JP4237364B2 - Method for producing an aluminum alloy plate excellent in press formability - Google Patents

Method for producing an aluminum alloy plate excellent in press formability Download PDF

Info

Publication number
JP4237364B2
JP4237364B2 JP33745299A JP33745299A JP4237364B2 JP 4237364 B2 JP4237364 B2 JP 4237364B2 JP 33745299 A JP33745299 A JP 33745299A JP 33745299 A JP33745299 A JP 33745299A JP 4237364 B2 JP4237364 B2 JP 4237364B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
temperature
room temperature
mass
alloy plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP33745299A
Other languages
Japanese (ja)
Other versions
JP2001152302A (en
Inventor
誠 佐賀
健 高田
俊樹 村松
修 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Furukawa Sky Aluminum Corp
Original Assignee
Nippon Steel Corp
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Furukawa Sky Aluminum Corp filed Critical Nippon Steel Corp
Priority to JP33745299A priority Critical patent/JP4237364B2/en
Publication of JP2001152302A publication Critical patent/JP2001152302A/en
Application granted granted Critical
Publication of JP4237364B2 publication Critical patent/JP4237364B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
本発明は、成形性に優れる、自動車ボディシート等に好適なアルミニウム合金板の製造方法に関する。
【0002】
【従来の技術】
近年、自動車の燃費向上を目的とした車体軽量化の要望が高まっており、軽量化手段の一つとして自動車ボディシート等へのアルミニウム合金板の使用が行われている。自動車のボディシート用材料としては、プレス成形性に優れるだけではなく、塗装焼付後の強度や、耐食性等に優れることが要求される。
現在使用されている自動車ボディシ−ト用アルミニウム合金としては、非熱処理型のAl−Mg系合金と、熱処理型のAl−Mg−Si系とが用いられている。
【0003】
Al−Mg系合金は、Mg含有量の増加とともに延性が向上することから、成形性に優れたアルミニウム合金として、我が国では自動車ボデイパネルに多用されている。しかしながら、Al−Mg系合金では、Al−Mg−Si系合金より成形性は優れているものの、プレス成形の際にストレッチャー−ストレイン模様が現れて表面品位を損なう場合があることや、塗装焼付時に軟化してしまい、耐デント性に劣るという問題点がある。
【0004】
一方、Al−Mg−Si系合金で本質的にストレッチャー−ストレイン模様はほとんど出現しないことや、塗装焼付工程の熱処理を活用して降伏強度の上昇も図り得るという長所を有するが、Al−Mg系合金に比べて成形性に劣るという問題点があり、自動車ボディパネル用としては、その適用に限界があった。
このように自動車ボデイパネル用アルミニウム合金としては、プレス成形性に優れるとともに、プレス後の表面品位にも優れ、塗装焼付によって十分な強度がえられることが求められている。
【0005】
【発明が解決しようとする課題】
このような要求特性に対して、例えば特開平1−287244号公報では、時効硬化性を有するAl−Cu−Mg−Si系合金を芯材として、良好な成形性を有し、かつストレッチャー−ストレイン模様も問題のない純Alを皮材としたアルミニウム合金合わせ板が提案されており、プレス成形性と塗装焼付硬化性が両立されている。しかしながら、合わせ板では製造コストが高くなるとともに、端面において異種金属接触腐食を起こす懸念がある。
本発明は、単板で5000系合金に匹敵するプレス成形性を有するとともに、塗装焼付によって十分な強度が得られる自動車用アルミニウム合金板を提供することを目的としたものである。
【0006】
【課題を解決するための手段】
発明者らは、上記の目的を達成するために、先ずアルミニウム合金板の成形性に及ぼす材料因子について種々検討した。その結果、Al−Mg−Si系をベースにCuを添加した合金において、溶体化後室温近傍の温度で形成される溶質原子から構成されるクラスター(以下低温クラスター)を形成させると、(TS−YS)値が高くなり、その値が130MPa以上あれば5000系合金と同等あるいはそれ以上のプレス成形性が得られることを見出した。
しかし、この低温クラスターは、塗装焼付時のG.P.ゾーンの析出を阻害し、塗装焼付け処理時には大きな強度上昇は期待できないが、合金成分および製造方法を特定することによって、塗装焼付により軟化してしまうAl−Mg系合金を上回る、十分な強度が得られることもわかった。
