JPH09137243A - Aluminum alloy sheet excellent in bendability after press forming and its production - Google Patents

Aluminum alloy sheet excellent in bendability after press forming and its production

Info

Publication number
JPH09137243A
JPH09137243A JP29295595A JP29295595A JPH09137243A JP H09137243 A JPH09137243 A JP H09137243A JP 29295595 A JP29295595 A JP 29295595A JP 29295595 A JP29295595 A JP 29295595A JP H09137243 A JPH09137243 A JP H09137243A
Authority
JP
Japan
Prior art keywords
alloy
aluminum alloy
temperature
heat treatment
bendability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29295595A
Other languages
Japanese (ja)
Inventor
Kohei Hasegawa
浩平 長谷川
Shinji Mitao
真司 三田尾
Masakazu Niikura
正和 新倉
Koichi Ohori
紘一 大堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd, NKK Corp, Nippon Kokan Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP29295595A priority Critical patent/JPH09137243A/en
Priority to CA 2189926 priority patent/CA2189926A1/en
Priority to EP96117938A priority patent/EP0773303A1/en
Publication of JPH09137243A publication Critical patent/JPH09137243A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce an Al alloy sheet for press forming excellent in proof stress after coating/baking, cold delayed aging properties and corrosion resistance by subjecting an Al alloy ingot contg. specified small amounts of Ti and B to hot and cold rolling and thereafter executing heat treatment under specified conditions. SOLUTION: The ingot of an Al alloy contg., by weight 2.0 to 3.0% Mg, 0.30 to 0.60% Cu, 0.08 to 0.15% Si, 0.005 to 0.15 Ti and 0.0002 to 0.05% B or furthermore contg. one or >=two kinds among 0.05 to 0.30% Mn, 0.05 to 0.10% Cr and 0.05 to 0.10% Zr with <=0.3% Fe as an impurity is subjected to homogenizing heating of single or multi-stage at 400 to 580 deg.C. Next, it is worked into a sheet material having prescribed thickness by hot rolling and cold rolling, is thereafter heated at 500 to 580 deg.C at a heating rate >=3 deg.C/sec and is held to the above temp. for 0 to 60sec. Successively, a heat treatment for executing cooling to 100 deg.C at a cooling rate of >=2 deg.C/sec is repeated for one to two times. After that, it is held at 60 to 150 deg.C for 1 to 48hr.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、塗装焼付後耐
力、常温遅時効性、耐食性等に優れたプレス成形用のア
ルミニウム合金板に関し、特にプレス成形後曲げ性に優
れた、自動車車体等に好適なアルミニウム合金板および
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy sheet for press forming which is excellent in proof stress after coating baking, late aging at room temperature, corrosion resistance and the like, and is particularly suitable for automobile bodies and the like having excellent bendability after press forming. Aluminum alloy plate and its manufacturing method.

【0002】[0002]

【従来の技術】従来より自動車ボディ−シ−ト等の成形
加工用板材として表面処理冷延鋼板が多用されている
が、近年、自動車の燃費向上のための軽量化の要望が高
まっており、その要望を満たすべく自動車ボディ−シ−
ト等にアルミニウム合金板が使用され始めてきている。
2. Description of the Related Art Surface-treated cold-rolled steel sheets have been frequently used as a plate material for forming an automobile body-sheet or the like. In recent years, there has been an increasing demand for weight reduction for improving fuel efficiency of automobiles. In order to satisfy such demands,
Aluminum alloy plates have begun to be used in products such as steel plates.

【0003】現在、自動車ボディー用アルミニウム合金
としては、日本国内では主として成形性の観点からM
g:4〜5%の5000系合金が主として使用されてい
る。しかし、この種の合金は、固溶Mg原子による動的
歪時効に起因したストレッチャーストレインマーク(以
下SSMと略記する)の発生を防止することが困難であ
り、現状ではプレス後、成形品の表面を研磨するなどし
て調整する必要があるため生産性が低下している。さら
にMg濃度が3%以上になると熱間圧延時にエッジ割
れ、ワニ口われが発生しやすくなり、歩留まりの低下を
招く。
Currently, as an aluminum alloy for automobile bodies, M is mainly used in Japan from the viewpoint of formability.
g: 4 to 5% of 5000 series alloy is mainly used. However, it is difficult for this type of alloy to prevent the occurrence of stretcher strain marks (hereinafter abbreviated as SSM) due to dynamic strain aging due to solid solution Mg atoms. The productivity is reduced because it is necessary to adjust the surface by polishing. Further, when the Mg concentration is 3% or more, edge cracking and crocodile bleeding are likely to occur during hot rolling, leading to a decrease in yield.

【0004】一方、6000系合金はMg濃度が低くS
SMが発生しにくく、また熱間圧延性も良好であるが、
プレス成形性は5000系と比較すると著しく劣る。特
開昭62−177143号公報では、6000系合金を
溶体化処理後、72時間以内に40〜120℃の温度で
8〜36時間の低温加熱処理を行うことにより、成形
性、焼付硬化性に優れたアルミニウム合金板が得られる
としているが、この合金は元来プレス成形性は良好では
なく、特に曲げ性に著しく劣る。
On the other hand, the 6000 series alloy has a low Mg concentration and S
SM is unlikely to occur and hot rolling property is also good,
The press formability is significantly inferior to that of the 5000 series. In Japanese Patent Laid-Open No. 62-177143, after the solution treatment of a 6000-series alloy, a low temperature heat treatment at a temperature of 40 to 120 ° C. for 8 to 36 hours is performed within 72 hours to improve formability and bake hardenability. Although it is said that an excellent aluminum alloy sheet can be obtained, this alloy is originally not good in press formability, and particularly inferior in bendability.

【0005】これに対して、先に本発明者らはSSMの
発生を抑制し、熱間圧延性が良好でかつプレス成形性が
優れた、5000系と6000系との中間的組成に位置
する3%Mg系アルミニウム合金板を開発した(特開平
4−304339号公報、特開平4−365834号公
報、特開平6−33179号公報参照)。また、これら
の諸特性に加えて常温遅時効性を付与したアルミニウム
合金板をも開発した(特開平6−25617号公報、特
開平7−97667号公報)。
On the other hand, the present inventors have previously located an intermediate composition between the 5000 series and the 6000 series, which suppresses the generation of SSM, has good hot rollability and excellent press formability. A 3% Mg-based aluminum alloy plate has been developed (see JP-A-4-304339, JP-A-4-365834, and JP-A-6-33179). Further, in addition to these various characteristics, an aluminum alloy plate having a room temperature delayed aging property has also been developed (JP-A-6-25617 and JP-A-7-97667).

【0006】さらに、特開昭62−27544号公報、
特開平2−118049号公報には、上記と類似成分に
おいて、強度、T4熱処理での成形加工性(曲げ性およ
び張出性)、SSM特性、常温時効特性、耐SCC性を
考慮した技術が開示されている。
Further, Japanese Patent Laid-Open No. 62-27544,
Japanese Patent Application Laid-Open No. 2-118049 discloses a technique in which strength, molding workability (bending property and bulging property) in T4 heat treatment, SSM characteristics, room temperature aging characteristics, and SCC resistance are considered in the similar components as described above. Has been done.

