JPH0565587A - Aluminum alloy rolled sheet for forming and its production - Google Patents

Aluminum alloy rolled sheet for forming and its production

Info

Publication number
JPH0565587A
JPH0565587A JP3254852A JP25485291A JPH0565587A JP H0565587 A JPH0565587 A JP H0565587A JP 3254852 A JP3254852 A JP 3254852A JP 25485291 A JP25485291 A JP 25485291A JP H0565587 A JPH0565587 A JP H0565587A
Authority
JP
Japan
Prior art keywords
less
content
hot rolling
aluminum alloy
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3254852A
Other languages
Japanese (ja)
Inventor
Toshio Komatsubara
俊雄 小松原
Mamoru Matsuo
守 松尾
Toshiki Muramatsu
俊樹 村松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP3254852A priority Critical patent/JPH0565587A/en
Priority to EP92307980A priority patent/EP0531118A1/en
Publication of JPH0565587A publication Critical patent/JPH0565587A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide an Al alloy rolled sheet for forming excellent in formability as well as baking hardenability and used for an automobile body sheet or the like. CONSTITUTION:The objective Al alloy rolled sheet contains >1.2 to 1.5% Si, 0.15 to 1.5% Mn and 0.3 to 1.5% Cu, in which the content of Fe is controlled to <0.2%, that of Mn, Cr, Zr and V each to <0.05% and their total to <0.1% and whose electric conductivity is regulated to <=50% and the average grain size on the surface to <=100mum. As for its manufacturing method, heating before hot rolling is executed at 480 to 560 deg.C, and immediately after its carrying-out from a heating furnace, through the hot rolling, its residence time at 480 to 400 deg.C is regulated to <=30min. Moreover, soln. treatment is executed at 480 to 560 deg.C for <=60sec at >=5 deg.C/sec temp. raising and cooling rate.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は成形加工用のアルミニ
ウム合金圧延板およびその製造方法に関し、特に高成形
性と高強度が要求されしかも焼付塗装を施して使用され
る用途、例えば自動車ボディシートを始めとし、各種成
形加工部品、電気部品、器物等に適した成形加工用アル
ミニウム合金圧延板およびその製造方法に関するもので
ある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rolled aluminum alloy sheet for forming and a method for producing the same, and particularly to applications where high formability and high strength are required and baking is used, for example, automobile body sheets. The present invention relates to a rolled aluminum alloy plate for forming, which is suitable for various forming parts, electric parts, articles, etc., and a manufacturing method thereof.

【0002】[0002]

【従来の技術】自動車のボディシートには、従来は主と
して冷延鋼板が用いられることが多かったが、最近では
車体軽量化の要求から、アルミニウム合金圧延板を使用
する検討が進められている。自動車のボディシートは、
プレス成形を施して使用されることから成形加工性が優
れていること、特に伸び、張出し性が優れておりかつ成
形加工時におけるリューダースマークの発生がないこと
が要求され、しかも高強度を有することも必須であっ
て、特に焼付塗装を施すところから、焼付塗装後に高強
度が得られるように焼付硬化性に優れていることが要求
される。またこのほか、塗装時の塗膜の密着性が良好
で、塗装後の耐食性も良好なことも要求される。
2. Description of the Related Art Conventionally, cold-rolled steel sheets have often been mainly used for automobile body sheets, but recently, due to the demand for weight reduction of vehicle bodies, the use of rolled aluminum alloy sheets has been studied. Car body sheet,
Since it is used after being press-molded, it is required to have excellent moldability, in particular to have excellent elongation and bulging properties, and to avoid the occurrence of Luders marks during molding, and it has high strength. This is also essential, and particularly from the point of view of applying bake coating, it is required to have excellent bake hardenability so that high strength can be obtained after bake coating. In addition, it is also required that the coating film has good adhesion at the time of coating and good corrosion resistance after coating.

【0003】ところで強度が要求される成形加工品の用
途に使用されるアルミニウム合金板としては従来から種
々のものがあるが、その主要なものは合金成分系によっ
て次のように分けられる。
By the way, there are various aluminum alloy sheets conventionally used for molded products requiring strength, and the main ones are classified as follows depending on the alloy component system.

【0004】(イ) 非熱処理型Al−Mg系合金であ
る5052合金(Mg2.2〜2.8%、Cr0.15
〜0.35%、残部Alおよび不可避的不純物)のO材
あるいは同じく5182合金(Mn0.20〜0.50
%、Mg1.0〜5.0%、残部Alおよび不可避的不
純物)のO材。
(A) 5052 alloy (Mg 2.2-2.8%, Cr 0.15) which is a non-heat treatment type Al-Mg alloy.
.About.0.35%, balance Al and unavoidable impurities) O material or 5182 alloy (Mn 0.20 to 0.50)
%, Mg 1.0 to 5.0%, balance Al and unavoidable impurities) O material.

【0005】(ロ) 熱処理型Al−Cu系合金である
2036合金(Cu2.2〜3.0%、Mn0.1〜
0.4%、Mg0.3〜0.6%、残部Alおよび不可
避的不純物)のT4処理材もしくはT6処理材。
(B) 2036 alloy (Cu 2.2 to 3.0%, Mn 0.1 to 0.1) which is a heat treatment type Al-Cu alloy.
0.4%, Mg 0.3-0.6%, balance Al and unavoidable impurities) T4 treated material or T6 treated material.

【0006】(ハ) 熱処理型Al−Mg−Zn−Cu
系合金のT4処理材。この系のアルミニウム合金として
は、例えば特開昭52−141409号の合金、特開昭
53−103914号の合金、あるいは特開昭57−9
8648号の合金などがある。さらには、日経ニューマ
テリアル1986年4月7日号(No.8)の63〜72
頁、特に64頁で紹介されているAl−4.5%Mg−
0.38%Cu−1.46%Zn−0.18%Fe−
0.09%Si合金もある。
(C) Heat treatment type Al-Mg-Zn-Cu
T4 treated material of system alloy. Examples of aluminum alloys of this type include those disclosed in JP-A-52-141409, JP-A-53-103914, and JP-A-57-9.
There is an alloy of No. 8648. Furthermore, Nikkei New Material April 7th, 1986 issue (No. 8) 63-72.
Page, especially page 64, Al-4.5% Mg-
0.38% Cu-1.46% Zn-0.18% Fe-
There is also a 0.09% Si alloy.

【0007】(ニ) 熱処理型Al−Mg−Si系合金
である6009合金(Mg0.4〜0.8%、Si0.
6〜1.0%、Cu0.15〜0.6%、Mn0.2〜
0.8%、残部Alおよび不可避的不純物)のT4処理
材や同じく6010合金(Mg0.6〜1.0%、Si
0.8〜1.2%、Cu0.15〜0.6%、Mn0.
2〜0.8%、残部Alおよび不可避的不純物)のT4
処理材。これらについては、特公昭59−39499号
に詳細に示されており、またこのほか特公昭61−15
148号で提案されているAC120合金T4処理材が
ある。
(D) 6009 alloy (Mg 0.4 to 0.8%, Si0.
6-1.0%, Cu 0.15-0.6%, Mn 0.2-
T4 treated material with 0.8%, balance Al and unavoidable impurities, and the same 6010 alloy (Mg 0.6 to 1.0%, Si)
0.8-1.2%, Cu 0.15-0.6%, Mn0.
2-0.8%, balance Al and unavoidable impurities) T4
Processing material. These are described in detail in Japanese Examined Patent Publication No. 59-39499, and in addition to these, Japanese Examined Patent Publication No. 61-15
There is an AC120 alloy T4 treated material proposed in No. 148.

【0008】しかしながらこれらの従来のアルミニウム
合金では、自動車のボディシートに要求される前述の特
性を全て充分に満足させることは困難であった。
However, it has been difficult for these conventional aluminum alloys to sufficiently satisfy all of the above-mentioned properties required for automobile body sheets.