【0007】
本発明は上記の知見に基づいて得られたもので、その要旨とするところは、
(1)mass%で、Mg:0.1〜0.6%、Si:1.2超〜1.7%、Mg+Si:2%以下、Cu:0.5〜1.5%、Ti:0.005〜0.15%、B:0.0001〜0.05%を含有し、残部がAlおよび不可避的不純物からなり、かつ、プレス前のTS(引張強さ)とYS(0.2%耐力)において、(TS−YS)の値が130MPa以上であるアルミニウム合金板の製造方法であって、前記成分組成からなるアルミニウム合金板を冷間圧延後、450〜580℃の温度で溶体化処理を施した後に15℃/s以上の冷却速度で室温以上70℃以下まで冷却した後に、室温で1日以上放置し、その後50〜120℃の温度で1〜50時間の熱処理を、さらに行うことを特徴とするプレス成形性に優れたアルミニウム合金板の製造方法。
(2)mass%で、Mg:0.1〜0.51%、Si:1.2超〜1.7%、Mg+Si:2%以下、Cu:0.5〜1.5%、Ti:0.005〜0.15%、B:0.0001〜0.05%を含有し、残部がAlおよび不可避的不純物からなり、かつ、プレス前のTS(引張強さ)とYS(0.2%耐力)において、(TS−YS)の値が130MPa以上であるアルミニウム合金板の製造方法であって、前記成分組成からなるアルミニウム合金板を冷間圧延後、450〜580℃の温度で溶体化処理を施した後に15℃/s以上の冷却速度で室温以上70℃以下まで冷却した後に、引き続き室温以上70℃以下の温度に1〜100時間保持することを特徴とするプレス成形性に優れたアルミニウム合金板の製造方法。
【0008】
)mass%で、Mn:0.03〜0.4%、Cr:0.02〜0.15%、Fe:0.03〜0.3%、Zn:0.03〜1%のうち1種または2種以上を、さらに含有することを特徴とする前記(1)または(2)に記載のプレス成形性に優れたアルミニウム合金板の製造方法、である。
【0009】
【発明の実施の形態】
以下、本発明について詳細に説明する。
本発明者らは、上記の目的を達成するために、先ずアルミニウム合金板の成形性に及ぼす材料因子について種々検討した結果、合金板の(TS−YS)値(ここでTSは引張強さ、YSは0.2%耐力)を高めると、プレス成形性が向上することを見出した。次に、ストレッチャー−ストレイン模様の発生もなく、また時効硬化性を有するAl−Mg−Si系合金において、プレス成形性に及ぼす溶質原子の存在状態、合金成分および製造条件の影響について鋭意検討した。
【0010】
種々検討の結果、Al−Mg−Si系合金にCuを添加した合金において、MgおよびSiの成分範囲およびCuの添加量を特定し、溶体化後室温近傍の温度で形成される、溶質原子からなると考えられる低温クラスターを形成させると130MPa以上の(TS−YS)値が得られ、5000系合金と同等クラスの成形性が得られること、そして140MPa以上であれば5000系合金以上のプレス成形性が得られることを見出した。したがって、より高い成形性を確保するためには合金の(TS−YS)値を140以上とすることが好ましい。
【0011】
また、一般的な塗装焼付け条件である170から180℃程度の温度で30分間足らずの熱処理では、この低温クラスターは比較的安定に存在するために、溶質原子の過飽和固溶量を減少させ、G.P.ゾーンの析出を阻害してしまう。その結果、塗装焼付け処理時には大きな強度上昇は期待できないが、合金成分および製造方法を特定することによって、塗装焼付により軟化してしまう5000系合金以上の十分な強度が得られることもわかった。
【0012】
本発明における好適な成分組成範囲の限定理由について説明する。
Mg、Si、Cu、Mg、Si、Cuは本発明の必須の基本成分であり、微細な低温クラスターを形成して、高いプレス成形性ならびに十分な塗装焼付硬化性を得るために含有させる。
成分範囲としては、Mg:0.1〜0.6mass%、Si:1.2超〜1.7mass%、Cu:0.5〜1.5mass%で、かつ、Mg+Si≦2mass%とした。Mgが0.1mass%未満、Siが1.2mass%未満、Cuが0.5mass%未満では、130MPa以上の(TS−YS)値が得られず、十分なプレス成形性および塗装焼付け効果性が得られない。
【0013】
また、Mgが0.6mass%超、Siが1.7mass%超、Cuが1.5mass%超、かつMg+Si>2mass%では、(TS−YS)値向上効果は飽和するだけでなく、溶体化処理の際にMg2 Si、Si、Al−Cu−Mg−Si系化合物等の第2相が結晶粒界上に析出するとともに、0.2%耐力が高くなり、ヘム曲げ性が大きく低下してしまう。なお、Mgの上限は、本発明の実施例の表1のNo.3に基づいて、0.51mass%以下とした。
本発明においては、さらに必要に応じて、Ti、B、Mn、Cr、Fe、Znのうち1種類以上を含有させてもよい。
【0014】
TiとBは、微量添加により鋳塊の結晶粒を微細化してプレス成形性等を改善する効果を有するので、Tiの含有量は0.005〜0.15mass%、Bの含有量は0.0001〜0.05mass%の範囲に規定するのが好ましい。それぞれの含有量がTi:0.15mass%、B:0.05mass%を超えると粗大な晶出物を形成し、成形性が劣化するので、それぞれ0.15mass%、0.05mass%を上限とするのが好ましい。またそれぞれの含有量がTi:0.005mass%未満、B:0.0001mass%未満では鋳塊の結晶粒微細化効果が十分に得られなくなってしまうので、それぞれ0.005mass%、0.0001mass%を下限とするのが好ましい。
【0015】
Mn、Cr、Fe、Znは強度向上および結晶粒の微細化によってプレス成形性を向上させる効果を有するので、それぞれMn:0.03〜0.4mass%、Cr:0.02〜0.15mass%、Fe:0.03〜0.3mass%、Zn:0.03〜1%の範囲で含有させるとよい。
