求項8乃至10のいずれか1項に記載
の低温短時間焼付けによる硬化性に優れたプレス成形用
アルミニウム合金板の製造方法。
11. After rolling to an intermediate plate thickness before being rolled to the desired plate thickness, it is heated to a temperature in the range of 500 to 580 ° C. at a heating rate of 3 ° C./sec or more and 0 at that temperature. ~
Hold for 60 seconds, then perform intermediate annealing of cooling to 100 ° C. at a cooling rate of 2 ° C./second or more, and then roll rate 5 to 5
Aluminum for press forming excellent in hardenability by low temperature short time baking according to any one of claims 8 to 10, wherein cold rolling is performed within a range of 45% to obtain a desired plate thickness. Method for manufacturing alloy plate.
【請求項12】 重量%で、Mgを1.5〜3.5%、
Cuを0.3〜0.7%、Siを0.05〜0.35%
の範囲で含有し、かつMg/Cuの値が2〜7であり、
残部がAl及び不可避的不純物からなるアルミニウム合
金の鋳塊に対し、400〜580℃の範囲内の温度で1
段又は多段の均質化処理を施した後、この鋳塊を熱間圧
延及び冷間圧延することにより所望の板厚とし、次いで
500〜580℃の範囲内の温度まで3℃/秒以上の加
熱速度で加熱してその温度で0〜60秒間保持し、その
後100℃まで2℃/秒以上の冷却速度で冷却すること
を特徴とする低温短時間焼付けによる硬化性に優れたプ
レス成形用アルミニウム合金板の製造方法。
12. Mg is 1.5 to 3.5% by weight,
Cu 0.3-0.7%, Si 0.05-0.35%
Contained in the range of and the value of Mg / Cu is 2 to 7,
1 at a temperature in the range of 400 to 580 ° C. with respect to an ingot of an aluminum alloy in which the balance is Al and unavoidable impurities
After the step or multi-step homogenization treatment, this ingot is hot-rolled and cold-rolled to a desired plate thickness, and then heated to a temperature in the range of 500 to 580 ° C at 3 ° C / sec or more. Aluminum alloy for press forming, which is excellent in hardenability by low-temperature short-time baking, characterized by being heated at a rate, kept at that temperature for 0 to 60 seconds, and then cooled to 100 ° C at a cooling rate of 2 ° C / second or more. Method of manufacturing a plate.
【請求項13】 前記アルミニウム合金の鋳塊は、重量
%で、0.01〜0.50%のSn、0.01〜0.5
0%のCd、0.01〜0.50%のInから選択され
る1種又は2種以上をさらに含有することを特徴とする
請求項12に記載の低温短時間焼付けによる硬化性に優
れたプレス成形用アルミニウム合金板の製造方法。
13. The ingot of the aluminum alloy is 0.01 to 0.50% Sn, 0.01 to 0.5% by weight.
The curability according to the low temperature short time baking according to claim 12, further comprising one or more selected from 0% Cd and 0.01 to 0.50% In. A method for manufacturing an aluminum alloy sheet for press forming.
【請求項14】 前記アルミニウム合金の鋳塊は、重量
%で、0.03〜0.50%のFe、0.005〜0.
15%のTi、0.0002〜0.05%のB、0.0
1〜0.50%のMn、0.01〜0.15%のCr、
0.01〜0.12%のZr、0.01〜0.18%の
V、及び0.5%以下のZnのうち1種又は2種以上を
さらに含んでいることを特徴とする請求項12又は13
に記載の低温短時間焼付けによる硬化性に優れたプレス
成形用アルミニウム合金板の製造方法。
14. The aluminum alloy ingot has a weight percentage of 0.03 to 0.50% Fe and 0.005 to 0.
15% Ti, 0.0002-0.05% B, 0.0
1 to 0.50% Mn, 0.01 to 0.15% Cr,
One or two or more of 0.01 to 0.12% Zr, 0.01 to 0.18% V, and 0.5% or less Zn are further contained. 12 or 13
A method for producing an aluminum alloy sheet for press forming, which has excellent hardenability by baking at low temperature for a short time.
【請求項15】 前記所望の板厚に圧延される前の中間
板厚まで圧延した後、500〜580℃の範囲内の温度
まで3℃/秒以上の加熱速度で加熱してその温度で0〜
60秒間保持し、その後100℃まで2℃/秒以上の冷
却速度で冷却する中間焼鈍を行い、その後に圧延率5〜
45%の範囲内で冷間圧延を施して所望の板厚とするこ
とを特徴とする請求項12乃至14のいずれか1項に記
載の低温短時間焼付けによる硬化性に優れたプレス成形
用アルミニウム合金板の製造方法。
15. After rolling to an intermediate plate thickness before being rolled to the desired plate thickness, it is heated to a temperature in the range of 500 to 580 ° C. at a heating rate of 3 ° C./sec or more and 0 at that temperature. ~
Hold for 60 seconds, then perform intermediate annealing of cooling to 100 ° C. at a cooling rate of 2 ° C./second or more, and then roll rate 5 to 5
Aluminum for press forming excellent in hardenability by low temperature short time baking according to any one of claims 12 to 14, wherein cold rolling is performed within a range of 45% to obtain a desired plate thickness. Method for manufacturing alloy plate.
JP5066006A 1992-05-18 1993-03-03 Aluminum alloy sheet for press forming excellent in curability by low-temperature short-time baking and method for producing the same Expired - Lifetime JP2997146B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5066006A JP2997146B2 (en) 1992-05-18 1993-03-03 Aluminum alloy sheet for press forming excellent in curability by low-temperature short-time baking and method for producing the same
EP93118682A EP0613959B1 (en) 1993-03-03 1993-11-19 An aluminium alloy sheet for use in press forming , exhibiting excellent hardening property obtained by baking at low temperature for a short period of time and a method of manufacturing the same
DE69311089T DE69311089T2 (en) 1993-03-03 1993-11-19 AL alloy sheet for press molds, which has excellent hardenability, which can be obtained in a short time when tempered at relatively low temperatures, and a method for producing the same
US08/156,034 US5580402A (en) 1993-03-03 1993-11-19 Low baking temperature hardenable aluminum alloy sheet for press-forming