【0009】すなわち(イ)の合金では、強度が不充分
であり、しかも成形加工時にリューダースマークが発生
し易い問題があり、さらには塗装焼付工程によって強度
が低下する問題があった。また(ロ)の合金では、成形
性が劣り、かつまた塗装焼付工程によって強度が低下す
る問題もあった。さらに(ハ)の合金では、成形性、特
に曲げ性が充分とは言えず、また塗装焼付工程で強度が
低下する問題もあった。また(ニ)の系の合金では、例
えば6009合金の場合強度が不充分であり、一方60
10合金では伸び、曲げ性が不充分であった。
That is, the alloy (a) has a problem that the strength is insufficient and that Luders marks are likely to occur during the molding process, and further that the strength is lowered by the coating baking process. In addition, the alloy (b) has a problem that the formability is poor and the strength is lowered by the coating baking process. Further, the alloy of (C) has a problem that the formability, especially bendability is not sufficient, and the strength is lowered in the coating baking process. In the case of the (d) type alloy, for example, 6009 alloy has insufficient strength, while
In No. 10 alloy, elongation and bendability were insufficient.

【0010】そこで本発明者等は既に特開昭61−20
1748号、特開昭61−201749号において、上
記諸特性をかなりの程度満足することができるAl−M
g−Si−Cu系の合金を提案している。
Therefore, the present inventors have already disclosed in Japanese Patent Laid-Open No. 61-20.
1748 and Japanese Patent Laid-Open No. 61-201749, Al-M capable of satisfying the above-mentioned various properties to a large extent.
A g-Si-Cu based alloy is proposed.

【0011】[0011]

【発明が解決しようとする課題】前述の特開昭61−2
01748号、特開昭61−201749号で提案して
いるAl−Mg−Si−Cu系合金では自動車のボディ
シートに要求される諸特性をかなりの程度満たすことが
できるが、焼付硬化性と成形性の点でより一層の改善が
望まれている。すなわち、前記各提案のようなAl−M
g−Si−Cu系合金は、焼付硬化性を有していて、焼
付塗装時に強度が向上する特徴を有しているが、一般に
成形性を向上させようとすれば焼付硬化性が低下し、焼
付硬化性を向上させようとすれば結晶粒が粗大化して成
形性が低下する傾向が見られ、そのため、より高い焼付
硬化性と優れた成形性との両者を同時に満足させること
は困難とされていた。
DISCLOSURE OF THE INVENTION Problems to be Solved by the Invention
The Al-Mg-Si-Cu alloys proposed in Japanese Patent Application No. 01748 and Japanese Patent Application Laid-Open No. 61-201749 can satisfy various properties required for an automobile body sheet to a considerable extent, but have bake hardenability and molding. In terms of sex, further improvement is desired. That is, Al-M as in the above proposals
The g-Si-Cu alloy has bake hardenability and has a characteristic that the strength is improved at the time of bake coating, but generally, when trying to improve the formability, the bake hardenability decreases, When it is attempted to improve the bake hardenability, the crystal grains tend to be coarsened and the formability tends to decrease.Therefore, it is difficult to satisfy both the higher bake hardenability and the excellent formability at the same time. Was there.

【0012】この発明は以上の事情を背景としてなされ
たもので、焼付硬化性に優れていて、塗装焼付後に高強
度が得られると同時に、成形性にも優れたアルミニウム
合金圧延板およびその製造方法を提供することを目的と
するものである。
The present invention has been made in view of the above circumstances, and is an aluminum alloy rolled sheet having excellent bake hardenability, high strength after coating baking, and excellent formability, and a method for producing the same. It is intended to provide.

【0013】[0013]

【課題を解決するための手段】前述のような課題を解決
するため、請求項1の発明のアルミニウム合金圧延板
は、次のような構成とされている。
In order to solve the above-mentioned problems, the rolled aluminum alloy plate of the invention of claim 1 has the following constitution.

【0014】すなわち、Si1.2%を越え1.5%以
下、Mg0.15%以上1.5%以下、Cu0.3%以
上1.5%以下を含有し、かつFe量が0.2%未満、
Mn量が0.05%未満、Cr量が0.05%未満、Z
r量が0.05%未満、V量が0.05%未満に規制さ
れるとともに、Mn,Cr,Zr,Vの合計量が0.1
0%未満に規制され、残部がAlおよび不可避的不純物
よりなり、導電率が50%IACS以下でしかも表面の平均
結晶粒径が100μm以下であることを特徴とするもの
である。
That is, it contains more than 1.2% of Si and 1.5% or less, Mg of 0.15% or more and 1.5% or less, Cu of 0.3% or more and 1.5% or less, and Fe content of 0.2%. Less than,
Mn amount less than 0.05%, Cr amount less than 0.05%, Z
The amount of r is regulated to less than 0.05%, the amount of V is regulated to less than 0.05%, and the total amount of Mn, Cr, Zr, and V is 0.1.
It is characterized in that it is regulated to less than 0%, the balance is made of Al and inevitable impurities, the conductivity is 50% IACS or less, and the average crystal grain size on the surface is 100 μm or less.

【0015】また請求項2、請求項3の発明は前述の課
題を解決したアルミニウム合金圧延板を製造する方法を
規定したものであり、そのうち請求項2の発明の製造方
法は、Si1.2%を越え1.5%以下、Mg0.15
%以上1.5%以下、Cu0.3%以上1.5%以下を
含有し、かつFe量が0.2%未満、Mn量が0.05
%未満、Cr量が0.05%未満、Zr量が0.05%
未満、V量が0.05%未満に規制されるとともに、M
n,Cr,Zr,Vの合計量が0.10%未満に規制さ
れ、残部がAlおよび不可避的不純物よりなるアルミニ
ウム合金溶湯を半連続鋳造法によって鋳造し、得られた
鋳塊を480〜560℃の範囲内の温度に加熱してから
熱間圧延を開始し、かつその加熱炉からの鋳塊搬出直後
から熱間圧延の過程を通じて400℃以下に至るまでの
時間が30分以内となるように熱間圧延し、これによっ
て導電率が50%IACS以下でしかも表面の平均結晶粒径
が100μm以下である圧延板を得ることを特徴とする
ものである。
Further, the inventions of claims 2 and 3 define a method for manufacturing an aluminum alloy rolled plate which solves the above-mentioned problems, and the manufacturing method of the invention of claim 2 is Si1.2%. Over 0.1%, Mg 0.15
% To 1.5% inclusive, Cu 0.3% to 1.5% inclusive, Fe amount less than 0.2%, Mn amount 0.05
%, Cr content is less than 0.05%, Zr content is 0.05%
And V content is regulated to less than 0.05%, and M
The total amount of n, Cr, Zr, and V is regulated to less than 0.10%, and a molten aluminum alloy having the balance of Al and inevitable impurities is cast by a semi-continuous casting method, and the obtained ingot is 480 to 560. Start the hot rolling after heating to a temperature in the range of ℃, and the time from immediately after the ingot is discharged from the heating furnace to 400 ℃ or less through the process of hot rolling within 30 minutes. It is characterized in that a hot-rolled sheet having a conductivity of 50% IACS or less and an average grain size of 100 μm or less on the surface is obtained by hot rolling.