このうち、Mn、Cr、Feは、いずれも強度向上と結晶粒の微細化によりプレス成形性を向上させる元素であり、その含有量としてMnが0.4mass%、Crが0.15mass%、Feが0.3mass%を超えると粗大晶出物が生成し、成形性がかえって低下させてしまう。また、その含有量としてMnが0.03mass%、Crが0.02mass%、Feが0.02mass%未満では上記の効果が十分に得られなくなってしまうので、上述の範囲内の添加とした。
【0016】
また、Znは、強度向上によりプレス成形性を向上させる効果を有する。その含有量が0.03mass%未満では上記の効果が不十分であり、1mass%を超えると強度上昇が大きくなりすぎてプレス成形性がかえって低下してしまうので、0.03〜1%の範囲内とした。
上記元素の他、通常のアルミニウム合金と同様、不可避的不純物が含有されるが、その量は本発明の効果を損なわない範囲であれば許容される。
【0017】
また、製造方法としては、溶体化処理後室温まで急冷して溶質原子を過飽和に固溶させ、室温近傍の時効により低温クラスターを形成させる方法を基本とする。そして室温時効だけでは溶質原子の拡散が遅く短時間では十分な強度特性が得られない場合には、室温時効後に50〜120℃の温度範囲で引き続き熱処理を行うことが有効である。
さらに、低温クラスター形成温度域が約70℃以下であることから、溶体化処理後に室温以上70℃以下の低温クラスター温度範囲に急冷し、その温度範囲にて時効する方法も有効である。
【0018】
本発明のアルミニウム合金板の好適な製造方法について詳しく説明する。
本発明のアルミニウム合金は、常法に従って鋳造、熱間および冷間圧延を施すが、低温クラスターを形成させて優れた成形性を得るためには、冷間圧延後、450〜580℃の範囲内の温度で溶体化処理を施して15℃/s以上の冷却速度で室温以上70℃以下まで冷却することが有効である。上記工程の溶体化処理条件としては、450℃以下の温度では成形性向上ならびに塗装焼付硬化性確保(時効硬化)に寄与する溶質原子がAl母相中に十分に固溶せずに、第2相として析出してしまうために、成形性向上ならびに塗装焼付硬化性の確保が得られず、またヘム曲げ性を低下させてしまう。一方、溶体化温度が580℃を越えると、部分溶解が生じてしまうおそれがある。そのために溶体化処理温度は450〜580℃の範囲内とした。また、上記の溶体化温度での保持については、溶質原子の固溶が十分に行われるのならば、保持なし(溶体化処理温度到達後、すぐに冷却)でも、ある程度の保持時間をとっともよい。
【0019】
溶体化処理後の冷却速度を15℃/s未満にすると、冷却中に第2相が析出し、ヘム曲げ性が低下するとともに、溶質原子の過飽和固溶量が減少してしまい、プレス成形性向上に有効な低温クラスター形成量が少なくなるとともに、塗装焼付硬化能も低下してしまう。そのため、溶体化処理温後の冷却速度は15℃/s以上とした。
また、溶体化処理後に冷却する温度範囲の規定理由としては、70℃を越えると低温クラスターではなくG.P.ゾーンが形成されてしまい、室温以下では低温クラスターは形成されるものの、溶質原子の拡散が遅く低温クラスターの形成に長時間を要してしまうためである。ここでの室温とは、概ね25℃である。
【0020】
第二に、冷間圧延後、450〜580℃の範囲内の温度で溶体化処理を施して15℃/s以上の冷却速度で室温まで冷却した後、室温で1日以上放置し、その後50〜120℃の温度範囲で1〜50時間の熱処理を施すことが、優れた成形性を得るために有効である。
上記工程の溶体化処理温度および冷却速度条件の設定理由は前述した理由と同じである。溶体化後室温での放置時間が1日未満であると、成形性向上に寄与する低温クラスターの形成量が少なくなってしまう。
【0021】
また、1日以上の室温時効だけでは溶質原子の拡散が遅く、短期間では十分な強度特性が得られず、工業的な生産性の観点で問題が生じる場合がある。その場合には、室温時効後に50〜120℃の温度範囲で引き続き熱処理を行うことが有効である。本熱処理の範囲の規定理由としては、50℃未満、1時間未満の処理では、十分な強度上昇が得られず、120℃超、50時間超では逆に強度上昇が大きくなりすぎてしまうためである。
【0022】
第三に、溶体化処理後室温以上70℃以下の温度まで冷却した後、引き続き室温以上70℃以下の温度で1〜100時間の保持を行うことが、優れた成形性を得るために有効でる。
溶体化処理後に冷却する温度範囲の規定理由としては、70℃を越えると低温クラスターではなくG.P.ゾーンが形成されてしまい、室温以下では低温クラスターは形成されるものの、溶質の拡散が遅く低温クラスターの形成に長時間を要してしまうためである。
【0023】
さらに、保持時間の規定理由としては、1時間未満では低温クラスター形成量が不十分であり、100時間以上では強度上昇が大きくなりすぎてしまうためである。
このようにして得られたアルミニウム合金板は、プレス成形性に優れ、かつ塗装焼付後にも5000系合金と同等以上の十分な強度が得られる。したがってこのようなアルミニウム合金板は自動車のボディシート用として好適である。
【0024】
【実施例】
以下、本発明を実施例で説明する。
(実施例1)
表1に示すような成分組成を有する合金を、通常の方法で溶解・鋳造、圧延して板厚1mmの板にした。そして上記圧延板に対して550℃で20秒保持の溶体化処理を施した後室温まで30℃/sの平均冷却速度で空冷して、アルミニウム合金板を製造した。製造後、10日間室温に放置した後に、引張特性、成形性(深絞り試験、球頭張出試験)を調査した。さらに塗装焼付硬化性を評価するために、プレスにより受ける加工に相当する2%の予ひずみを与えた後に塗装焼付処理に相当する170℃で20分の熱処理を行い、耐力を調査した。それらの調査結果を表2に示す。
【0025】
【表1】