【0007】しかしながら、これら先行技術の組成範囲
のアルミニウム合金板においても、Mg濃度が3%を超
える場合にはSSMの発生を抑制することが困難であ
る。一方、Mg濃度を低くしていくと、プレス加工に続
く塗装焼付処理後の耐力が鋼板や従来の5000系合金
と比較して劣るという問題がある。塗装焼付処理後の耐
力はプレス後部品の耐デント性と相関があり、自動車外
板用材料として必要不可欠の特性であるが、Mg濃度が
低いアルミニウム合金ではこの塗装焼付処理後の耐力が
不十分である。
However, it is difficult to suppress the generation of SSM even in the aluminum alloy sheets having the composition ranges of these prior arts when the Mg concentration exceeds 3%. On the other hand, when the Mg concentration is lowered, there is a problem that the proof stress after the paint baking treatment following the press working is inferior to that of the steel plate or the conventional 5000 series alloy. The proof stress after paint baking is correlated with the dent resistance of pressed parts and is an indispensable property as a material for automobile outer panels, but aluminum alloys with low Mg concentration have insufficient proof stress after paint baking. Is.

【0008】そこで本発明者らは、前記3%Mg系アル
ミニウム合金について熱処理を考慮することにより、プ
レス成形性、塗装焼付後耐力、常温遅時効性、塗装後耐
食性、熱間圧延性に優れ、SSMの発生しないアルミニ
ウム合金板を開発した。
[0008] Therefore, the present inventors have taken into consideration the heat treatment of the above 3% Mg-based aluminum alloy, so that the press formability, the proof stress after baking, the room temperature delayed aging, the post-coating corrosion resistance, and the hot rolling property are excellent, We have developed an aluminum alloy plate that does not generate SSM.

【0009】しかしながら、この合金板は今まで自動車
用アルミニウム合金板として要求されていた特性を全て
満たしているものの、プレス成形後の曲げ性が悪いとい
う新たな問題が生じた。
However, although this alloy sheet satisfies all the properties which have been required as aluminum alloy sheets for automobiles up until now, a new problem arises that the bendability after press forming is poor.

【0010】[0010]

【発明が解決しようとする課題】この発明はかかる事情
に鑑みてなされたものであって、プレス成形性、塗装焼
付後耐力、常温遅時効性、塗装後耐食性、熱間圧延性に
優れ、SSMが発生しないという自動車ボディー用とし
て必要な特性を満たしつつ、さらにプレス成形後の曲げ
性が良好なアルミニウム合金板およびその製造方法を提
供することを目的とする。
The present invention has been made in view of the above circumstances and is excellent in press formability, proof stress after baking, aging at room temperature, corrosion resistance after coating, hot rolling property, and SSM. It is an object of the present invention to provide an aluminum alloy sheet having satisfactory bendability after press forming while satisfying the characteristics required for an automobile body that does not occur, and a method for producing the same.

【0011】[0011]

【課題を解決するための手段】自動車ボディーシート用
として要求される種々の特性に対して、5%Mg系の5
000系合金では、強度、プレス成形性は良好なもの
の、SSMが発生する問題があり、1%Mg系の600
0系合金では、SSM、強度は良好なものの、プレス成
形性に問題があった。すなわち、従来自動車ボディーシ
ート用アルミニウム合金として検討されていた5000
系合金および6000系合金には、それぞれ一長一短が
あった。
[Means for Solving the Problems] For various characteristics required for automobile body sheets, 5% Mg-based 5
Although the 000 series alloy has good strength and press formability, it has a problem that SSM is generated, and the 1% Mg series 600
The 0-based alloy had good SSM and strength, but had a problem in press formability. That is, 5000 which has been conventionally considered as an aluminum alloy for automobile body sheets.
Each of the series alloys and the 6000 series alloy has advantages and disadvantages.

【0012】そこで、本発明者らが、Mgがこれらの中
間の2〜3%MgとしたAl−Mg−Cu−Si系合金
について検討を行った結果、この合金はSSM特性とプ
レス成形性は良好であるものの、強度が5000系およ
び6000系に比べるとやや低いことが判明した。その
ため、前記3%Mg系合金では省略していた溶体化焼入
後の時効熱処理を行うことにより強度の向上を図った。
Therefore, the present inventors have examined an Al--Mg--Cu--Si alloy having Mg in the range of 2 to 3% Mg, and as a result, this alloy has SSM characteristics and press formability. It was found that the strength was good, but the strength was slightly lower than those of the 5000 series and 6000 series. Therefore, the strength was improved by performing an aging heat treatment after solution hardening, which was omitted in the 3% Mg-based alloy.

【0013】ところが、これにより強度を向上させるこ
とはできたものの、プレス成形後の曲げ性が極めて悪
く、プレス成形後にヘミング加工を行うと割れが生じる
という新たな問題点が生じた。
However, although the strength could be improved by this, the bendability after press molding was extremely poor, and there was a new problem that cracking occurred when hemming was performed after press molding.

【0014】従来、この種の合金板においてプレス成形
後の曲げ性は全く問題にされておらず、考慮されたこと
がなかった。もちろん、プレス成形性の一部として曲げ
性は考慮されていたが、実際の自動車外板の製造におけ
る曲げ加工はプレス成形後に行われるため、単に製造ま
まの合金板の曲げ試験において密着曲げが可能であって
も、製造時に割れが発生する場合があった。つまり、単
なる曲げ試験における曲げ性とプレス成形後の曲げ加工
性は必ずしも一致せず、従来の曲げ試験による評価では
十分に成形性が評価できていなかったのである。これ
は、プレス成形の変形モードと成形後の曲げ加工での変
形モードの相互作用が材料特性によって変化するためと
考えられる。
Conventionally, in this type of alloy sheet, the bendability after press forming has never been a problem and has never been considered. Of course, bendability was taken into consideration as part of press formability, but since the bending process in the actual manufacturing of automobile outer panels is performed after press forming, it is possible to perform close contact bending in the bending test of the as-manufactured alloy sheet. Even then, there were cases where cracks occurred during manufacturing. That is, the bendability in a simple bending test and the bending workability after press forming do not always match, and the formability could not be sufficiently evaluated by the conventional bending test. It is considered that this is because the interaction between the deformation mode of press molding and the deformation mode of bending after molding changes depending on the material characteristics.

【0015】本発明者らは、このような知見に基づき、
Mg量が5000系合金と6000系合金の中間に位置
するAl−Mg−Cu−Si系合金に溶体化焼入後の時
効熱処理を行うことを前提に、自動車ボディーシート用
として従来要求されている諸特性を犠牲にすることな
く、プレス成形後の曲げ性を改善すべく、さらに検討を
重ねた結果、Mg−Siの量を特定の狭い範囲に規定
し、さらにCu量を調整し、加えて全特性のバランス良
好なものにするためにTi、Bを微量添加すればよいこ
とを見出した。
Based on such knowledge, the present inventors have
It has been conventionally required for automobile body seats on the premise that an Al-Mg-Cu-Si alloy having an amount of Mg between the 5000 alloy and the 6000 alloy is subjected to aging heat treatment after solution hardening. As a result of further studies in order to improve bendability after press molding without sacrificing various properties, as a result, the amount of Mg-Si was specified in a specific narrow range, and the amount of Cu was adjusted and added. It has been found that Ti and B may be added in small amounts in order to obtain a good balance of all properties.

【0016】本発明は、本発明者らのこのような知見に
基づいてなされたものである。すなわち、本発明は、重
量%で、Mg:2.0〜3.0%、Cu:0.3〜0.
6%、Si:0.08〜0.15%、Ti:0.005
〜0.15%、B:0.0002〜0.05%を含有
し、不可避的不純物としてのFeが0.3%以下であ
り、残部が実質的にAlからなることを特徴とする、プ
レス成形後曲げ性に優れたアルミニウム合金板を提供す
るものである。
The present invention has been made on the basis of such findings of the present inventors. That is, in the present invention, in terms of weight%, Mg: 2.0 to 3.0%, Cu: 0.3 to 0.
6%, Si: 0.08 to 0.15%, Ti: 0.005
0.15%, B: 0.0002 to 0.05%, Fe as an unavoidable impurity of 0.3% or less, and the balance substantially consisting of Al. An aluminum alloy sheet having excellent bendability after forming is provided.