【0016】そして請求項3の発明の製造方法は、Si
1.2%を越え1.5%以下、Mg0.15%以上1.
5%以下、Cu0.3%以上1.5%以下を含有し、か
つFe量が0.2%未満、Mn量が0.05%未満、C
r量が0.05%未満、Zr量が0.05%未満、V量
が0.05%未満に規制されるとともに、Mn,Cr,
Zr,Vの合計量が0.10%未満に規制され、残部が
Alおよび不可避的不純物よりなるアルミニウム合金溶
湯を半連続鋳造法によって鋳造し、得られた鋳塊を48
0〜560℃の範囲内の温度に加熱してから熱間圧延を
開始し、かつその加熱炉からの鋳塊搬出直後から熱間圧
延の過程を通じて400℃以下に至るまでの時間が30
分以内となるように熱間圧延し、その後冷間圧延を施し
た後、5℃/sec 以上の昇温速度で480〜560℃の
範囲内に加熱して60sec 以内の溶体化処理を施し、5
℃/sec 以上の冷却速度で焼入れ、これによって導電率
が50%IACS以下でしかも表面の平均結晶粒径が100
μm以下である圧延板を得ることを特徴とするものであ
る。
The manufacturing method according to the third aspect of the invention is based on Si
More than 1.2% and 1.5% or less, Mg 0.15% or more 1.
5% or less, Cu 0.3% or more and 1.5% or less, Fe amount less than 0.2%, Mn amount less than 0.05%, C
The amount of r is less than 0.05%, the amount of Zr is less than 0.05%, the amount of V is less than 0.05%, and Mn, Cr,
The total amount of Zr and V was regulated to less than 0.10%, and a molten aluminum alloy containing the balance of Al and unavoidable impurities was cast by a semi-continuous casting method, and the obtained ingot was 48
The time from when hot rolling is started after heating to a temperature in the range of 0 to 560 ° C. and immediately after the ingot is discharged from the heating furnace to 400 ° C. or less through the process of hot rolling is 30
After hot rolling for less than a minute and then cold rolling, the solution is heated within a range of 480 to 560 ° C. at a temperature rising rate of 5 ° C./sec or more and subjected to solution treatment within 60 sec. 5
Quenching at a cooling rate of ℃ / sec or more, which results in a conductivity of 50% IACS or less and an average crystal grain size of 100
It is characterized in that a rolled plate having a thickness of μm or less is obtained.

【0017】[0017]

【作用】先ずこの発明のアルミニウム合金圧延板におけ
る成分限定理由を説明する。
First, the reasons for limiting the components in the rolled aluminum alloy plate of the present invention will be described.

【0018】Si:SiはMgとの共存によりMg2
iを生成して析出硬化により強度を向上させるために有
効であり、同時に成形性特に伸びを向上させるために有
効である。この発明の場合、強度向上に効果のあるCu
を0.3%以上添加しているから、Siが1.2%を越
えれば所要の強度を得ることができ、一方Siが1.5
%を越えれば強度向上の効果が飽和する。したがってS
iは1.2%を越え1.5%以下の範囲内とした。
Si: Si coexists with Mg to form Mg 2 S
It is effective to generate i and improve the strength by precipitation hardening, and at the same time, it is effective to improve the formability, especially the elongation. In the case of this invention, Cu which is effective in improving the strength
Since Si is added in an amount of 0.3% or more, the required strength can be obtained when Si exceeds 1.2%, while Si is 1.5%.
If it exceeds%, the effect of improving strength is saturated. Therefore S
i was set within the range of more than 1.2% and 1.5% or less.

【0019】Mg:Mgは既に述べたようにSiとの共
存によりMg2 Siを生成して強度を付与する。Mgが
0.15%未満では強度向上の効果が不充分であり、一
方1.5%を越えれば加工硬化が強くなり過ぎ、成形性
特に伸びが低下するから、0.15〜1.5%の範囲内
とした。
Mg: Mg forms Mg 2 Si and gives strength by coexisting with Si as described above. If the content of Mg is less than 0.15%, the effect of improving the strength is insufficient, while if it exceeds 1.5%, the work hardening becomes too strong, and the moldability, in particular, the elongation decreases, so 0.15 to 1.5% Within the range of.

【0020】Cu:Cuは強度向上に有効であって、ま
た成形性特に曲げ性の向上にも有効であり、0.3%以
上でその効果が充分に発揮され、一方1.5%を越えれ
ば強度が高くなり過ぎて成形性が低下するから、0.3
〜1.5%の範囲内とした。
Cu: Cu is effective for improving the strength and also for improving the formability, especially the bendability, and the effect is sufficiently exhibited at 0.3% or more, while exceeding 1.5%. If the strength is too high and the formability decreases, 0.3
Within the range of up to 1.5%.

【0021】Fe:Feは結晶粒の微細化に寄与する
が、成形性特に曲げ性を低下させる。特にFe量が0.
2%以上でその傾向が強くなるから、優れた成形性を得
るためにFe量を0.2%未満に規制する必要がある。
Fe: Fe contributes to refinement of crystal grains, but deteriorates formability, especially bendability. Especially when the amount of Fe is 0.
Since the tendency becomes strong at 2% or more, it is necessary to regulate the Fe content to less than 0.2% in order to obtain excellent moldability.

【0022】Mn,Cr,Zr,V:これらの元素はい
ずれも再結晶粒を微細化させるが、過剰に含有されれば
成形性が低下してしまう。いずれかが単独量で0.05
%以上となるかまたは合計量で0.10%以上となれば
成形性が不充分となるから、いずれも0.05%未満に
規制するとともに、合計量で0.10%未満に規制する
必要がある。
Mn, Cr, Zr, V: All of these elements make the recrystallized grains finer, but if they are contained in excess, the formability deteriorates. 0.05 for either amount
%, Or if the total amount is 0.10% or more, the formability becomes insufficient. Therefore, it is necessary to regulate the total amount to less than 0.05% and the total amount to less than 0.10%. There is.

【0023】以上の各成分の残部はAlおよび上記以外
の不可避的不純物とすれば良い。
The balance of the above components may be Al and inevitable impurities other than the above.

【0024】なお通常のアルミニウム合金においては不
純物もしくは積極添加元素としてZnが含有されること
が多いが、Znは2.0%までであれば成形性、焼付硬
化性を劣化させないから、2.0%までのZnの含有は
許容される。また一般のアルミニウム合金では鋳塊結晶
粒微細化のためにTi、あるいはTiおよびBを微量添
加することがあり、この発明のアルミニウム合金圧延板
においても微量のTi、あるいはTiおよびBを含有し
ていても良い。但しTiを添加する場合0.01%未満
ではその効果が得られず、0.15%以上では初晶Ti
Al3 が晶出して成形性を害するから、Tiは0.01
〜0.15%の範囲内とすることが好ましい。またTi
とともにBを添加する場合、1ppm 未満ではその効果が
なく、500ppm を越えればTiB2 の粗大粒子が混入
して成形性を害するから、Bは1〜500ppm の範囲内
とすることが好ましい。さらに、この発明のアルミニウ
ム合金においては、微量のBeが添加含有されても良
い。Beは、特にMgを含有する合金を溶解する場合に
溶湯の酸化を抑制し、材料中に酸化物粒子などの不純物
が混入することを防止するために添加される。但し10
0ppm を越えてBeを添加してもその効果は飽和し、経
済的に無意味となるから、通常は100ppm 以下に抑え
ることが望ましい。
In a normal aluminum alloy, Zn is often contained as an impurity or a positive addition element. However, if Zn is up to 2.0%, formability and bake hardenability are not deteriorated. A Zn content of up to 5% is acceptable. Further, in a general aluminum alloy, a minute amount of Ti or Ti and B may be added for refining the ingot crystal grains, and the aluminum alloy rolled sheet of the present invention also contains a small amount of Ti, or Ti and B. May be. However, if Ti is added, the effect cannot be obtained if it is less than 0.01%, and if it is 0.15% or more, primary crystal Ti
Since Al 3 crystallizes and impairs formability, Ti is 0.01
It is preferably within the range of 0.15%. Also Ti
When B is added together with it, if it is less than 1 ppm, it has no effect, and if it exceeds 500 ppm, coarse particles of TiB 2 are mixed to impair the formability, so B is preferably in the range of 1 to 500 ppm. Furthermore, in the aluminum alloy of the present invention, a trace amount of Be may be added and contained. Be is added in order to suppress the oxidation of the molten metal particularly when melting an alloy containing Mg and to prevent impurities such as oxide particles from being mixed into the material. However, 10
Even if Be is added in excess of 0 ppm, the effect is saturated and it becomes economically meaningless.

【0025】この発明のアルミニウム合金圧延板は、前
述のような成分組成のみならず、導電率および表面の平
均結晶粒径をも規定している。これらの導電率、表面の
平均結晶粒径の限定理由は次の通りである。
The rolled aluminum alloy sheet of the present invention defines not only the above-mentioned component composition but also the electrical conductivity and the average crystal grain size on the surface. The reasons for limiting the conductivity and the average crystal grain size on the surface are as follows.