Figure 0004237364
【0026】
本発明は5000系合金に匹敵する良好な成形性と、5000系合金と同等以上のほぼ十分な塗装焼付硬化性を有するアルミニウム合金板の提供を目的としていることから、合金板の成形性能として、限界絞り比:2.03以上、エリクセン値:10.3以上、好ましくは限界絞り比:2.05以上、エリクセン値:10.5以上を目標とした。また、塗装焼付硬化性としては塗装焼付け後の耐力:140MPa以上を目標とした。
【0027】
表2より、本発明のアルミニウム合金板1〜17は、成形性に優れ、かつ塗装焼付後の強度も130MPa以上であることがわかる。また本発明以外の成分を有する比較例の合金18、19では成形性が低く、また塗装焼付硬化性も低い。一方、合金20〜25では、塗装焼付硬化性はあるものの、本発明成分から外れているために成形性が劣っている。
すなわち、本発明によれば、良好な成形性と十分な塗装焼付硬化性を兼ね備えたアルミニウム合金板を製造することが可能となる。
【0028】
【表2】
Figure 0004237364
【0029】
(実施例2)
表1の発明合金5の1mm厚の圧延板に対して、550℃で20秒保持の溶体化処理を施した後に冷却速度を制御して室温まで空冷した。空冷後、室温放置の後に、引き続き熱処理を行った。溶体化後の平均冷却速度、空冷から熱処理までの放置時間、室温放置後の熱処理条件を表3に示す。
このようにして製造したアルミニウム合金板に対して、実施例1で行ったものと同様な調査を実施した。その調査結果を表4に示す。製造条件▲1▼は冷却速度が小さすぎて十分な過飽和固溶体が得られなかったため、製造条件▲3▼は溶体化後の室温での放置が不十分であったに、良好な成形性が得られなかったものである。また、製造条件▲5▼は熱処理が不十分であったために初期強度が低く、塗装焼付後の耐力が不足してしまい、製造条件▲8▼は熱処理による強度上昇が大きすぎて、成形性が劣化してしまった。
このように、本発明の製造条件で処理を行ったものは上述の比較例の製造条件に対して、成形性に優れるとともに、十分な塗装焼付硬化量も備わっていることがわかる。
【0030】
【表3】
Figure 0004237364
【0031】
【表4】
Figure 0004237364
【0032】
(実施例3)
表1の発明合金5の1mm厚の圧延板に対して、550℃で10秒保持の溶体化処理を施した後に25℃/sの平均冷却速度である温度まで空冷した。空冷後、引き続き熱処理を行った。溶体化後の空冷温度および引き続き行う熱処理の条件を表5に示す。
このようにして製造したアルミニウム合金板に対して、実施例1で行ったものと同様な調査を実施した。その調査結果を表6に示す。
表6に示すように、本発明内の製造条件で処理を行ったものは上述の比較例の製造条件に対して、成形性に優れるとともに、十分な塗装焼付硬化量も備わっていることがわかる。
【0033】
【表5】
Figure 0004237364
【0034】
【表6】
Figure 0004237364
【0035】
【発明の効果】
本発明によれば、成形性に優れるとともに、十分な塗装焼付硬化性を有しており、成形性および焼付後の耐デント性が必要とされる自動車ボディ用などに好適なアルミニウム合金板が提供できるので、自動車重量の軽量化に大いに寄与できる。したがって、本発明の産業上の価値は極めて高いといえる。[0001]
The present invention relates to a method for producing an aluminum alloy plate excellent in formability and suitable for an automobile body sheet or the like.
[0002]
[Prior art]
In recent years, there has been an increasing demand for weight reduction of automobile bodies for the purpose of improving the fuel efficiency of automobiles, and aluminum alloy plates are used for automobile body seats and the like as one of weight reduction means. As a body sheet material for automobiles, it is required not only to be excellent in press formability but also to be excellent in strength after baking and corrosion resistance.
Non-heat-treatable Al—Mg alloys and heat-treatable Al—Mg—Si alloys are used as aluminum alloys for automobile body sheets that are currently used.
[0003]
Al-Mg alloys are frequently used in automobile body panels in Japan as aluminum alloys having excellent formability because ductility improves as the Mg content increases. However, although Al-Mg-based alloys have better formability than Al-Mg-Si-based alloys, stretcher-strain patterns may appear during press molding, which may impair surface quality, and paint baking There is a problem that it is sometimes softened and has poor dent resistance.
[0004]
On the other hand, the Al-Mg-Si alloy has the advantages that essentially no stretcher-strain pattern appears and that the yield strength can be increased by utilizing the heat treatment in the paint baking process. There is a problem that it is inferior in formability as compared with the base alloys, and there is a limit to its application for automobile body panels.
As described above, an aluminum alloy for an automobile body panel is required to have excellent press formability, excellent surface quality after pressing, and sufficient strength by baking.
[0005]
[Problems to be solved by the invention]
With respect to such required characteristics, for example, in Japanese Patent Laid-Open No. 1-287244, an Al—Cu—Mg—Si alloy having age-hardening properties is used as a core material, and it has good formability and is a stretcher. There has been proposed an aluminum alloy laminated plate made of pure Al, which has no problem with the strain pattern, and has both press formability and paint bake hardenability. However, there is a concern that the manufacturing cost of the laminated plate is high and that different metal contact corrosion occurs on the end face.
The object of the present invention is to provide an aluminum alloy sheet for automobiles that has a press formability comparable to that of a 5000 series alloy as a single sheet and that can provide sufficient strength by painting and baking.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the inventors first studied various material factors affecting the formability of an aluminum alloy sheet. As a result, in an alloy in which Cu is added based on an Al—Mg—Si base, when a cluster composed of solute atoms formed at a temperature near room temperature after solution treatment (hereinafter referred to as a low temperature cluster) is formed (TS− It has been found that if the YS) value becomes high and the value is 130 MPa or more, press formability equivalent to or higher than that of a 5000 series alloy can be obtained.
However, this low temperature cluster is the G. P. Although the precipitation of the zone is hindered and no significant increase in strength can be expected during the paint baking process, by specifying the alloy components and the manufacturing method, sufficient strength can be obtained that exceeds the Al-Mg alloy that softens due to paint baking. I also found out.
[0007]
The present invention was obtained based on the above findings, and the gist thereof is as follows:
(1) Mass%: Mg: 0.1 to 0.6%, Si: more than 1.2 to 1.7%, Mg + Si: 2% or less, Cu: 0.5 to 1.5% , Ti: 0 0.005 to 0.15%, B: 0.0001 to 0.05% , the balance being Al and inevitable impurities, and TS (tensile strength) and YS (0.2%) before pressing Yield) is a method for producing an aluminum alloy plate having a value of (TS-YS) of 130 MPa or more, and after the aluminum alloy plate having the above composition is cold-rolled, a solution treatment is performed at a temperature of 450 to 580 ° C. After cooling to room temperature to 70 ° C. at a cooling rate of 15 ° C./s or more, leave at room temperature for 1 day or more, and then further heat treatment at 50 to 120 ° C. for 1 to 50 hours Aluminum alloy plate with excellent press formability Manufacturing method.
(2) In mass%, Mg: 0.1 to 0.51%, Si: more than 1.2 to 1.7%, Mg + Si: 2% or less, Cu: 0.5 to 1.5%, Ti: 0 0.005 to 0.15%, B: 0.0001 to 0.05%, the balance being Al and inevitable impurities, and TS (tensile strength) and YS (0.2%) before pressing Yield) is a method for producing an aluminum alloy plate having a value of (TS-YS) of 130 MPa or more, and after the aluminum alloy plate having the above composition is cold-rolled, a solution treatment is performed at a temperature of 450 to 580 ° C. After having been applied, the aluminum is cooled to room temperature to 70 ° C. at a cooling rate of 15 ° C./s or higher, and then kept at a temperature of room temperature to 70 ° C. for 1 to 100 hours. Manufacturing method of alloy plate.
[0008]
(3) in mass%, M n: 0.03~0.4% , Cr: 0.02~0.15%, Fe: 0.03~0.3%, Zn: of 0.03 to 1% Of these, the method for producing an aluminum alloy plate excellent in press formability according to (1) or (2) , further comprising one or more of them.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
In order to achieve the above object, the present inventors first examined various material factors affecting the formability of an aluminum alloy plate, and as a result, (TS-YS) value (where TS is the tensile strength, It was found that when YS increases 0.2% yield strength, press formability is improved. Next, in the Al-Mg-Si based alloy having no stretcher-strain pattern and age-hardening properties, the present inventors studied diligently about the influence of the existence state of solute atoms, alloy components and production conditions on press formability. .
[0010]