【0017】また、本発明は、重量%で、Mg:2.0
〜3.0%、Cu:0.3〜0.6%、Si:0.08
〜0.15%、Ti:0.005〜0.15%、B:
0.0002〜0.05%を含有し、さらにMn:0.
05〜0.30%、Cr:0.05〜0.10%、Z
r:0.05〜0.10%のうち1種または2種以上を
含有し、不可避的不純物としてのFeが0.3%以下で
あり、残部が実質的にAlからなることを特徴とする、
プレス成形後曲げ性に優れたアルミニウム合金板を提供
するものである。
The present invention also provides Mg: 2.0 by weight.
~ 3.0%, Cu: 0.3-0.6%, Si: 0.08
~ 0.15%, Ti: 0.005-0.15%, B:
0.0002 to 0.05%, and Mn: 0.
05-0.30%, Cr: 0.05-0.10%, Z
r: 0.05 to 0.10%, containing 1 or 2 or more kinds, Fe as an unavoidable impurity of 0.3% or less, and the balance substantially consisting of Al. ,
An aluminum alloy sheet having excellent bendability after press forming is provided.

【0018】さらに、本発明は、上記いずれかの合金組
成を有する鋳塊に対し、400〜580℃の範囲内の温
度で1段または多段の均質化処理を施した後、この鋳塊
を熱間圧延および冷間圧延することにより所望の板厚と
し、次いで500〜580℃の範囲内の温度まで3℃/
秒以上の加熱速度で加熱してその温度で0〜60秒間保
持し、引き続き100℃まで2℃/秒以上の冷却速度で
冷却する熱処理を1回または2回以上繰り返し、その後
60〜150℃の温度で1〜48時間保持することを特
徴とする、プレス成形後曲げ性に優れたアルミニウム合
金板の製造方法を提供するものである。
Further, according to the present invention, the ingot having any of the above alloy compositions is subjected to a one-step or multi-step homogenization treatment at a temperature in the range of 400 to 580 ° C., and then the ingot is heated. The desired plate thickness is obtained by hot rolling and cold rolling, and then 3 ° C / ° C up to a temperature in the range of 500 to 580 ° C.
The heat treatment of heating at a heating rate of 2 seconds or more and holding at that temperature for 0 to 60 seconds, and subsequently cooling to 100 ° C. at a cooling rate of 2 ° C./second or more is repeated once or twice or more, and then 60 to 150 ° C. The present invention provides a method for producing an aluminum alloy sheet having excellent bendability after press forming, which is characterized by holding at a temperature for 1 to 48 hours.

【0019】[0019]

【発明の実施の形態】以下、この発明について詳細に説
明する。本発明に係るアルミニウム合金板は、重量%
で、Mg:2.0〜3.0%、Cu:0.30〜0.6
0%、Si:0.08〜0.15%、Ti:0.005
〜0.15%、B:0.0002〜0.05%を含有
し、不可避的不純物としてのFeが0.3%以下であ
り、残部が実質的にAlからなる。また、さらにMn:
0.05〜0.30%、Cr:0.05〜0.10%、
Zr:0.05〜0.10%、Ti:0.005〜0.
15%のうち1種又は2種以上を含有してもよい。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below. The aluminum alloy plate according to the present invention has a weight%
Then, Mg: 2.0 to 3.0%, Cu: 0.30 to 0.6
0%, Si: 0.08 to 0.15%, Ti: 0.005
.About.0.15%, B: 0.0002 to 0.05%, Fe as an unavoidable impurity is 0.3% or less, and the balance substantially consists of Al. In addition, Mn:
0.05-0.30%, Cr: 0.05-0.10%,
Zr: 0.05 to 0.10%, Ti: 0.005 to 0.
You may contain 1 type (s) or 2 or more types among 15%.

【0020】本発明における合金組成はAl−Mg−C
u−Si系を基本としており、Al−Cu−Mg系の化
合物析出前段階の変調構造(GPBゾーン)を形成させ
ることによって塗膜焼付硬化性を優れたものとし、その
製造に際し、溶体化熱処理後急冷し、その後低温で熱処
理することによりプレス成形性、塗膜焼付後耐力、常温
遅時効性を得ており、さらに合金成分を適正化すること
により優れたプレス成形後の曲げ加工性を得ている。
The alloy composition in the present invention is Al-Mg-C.
Based on u-Si system, by forming a modulation structure (GPB zone) in the pre-deposition stage of Al-Cu-Mg-based compound precipitation, the coating film bake hardenability is made excellent, and in the production thereof, solution heat treatment is performed. After that, it is rapidly cooled and then heat-treated at a low temperature to obtain press formability, proof stress after baking of the coating film, and room temperature delayed aging. Furthermore, by optimizing the alloy components, excellent bend formability after press forming is obtained. ing.

【0021】次に、上記組成範囲に規定した理由を各成
分毎に説明する。 Mg: Mgは固溶元素として加工硬化係数の上昇、ひ
いては一様伸びの向上に寄与するとともに、焼付硬化性
に寄与するAl−Cu−Mg系の変調構造の構成元素で
もある。しかし、その含有量が2.0%未満では延性の
低下、プレス成形性の低下を招くばかりか、Al−Cu
−Mg系の変調構造の生成が遅くなり、3.0%を超え
ると熱間圧延割れが生じやすく、さらにスポット溶接性
を劣化させる。したがって、Mg含有量を2.0〜3.
0%の範囲に規定する。なお、プレス成形性(特に張出
性)およびプレス成形後の曲げ性の観点からは2.5%
以上であることが望ましい。
Next, the reason for defining the above composition range will be explained for each component. Mg: As a solid solution element, Mg contributes to an increase in the work hardening coefficient, and consequently to an improvement in uniform elongation, and is also a constituent element of the Al—Cu—Mg-based modulation structure that contributes to bake hardenability. However, if the content is less than 2.0%, not only does ductility and press formability deteriorate, but Al-Cu
The formation of the Mg-based modulation structure is delayed, and if it exceeds 3.0%, hot rolling cracks are likely to occur, and the spot weldability is further deteriorated. Therefore, the Mg content is 2.0 to 3.
It is specified in the range of 0%. 2.5% from the viewpoint of press formability (especially overhanging property) and bendability after press forming.
It is desirable that this is the case.

【0022】Cu: Cuは固溶元素として材料の強度
上昇に寄与するとともに、上述のAl−Cu−Mg系の
変調構造の構成元素である。しかし、その含有量が0.
30%未満では変調構造が生成せず、強度、塗膜焼付硬
化性ともに不十分である。また塗装時の燐酸亜鉛処理の
観点からも0.30%以上であることが必須である。一
方、0.60%を超えると熱間圧延時に割れが発生しや
すくなるとともに、塗装後耐食性が劣化する。したがっ
て、Cu含有量を0.30〜0.60%の範囲に規定す
る。なおCuは一層の高強度化の観点からは0.40%
以上であることが望ましい。また、耐食性の観点からは
0.55%以下であることが望ましい。
Cu: Cu contributes to the strength increase of the material as a solid solution element and is a constituent element of the above Al—Cu—Mg type modulation structure. However, when its content is 0.1.
If it is less than 30%, no modulation structure is generated, and the strength and the bake hardenability of the coating film are insufficient. Further, from the viewpoint of zinc phosphate treatment during coating, it is essential that the content be 0.30% or more. On the other hand, if it exceeds 0.60%, cracks are likely to occur during hot rolling, and the corrosion resistance after coating deteriorates. Therefore, the Cu content is specified in the range of 0.30 to 0.60%. Note that Cu is 0.40% from the viewpoint of further strengthening.
It is desirable that this is the case. From the viewpoint of corrosion resistance, it is preferably 0.55% or less.