【0026】すなわち、導電率は合金元素のマトリック
ス中の固溶量に関係し、固溶量が多い程導電率は低くな
るから、導電率は固溶量の指標となる。この発明のアル
ミニウム合金板においては、Mg,Si,Cuをできる
だけ固溶状態としておく必要があり、これらの固溶量が
多ければ塗装焼付け時にこれらの元素が析出物として析
出し、塗装焼付け後の強度が高くなる。すなわち高い焼
付硬化性を示すことができる。Mg,Si,Cuの固溶
量が少なく、導電率が50%IACSを越えるような場合に
は、塗装焼付け時の強度上昇が少なく、焼付硬化性に劣
る。充分な塗装焼付硬化性を得るためには、導電率にし
て50%IACS以下となるような固溶量が必要である。
That is, the conductivity is related to the solid solution amount of the alloy element in the matrix, and the larger the solid solution amount is, the lower the conductivity is. Therefore, the conductivity is an index of the solid solution amount. In the aluminum alloy plate of the present invention, it is necessary to keep Mg, Si, and Cu in a solid solution state as much as possible. If the amount of these solid solutions is large, these elements will be deposited as precipitates during baking of the coating, and after the baking of coating, Increases strength. That is, high bake hardenability can be exhibited. When the solid solution amount of Mg, Si and Cu is small and the conductivity exceeds 50% IACS, the increase in strength during coating baking is small and the bake hardenability is poor. In order to obtain sufficient paint bake hardenability, a solid solution amount such that the conductivity is 50% IACS or less is required.

【0027】また表面の結晶粒径は成形時の肌荒れと関
係し、平均結晶粒径が100μm以下であれば肌荒れは
少ないが、平均結晶粒径が100μmを越えれば肌荒れ
が著しくなり、成形品としての美観が損なわれるばかり
でなく、極端な場合は成形時の破断を招く。したがって
表面の平均結晶粒径を100μm以下とする必要があ
る。
Further, the crystal grain size on the surface is related to the rough skin at the time of molding. If the average crystal grain size is 100 μm or less, the rough skin is small, but if the average crystal grain size exceeds 100 μm, the rough skin becomes remarkable, and a molded product is obtained. Not only does it impair the aesthetic appearance, but in an extreme case, it causes breakage during molding. Therefore, the average crystal grain size on the surface needs to be 100 μm or less.

【0028】次にこの発明のアルミニウム合金圧延板の
製造方法、すなわち請求項2、請求項3の発明の方法に
ついて説明する。
Next, a method of manufacturing the rolled aluminum alloy plate of the present invention, that is, the method of the inventions of claims 2 and 3 will be described.

【0029】先ず前述のような成分組成の合金の溶湯を
常法にしたがって溶製し、半連続鋳造法(DC鋳造法)
によって矩形の断面を有する鋳塊に鋳造する。この時の
鋳造速度は特に限定されないが、通常は25〜250mm
/minとすれば良い。
First, a melt of an alloy having the above-described composition is melted according to a conventional method, and a semi-continuous casting method (DC casting method).
To form an ingot having a rectangular cross section. The casting speed at this time is not particularly limited, but is usually 25 to 250 mm.
/ Min should be set.

【0030】得られた鋳塊に対しては、熱間圧延に先立
って均質化熱処理を望ましくは480〜560℃の範囲
内の温度で0.5〜48時間行なう。この均質化熱処理
は、通常のアルミニウム合金の製造の場合と同様に鋳塊
の不均質を解消して成形性を向上させる目的を有するほ
か、この発明の場合には、特にその後の溶体化処理時に
おける溶体化の効果を補助するために、溶体化元素をあ
る程度固溶化し、あるいはまた析出が生じたとしても微
細な析出物とすることによって溶体化処理時における溶
体化を容易にならしめる目的を有する。均質化熱処理に
おける温度が480℃未満もしくは保持時間が0.5時
間より短ければ、Mg2Siの溶入化が不充分であっ
て、加熱保持中にMg2 Si等の硬化相が粗大化してし
まい、後の溶体化処理時に短時間では充分に溶体化する
ことが困難となり、その結果塗装焼付後の強度が不充分
となる。一方、鋳塊加熱の温度が560℃を越えれば共
晶融解が生じてしまい、また加熱時間が48時間を越え
ても経済性が悪化するだけである。
Prior to hot rolling, the obtained ingot is subjected to a homogenizing heat treatment, preferably at a temperature in the range of 480 to 560 ° C. for 0.5 to 48 hours. This homogenizing heat treatment has the purpose of eliminating the inhomogeneity of the ingot and improving the formability as in the case of the production of ordinary aluminum alloys, and in the case of the present invention, particularly during the subsequent solution treatment. In order to assist the solutionizing effect in the solution treatment, the solutionizing element should be solid-solved to some extent, or even if precipitation occurs, it should be a fine precipitate to facilitate the solution treatment during solution treatment. Have. If the temperature in the homogenization heat treatment is lower than 480 ° C or the holding time is shorter than 0.5 hours, the Mg 2 Si penetration is insufficient and the hardened phase of Mg 2 Si or the like becomes coarse during heating and holding. However, it becomes difficult to sufficiently perform solution treatment in a short time during the subsequent solution treatment, and as a result, the strength after baking for coating becomes insufficient. On the other hand, if the temperature of the ingot heating exceeds 560 ° C., eutectic melting will occur, and even if the heating time exceeds 48 hours, the economic efficiency will only deteriorate.

【0031】上述のような均質化熱処理の後には、改め
て熱間圧延のための予備加熱を行なってから直ちに熱間
圧延を行なう。この熱間圧延直前の予備加熱において
は、前述のような鋳塊加熱によるMg2 Siの溶体化状
態をできるだけ保ち、また仮にMg2 Siが析出したと
しても微細な状態で析出させるため、溶体化処理の温度
範囲内(480〜560℃)で加熱することが必要であ
り、またその溶体化処理温度域でもできるだけ高温で加
熱することが望ましい。なおこの予備加熱は、要は熱間
圧開始延のために上記の温度に到達すれば良く、特に積
極的に保持する必要はない。なおまた、場合によっては
前述の均質化熱処理後に一旦冷却することなく、均質化
熱処理に引続いて熱間圧延前の予備加熱を行なうことも
できる。
After the homogenizing heat treatment as described above, preheating for hot rolling is performed again and then hot rolling is performed immediately. In the preheating just before the hot rolling, the solution state of Mg 2 Si by the ingot heating as described above is kept as much as possible, and even if Mg 2 Si is deposited, it is deposited in a fine state, so that the solution treatment is performed. It is necessary to heat within the temperature range of the treatment (480 to 560 ° C.), and it is desirable to heat at the highest possible temperature in the solution treatment temperature range. Note that this preheating need only reach the above temperature for the purpose of hot rolling start rolling, and it is not particularly necessary to actively hold it. In addition, in some cases, after the homogenizing heat treatment, the preheating before the hot rolling can be performed subsequent to the homogenizing heat treatment without once cooling.

【0032】続いて熱間圧延を行なうが、この熱間圧延
は、その前の加熱のための加熱炉からの搬出直後から熱
間圧延の過程を通じて、480℃から400℃以下まで
温度低下するまでの時間が30分以内となるように行な
う必要がある。すなわち、480℃〜400℃の範囲内
の温度での滞留時間を30分以内とする必要がある。こ
れは、加熱炉からの搬出の直後から熱間圧延の過程にお
いてMg2 Siの析出、粗大化を防止し、その後の溶体
化を容易にするためである。なお基本的には、480〜
400℃での滞留時間は30分以内であれば良いが、M
2 Siの析出や粗大化を確実に防止するためにはでき
るだけその滞留時間を短くすることが望ましい。
Successively, hot rolling is carried out. This hot rolling is carried out immediately after being carried out from the heating furnace for heating until the temperature is lowered from 480 ° C. to 400 ° C. or less through the process of hot rolling. Must be done within 30 minutes. That is, the residence time at a temperature in the range of 480 ° C to 400 ° C needs to be 30 minutes or less. This is to prevent precipitation and coarsening of Mg 2 Si in the process of hot rolling immediately after unloading from the heating furnace, and to facilitate subsequent solution treatment. Basically, 480-
The residence time at 400 ° C should be within 30 minutes, but M
In order to reliably prevent precipitation and coarsening of g 2 Si, it is desirable to make the residence time as short as possible.