As a result of various studies, in an alloy in which Cu is added to an Al-Mg-Si alloy, the component range of Mg and Si and the amount of Cu are specified, and from the solute atoms formed at a temperature near room temperature after solution treatment (TS-YS) value of 130 MPa or more can be obtained by forming a low temperature cluster considered to be, and formability equivalent to that of a 5000 series alloy can be obtained, and if it is 140 MPa or more, press formability of a 5000 series alloy or more It was found that can be obtained. Therefore, in order to ensure higher formability, it is preferable that the (TS-YS) value of the alloy be 140 or more.
[0011]
In addition, in a heat treatment for less than 30 minutes at a temperature of about 170 to 180 ° C., which is a general paint baking condition, this low temperature cluster exists relatively stably, so the amount of supersaturated solid solution of solute atoms is reduced, and G . P. This will inhibit zone deposition. As a result, it was also found that a significant increase in strength cannot be expected during the paint baking process, but by specifying the alloy components and the manufacturing method, it is possible to obtain a sufficient strength higher than that of a 5000 series alloy that is softened by paint baking.
[0012]
The reason for limiting the preferred component composition range in the present invention will be described.
Mg, Si, Cu, Mg, Si, and Cu are essential basic components of the present invention, and are included in order to form fine low-temperature clusters and obtain high press moldability and sufficient paint bake hardenability.
The component ranges were Mg: 0.1 to 0.6 mass%, Si: more than 1.2 to 1.7 mass%, Cu: 0.5 to 1.5 mass%, and Mg + Si ≦ 2 mass%. When Mg is less than 0.1 mass%, Si is less than 1.2 mass%, and Cu is less than 0.5 mass%, a (TS-YS) value of 130 MPa or more cannot be obtained, and sufficient press formability and paint baking effect are obtained. I can't get it.
[0013]
In addition, when Mg exceeds 0.6 mass%, Si exceeds 1.7 mass%, Cu exceeds 1.5 mass%, and Mg + Si> 2 mass%, the effect of improving the (TS-YS) value is not only saturated but also solutionized. During the treatment, a second phase such as Mg2Si, Si, Al-Cu-Mg-Si compound is precipitated on the grain boundary, 0.2% proof stress is increased, and hem bendability is greatly reduced. End up. Note that the upper limit of Mg is No. in Table 1 of the examples of the present invention. 3 to 0.51 mass% or less.
In the present invention, if necessary, one or more of Ti, B, Mn, Cr, Fe, and Zn may be contained.
[0014]
Since Ti and B have the effect of improving the press formability by refining the crystal grains of the ingot by adding a small amount, the Ti content is 0.005 to 0.15 mass%, and the B content is 0.00. It is preferable to prescribe | regulate in the range of 0001-0.05 mass%. If each content exceeds Ti: 0.15 mass%, B: 0.05 mass%, a coarse crystallized product is formed, and the moldability deteriorates. Therefore, 0.15 mass% and 0.05 mass% are the upper limits, respectively. It is preferable to do this. Further, if the respective contents are less than Ti: 0.005 mass% and B: less than 0.0001 mass%, the effect of refining the crystal grain of the ingot cannot be obtained sufficiently, so 0.005 mass% and 0.0001 mass%, respectively. Is preferably the lower limit.
[0015]
Since Mn, Cr, Fe, and Zn have the effect of improving the press formability by improving the strength and refining the crystal grains, Mn: 0.03 to 0.4 mass% and Cr: 0.02 to 0.15 mass%, respectively. Fe: 0.03 to 0.3 mass%, Zn: 0.03 to 1% may be contained.
Among these, Mn, Cr, and Fe are all elements that improve the press formability by improving the strength and refining crystal grains, and the contents thereof are 0.4 mass% for Mn, 0.15 mass% for Cr, Fe If it exceeds 0.3 mass%, a coarse crystallized product is generated, and the moldability is rather lowered. Further, if the Mn content is 0.03 mass%, the Cr content is less than 0.02 mass%, and the Fe content is less than 0.02 mass%, the above effect cannot be obtained sufficiently.
[0016]
Zn also has the effect of improving press formability by improving strength. If the content is less than 0.03 mass%, the above effect is insufficient, and if it exceeds 1 mass%, the strength rises so much that the press formability deteriorates instead, so the range is 0.03 to 1%. It was inside.
In addition to the above elements, inevitable impurities are contained as in the case of ordinary aluminum alloys, but the amount thereof is permissible as long as the effects of the present invention are not impaired.
[0017]
In addition, the manufacturing method is basically based on a method of rapidly cooling to room temperature after the solution treatment, so that solute atoms are dissolved in supersaturation, and low temperature clusters are formed by aging near room temperature. And if room temperature aging alone causes diffusion of solute atoms and a sufficient strength characteristic cannot be obtained in a short time, it is effective to continue heat treatment in the temperature range of 50 to 120 ° C. after room temperature aging.
Furthermore, since the low temperature cluster formation temperature range is about 70 ° C. or less, it is also effective to rapidly cool to a low temperature cluster temperature range of room temperature to 70 ° C. after solution treatment, and perform aging in that temperature range.
[0018]
The suitable manufacturing method of the aluminum alloy plate of this invention is demonstrated in detail.
The aluminum alloy of the present invention is cast, hot and cold-rolled according to a conventional method, but in order to form a low-temperature cluster and obtain excellent formability, it is within the range of 450 to 580 ° C. after cold-rolling. It is effective to apply a solution treatment at a temperature of 5 ° C./s and cool to room temperature to 70 ° C. at a cooling rate of 15 ° C./s or more. As the solution treatment conditions in the above process, the solute atoms contributing to the improvement of moldability and ensuring the bake hardenability (age hardening) are not sufficiently dissolved in the Al matrix at a temperature of 450 ° C. or lower. Since it precipitates as a phase, improvement of moldability and securing of paint bake hardenability cannot be obtained, and hem bendability is lowered. On the other hand, when the solution temperature exceeds 580 ° C., partial dissolution may occur. Therefore, the solution treatment temperature was set within the range of 450 to 580 ° C. In addition, with respect to holding at the above-mentioned solution temperature, if the solute atoms are sufficiently dissolved, even if there is no holding (cooling immediately after reaching the solution treatment temperature), a certain holding time will be obtained. Good.
[0019]
When the cooling rate after the solution treatment is less than 15 ° C./s, the second phase is precipitated during cooling, the hem bendability is lowered, and the amount of supersaturated solid solution of solute atoms is reduced. The amount of low-temperature cluster formation effective for improvement decreases, and the paint bake hardenability also decreases. Therefore, the cooling rate after the solution treatment temperature is set to 15 ° C./s or more.
Further, the reason for defining the temperature range for cooling after the solution treatment is that when it exceeds 70 ° C., it is not a low temperature cluster but a G.P. P. This is because a zone is formed and low temperature clusters are formed below room temperature, but diffusion of solute atoms is slow and it takes a long time to form low temperature clusters. The room temperature here is approximately 25 ° C.
[0020]