【0023】Si: SiはAl−Cu−Mg系の変調
構造の生成を促進させて硬化能を高める元素である。そ
の機能を発揮するためには0.08%以上含有すること
が必須である。一方、その含有量が0.15%を超える
と粗大なMg2 Si系晶出物が増加する結果、特にプレ
ス後の曲げ加工性が著しく劣化し、ヘミング時の割れ等
の不良の発生の原因となる。したがって、Si含有量を
0.08〜0.15%の範囲に規定する。
Si: Si is an element that promotes the formation of an Al—Cu—Mg-based modulation structure and enhances the hardening ability. In order to exert its function, it is essential to contain 0.08% or more. On the other hand, if the content exceeds 0.15%, coarse Mg 2 Si-based crystallized substances increase, and as a result, bending workability particularly after pressing is significantly deteriorated, causing defects such as cracks during hemming. Becomes Therefore, the Si content is specified in the range of 0.08 to 0.15%.

【0024】Fe: Feは不可避的不純物として通常
アルミニウム合金に含有されるものであり、含有量が
0.3%を超えるとAl−Fe系の粗大晶出物の形成が
著しくなり、これが特にプレス成形後の曲げにおける亀
裂の伝播を促進することとなる。したがって、Feの含
有量を0.3%以下に規制する。
Fe: Fe is usually contained in an aluminum alloy as an unavoidable impurity, and when the content exceeds 0.3%, the formation of coarse Al—Fe-based crystallized substances becomes remarkable, which is especially caused by pressing. It promotes the propagation of cracks in bending after forming. Therefore, the Fe content is restricted to 0.3% or less.

【0025】Ti,B: Ti,BはTiB2 を形成
し、鋳塊の結晶粒を均一にする効果を有する。しかし、
Ti,Bがそれぞれ0.005%、0.0002%未満
では鋳造組織が粗大となり、その結果Mg2 SiやAl
−Fe系の晶出物を粗大化させ、そのため熱間圧延時に
割れが発生しやすくなるとともに、粗大析出物がプレス
成形後の曲げ特性を劣化させる。一方、これらを過剰に
添加するとTi,Bが粗大な晶出物を生成し、成形性を
劣化させる。したがって、TiおよびBの含有量を、そ
れぞれ0.005〜0.15%、および0.0002〜
0.05%の範囲に規定する。
Ti, B: Ti, B forms TiB 2 and has the effect of making the crystal grains of the ingot uniform. But,
When Ti and B are less than 0.005% and less than 0.0002%, respectively, the cast structure becomes coarse, resulting in Mg 2 Si and Al.
The —Fe-based crystallized product is coarsened, so that cracks are likely to occur during hot rolling, and the coarse precipitate deteriorates the bending property after press forming. On the other hand, if these are added excessively, Ti and B form coarse crystallized substances and deteriorate the formability. Therefore, the contents of Ti and B are 0.005-0.15% and 0.0002-, respectively.
It is specified in the range of 0.05%.

【0026】Mn,Cr,Zr: これらの元素は一般
的に再結晶粒成長を抑制する目的で添加される。結晶粒
を微細化することにより、特にプレス成形後の肌荒れが
抑制される。肌荒れは製品の外観を損ねるばかりか、プ
レス成形後のヘミング加工時に割れの起点として作用す
るため、結晶粒を適正に微細化することにより、プレス
成形後の曲げ加工性が向上する。このような作用はM
n,Cr,Zrをそれぞれ0.05%以上添加すること
により有効に発揮させることができる。しかしながら、
Mnが0.30%、Crが0.10%、Zrが0.10
%を超えて添加されると、結晶粒径が微細化しすぎてS
SMが発生し、また延性が低下する。したがって、M
n:0.05〜0.30%、Cr:0.05〜0.10
%、Zr:0.05〜0.10%のうち1種または2種
以上を必要に応じて添加することが好ましい。
Mn, Cr, Zr: These elements are generally added for the purpose of suppressing recrystallized grain growth. By making the crystal grains fine, roughness of the skin, especially after press molding, is suppressed. Rough skin not only impairs the appearance of the product, but also acts as a starting point of cracks during hemming after press molding. Therefore, by appropriately refining the crystal grains, bendability after press molding is improved. Such action is M
It can be effectively exhibited by adding 0.05% or more of each of n, Cr and Zr. However,
Mn 0.30%, Cr 0.10%, Zr 0.10
%, The crystal grain size becomes too fine and S
SM occurs and the ductility decreases. Therefore, M
n: 0.05 to 0.30%, Cr: 0.05 to 0.10.
%, Zr: 0.05 to 0.10%, and it is preferable to add one or more of them as necessary.

【0027】なお、その他の元素としてBeを0.01
%まで添加してもよい。Beは鋳造時の酸化を防止し、
鋳造性、熱間圧延性を向上させ、合金板の成形性を向上
させる元素である。しかし、その含有量が0.01%を
超えるとその効果が飽和するばかりでなく、毒性の強い
元素であるので鋳造作業環境を害する恐れがあるので好
ましくない。したがって、そのBeを添加する場合にも
その添加量は0.01%までに制限する。
Be is 0.01 as the other element.
% May be added. Be prevents oxidation during casting,
It is an element that improves the castability and hot rolling property and improves the formability of the alloy plate. However, if the content exceeds 0.01%, not only the effect is saturated, but also since it is a highly toxic element, it may harm the casting work environment, which is not preferable. Therefore, even if the Be is added, the addition amount is limited to 0.01%.

【0028】これらの元素の他、通常のアルミニウム合
金と同様、不可避的不純物が含有されるが、その量は本
発明の効果が損なわれない範囲であれば許容される。次
に、以上の組成を有する合金板の製造条件について説明
する。
In addition to these elements, inevitable impurities are contained as in the case of ordinary aluminum alloys, but the amount thereof is acceptable as long as the effects of the present invention are not impaired. Next, the manufacturing conditions of the alloy plate having the above composition will be described.

【0029】上記範囲に成分・組成が規定されたアルミ
ニウム合金を常法により溶解・鋳造し、その鋳塊に対し
て400〜580℃の範囲内の温度で1段または多段の
均質化熱処理を施す。このような均質化処理を施すこと
により、鋳造時に晶出した共晶化合物の拡散固溶を促進
し、局部的ミクロ偏析を軽減する。また、この処理によ
り、最終製品の結晶粒の異常粒成長を抑制し、均一化を
図るうえで重要な役割を果たすMn,Cr,Zrの化合
物を微細に析出させることができる。しかし、この処理
の温度が400℃未満の場合には上述したような効果が
不十分であり、一方580℃を超えると共晶融解が生じ
る。従って、均質化処理の温度を400〜580℃の範
囲とする。なお、この温度範囲内での保持時間が1時間
未満では上述の効果が十分に得られず、72時間を超え
る長時間の加熱はその効果が飽和してしまうため、この
均質化処理の保持時間は1〜72時間が望ましい。
An aluminum alloy having the components and compositions defined in the above range is melted and cast by a conventional method, and the ingot is subjected to one-step or multi-step homogenization heat treatment at a temperature in the range of 400 to 580 ° C. . By performing such a homogenization treatment, diffusion and solid solution of the eutectic compound crystallized during casting are promoted, and local microsegregation is reduced. Further, by this treatment, it is possible to finely precipitate the compounds of Mn, Cr, and Zr, which play an important role in suppressing the abnormal grain growth of the crystal grains of the final product and achieving uniformity. However, if the temperature of this treatment is lower than 400 ° C., the above-mentioned effects are insufficient, while if it exceeds 580 ° C., eutectic melting occurs. Therefore, the temperature of the homogenization treatment is set in the range of 400 to 580 ° C. If the holding time within this temperature range is less than 1 hour, the above-mentioned effect cannot be sufficiently obtained, and heating for a long time exceeding 72 hours will saturate the effect. Is preferably 1 to 72 hours.