【0033】熱間圧延後には、得られた圧延板をそのま
ま製品板としても良いが、通常はさらに冷間圧延を行な
って所定の板厚とし、またその場合、熱間圧延と冷間圧
延との間もしくは冷間圧延の中途において必要に応じて
中間焼鈍を施す。そして冷間圧延後の圧延板に対して
は、溶体化処理を施す。
After hot rolling, the obtained rolled plate may be used as a product plate as it is, but usually, cold rolling is further performed to a predetermined plate thickness, and in that case, hot rolling and cold rolling are performed. Intermediate annealing is performed as necessary during the cold rolling or in the middle of cold rolling. Then, a solution treatment is performed on the rolled plate after cold rolling.

【0034】この溶体化処理は、Mg2 Si等をマトリ
ックス中に固溶させ、これにより焼付硬化性を付与して
塗装焼付け後の強度向上を図るために重要な工程であ
り、また同時に、再結晶により成形性を向上させるに有
効な工程である。優れた成形性を得るためには、前述の
ように板表面の平均結晶粒径が100μm以下である必
要があり、そのため再結晶粒が100μm以下となるよ
うに再結晶させる必要がある。また遷移元素であるM
n,Cr,Zr,Vはそれ自体は成形性に悪影響を及ぼ
すから、この発明ではこれらの各元素はそれぞれ0.0
5%未満、合計0.10%未満に規制して良好な成形性
を得ようとしている。一方、溶体化を充分に行なって、
充分な焼付硬化性を得るためには、高温・長時間の溶体
化処理が好ましい。しかしながら、この発明の場合は結
晶粒微細化元素、再結晶粒安定化元素として知られるM
n,Cr,Zr,Vの含有量を前述のように少量に規制
しており、そのため高温・長時間の安定化処理では再結
晶粒が粗大化して100μm以下の粒径が得られなくな
ってしまう。そこでこの発明では溶体化処理における昇
温速度を5℃/sec 以上、加熱温度480℃以上560
℃以下、保持時間60sec 以内としている。昇温速度が
5℃/sec 未満の場合、あるいは加熱温度が560℃を
越える場合、また保持時間が60sec を越える場合に
は、結晶粒が100μmを越えて粗大化してしまい、成
形性が悪化してしまう。このように結晶粒の観点から
は、昇温速度は早く、強度は低く、時間は短い方が良い
が、従来の一般的な工程でこのような溶体化処理条件を
適用した場合には、溶体化が不充分となって、導電率が
50%IACSを越えてしまい、充分な焼付硬化性が得られ
なくなる。そこでこの発明では前述のような加熱〜熱間
圧延条件を適用することによって溶体化処理を容易に行
なえるようになし、これによって急速昇温・短時間・低
温の溶体化処理でも充分な溶体化が行ない得るようにし
ているのである。すなわち、加熱〜熱間圧延の条件と上
述の溶体化処理条件とを適切に組合せることによって、
はじめて結晶粒を100μm以下とすると同時に導電率
を50%IACS以下とし、成形性と焼付硬化性とを同時に
満たすことが可能となったのである。またこの溶体化処
理後の焼入時の冷却速度は、焼付硬化性を得るために重
要であり、5℃/sec よりも遅ければ焼入れ効果が不充
分で導電率が50%IACS以下とならない。このような5
℃/sec 以上の冷却速度を得るためには、強制空冷、ミ
スト焼入れ、水焼入れなどが適当である。また溶体化処
理温度は前述のように結晶粒微細化のためには低い方が
良いが、480℃未満では溶体化が充分に行なわれな
い。
This solution treatment is an important step for solid-soluting Mg 2 Si etc. in the matrix, thereby imparting bake hardenability to improve the strength after coating baking, and at the same time This is an effective process for improving moldability by crystallization. In order to obtain excellent formability, the average crystal grain size on the plate surface needs to be 100 μm or less as described above, and therefore it is necessary to perform recrystallization so that the recrystallized grain becomes 100 μm or less. In addition, M which is a transition element
Since n, Cr, Zr, and V themselves adversely affect the formability, each of these elements is 0.0
An attempt is made to obtain good moldability by limiting the amount to less than 5%, less than 0.10% in total. On the other hand, by carrying out sufficient solution treatment,
In order to obtain sufficient bake hardenability, solution treatment at high temperature for a long time is preferable. However, in the case of this invention, M, which is known as a grain refinement element or a recrystal grain stabilization element, is used.
As described above, the contents of n, Cr, Zr, and V are regulated to a small amount. Therefore, the recrystallized grains become coarse and the grain size of 100 μm or less cannot be obtained in the stabilization treatment at high temperature for a long time. .. Therefore, in the present invention, the temperature rising rate in the solution heat treatment is 5 ° C./sec or more, and the heating temperature is 480 ° C. or more and 560 or more.
The temperature is kept below ℃ and the holding time is within 60 seconds. If the rate of temperature rise is less than 5 ° C / sec, or if the heating temperature exceeds 560 ° C, or if the holding time exceeds 60 sec, the crystal grains become larger than 100 µm and become coarse, deteriorating moldability. Will end up. As described above, from the viewpoint of crystal grains, it is preferable that the temperature rising rate is fast, the strength is low, and the time is short, but when such solution treatment conditions are applied in the conventional general process, the solution Insulation is insufficient, and the conductivity exceeds 50% IACS, and sufficient bake hardenability cannot be obtained. Therefore, in the present invention, the solution treatment can be easily performed by applying the heating-hot rolling conditions as described above, whereby sufficient solution treatment can be achieved even by rapid temperature rising / short time / low temperature solution treatment. Is able to do. That is, by appropriately combining the conditions of heating ~ hot rolling and the solution treatment conditions described above,
For the first time, it became possible to satisfy the formability and the bake hardenability at the same time by setting the crystal grain to 100 μm or less and the conductivity to 50% IACS or less at the same time. The cooling rate during quenching after the solution treatment is important for obtaining bake hardenability, and if it is slower than 5 ° C / sec, the quenching effect is insufficient and the conductivity does not become 50% IACS or less. 5 like this
Forced air cooling, mist quenching, water quenching, etc. are suitable for obtaining a cooling rate of ℃ / sec or more. Further, the solution treatment temperature is preferably low for grain refinement as described above, but if it is lower than 480 ° C., solution treatment is not sufficiently performed.

【0035】以上から溶体化処理の条件は、5℃/sec
以上の昇温速度で480〜560℃に加熱して、60se
c 以内の保持後、5℃/sec 以上の冷却速度で焼入れる
ものとした。このような条件を達成するためには、代表
的には、コイルの連続焼鈍装置(例えばガス炉CAL、
電磁誘導加熱炉CAL等)を用いれば良い。
From the above, the solution treatment condition is 5 ° C./sec.
Heat to 480 to 560 ° C at the above temperature rising rate for 60se
After holding within c, quenching was performed at a cooling rate of 5 ° C / sec or more. In order to achieve such conditions, typically, a coil continuous annealing device (for example, a gas furnace CAL,
An electromagnetic induction heating furnace CAL or the like) may be used.