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4-148984 1992-05-18
JP14898492 1992-05-18
JP5066006A JP2997146B2 (en) 1992-05-18 1993-03-03 Aluminum alloy sheet for press forming excellent in curability by low-temperature short-time baking and method for producing the same

Publications (2)

Publication Number Publication Date
JPH0633179A true JPH0633179A (en) 1994-02-08
JP2997146B2 JP2997146B2 (en) 2000-01-11

Family

ID=26407169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5066006A Expired - Lifetime JP2997146B2 (en) 1992-05-18 1993-03-03 Aluminum alloy sheet for press forming excellent in curability by low-temperature short-time baking and method for producing the same

Country Status (1)

Country Link
JP (1) JP2997146B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773303A1 (en) 1995-11-10 1997-05-14 Nkk Corporation Aluminium alloy sheet manufacturing method therefor
JP2011231400A (en) * 2010-04-05 2011-11-17 Kobe Steel Ltd Aluminum alloy plate excellent in formability
KR20170082604A (en) * 2014-11-11 2017-07-14 노벨리스 인크. Multipurpose heat treatable aluminum alloys and related processes and uses
CN112458344A (en) * 2020-11-04 2021-03-09 佛山科学技术学院 High-strength corrosion-resistant aluminum alloy and preparation method and application thereof

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0773303A1 (en) 1995-11-10 1997-05-14 Nkk Corporation Aluminium alloy sheet manufacturing method therefor
JP2011231400A (en) * 2010-04-05 2011-11-17 Kobe Steel Ltd Aluminum alloy plate excellent in formability
KR20170082604A (en) * 2014-11-11 2017-07-14 노벨리스 인크. Multipurpose heat treatable aluminum alloys and related processes and uses
JP2017538035A (en) * 2014-11-11 2017-12-21 ノベリス・インコーポレイテッドNovelis Inc. Versatile heat-treatable aluminum alloy and related methods and applications
JP2019167624A (en) * 2014-11-11 2019-10-03 ノベリス・インコーポレイテッドNovelis Inc. Multipurpose heat treatable aluminum alloy, related method and use
CN112458344A (en) * 2020-11-04 2021-03-09 佛山科学技术学院 High-strength corrosion-resistant aluminum alloy and preparation method and application thereof
CN112458344B (en) * 2020-11-04 2022-03-22 佛山科学技术学院 High-strength corrosion-resistant aluminum alloy and preparation method and application thereof

Also Published As

Publication number Publication date
JP2997146B2 (en) 2000-01-11

Similar Documents

Publication Publication Date Title
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP2997156B2 (en) Method for producing aluminum alloy sheet at room temperature with slow aging excellent in formability and paint bake hardenability
JP2997145B2 (en) Method for producing aluminum alloy sheet having delayed aging at room temperature
US5580402A (en) Low baking temperature hardenable aluminum alloy sheet for press-forming
JPH09137243A (en) Aluminum alloy sheet excellent in bendability after press forming and its production
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JP2997146B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature short-time baking and method for producing the same
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
JPH05125505A (en) Manufacture of baking hardenability aluminum alloy plate for forming
JPH0547615B2 (en)
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JPH07173565A (en) Aluminum alloy sheet for press forming excellent in curability for coating/baking
JPH05345963A (en) Manufacture of high formability aluminum alloy sheet
JPH04214834A (en) Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture
JPH05125504A (en) Manufacture of baking hardenability aluminum alloy plate for forming
JPH0718389A (en) Production of al-mg series alloy sheet for forming
JPH04160131A (en) Al-mg-si alloy plate excellent in strength and formability, and its manufacture
JPH0723160B2 (en) DI can body made of aluminum alloy with excellent necking and flange formability
JP3218099B2 (en) Method for producing aluminum alloy sheet with low ear ratio and excellent formability
JPH05230605A (en) Manufacture of aluminum alloy for baking and hardening formation
JP3069008B2 (en) Method for manufacturing aluminum alloy DI can body
JPH10310835A (en) Aluminum alloy sheet excellent in strength, stretcher strain mark resistance and bendability and its production
JPH05125506A (en) Manufacture of baking hardenability aluminum alloy plate for forming