Secondly, after cold rolling, solution treatment is performed at a temperature in the range of 450 to 580 ° C., the solution is cooled to room temperature at a cooling rate of 15 ° C./s or more, and left at room temperature for one day or more. It is effective to perform heat treatment for 1 to 50 hours in a temperature range of ˜120 ° C. in order to obtain excellent moldability.
The reasons for setting the solution treatment temperature and the cooling rate condition in the above process are the same as described above. If the standing time at room temperature after solution treatment is less than 1 day, the amount of low-temperature clusters that contribute to the improvement of moldability is reduced.
[0021]
Moreover, diffusion of solute atoms is slow only by aging at room temperature for 1 day or longer, and sufficient strength characteristics cannot be obtained in a short period of time, which may cause problems in terms of industrial productivity. In that case, it is effective to continue the heat treatment in the temperature range of 50 to 120 ° C. after aging at room temperature. The reason for the definition of the range of this heat treatment is that a sufficient strength increase cannot be obtained with a treatment of less than 50 ° C. for less than 1 hour, and a strength increase is excessively greater than 120 ° C. for more than 50 hours. is there.
[0022]
Third, after cooling to a temperature of room temperature to 70 ° C. after solution treatment, it is effective to obtain excellent moldability by continuously holding at a temperature of room temperature to 70 ° C. for 1 to 100 hours. Oh Ru.
The reason for defining the temperature range for cooling after the solution treatment is that when the temperature exceeds 70 ° C., G. P. This is because a zone is formed and a low temperature cluster is formed below room temperature, but the diffusion of the solute is slow and it takes a long time to form the low temperature cluster.
[0023]
Furthermore, the reason for defining the holding time is that the amount of low-temperature cluster formation is insufficient if it is less than 1 hour, and the increase in strength becomes too large if it is 100 hours or more.
The aluminum alloy sheet thus obtained is excellent in press formability, and sufficient strength equal to or higher than that of a 5000 series alloy can be obtained even after coating baking. Therefore, such an aluminum alloy plate is suitable for a body sheet of an automobile.
[0024]
【Example】
Hereinafter, the present invention will be described with reference to examples.
Example 1
An alloy having a component composition as shown in Table 1 was melted, cast and rolled by a usual method to obtain a plate having a thickness of 1 mm. And the solution treatment which hold | maintained at 550 degreeC for 20 second was performed with respect to the said rolled sheet, Then, it air-cooled at the average cooling rate of 30 degrees C / s to room temperature, and manufactured the aluminum alloy sheet. After being manufactured and allowed to stand at room temperature for 10 days, tensile properties and moldability (deep drawing test, ball head overhang test) were investigated. Further, in order to evaluate the bake hardenability, after applying a pre-strain of 2% corresponding to the processing received by the press, a heat treatment was performed at 170 ° C. corresponding to the paint baking process for 20 minutes, and the proof stress was investigated. The survey results are shown in Table 2.
[0025]
[Table 1]
Figure 0004237364
[0026]
The present invention aims to provide an aluminum alloy sheet having good formability comparable to 5000 series alloys and almost sufficient paint bake hardenability equivalent to or better than 5000 series alloys. The limit drawing ratio was 2.03 or more, the Erichsen value was 10.3 or more, preferably the limit drawing ratio was 2.05 or more, and the Erichsen value was 10.5 or more. Moreover, as the baking resistance, the target strength after baking was 140 MPa or more.
[0027]
From Table 2, it can be seen that the aluminum alloy plates 1 to 17 of the present invention are excellent in formability and have a strength after paint baking of 130 MPa or more. Further, Comparative Alloys 18 and 19 having components other than those of the present invention have low formability and low paint bake hardenability. On the other hand, Alloys 20 to 25 have paint bake hardenability but are inferior in formability because they are out of the components of the present invention.
That is, according to the present invention, it is possible to produce an aluminum alloy plate having both good formability and sufficient paint bake hardenability.
[0028]
[Table 2]
Figure 0004237364
[0029]
(Example 2)
A 1 mm-thick rolled sheet of invention alloy 5 in Table 1 was subjected to a solution treatment that was held at 550 ° C. for 20 seconds, and then cooled to room temperature by controlling the cooling rate. After air cooling and standing at room temperature, heat treatment was subsequently performed. Table 3 shows the average cooling rate after solution treatment, the standing time from air cooling to heat treatment, and the heat treatment conditions after standing at room temperature.
The same investigation as that performed in Example 1 was performed on the aluminum alloy plate thus manufactured. The survey results are shown in Table 4. In production condition (1), since the cooling rate was too low to obtain a sufficient supersaturated solid solution, production condition (3) was not allowed to stand at room temperature after solution formation, but good moldability was obtained. It was not possible. In addition, in manufacturing condition (5), since the heat treatment was insufficient, the initial strength was low, and the proof stress after baking was insufficient, and in manufacturing condition (8), the strength increase due to the heat treatment was too large, and the moldability was low. It has deteriorated.
Thus, what was processed on the manufacturing conditions of this invention shows that it is excellent in a moldability with respect to the manufacturing conditions of the above-mentioned comparative example, and also has a sufficient amount of paint bake and hardening.
[0030]
[Table 3]
Figure 0004237364
[0031]
[Table 4]
Figure 0004237364
[0032]
(Example 3)
A 1 mm-thick rolled sheet of invention alloy 5 in Table 1 was subjected to a solution treatment that was held at 550 ° C. for 10 seconds, and then air-cooled to a temperature that was an average cooling rate of 25 ° C./s. After air cooling, heat treatment was subsequently performed. Table 5 shows the air cooling temperature after solution treatment and the conditions for the subsequent heat treatment.
The same investigation as that performed in Example 1 was performed on the aluminum alloy plate thus manufactured. The survey results are shown in Table 6.
As shown in Table 6, it can be seen that those processed under the manufacturing conditions in the present invention are excellent in moldability and have a sufficient amount of paint bake and harden with respect to the manufacturing conditions of the comparative example described above. .
[0033]
[Table 5]
Figure 0004237364
[0034]
[Table 6]
Figure 0004237364
[0035]
【The invention's effect】
According to the present invention, there is provided an aluminum alloy plate that is excellent in formability and has sufficient paint bake hardenability, and is suitable for automobile bodies that require formability and dent resistance after baking. This can greatly contribute to reducing the weight of the automobile. Therefore, it can be said that the industrial value of the present invention is extremely high.