【0036】なお、既に述べたような熱間圧延と冷間圧
延の間もしくは冷間圧延の中途で必要に応じて施される
中間焼鈍は、バッチ式の焼鈍、連続焼鈍のいずれでも良
いが、溶体化処理性の点からは連続焼鈍が好ましい。連
続焼鈍の場合、350〜560℃の範囲内の温度で保持
なしもしくは3分以内、好ましくは60秒以内の保持と
することが適当である。すなわち、連続焼鈍による中間
焼鈍の温度が560℃を越えれば結晶粒が粗大化して成
形性に悪影響を与えるおそれがあり、一方350℃未満
では再結晶しない。また保持時間が60秒を越えれば、
温度が480℃以上の場合は結晶粒の粗大化が生じるお
それがあるが、480℃以下の場合は結晶粒の粗大化は
生じないから、より長時間の保持でも構わないが、生産
性の点から3分以内が好ましい。一方、バッチ式の中間
焼鈍では、加熱保持時間が長いため、Mg2 Siの粗大
化に注意を払う必要があり、300〜400℃の範囲内
の温度で0.5〜24時間の保持とすることが適当であ
る。すなわち、バッチ式の中間焼鈍の温度が400℃を
越えればMg2 Siが粗大化して、その後の溶体化処理
時における溶体化が不充分となって、優れた焼付硬化性
が得られなくなるおそれがあり、また300℃未満では
再結晶が行なわれない。保持時間が0.5時間未満では
製造が不安定となり、一方24時間を越える長時間の焼
鈍は経済性を損なうだけである。
Incidentally, the intermediate annealing which is performed between the hot rolling and the cold rolling as described above or in the middle of the cold rolling as required may be either batch annealing or continuous annealing. From the viewpoint of solution treatment, continuous annealing is preferable. In the case of continuous annealing, it is suitable that the temperature is within the range of 350 to 560 ° C. without holding or within 3 minutes, preferably within 60 seconds. That is, if the temperature of the intermediate annealing due to continuous annealing exceeds 560 ° C, the crystal grains may become coarse and adversely affect the formability, while if the temperature is less than 350 ° C, recrystallization does not occur. If the holding time exceeds 60 seconds,
If the temperature is 480 ° C. or higher, the crystal grains may be coarsened. However, if the temperature is 480 ° C. or lower, the crystal grains are not coarsened. Within 3 minutes is preferable. On the other hand, in the batch type intermediate annealing, since the heating and holding time is long, it is necessary to pay attention to the coarsening of Mg 2 Si, and the holding is performed at the temperature within the range of 300 to 400 ° C. for 0.5 to 24 hours. Is appropriate. That is, if the temperature of the batch type intermediate annealing exceeds 400 ° C., Mg 2 Si may be coarsened, and the solution treatment during the subsequent solution treatment may be insufficient, so that excellent bake hardenability may not be obtained. Also, recrystallization is not performed below 300 ° C. If the holding time is less than 0.5 hours, the production becomes unstable, while long annealing for more than 24 hours only impairs the economical efficiency.

【0037】なおまた、溶体化処理の直前の冷間圧延に
おける圧延率は30%以上とすることが好ましい。溶体
化処理直前の冷間圧延率が30%未満の場合は、再結晶
粒径が100μmを越えて粗大化してしまうおそれがあ
る。
The rolling ratio in cold rolling immediately before the solution treatment is preferably 30% or more. If the cold rolling ratio immediately before the solution treatment is less than 30%, the recrystallized grain size may exceed 100 μm and coarsen.

【0038】以上のようにして得られた圧延板について
は、常法に従って常温時効すれば良いが、必要に応じて
平坦度を得るためにレベリングもしくはスキンパス等の
歪矯正を行なっても良い。またこのような歪矯正を行な
った場合、それによる成形性の低下を回復させることを
目的として、あるいは強度の経時変化を防止するため、
例えば特開昭64−11953号の第1図、第2図に示
されるような熱処理を施しても良い。
The rolled plate obtained as described above may be aged at room temperature in accordance with a conventional method, but may be subjected to strain correction such as leveling or skin pass in order to obtain flatness if necessary. In addition, when such strain correction is performed, the purpose is to recover the deterioration of the formability due to it, or to prevent the change in strength over time,
For example, heat treatment as shown in FIGS. 1 and 2 of JP-A-64-11953 may be performed.

【0039】なお以上のようなこの発明のアルミニウム
合金圧延板を実際に使用するにあたっては、プレス加工
等の成形加工を施し、さらに焼付塗装を行なうのが通常
であり、また焼付塗装時には150〜250℃程度で加
熱するのが通常である。成形加工においては、既に述べ
たように表面の平均結晶粒径が100μm以下とされか
つMn,Cr,Zr,V,Feの含有量が少量に規制さ
れているため、良好な成形性を示す。また導電率50%
IACS以下となるようにMg2 Si等が充分に固溶されて
いるため、焼付塗装時にはこれらが析出して強度が上昇
し、所謂焼付硬化性が得られる。
When the rolled aluminum alloy sheet of the present invention as described above is actually used, it is usual to perform a forming process such as a press working and then to apply baking coating, and 150 to 250 is applied during baking coating. It is usual to heat at about ° C. In the molding process, as described above, the average crystal grain size on the surface is 100 μm or less, and the contents of Mn, Cr, Zr, V, and Fe are regulated to a small amount, so that the moldability is excellent. Also 50% conductivity
Since Mg 2 Si and the like are sufficiently solid-solved so as to be not more than IACS, they precipitate during baking coating to increase the strength, and so-called bake hardenability is obtained.

【0040】[0040]

【実施例】表1の合金番号1〜5の各合金について、半
連続鋳造法によって500×1200×400mmの鋳塊
に鋳造した。得られた鋳塊に対し530℃×10時間の
均質化熱処理を行なった後、熱間圧延前の予備加熱とし
て、表2中に示すように530℃×2時間もしくは43
0℃×2時間の加熱を施して、板厚3mmまで熱間圧延し
た。なお熱間圧延終了温度は、熱間圧延直前の加熱温度
が530℃の場合は280℃、熱間圧延直前の加熱温度
が430℃の場合は250℃である。また熱間圧延直前
の加熱炉から搬出後、熱間圧延終了までの所要時間はい
ずれも10分である。次いで熱延板に対して冷間圧延を
施して板厚1mmとした後、連続焼鈍炉を用いて溶体化処
理を行なった。溶体化処理の条件は、30℃/sec の昇
温速度・冷却速度で520℃×10sec 、または同じく
30℃/sec の昇温速度・冷却速度で550℃×90se
c とした。
EXAMPLES Alloys Nos. 1 to 5 in Table 1 were cast into ingots of 500 × 1200 × 400 mm by a semi-continuous casting method. After subjecting the obtained ingot to homogenization heat treatment at 530 ° C. for 10 hours, as preheating before hot rolling, as shown in Table 2, 530 ° C. for 2 hours or 43
It was heated at 0 ° C. for 2 hours and hot-rolled to a plate thickness of 3 mm. The hot rolling end temperature is 280 ° C when the heating temperature immediately before hot rolling is 530 ° C, and 250 ° C when the heating temperature immediately before hot rolling is 430 ° C. Further, the time required from the carrying out of the heating furnace immediately before hot rolling to the end of hot rolling is 10 minutes. Then, the hot-rolled sheet was cold-rolled to have a sheet thickness of 1 mm, and then subjected to solution treatment using a continuous annealing furnace. The conditions of the solution treatment are 520 ° C. × 10 sec at a heating rate / cooling rate of 30 ° C./sec, or 550 ° C. × 90 sec at a heating rate / cooling rate of 30 ° C./sec.
c.

【0041】溶体化処理後の各圧延板について、導電率
および表面の平均結晶粒径を調べたので、その結果を主
な製造条件とともに表2に示す。また各圧延板につい
て、常温で7〜10日時効させた後、機械的性質と成形
性、および焼付硬化性を調べたので、その結果を表3に
示す。機械的性質としては耐力(YS)、引張強さ(T
S)、および伸びを調べた。成形性としてはエリクセン
値(Er)、180°最小曲げ半径を調べた。また焼付
硬化性は、175×1時間の焼付相当加熱処理を行なっ
て、その処理後の耐力(YS)を調べた。
The electrical conductivity and the average crystal grain size of the surface of each rolled plate after the solution treatment were examined. The results are shown in Table 2 together with the main production conditions. Further, the mechanical properties, the formability, and the bake hardenability of each rolled plate were examined for 7 to 10 days at room temperature, and the results are shown in Table 3. Mechanical properties include proof stress (YS) and tensile strength (T
S) and elongation were investigated. As the moldability, Erichsen value (Er) and 180 ° minimum bending radius were examined. Regarding the bake hardenability, a 175 × 1 hour baking equivalent heat treatment was performed and the yield strength (YS) after the treatment was examined.