【0030】次いで、このような均質化処理が施された
鋳塊に対し、常法に従って所定の板厚を得るために熱間
圧延および冷間圧延を行う。また、歪矯正又は表面粗度
調整のため、以下に示す熱処理の前後両方、またはいず
れか一方で5%以下のレベリング、ストレッチング、ま
たはスキンパス圧延を実施してもよい。
Then, the ingot subjected to such homogenization treatment is subjected to hot rolling and cold rolling in order to obtain a predetermined plate thickness according to a conventional method. Further, in order to correct the strain or adjust the surface roughness, 5% or less of leveling, stretching, or skin pass rolling may be performed before or after the heat treatment described below, or either one of them.

【0031】圧延終了後、このような圧延板材に対し、
500〜580℃の範囲内の温度に3℃/秒以上の加熱
速度で加熱して、その温度に達して後即座に、または6
0秒間以下の期間保持した後、100℃まで2℃/秒以
上の冷却速度で急速冷却するといった条件の熱処理を施
す。この熱処理は、Al−Cu−Mg系化合物の変調構
造を構成するCu、Mgの溶体化を図り、その後の塗膜
焼付時の加熱による時効硬化プロセスにおいて十分な焼
付硬化を得るために行うものである。この場合に、加熱
温度が500℃未満では、溶体化が不十分となる結果、
焼付硬化量が不十分となる。また、加熱温度が580℃
を超えたり、加熱速度が3℃/秒未満であったり、保持
時間が60秒を超えると、共晶融解を生じたり、結晶粒
の一部が異常粒成長するなど、ミクロ組織不良を起こし
やすくなるため、成形性が低下する。さらに、100℃
までの冷却速度が2℃/秒未満では、冷却中にAl−C
u−Mg系化合物が析出し、焼付委硬化性を損なうため
好ましくない。なお、この熱処理を2回以上繰り返すこ
とにより、生産性を損なうものの、焼付硬化性が向上す
るので必要に応じて2回以上行ってもよい。
After completion of rolling, the rolled plate material
Heating to a temperature in the range of 500 to 580 ° C. at a heating rate of 3 ° C./sec or more and immediately after reaching that temperature, or 6
After holding for a period of 0 second or less, heat treatment is performed under conditions such as rapid cooling to 100 ° C. at a cooling rate of 2 ° C./second or more. This heat treatment is performed in order to achieve solution treatment of Cu and Mg forming the modulation structure of the Al-Cu-Mg-based compound, and to obtain sufficient bake hardening in the age hardening process by heating during subsequent baking of the coating film. is there. In this case, if the heating temperature is lower than 500 ° C., solution treatment becomes insufficient,
The bake-hardening amount becomes insufficient. Also, the heating temperature is 580 ℃
, The heating rate is less than 3 ° C / sec, and the holding time exceeds 60 seconds, eutectic melting occurs, and some of the crystal grains grow abnormally. Therefore, the moldability is lowered. Furthermore, 100 ℃
If the cooling rate up to 2 ° C / sec is less than Al-C during cooling
The u-Mg-based compound precipitates and impairs the baking hardening property, which is not preferable. By repeating this heat treatment twice or more, productivity is impaired, but bake hardenability is improved. Therefore, it may be performed twice or more as necessary.

【0032】このような溶体化処理の後、室温に保持後
または直接、60〜150℃の温度で1〜48時間の熱
処理(低温時効処理)を行う。この熱処理によって、予
めある程度のAl−Cu−Mg系変調構造を形成させる
ことによって常温における特性の安定性を向上させる。
さらにここで形成される変調構造はプレス成形で導入さ
れた加工歪みが塗膜焼付時に回復するのを抑制するため
に、塗膜焼付処理中に形成されるAl−Cu−Mg系変
調構造とともに、塗膜焼付後の強度上昇に寄与する。ま
た、変調構造を形成したMg原子は動的歪時効に寄与し
なくなるため、この熱処理によってSSMの発生が抑制
される。しかし、この熱処理温度が60℃未満の場合ま
たは保持時間が1時間未満の場合には、上述の硬化を十
分に得ることができず、また加熱温度が150℃を超え
た場合または保持時間が48時間を超える場合には変調
構造が過度に形成されてしまい、焼付硬化能が不十分に
なるばかりか、強度への寄与の小さい粗大なAl−Cu
−Mg系化合物が析出するために好ましくない。
After such solution treatment, heat treatment (low temperature aging treatment) is performed at a temperature of 60 to 150 ° C. for 1 to 48 hours after being kept at room temperature or directly. By this heat treatment, the Al-Cu-Mg-based modulation structure is formed to some extent in advance to improve the stability of characteristics at room temperature.
Further, the modulation structure formed here is, together with the Al-Cu-Mg type modulation structure formed during the coating baking process, in order to suppress the recovery of the processing strain introduced by press molding during the baking of the coating film, Contributes to an increase in strength after baking the coating film. In addition, since Mg atoms forming the modulation structure do not contribute to dynamic strain aging, generation of SSM is suppressed by this heat treatment. However, when the heat treatment temperature is lower than 60 ° C. or when the holding time is less than 1 hour, the above curing cannot be sufficiently obtained, and when the heating temperature exceeds 150 ° C. or the holding time is 48 hours. If the time is exceeded, the modulation structure will be excessively formed, and the bake hardening ability will be insufficient, and the coarse Al-Cu will contribute little to the strength.
-Mg-based compound precipitates, which is not preferable.

【0033】以上のように、上述の組成のアルミニウム
合金に対してこのような工程を施すことにより、従来か
ら自動車ボディー用に要求されている塗膜焼付硬化性、
常温遅時効性等に加え、プレス成形後の曲げ加工性もが
優れ、自動車車体用として好適なアルミニウム合金板が
得られる。
As described above, by subjecting the aluminum alloy having the above-mentioned composition to such a step, the bake hardenability which has been conventionally required for automobile bodies,
In addition to late aging at room temperature, bending workability after press molding is excellent, and an aluminum alloy sheet suitable for automobile bodies can be obtained.

【0034】[0034]

【実施例】以下、この発明の実施例について説明する。 (実施例1)表1に示すような成分・組成を有する合金
を溶解、DC鋳造し、得られた鋳塊を440℃で4時間
その後510℃で10時間の2段の均質化熱処理を実施
し、次いで鋳片を460℃に加熱し、板厚4mmまで熱
間圧延を行なった。次いで、室温に冷却した後、最終板
厚まで冷間圧延を行って厚さ1mmの板材とした。な
お、熱間圧延の仕上がり温度は280℃であった。この
厚さ1mmの板材を550℃まで10℃/秒の速度で加
熱し、10秒間保持後、100℃まで20℃/秒の冷却
速度で強制空冷を行った。この熱処理後、常温にて2日
間放置し、その後100℃で24時間熱処理を行った。
Embodiments of the present invention will be described below. (Example 1) An alloy having the components and compositions shown in Table 1 was melted, DC cast, and the obtained ingot was subjected to a two-stage homogenization heat treatment at 440 ° C for 4 hours and then at 510 ° C for 10 hours. Then, the slab was heated to 460 ° C. and hot rolled to a plate thickness of 4 mm. Next, after cooling to room temperature, cold rolling was performed to the final sheet thickness to obtain a sheet material having a thickness of 1 mm. The finishing temperature of hot rolling was 280 ° C. The plate material having a thickness of 1 mm was heated to 550 ° C. at a rate of 10 ° C./second, held for 10 seconds, and then forcedly cooled to 100 ° C. at a cooling rate of 20 ° C./second. After this heat treatment, it was left to stand at room temperature for 2 days, and then heat treated at 100 ° C. for 24 hours.