Claims (3)

mass%で、
Mg:0.1〜0.51%、
Si:1.2超〜1.7%、
Mg+Si:2%以下、
Cu:0.5〜1.5%
Ti:0.005〜0.15%、
:0.0001〜0.05%
を含有し、残部がAlおよび不可避的不純物からなり、かつ、プレス前のTS(引張強さ)とYS(0.2%耐力)において、(TS−YS)の値が130MPa以上であるアルミニウム合金板の製造方法であって、前記成分組成からなるアルミニウム合金板を冷間圧延後、450〜580℃の温度で溶体化処理を施した後に15℃/s以上の冷却速度で室温以上70℃以下まで冷却した後に、室温で1日以上放置し、その後50〜120℃の温度で1〜50時間の熱処理を、さらに行うことを特徴とするプレス成形性に優れたアルミニウム合金板の製造方法。
mass%,
Mg: 0.1 to 0.51%,
Si: more than 1.2 to 1.7%,
Mg + Si: 2% or less,
Cu: 0.5~1.5%,
Ti: 0.005 to 0.15%,
B : 0.0001-0.05%
An aluminum alloy in which the balance is Al and inevitable impurities, and the value of (TS-YS) is 130 MPa or more in TS (tensile strength) and YS (0.2% proof stress) before pressing A method for producing a plate, comprising cold-rolling an aluminum alloy plate having the above-mentioned composition, subjecting it to a solution treatment at a temperature of 450 to 580 ° C., and then cooling at a cooling rate of 15 ° C./s or more to room temperature to 70 ° C. A method for producing an aluminum alloy plate excellent in press formability, wherein the aluminum alloy plate is further allowed to stand at room temperature for 1 day or more after cooling to room temperature, and further subjected to heat treatment at a temperature of 50 to 120 ° C. for 1 to 50 hours .
mass%で、mass%,
Mg:0.1〜0.51%、Mg: 0.1 to 0.51%,
Si:1.2超〜1.7%、Si: more than 1.2 to 1.7%,
Mg+Si:2%以下、Mg + Si: 2% or less,
Cu:0.5〜1.5%、Cu: 0.5 to 1.5%,
Ti:0.005〜0.15%、Ti: 0.005 to 0.15%,
B :0.0001〜0.05%: 0.0001-0.05%
を含有し、残部がAlおよび不可避的不純物からなり、かつ、プレス前のTS(引張強さ)とYS(0.2%耐力)において、(TS−YS)の値が130MPa以上であるアルミニウム合金板の製造方法であって、前記成分組成からなるアルミニウム合金板を冷間圧延後、450〜580℃の温度で溶体化処理を施した後に15℃/s以上の冷却速度で室温以上70℃以下まで冷却した後に、引き続き室温以上70℃以下の温度に1〜100時間保持することを特徴とするプレス成形性に優れたアルミニウム合金板の製造方法。An aluminum alloy in which the balance is Al and inevitable impurities, and the value of (TS-YS) is 130 MPa or more in TS (tensile strength) and YS (0.2% proof stress) before pressing A method for producing a plate, comprising cold rolling an aluminum alloy plate having the above-mentioned composition, then subjecting it to a solution treatment at a temperature of 450 to 580 ° C., and then a cooling rate of 15 ° C./s or more and a room temperature to 70 ° C. A method for producing an aluminum alloy plate excellent in press formability, wherein the aluminum alloy plate is maintained at a temperature of room temperature to 70 ° C. for 1 to 100 hours after cooling to room temperature.
mass%で
n:0.03〜0.4%、
Cr:0.02〜0.15%、
Fe:0.03〜0.3%、
Zn:0.03〜1%
のうち1種または2種以上を、さらに含有することを特徴とする請求項1または2に記載のプレス成形性に優れたアルミニウム合金板の製造方法。
mass% ,
M n: 0.03~0.4%,
Cr: 0.02 to 0.15%,
Fe: 0.03-0.3%,
Zn: 0.03 to 1%
The method for producing an aluminum alloy plate excellent in press formability according to claim 1 or 2 , further comprising one or more of them.
JP33745299A 1999-11-29 1999-11-29 Method for producing an aluminum alloy plate excellent in press formability Expired - Fee Related JP4237364B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33745299A JP4237364B2 (en) 1999-11-29 1999-11-29 Method for producing an aluminum alloy plate excellent in press formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33745299A JP4237364B2 (en) 1999-11-29 1999-11-29 Method for producing an aluminum alloy plate excellent in press formability