【0042】[0042]

【表1】 [Table 1]

【0043】[0043]

【表2】 [Table 2]

【0044】[0044]

【表3】 [Table 3]

【0045】表3から明らかなように、この発明の成分
組成範囲内の合金(合金番号1〜4)を用いて、導電率
50%IACS以下、板表面の平均結晶粒径が100μm以
下となった場合(製造符号A〜D)は、いずれも成形性
が良好で、かつ塗装焼付後の強度も高く、優れた焼付硬
化性を示している。これに対し、Fe,Cr,Mnの含
有量が多い比較合金(合金番号5)を用いた場合(製造
符号E)は、導電率、結晶粒径の条件は満たしているも
のの、成形性が劣っていた。さらにこの発明の成分組成
範囲内の合金(合金番号1)を用いているが、熱間圧延
前の予備加熱の温度が480℃より低い場合(製造符号
F)には導電率が50%IACSを越え、この場合は強度が
低いばかりでなく、焼付硬化性も劣っていた。そしてま
た同じく成分組成はこの発明の範囲内(合金番号1)で
あるが、溶体化処理の時間が長過ぎた場合(製造符号
G)には、結晶粒が粗大となって成形性が著しく劣って
いた。
As is apparent from Table 3, using the alloys (alloy numbers 1 to 4) within the compositional range of the present invention, the conductivity was 50% IACS or less, and the average crystal grain size on the plate surface was 100 μm or less. In all cases (Production Codes A to D), the moldability was good, the strength after baking was high, and the excellent bake hardenability was exhibited. On the other hand, when the comparative alloy (Alloy No. 5) containing a large amount of Fe, Cr, and Mn (manufacturing code E) was used, the conditions of conductivity and crystal grain size were satisfied, but the formability was poor. Was there. Further, although an alloy within the compositional range of the present invention (alloy No. 1) is used, when the preheating temperature before hot rolling is lower than 480 ° C. (production code F), the conductivity is 50% IACS. In this case, not only the strength was low, but also the bake hardenability was poor. Also, similarly, the composition is within the range of the present invention (alloy No. 1), but when the solution treatment time is too long (Production Code G), the crystal grains become coarse and the formability is remarkably poor. Was there.

【0046】[0046]

【発明の効果】この発明の成形加工用アルミニウム合金
圧延板は、成形性が優れると同時に、焼付硬化性に優れ
ており、したがってプレス加工等の成形を容易に行なう
ことができるとともに成形による肌荒れの発生もなく、
しかも焼付塗装工程で強度が上昇して最終的に著しく高
強度を有する焼付塗装成形品を得ることができる。した
がってこの発明の圧延板は、特に自動車のボディシート
に最適である。またこの発明の製造方法によれば、上述
のように優れた性能を有する圧延板を実際に量産的規模
で容易に得ることができる。
EFFECTS OF THE INVENTION The rolled aluminum alloy sheet for forming according to the present invention is excellent in formability and at the same time excellent in bake hardenability. Therefore, forming such as press working can be easily performed and rough skin due to forming can be obtained. Without occurrence,
Moreover, the strength is increased in the baking coating process, and finally a baked coating molded product having remarkably high strength can be obtained. Therefore, the rolled sheet of the present invention is particularly suitable for automobile body sheets. Further, according to the manufacturing method of the present invention, it is possible to easily obtain a rolled plate having excellent performance as described above on a practical scale.

【0047】なおこの発明のアルミニウム合金圧延板
は、前述のように自動車のボディシートに最適である
が、その他の成形加工および焼付塗装が施される用途、
例えばホイールやオイルタンク、エアクリーナ等の自動
車部品、あるいは各種キャップやブラインド、アルミ
缶、家庭用器物、計器カバー、電気機器のシャーシ等に
用いても優れた性能を発揮することができる。
The rolled aluminum alloy sheet of the present invention is most suitable for automobile body sheets as described above, but is used for other forming processing and baking coating.
For example, excellent performance can be exhibited even when used for automobile parts such as wheels, oil tanks, air cleaners, various caps, blinds, aluminum cans, household appliances, instrument covers, chassis of electric equipment, and the like.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 Si1.2%(重量%、以下同じ)を越
え1.5%以下、Mg0.15%以上1.5%以下、C
u0.3%以上1.5%以下を含有し、かつFe量が
0.2%未満、Mn量が0.05%未満、Cr量が0.
05%未満、Zr量が0.05%未満、V量が0.05
%未満に規制されるとともに、Mn,Cr,Zr,Vの
合計量が0.10%未満に規制され、残部がAlおよび
不可避的不純物よりなり、導電率が50%IACS以下でし
かも表面の平均結晶粒径が100μm以下であることを
特徴とする、焼付硬化性および成形性に優れた成形加工
用アルミニウム合金圧延板。
1. Si more than 1.2% (weight%, hereinafter the same) and 1.5% or less, Mg 0.15% or more and 1.5% or less, C
u of 0.3% or more and 1.5% or less, Fe content of less than 0.2%, Mn content of less than 0.05%, and Cr content of 0.
Less than 05%, Zr amount less than 0.05%, V amount of 0.05
%, And the total amount of Mn, Cr, Zr, and V is regulated to less than 0.10%, the balance consisting of Al and unavoidable impurities, conductivity of 50% IACS or less, and average surface A rolled aluminum alloy plate for forming, which is excellent in bake hardenability and formability, having a crystal grain size of 100 μm or less.
【請求項2】 Si1.2%を越え1.5%以下、Mg
0.15%以上1.5%以下、Cu0.3%以上1.5
%以下を含有し、かつFe量が0.2%未満、Mn量が
0.05%未満、Cr量が0.05%未満、Zr量が
0.05%未満、V量が0.05%未満に規制されると
ともに、Mn,Cr,Zr,Vの合計量が0.10%未
満に規制され、残部がAlおよび不可避的不純物よりな
るアルミニウム合金溶湯を半連続鋳造法によって鋳造
し、得られた鋳塊を480〜560℃の範囲内の温度に
加熱してから熱間圧延を開始し、かつその加熱炉からの
鋳塊搬出直後から熱間圧延の過程を通じて400℃以下
に至るまでの時間が30分以内となるように熱間圧延
し、これによって導電率が50%IACS以下でしかも表面
の平均結晶粒径が100μm以下である圧延板を得るこ
とを特徴とする、焼付硬化性および成形性に優れた成形
加工用アルミニウム合金圧延板の製造方法。
2. Si more than 1.2% and 1.5% or less, Mg
0.15% to 1.5%, Cu 0.3% to 1.5
% Or less, Fe content is less than 0.2%, Mn content is less than 0.05%, Cr content is less than 0.05%, Zr content is less than 0.05%, V content is 0.05%. And the total amount of Mn, Cr, Zr, and V is regulated to less than 0.10%, and the balance is made of an aluminum alloy melt composed of Al and unavoidable impurities by a semi-continuous casting method. The time from heating the ingot to a temperature in the range of 480 to 560 ° C and then starting hot rolling, and immediately after carrying out the ingot from the heating furnace to 400 ° C or less through the process of hot rolling. Hot rolling for 30 minutes or less to obtain a rolled plate having an electric conductivity of 50% IACS or less and an average crystal grain size of 100 μm or less on the surface, and bake hardenability and forming. Aluminum alloy pressure for forming with excellent properties Method of manufacturing the plate.
【請求項3】 Si1.2%を越え1.5%以下、Mg
0.15%以上1.5%以下、Cu0.3%以上1.5
%以下を含有し、かつFe量が0.2%未満、Mn量が
0.05%未満、Cr量が0.05%未満、Zr量が
0.05%未満、V量が0.05%未満に規制されると
ともに、Mn,Cr,Zr,Vの合計量が0.10%未
満に規制され、残部がAlおよび不可避的不純物よりな
るアルミニウム合金溶湯を半連続鋳造法によって鋳造
し、得られた鋳塊を480〜560℃の範囲内の温度に
加熱してから熱間圧延を開始し、かつその加熱炉からの
鋳塊搬出直後から熱間圧延の過程を通じて400℃以下
に至るまでの時間が30分以内となるように熱間圧延
し、その後冷間圧延を施した後、5℃/sec 以上の昇温
速度で480〜560℃の範囲内に加熱して60sec 以
内の溶体化処理を施し、5℃/sec 以上の冷却速度で焼
入れ、これによって導電率が50%IACS以下でしかも表
面の平均結晶粒径が100μm以下である圧延板を得る
ことを特徴とする、焼付硬化性および成形性に優れた成
形加工用アルミニウム合金圧延板の製造方法。
3. Si more than 1.2% and 1.5% or less, Mg
0.15% to 1.5%, Cu 0.3% to 1.5
% Or less, Fe content is less than 0.2%, Mn content is less than 0.05%, Cr content is less than 0.05%, Zr content is less than 0.05%, V content is 0.05%. And the total amount of Mn, Cr, Zr, and V is regulated to less than 0.10%, and the balance is made of an aluminum alloy melt containing Al and unavoidable impurities by a semi-continuous casting method. The time from heating the ingot to a temperature in the range of 480 to 560 ° C and then starting hot rolling, and immediately after carrying out the ingot from the heating furnace to 400 ° C or less through the process of hot rolling. Hot rolling for 30 minutes or less, and then cold rolling, and heating at a heating rate of 5 ° C / sec or more within a range of 480 to 560 ° C for solution treatment within 60 seconds. And quenching at a cooling rate of 5 ° C / sec or more, The average crystal grain size of 0% IACS or less addition surface is characterized by obtaining a rolled sheet is 100μm or less, the production method of the bake hardenability and excellent formability molding an aluminum alloy rolled sheet.
JP3254852A 1991-09-05 1991-09-05 Aluminum alloy rolled sheet for forming and its production Pending JPH0565587A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP3254852A JPH0565587A (en) 1991-09-05 1991-09-05 Aluminum alloy rolled sheet for forming and its production
EP92307980A EP0531118A1 (en) 1991-09-05 1992-09-03 Rolled aluminium alloy strip for forming and method for making

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3254852A JPH0565587A (en) 1991-09-05 1991-09-05 Aluminum alloy rolled sheet for forming and its production

Publications (1)

Publication Number Publication Date
JPH0565587A true JPH0565587A (en) 1993-03-19

Family

ID=17270745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3254852A Pending JPH0565587A (en) 1991-09-05 1991-09-05 Aluminum alloy rolled sheet for forming and its production

Country Status (1)

Country Link
JP (1) JPH0565587A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299279A (en) * 1993-04-14 1994-10-25 Sumitomo Light Metal Ind Ltd Aluminum alloy material for blind and its production
JP2001152302A (en) * 1999-11-29 2001-06-05 Nippon Steel Corp Aluminum alloy sheet excellent in press formability, and its manufacturing method
JP2006307241A (en) * 2005-04-26 2006-11-09 Sumitomo Light Metal Ind Ltd Al-Mg-Si ALLOY SHEET SUPERIOR IN DEEP-DRAWABILITY AND MANUFACTURING METHOD THEREFOR
JP2014234542A (en) * 2013-06-04 2014-12-15 株式会社Uacj Aluminum alloy sheet having excellent ridging resistance
JP2018529028A (en) * 2015-07-07 2018-10-04 ワイアット−メアー,ギャビン,エフ. Heat treatment method for non-ferrous alloy feed materials outside the line

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201749A (en) * 1985-03-05 1986-09-06 Sukai Alum Kk Rolled aluminum alloy sheet for forming and its manufacture
JPS61272342A (en) * 1985-05-27 1986-12-02 Kobe Steel Ltd Aluminum alloy sheet excelling in formability and baking hardening and its production
JPS62177143A (en) * 1986-01-30 1987-08-04 Kobe Steel Ltd Aluminum alloy sheet excellent in formability and baking hardening and its production
JPS6465243A (en) * 1987-09-03 1989-03-10 Honda Motor Co Ltd Al alloy plate for forming having excellent weldability, string rust resistance, formability and hardenability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61201749A (en) * 1985-03-05 1986-09-06 Sukai Alum Kk Rolled aluminum alloy sheet for forming and its manufacture
JPS61272342A (en) * 1985-05-27 1986-12-02 Kobe Steel Ltd Aluminum alloy sheet excelling in formability and baking hardening and its production
JPS62177143A (en) * 1986-01-30 1987-08-04 Kobe Steel Ltd Aluminum alloy sheet excellent in formability and baking hardening and its production
JPS6465243A (en) * 1987-09-03 1989-03-10 Honda Motor Co Ltd Al alloy plate for forming having excellent weldability, string rust resistance, formability and hardenability

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06299279A (en) * 1993-04-14 1994-10-25 Sumitomo Light Metal Ind Ltd Aluminum alloy material for blind and its production
JP2001152302A (en) * 1999-11-29 2001-06-05 Nippon Steel Corp Aluminum alloy sheet excellent in press formability, and its manufacturing method
JP2006307241A (en) * 2005-04-26 2006-11-09 Sumitomo Light Metal Ind Ltd Al-Mg-Si ALLOY SHEET SUPERIOR IN DEEP-DRAWABILITY AND MANUFACTURING METHOD THEREFOR
JP2014234542A (en) * 2013-06-04 2014-12-15 株式会社Uacj Aluminum alloy sheet having excellent ridging resistance
JP2018529028A (en) * 2015-07-07 2018-10-04 ワイアット−メアー,ギャビン,エフ. Heat treatment method for non-ferrous alloy feed materials outside the line

Similar Documents

Publication Publication Date Title
US4838958A (en) Aluminum-alloy rolled sheet and production method therefor
EP0531118A1 (en) Rolled aluminium alloy strip for forming and method for making
JPH06240424A (en) Production of aluminum alloy sheet excellent in formability and baking hardenability
JPH0931616A (en) Aluminum-magnesium-silicon alloy sheet excellent in formability and its production
JPH0874014A (en) Production of aluminum alloy sheet having high formability and good baking hardenability
JPH0565587A (en) Aluminum alloy rolled sheet for forming and its production
JPH0565586A (en) Aluminum alloy rooled sheet for forming and its production
JP2599861B2 (en) Manufacturing method of aluminum alloy material for forming process excellent in paint bake hardenability, formability and shape freezing property
JPH08176764A (en) Production of aluminum alloy sheet for forming
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JPH0447019B2 (en)
JP2004124175A (en) Method for manufacturing 6000 system alloy plate for forming excellent in formability, baking hardenability, and springback characteristic
JPH0547615B2 (en)
JPH11350058A (en) Aluminum alloy sheet excellent in formability and baking hardenability and its production
JP3066091B2 (en) Aluminum alloy rolled plate for hole enlarging and method for producing the same
JP3260227B2 (en) Al-Mg-Si based alloy sheet excellent in formability and bake hardenability by controlling crystal grains and method for producing the same
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JPH05112839A (en) Aluminum alloy sheet for forming excellent in low temperature baking hardenability and its manufacture
CN113474479A (en) Method for producing a plate or strip from an aluminium alloy and plate, strip or shaped part produced thereby
JP2745254B2 (en) Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH0941062A (en) Alum.-magnesium-silicon type alum. alloy sheet material for automotive body sheet small in secular change and excellent in baking hardenability and its production
JPH05230605A (en) Manufacture of aluminum alloy for baking and hardening formation
JP3208234B2 (en) Aluminum alloy sheet for forming process excellent in formability and method for producing the same
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19970729