【0035】以上のような処理を施した板材を常温で1
週間保持後、所定形状に切り出し、引張試験(JIS5
号,引張方向:圧延方向)および深絞り試験、張出し成
形試験を行った。
The plate material which has been subjected to the above-mentioned treatment is kept at room temperature for 1 hour.
After holding for a week, it was cut into a predetermined shape and subjected to a tensile test (JIS5
No., tensile direction: rolling direction), deep drawing test, and stretch forming test.

【0036】常温時効量を評価するために、採取した引
張試験片に対して40℃において90日間加速時効処理
を施した後、引張試験を行い、製造直後の耐力と比較し
た。また、プレス成形後の塗膜焼付をシミュレートする
ために、2%および5%引張変形(プレス加工に対応)
後、170℃において20分間の熱処理(塗膜焼付に対
応、以下BH処理と略記する)を行い、引張試験を行っ
た。
In order to evaluate the amount of normal temperature aging, the sampled tensile test pieces were subjected to accelerated aging treatment at 40 ° C. for 90 days and then subjected to a tensile test to compare the yield strength immediately after production. In addition, 2% and 5% tensile deformation (corresponding to press working) to simulate coating baking after press molding
Then, heat treatment (corresponding to coating baking, abbreviated as BH treatment hereinafter) was performed at 170 ° C. for 20 minutes, and a tensile test was performed.

【0037】張出試験は円板状試験片をビード付きのし
わ押さえで完全ロックし、球頭ポンチで成形することに
より行い、亀裂が発生する最小高さを測定して、それに
よって張出成形性を評価した。深絞り試験は円板状試験
片に一定のしわ押さえ力をかけて、円筒ポンチで成形す
ることにより行い、張出と同様にして高さを測定して、
それによって深絞成形性を評価した。
The bulge test is carried out by completely locking the disc-shaped test piece with a beaded crease holder and molding it with a ball head punch, and measuring the minimum height at which cracks occur, and then bulging molding The sex was evaluated. The deep drawing test is performed by applying a constant wrinkle holding force to the disc-shaped test piece and forming it with a cylindrical punch, and measuring the height in the same manner as the overhang,
Thereby, the deep drawing formability was evaluated.

【0038】プレス成形後の曲げ加工性は、20×20
0mmの短冊状試験変を用い引張試験機によって予め加
工したものをさらに180°密着曲げ加工し、割れが発
生する最小の予歪量で評価した。この値が大きいほどプ
レス成形後の曲げ加工性に優れることを示す。
The bending workability after press molding is 20 × 20.
What was pre-processed by a tensile tester using a strip test of 0 mm was further subjected to 180 ° contact bending, and evaluated by the minimum pre-strain amount at which cracking occurred. The larger the value, the better the bending workability after press forming.

【0039】SSMの評価は、プレス成形でのSSMの
発生をシミュレートするために40×200mmの短冊
状試験片を用い、引張り試験機によって歪速度10-2
10%引張り、試験片表面に発生するパラレルバンドの
有無を目視で評価した。
The evaluation of SSM was carried out by using a 40 × 200 mm strip test piece to simulate the generation of SSM during press molding, and pulling 10% at a strain rate of 10 −2 on a test piece surface by a tensile tester. The presence or absence of the generated parallel band was visually evaluated.

【0040】塗装後耐食性試験は、処理後のコイルから
70×150mmの試験片を切り出し、脱脂および酸洗
後、市販の燐酸亜鉛処理液にて化成処理を行い、水洗し
乾燥した後、カチオン電着塗装による下塗、さらには吹
き付けによる中塗、上塗を行ってサンプルを作製し、こ
のサンプルを用いて行った。この時、トータル塗装膜厚
さは約100μmであった。このサンプル表面に、アル
ミニウム素地まで達するクロスカットを入れ、JIS
Z 2371による塩水噴霧試験を24時間行い、その
後50℃、95%RHの湿潤雰囲気に2000時間放置
した後に、クロスカット部から発生した糸錆の最大長さ
を測定し、これにより塗装後耐食性を評価した。これら
の試験結果を表2に示す。
In the post-painting corrosion resistance test, a 70 × 150 mm test piece was cut out from the coil after treatment, degreased and pickled, then subjected to chemical conversion treatment with a commercially available zinc phosphate treatment solution, washed with water and dried, and then subjected to cationic electrolysis. A sample was prepared by applying an undercoat by coating, a middle coat by spraying, and a topcoat, and this sample was used. At this time, the total coating film thickness was about 100 μm. A cross cut reaching the aluminum base is put on the surface of this sample.
The salt spray test according to Z2371 was conducted for 24 hours, and then left in a humid atmosphere of 50 ° C. and 95% RH for 2000 hours, after which the maximum length of the thread rust generated from the cross-cut portion was measured, whereby the corrosion resistance after painting was evaluated. evaluated. Table 2 shows the test results.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】表2から明らかなように、本発明の組成範
囲内である合金番号1〜14は、2%および5%引張後
BH処理後の耐力が高く、40℃で90日間の加速時効
処理においても耐力変化がほとんどないことが確認され
た。また、張出し、深絞り成形性が良好で、14%の予
歪後密着曲げを行っても割れが発生しない良好な成形後
曲げ加工性を有していた。さらに、SSMも発生せず、
塗装後耐食性も優れていた。なお、Cu量が0.5%以
下の合金が特に耐食性に優れていることが確認された。
As is clear from Table 2, Alloy Nos. 1 to 14, which are within the composition range of the present invention, have high yield strength after BH treatment after 2% and 5% tension, and accelerated aging treatment at 40 ° C. for 90 days. It was confirmed that there was almost no change in yield strength. Further, it had good overhanging and deep drawing formability, and had good post-forming bending workability in which cracking did not occur even when performing contact bending after pre-strain of 14%. Furthermore, SSM does not occur,
The corrosion resistance after painting was also excellent. It has been confirmed that the alloy having a Cu content of 0.5% or less is particularly excellent in corrosion resistance.

【0044】これに対して、本発明の組成範囲から外れ
る合金番号15〜26では、上記いずれかの特性が劣っ
ていた。例えば、Mg、Si、Cuのいずれかが低い、
合金番号16、18、20は、BH処理後の硬化性(塗
膜焼付硬化性)が低かった。TiおよびBを添加してい
ない合金番号15は異常結晶粒成長を生じ、伸び、成形
性、成形後曲げ加工性が劣っていた。Mg量が多い合金
番号17はSSMが発生した。Si量が多い合金番号1
9、22は常温時効量が多く、また成形後の曲げ加工性
が著しく低かった。Cu量の多い合金番号21は常温時
効量が多く、また耐食性が著しく劣っていた。Mn、C
r、Zrを過剰に添加した合金番号23、24、25は
結晶粒が微細になりすぎてSSMが発生し、また成形後
曲げ加工性も劣化した。Fe含有量の多い合金番号26
はAl−Fe系の晶出物が多く、成形性、成形後曲げ加
工性が劣っていた。 (実施例2)表1に示した合金のうち、合金番号11の
組成を有する合金を用い、溶解、DC鋳造し、得られた
鋳塊を440℃で4時間その後510℃で10時間の2
段の均質化熱処理を実施し、次いで鋳片を460℃に加
熱し、板厚4mmまで熱間圧延を行なった。次いで、室
温に冷却した後、最終板厚まで冷間圧延を行って厚さ1
mmの板材とした。なお、熱間圧延の仕上がり温度は2
80℃であった。この厚さ1mmの板材を550℃まで
10℃/秒の速度で加熱し、10秒間保持後、100℃
まで20℃/秒の冷却速度で強制空冷を行った。この熱
処理後、常温にて2日間放置し、その後表3に示すよう
な熱処理を行った。このようにして製造した合金板につ
いて実施例1と同様の評価試験を行った。その結果を表
3に併記する。
On the other hand, Alloy Nos. 15 to 26, which are out of the composition range of the present invention, were inferior in any of the above characteristics. For example, Mg, Si, or Cu is low,
Alloy Nos. 16, 18, and 20 had low curability (coating bake curability) after BH treatment. Alloy No. 15 to which Ti and B were not added exhibited abnormal crystal grain growth and was inferior in elongation, formability, and bending workability after forming. Alloy No. 17 with a large amount of Mg generated SSM. Alloy number 1 with high Si content
Nos. 9 and 22 had a large amount of aging at room temperature, and bending workability after molding was extremely low. Alloy No. 21, which had a large amount of Cu, had a large amount of aging at room temperature and was significantly inferior in corrosion resistance. Mn, C
In Alloy Nos. 23, 24 and 25 to which r and Zr were added excessively, crystal grains became too fine and SSM was generated, and bending workability after forming was deteriorated. Alloy No. 26 with high Fe content
Had many Al-Fe-based crystallized substances, and was inferior in moldability and bendability after molding. (Example 2) Of the alloys shown in Table 1, an alloy having a composition of alloy No. 11 was used, melting and DC casting were performed, and the obtained ingot was heated at 440 ° C for 4 hours and then at 510 ° C for 10 hours.
A step homogenization heat treatment was carried out, the slab was then heated to 460 ° C., and hot rolled to a plate thickness of 4 mm. Then, after cooling to room temperature, cold rolling is performed to the final plate thickness to obtain a thickness of 1
mm plate material. The finish temperature of hot rolling is 2
80 ° C. The plate material having a thickness of 1 mm is heated to 550 ° C. at a rate of 10 ° C./sec, and after holding for 10 seconds, 100 ° C.
Up to 20 ° C / sec for forced air cooling. After this heat treatment, it was left at room temperature for 2 days, and then heat treatment as shown in Table 3 was performed. The same evaluation test as in Example 1 was performed on the alloy plate thus manufactured. The results are also shown in Table 3.

【0045】[0045]

【表3】 [Table 3]

【0046】表3から明らかなように、本発明の条件を
満足する記号A〜Dはいずれも2%および5%引張後B
H処理後の耐力が高く、張出し、深絞り成形性が良好
で、14%の予歪後密着曲げを行っても割れが発生しな
い良好な成形後曲げ加工性を有していた。
As is clear from Table 3, all the symbols A to D satisfying the conditions of the present invention are B after 2% and 5% tension.
After the H treatment, the yield strength was high, the overhanging and deep drawing formability were good, and the post-formation bending workability was such that cracks did not occur even when contact bending after prestrain of 14% was performed.

【0047】これに対して、本発明の条件を満足しない
記号E〜Hはいずれかの特性が劣っていた。例えば、本
発明の低温時効処理を行わない記号E、および低温時効
処理の温度が低い記号Fは、40℃で90日の加速時効
処理による耐力変化がそれぞれ40MPa、30MPa
と大きく、またBH処理後の耐力も十分でなかった。ま
た、低温時効処理時間の長すぎる記号G、および温度の
高い記号Hは、伸び、成形性が低く、また成形後の加工
性が著しく低かった。
On the other hand, symbols E to H which do not satisfy the conditions of the present invention were inferior in any of the characteristics. For example, the symbol E of the present invention in which the low temperature aging treatment is not performed and the symbol F of which the temperature of the low temperature aging treatment is low are 40 MPa and 30 MPa, respectively, in the proof stress change due to the accelerated aging treatment at 40 ° C. for 90 days.
And the yield strength after BH treatment was not sufficient. In addition, the symbol G for which the low temperature aging treatment time was too long and the symbol H for which the temperature was high were low in elongation and moldability, and remarkably low in workability after molding.

【0048】[0048]

【発明の効果】この発明によれば、プレス成形性、塗装
焼付後耐力、常温遅時効性、塗装後耐食性、熱間圧延性
に優れ、SSMが発生しないという自動車ボディー用と
して必要な特性を満たしつつ、さらにプレス成形後の曲
げ性が良好な、自動車ボディー用として最適なアルミニ
ウム合金板およびその製造方法を得ることができる。
EFFECTS OF THE INVENTION According to the present invention, it is excellent in press formability, proof stress after baking, aging at room temperature, corrosion resistance after coating and hot rolling property, and satisfies the properties required for automobile bodies that SSM does not occur. At the same time, it is possible to obtain an aluminum alloy plate which is excellent in bendability after press forming and which is most suitable for an automobile body and a manufacturing method thereof.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 新倉 正和 東京都千代田区丸の内一丁目1番2号 日 本鋼管株式会社内 (72)発明者 大堀 紘一 静岡県裾野市平松85番地 三菱アルミニウ ム株式会社技術開発センター内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Masakazu Niikura 1-2-1, Marunouchi, Chiyoda-ku, Tokyo Nihon Kokan KK (72) Inventor Koichi Ohori 85 Hiramatsu, Susono-shi, Shizuoka Mitsubishi Aluminum Co., Ltd. Inside the Technology Development Center

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 重量%で、Mg:2.0〜3.0%、C
u:0.30〜0.60%、Si:0.08〜0.15
%、Ti:0.005〜0.15%、B:0.0002
〜0.05%を含有し、不可避的不純物としてのFeが
0.3%以下であり、残部が実質的にAlからなること
を特徴とする、プレス成形後曲げ性に優れたアルミニウ
ム合金板。
1. Mg: 2.0 to 3.0% by weight, C
u: 0.30 to 0.60%, Si: 0.08 to 0.15
%, Ti: 0.005 to 0.15%, B: 0.0002
An aluminum alloy sheet having an excellent bendability after press forming, characterized in that the content of Fe is 0.05% or less, Fe as an unavoidable impurity is 0.3% or less, and the balance is substantially Al.
【請求項2】 重量%で、Mg:2.0〜3.0%、C
u:0.30〜0.60%、Si:0.08〜0.15
%、Ti:0.005〜0.15%、B:0.0002
〜0.05%を含有し、さらにMn:0.05〜0.3
0%、Cr:0.05〜0.10%、Zr:0.05〜
0.10%のうち1種または2種以上を含有し、不可避
的不純物としてのFeが0.3%以下であり、残部が実
質的にAlからなることを特徴とする、プレス成形後曲
げ性に優れたアルミニウム合金板。
2. Mg: 2.0 to 3.0% by weight, C
u: 0.30 to 0.60%, Si: 0.08 to 0.15
%, Ti: 0.005 to 0.15%, B: 0.0002
To 0.05%, and Mn: 0.05 to 0.3
0%, Cr: 0.05 to 0.10%, Zr: 0.05 to
Bending property after press molding, characterized by containing one or more of 0.10%, Fe as an unavoidable impurity of 0.3% or less, and the balance substantially consisting of Al. Excellent aluminum alloy plate.
【請求項3】 請求項1または請求項2の合金組成を有
する鋳塊に対し、400〜580℃の範囲内の温度で1
段または多段の均質化処理を施した後、この鋳塊を熱間
圧延および冷間圧延することにより所望の板厚とし、次
いで500〜580℃の範囲内の温度まで3℃/秒以上
の加熱速度で加熱してその温度で0〜60秒間保持し、
引き続き100℃まで2℃/秒以上の冷却速度で冷却す
る熱処理を1回または2回以上繰り返し、その後60〜
150℃の温度で1〜48時間保持することを特徴とす
る、プレス成形後曲げ性に優れたアルミニウム合金板の
製造方法。
3. The ingot having the alloy composition according to claim 1 or 2 at a temperature in the range of 400 to 580 ° C.
After performing a step or multi-step homogenization treatment, this ingot is hot-rolled and cold-rolled to a desired plate thickness, and then heated to a temperature in the range of 500 to 580 ° C at 3 ° C / sec or more. Heat at a speed and hold at that temperature for 0-60 seconds,
Subsequently, heat treatment for cooling to 100 ° C. at a cooling rate of 2 ° C./second or more is repeated once or twice or more, and then 60 to
A method for producing an aluminum alloy sheet having excellent bendability after press forming, which is characterized by holding at a temperature of 150 ° C for 1 to 48 hours.
JP29295595A 1995-11-10 1995-11-10 Aluminum alloy sheet excellent in bendability after press forming and its production Pending JPH09137243A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP29295595A JPH09137243A (en) 1995-11-10 1995-11-10 Aluminum alloy sheet excellent in bendability after press forming and its production
CA 2189926 CA2189926A1 (en) 1995-11-10 1996-11-08 Aluminum alloy sheet and manufacturing method therefor
EP96117938A EP0773303A1 (en) 1995-11-10 1996-11-08 Aluminium alloy sheet manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29295595A JPH09137243A (en) 1995-11-10 1995-11-10 Aluminum alloy sheet excellent in bendability after press forming and its production

Publications (1)

Publication Number Publication Date
JPH09137243A true JPH09137243A (en) 1997-05-27

Family

ID=17788596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29295595A Pending JPH09137243A (en) 1995-11-10 1995-11-10 Aluminum alloy sheet excellent in bendability after press forming and its production

Country Status (3)

Country Link
EP (1) EP0773303A1 (en)
JP (1) JPH09137243A (en)
CA (1) CA2189926A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133646A (en) * 1997-07-10 1999-02-09 Kobe Steel Ltd Aluminum alloy joined body by mechanical clinch and its manufacture
JP2012052220A (en) * 2010-08-05 2012-03-15 Kobe Steel Ltd Aluminum alloy sheet excellent in formability
JP2012107316A (en) * 2010-10-19 2012-06-07 Kobe Steel Ltd Aluminum alloy sheet
WO2015027030A1 (en) * 2013-08-21 2015-02-26 Taheri Mitra Lenore Selective grain boundary engineering
CN108531791A (en) * 2018-05-11 2018-09-14 中车青岛四方机车车辆股份有限公司 5 line aluminium alloy planks of one kind and its preparation method and application
CN114457264A (en) * 2022-01-28 2022-05-10 邹平宏发铝业科技有限公司 5-series aluminum alloy strip for stamping lamp and processing method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1003453C2 (en) * 1996-06-28 1998-01-07 Hoogovens Aluminium Nv AA5000 type aluminum sheet and a method for its manufacture.
DE19823472A1 (en) * 1998-05-26 1999-12-02 Aluminium Ranshofen Walzwerk G Process for the production of shiny light metal composite sheets, in particular aviation sheets
GB0031104D0 (en) * 2000-12-20 2001-01-31 Alcan Int Ltd Age hardened aluminium alloys
ATE358190T1 (en) * 2003-05-20 2007-04-15 Corus Aluminium Nv FORGED ALUMINUM ALLOY
JP5671431B2 (en) * 2011-09-13 2015-02-18 株式会社神戸製鋼所 Aluminum alloy plate

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6227544A (en) 1985-07-26 1987-02-05 Sky Alum Co Ltd Heat-treated-type aluminum alloy rolled sheet for forming working and its production
JPS62177143A (en) 1986-01-30 1987-08-04 Kobe Steel Ltd Aluminum alloy sheet excellent in formability and baking hardening and its production
JPH028342A (en) * 1988-06-28 1990-01-11 Sky Alum Co Ltd Aluminum alloy plate for two-piece wheel rim and its manufacture
JPH02118049A (en) 1988-10-27 1990-05-02 Sky Alum Co Ltd Aluminum alloy rolled sheet for forming and its manufacture
JP2856936B2 (en) 1991-03-30 1999-02-10 日本鋼管株式会社 Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JP2595836B2 (en) 1991-03-30 1997-04-02 日本鋼管株式会社 Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JPH05247576A (en) * 1992-03-06 1993-09-24 Furukawa Alum Co Ltd Aluminum alloy for drive mechanism parts
JP2997146B2 (en) 1992-05-18 2000-01-11 日本鋼管株式会社 Aluminum alloy sheet for press forming excellent in curability by low-temperature short-time baking and method for producing the same
JP2997145B2 (en) 1993-03-03 2000-01-11 日本鋼管株式会社 Method for producing aluminum alloy sheet having delayed aging at room temperature
JP2997156B2 (en) 1993-09-30 2000-01-11 日本鋼管株式会社 Method for producing aluminum alloy sheet at room temperature with slow aging excellent in formability and paint bake hardenability
JPH07173565A (en) * 1993-12-16 1995-07-11 Nkk Corp Aluminum alloy sheet for press forming excellent in curability for coating/baking

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1133646A (en) * 1997-07-10 1999-02-09 Kobe Steel Ltd Aluminum alloy joined body by mechanical clinch and its manufacture
JP2012052220A (en) * 2010-08-05 2012-03-15 Kobe Steel Ltd Aluminum alloy sheet excellent in formability
JP2012107316A (en) * 2010-10-19 2012-06-07 Kobe Steel Ltd Aluminum alloy sheet
WO2015027030A1 (en) * 2013-08-21 2015-02-26 Taheri Mitra Lenore Selective grain boundary engineering
CN108531791A (en) * 2018-05-11 2018-09-14 中车青岛四方机车车辆股份有限公司 5 line aluminium alloy planks of one kind and its preparation method and application
CN114457264A (en) * 2022-01-28 2022-05-10 邹平宏发铝业科技有限公司 5-series aluminum alloy strip for stamping lamp and processing method thereof

Also Published As

Publication number Publication date
EP0773303A1 (en) 1997-05-14
CA2189926A1 (en) 1997-05-11

Similar Documents

Publication Publication Date Title
US11535919B2 (en) Method of making 6XXX aluminium sheets
JP2021510774A (en) Manufacturing method of 6XXX aluminum sheet with high surface quality
JP2997156B2 (en) Method for producing aluminum alloy sheet at room temperature with slow aging excellent in formability and paint bake hardenability
WO2020120267A1 (en) Method of making 6xxx aluminium sheets with high surface quality
EP0480402A1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP2997145B2 (en) Method for producing aluminum alloy sheet having delayed aging at room temperature
JPH0747807B2 (en) Method for producing rolled aluminum alloy plate for forming
JP3590685B2 (en) Manufacturing method of aluminum alloy sheet for automobile outer panel
JPH09137243A (en) Aluminum alloy sheet excellent in bendability after press forming and its production
JPH076022B2 (en) Aluminum alloy for glitter disk wheels
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JP3278130B2 (en) Method for producing high-strength heat-treated aluminum alloy sheet for drawing
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JPH05271836A (en) Aluminum alloy material excellent in strength and ductility and its production
JPH10310835A (en) Aluminum alloy sheet excellent in strength, stretcher strain mark resistance and bendability and its production
JPH04263034A (en) Aluminum alloy sheet for press forming excellent in baking hardenability and its production
JPH05345963A (en) Manufacture of high formability aluminum alloy sheet
JPH07173565A (en) Aluminum alloy sheet for press forming excellent in curability for coating/baking
JPH0718389A (en) Production of al-mg series alloy sheet for forming
JPH01225738A (en) Heat treatment-type aluminum alloy rolled plate for forming and its manufacture
CN114086034B (en) Al-Mg-Si series aluminum alloy plate
JPS6320437A (en) Aluminum alloy sheet having superior press workability and its manufacture
JPH0633179A (en) Aluminum alloy sheet for press forming excellent in hardenability by high-temperature short-time baking and its production
JP4237364B2 (en) Method for producing an aluminum alloy plate excellent in press formability