Publications (2)

Publication Number Publication Date
JP2001152302A JP2001152302A (en) 2001-06-05
JP4237364B2 true JP4237364B2 (en) 2009-03-11

Family

ID=18308779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33745299A Expired - Fee Related JP4237364B2 (en) 1999-11-29 1999-11-29 Method for producing an aluminum alloy plate excellent in press formability

Country Status (1)

Country Link
JP (1) JP4237364B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4771791B2 (en) * 2005-11-08 2011-09-14 古河スカイ株式会社 Method for producing aluminum alloy sheet for forming
JP4933326B2 (en) * 2007-03-30 2012-05-16 古河スカイ株式会社 Aluminum alloy rolled sheet excellent in thermal conductivity, strength and bending workability, and manufacturing method thereof

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6289852A (en) * 1985-09-24 1987-04-24 Kobe Steel Ltd Manufacture of aluminum alloy plate having superior burning hardenability
JPS62177143A (en) * 1986-01-30 1987-08-04 Kobe Steel Ltd Aluminum alloy sheet excellent in formability and baking hardening and its production
JP2681396B2 (en) * 1989-08-29 1997-11-26 日本軽金属株式会社 Manufacturing method of aluminum alloy sheet for forming with excellent corrosion resistance
JPH0788558B2 (en) * 1990-04-13 1995-09-27 株式会社神戸製鋼所 Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH04276048A (en) * 1991-03-04 1992-10-01 Furukawa Alum Co Ltd Production of aluminum alloy sheet for forming excellent in baking hardenability
JPH0565587A (en) * 1991-09-05 1993-03-19 Sky Alum Co Ltd Aluminum alloy rolled sheet for forming and its production
JPH07228957A (en) * 1994-02-18 1995-08-29 Sky Alum Co Ltd Production of aluminum alloy sheet having excellent formability and quench-hardenability
JPH08296011A (en) * 1995-04-24 1996-11-12 Nkk Corp Production of aluminum alloy sheet for high speed forming excellent in baking hardenability of coating film and cold stability
JPH10102179A (en) * 1996-10-01 1998-04-21 Nippon Steel Corp Aluminum alloy sheet excellent in press formability and baking finish hardenability, and its production
JPH10219382A (en) * 1997-02-04 1998-08-18 Nippon Steel Corp Aluminum alloy sheet excellent in formability/ workability and coating/baking hardenability and its production
JPH10259464A (en) * 1997-03-19 1998-09-29 Mitsubishi Alum Co Ltd Production of aluminum alloy sheet for forming

Also Published As

Publication number Publication date
JP2001152302A (en) 2001-06-05

Similar Documents

Publication Publication Date Title
EP0097319A2 (en) A cold-rolled aluminium-alloy sheet for forming and process for producing the same
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP2997156B2 (en) Method for producing aluminum alloy sheet at room temperature with slow aging excellent in formability and paint bake hardenability
JP2997145B2 (en) Method for producing aluminum alloy sheet having delayed aging at room temperature
JPH0747807B2 (en) Method for producing rolled aluminum alloy plate for forming
JPH0747808B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JP4237326B2 (en) Method for producing aluminum alloy sheet excellent in formability and corrosion resistance
JPH083702A (en) Production of aluminum alloy sheet material excellent in formability and heating hardenability
JP2003221637A (en) Aluminum alloy plate for fabrication and its manufacturing process
JPH05112840A (en) Baking hardenability al-mg-si alloy sheet excellent in press formability and its manufacture
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JP4237364B2 (en) Method for producing an aluminum alloy plate excellent in press formability
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JP2856936B2 (en) Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same
JPH0138866B2 (en)
JPH0547615B2 (en)
JP2001262265A (en) Hot rolling stock of high formability aluminum alloy sheet
JP2003171726A (en) Aluminum alloy sheet having excellent bending workability and corrosion resistance, and production method therefor
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JP2003231955A (en) Process for manufacturing aluminum alloy plate with excellent hemmability and bake-hardening property
JPH0788558B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JP3686146B2 (en) Method for producing aluminum alloy sheet for forming
JPH04147951A (en) Manufacture of aluminum alloy material for forming excellent in formability, shape freezability and baking hardenability of painting
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JP3241064B2 (en) Method for producing aluminum alloy hard plate for beverage can lid with excellent softening resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081007

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081218

R151 Written notification of patent or utility model registration

Ref document number: 4237364

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131226

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees