JP2745254B2 - Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same - Google Patents

Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same

Info

Publication number
JP2745254B2
JP2745254B2 JP3162185A JP16218591A JP2745254B2 JP 2745254 B2 JP2745254 B2 JP 2745254B2 JP 3162185 A JP3162185 A JP 3162185A JP 16218591 A JP16218591 A JP 16218591A JP 2745254 B2 JP2745254 B2 JP 2745254B2
Authority
JP
Japan
Prior art keywords
strength
less
present
aluminum alloy
hard plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3162185A
Other languages
Japanese (ja)
Other versions
JPH04362151A (en
Inventor
伸二 照田
富次夫 田中
政文 溝内
Original Assignee
スカイアルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スカイアルミニウム株式会社 filed Critical スカイアルミニウム株式会社
Priority to JP3162185A priority Critical patent/JP2745254B2/en
Publication of JPH04362151A publication Critical patent/JPH04362151A/en
Application granted granted Critical
Publication of JP2745254B2 publication Critical patent/JP2745254B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Metal Rolling (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、アルミニウム缶の缶体
における深絞り用途の缶胴や缶の蓋材等として使用され
る成形加工用アルミニウム硬質板およびその製造方法に
関し、特に焼付塗装後の強度が高く局部張出性及び曲げ
性に優れたアルミニウム合金硬質板およびその製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a hard aluminum plate for forming used as a can body for deep drawing in a can body of an aluminum can or a lid material of a can, and a method for producing the same. The present invention relates to an aluminum alloy hard plate having high strength and excellent local overhang and bendability, and a method for producing the same.

【0002】[0002]

【従来の技術】一般にアルミニウム缶の蓋材としては、
高強度にもかかわらず、深絞り性、張出し性能や曲げ加
工性に良好な成形性を有することから、5052合金、
5082合金、5182合金等の5000番系の合金が
用いられている。特にビールその他の炭酸飲料用の缶の
蓋材においては内圧が加わる用途であることから、焼付
塗装後の耐力が300N/mm2以上の高強度が要求さ
れるため5182合金が主に用いられている。
2. Description of the Related Art Generally, as a lid material for an aluminum can,
Despite its high strength, it has good formability in deep drawability, overhang performance and bending workability.
No. 5000 alloys such as 5082 alloy and 5182 alloy are used. In particular, since the internal pressure is applied to the lid material of cans for beer and other carbonated beverages, since the strength after baking coating is required to be high strength of 300 N / mm 2 or more, 5182 alloy is mainly used. I have.

【0003】[0003]

【発明が解決しようとする課題】前記した缶蓋材の製造
過程において、コイルコートと呼ばれる240〜350
℃で5〜30秒程度の比較的高温で短時間の焼付塗装が
行われ、この際に強度低下が生じる。従って、この焼付
塗装による強度低下の少ない材料または強度低下をおぎ
なう製造方法が求められる。また缶蓋としての性能とし
て、ディンプル加工やリベット成形の様に局部的な張出
し性能が良好であることやプルタブのイージーオープン
エンドの場合の開蓋時の曲げ割れが起きないことが求め
られる。
In the above-mentioned process of manufacturing the can lid material, 240 to 350 called a coil coat is used.
A baking coating is performed at a relatively high temperature of about 5 to 30 seconds at a temperature of about 5 ° C. for a short time. Therefore, there is a demand for a material that hardly causes a decrease in strength due to the baking coating or a manufacturing method that can overcome the decrease in strength. In addition, as the performance as a can lid, it is required that local overhanging performance is good, such as dimple processing and rivet molding, and that bending cracks do not occur when opening the lid in the case of the easy open end of the pull tab.

【0004】前記した缶材用合金の主流である5182
合金では、前記焼付塗装において、強度低下が大きいた
め、冷間圧下率を多くとることにより初期強度を高める
ことで強度低下を補ってきた。しかしながら、この冷間
圧下率を多くとることで初期強度を高めることには、デ
ィンプル加工やリベット成形の様に局部的な張出し性能
が悪化し、またプルタブのイージーオープンエンドの場
合開蓋時の曲げ割れの点などで不十分な性能となってい
る。今後の缶材の低コストのためには缶材の薄肉化・高
強度が要求されるが、従来の5182合金の成分範囲・
製造方法の範囲内での対応は難しいものとなってきてい
る。本発明はこれらの問題を解決するために、塗装焼付
け後の強度が高く、成形加工性に優れたアルミニウム合
金硬質板およびその製造方法を提供することを目的とす
るものである。
5182, which is the mainstream of the above-mentioned alloys for can materials
In the case of the alloy, since the strength is greatly reduced in the baking coating, the reduction in strength has been compensated by increasing the initial strength by increasing the cold rolling reduction. However, in order to increase the initial strength by increasing the cold reduction ratio, local overhang performance deteriorates, such as dimple processing and rivet molding, and in the case of the easy open end of the pull tab, bending at the time of opening the lid Insufficient performance in terms of cracking. To reduce the cost of can materials in the future, thinner and higher strength can materials are required.
It is becoming difficult to respond within the range of the manufacturing method. In order to solve these problems, an object of the present invention is to provide an aluminum alloy hard plate having high strength after baking and excellent in formability and a method for producing the same.

【0005】[0005]

【課題を解決するための手段】発明者らは前記問題点を
解決するために合金元素並びに製造方法を鋭意研究した
結果、焼付塗装後の強度の低下を少なくするためには時
効性を高めること、および成形時の材料の流れを阻害す
る要因である転位の低減及び転位の移動を阻害する微細
な不溶性金属間化合物を低減させることにより前記目的
が達成されることを見出した。具体的には本発明は次の
通りに構成される。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on alloying elements and manufacturing methods in order to solve the above-mentioned problems. As a result, it is necessary to improve aging to reduce the decrease in strength after baking. It has been found that the above object can be achieved by reducing dislocations and fine insoluble intermetallic compounds that inhibit dislocation movement, which are factors that inhibit the flow of material during molding. Specifically, the present invention is configured as follows.

【0006】請求項1記載の発明の合金板は、Mg3.
0〜6.0wt%,Cu0.15〜0.5wt%,Fe
0.05〜0.6wt%、Si<0.3wt%を含有す
ることを必須としMn0.05〜0.6wt%Cr
<0.3wt%,Zr<0.3wt%、V<0.3wt
%、Zn<0.5wt%のうち1種または2種以上を含
有し、かつMn+Fe+Cr+Zr+V<1.0wt%
であり残部実質的にアルミニウムおよび不純物とする合
金で、長手方向の直径が0.5μm以下の不溶性の金属
間化合物が400μm2当り800個以下であることを
特徴とする局部張出性に優れたアルミニウム合金硬質板
である。また請求項2記載の発明の製造方法は、Mg
3.0〜6.0wt%,Cu0.15〜0.5wt%
Fe0.05〜0.6wt%、Si<0.3wt%を含
有することを必須としMn0.05〜0.6wt%
Cr<0.3wt%,Zr<0.3wt%、V<0.3
wt%、Zn<0.5wt%のうち1種または2種以上
を含有し、かつMn+Fe+Cr+Zr+V<1.0w
t%であり残部実質的にアルミニウムおよび不純物とす
る合金を、DC鋳造した後500〜580℃で2時間以
上の加熱を行ない、その後常法に従い圧延を施した後、
1℃/sec以上の加熱速度で400〜580℃の範囲
の温度に加熱して直ちにもしくは120sec以内の短
時間保持後、1℃/sec以上の冷却速度で冷却する中
間焼鈍を施し、さらに30%以上の圧延率で最終冷間圧
延を施すことにより、長手方向の直径が0.5μm以下
の不溶性の金属間化合物が400μm2当り800個以
下である板を得ることを特徴とする局部張出性に優れた
アルミニウム合金硬質板の製造方法である。また請求項
3記載の発明の製造方法は、請求項2記載の方法におい
て、前最終冷間圧延の後に100℃/hr以下の加熱
速度で100〜200℃の範囲の温度に加熱し30分以
上保持する最終焼鈍を施すことを特徴とする局部張出性
に優れたアルミニウム合金硬質板の製造方法である。以
下、本発明においては合金成分の%とはwt%を意味
し、また金属間化合物の大きさを示している0.5μm
とは長手方向の直径における値を意味するものである。
[0006] The alloy plate according to the first aspect of the present invention is characterized in that Mg3.
0-6.0 wt%, Cu 0.15-0.5 wt% , Fe
It is essential to contain 0.05 to 0.6 wt% and Si <0.3 wt% , Mn 0.05 to 0.6 wt% , Cr
<0.3 wt%, Zr <0.3 wt%, V <0.3 wt
%, One or more of Zn <0.5 wt%, and Mn + Fe + Cr + Zr + V <1.0 wt%
In the and balance substantially alloy whose aluminum and impurities, that the to that station BuCho Desei wherein a longitudinal diameter intermetallic compounds of the following insoluble 0.5μm is 400 [mu] m 2 per 800 or less It is an excellent aluminum alloy hard plate. Further, the manufacturing method of the invention according to claim 2 is characterized in that
3.0-6.0 wt%, Cu 0.15-0.5 wt% ,
Fe0.05~0.6wt%, Si <and mandatory by containing 0.3wt%, Mn0.05~0.6wt%,
Cr <0.3 wt%, Zr <0.3 wt%, V <0.3
wt., one or more of Zn <0.5 wt.%, and Mn + Fe + Cr + Zr + V <1.0 w
The alloy containing t and the balance substantially consisting of aluminum and impurities was subjected to DC casting, followed by heating at 500 to 580 ° C. for 2 hours or more, followed by rolling according to a conventional method.
After heating to a temperature in the range of 400 to 580 ° C. at a heating rate of 1 ° C./sec or more, immediately or after holding for a short time within 120 sec, intermediate annealing for cooling at a cooling rate of 1 ° C./sec or more is performed. by subjecting the final cold rolling in the above reduction ratio, station characterized in that the longitudinal direction of the diameter of the intermetallic compounds of the following insoluble 0.5μm to obtain a plate is 400 [mu] m 2 per 800 or less BuCho This is a method for producing an aluminum alloy hard plate excellent in output. The production method of the invention of claim 3, wherein the claim in 2 method described before Symbol final cold 100 ° C. after the rolling / hr and heated to a temperature in the range of 100 to 200 ° C. in the following heating rate 30 min a method for producing superior aluminum alloy hard plate that station BuCho Desei be characterized by applying final annealing to hold more. Hereinafter, in the present invention,% of the alloy component means wt%, and 0.5 μm indicating the size of the intermetallic compound.
Means a value in the longitudinal diameter.

【0007】[0007]

【作用】まず本発明における素材アルミニウム合金の成
分組成範囲の限定理由を説明する。本発明の成形用アル
ミニウム硬質板における合金元素は、主として素材アル
ミニウム合金の強度を高めるとともに、塗装焼付時にお
ける軟化を抑制し、合わせて微細な金属間化合物サイズ
の適切な制御を容易とするために添加されるものであ
る。Mg;MgはCuとの共存によりG.P.ゾーン、
S'Al2CuMg、SAl2CuMgといった析出過程
により中間相の析出段階では強度向上に寄与するととも
に時効硬化に寄与する。更にMg単独でも固溶体強化に
寄与する。このように強度向上には不可欠な元素である
が、Mg量が3wt%未満では内圧容器の蓋材として必
要な強度が得られない。一方Mg量が6%を越えた場合
には加工硬化し過ぎて成形性を悪くするのみならず熱間
圧延時の圧延性を著しく阻害する。そこでMg量は3〜
6%の範囲内とした。Cu;CuはMgと同様にそれ自
体で固溶強化に寄与するとともに、焼付け処理時のAl
−Cu−Mg系析出物の析出による時効硬化によって焼
付塗装後の強度向上に寄与する元素である。Cu量が
0.5wt%を越えた場合は時効硬化は容易に得られる
ものの過度に硬化して成形性を損うため、Cu量の添加
上限を0.5wt%とした。一方0.15%未満ではそ
の効果が少なく、従ってCu量は0.15〜0.5wt
%の範囲内とした。Si;Siは一般にMgとの共存に
よりMg2Si系化合物を析出して時効硬化に寄与する
効果があるものの、Mg量が高濃度の合金系においては
巨大金属間化合物を生成しやすいため成形性を著しく阻
害する。Si量が0.3%未満では比較的その影響は少
ないため、Si量は0.3wt%未満とした。Mn;M
nは強度向上に寄与するばかりでなく、高温強度を向上
させる働きもある。MnはFeと共存することによりS
iをAl(Mn,Fe)Si系不溶性化合物の形で生成
し、従って、Mg2Siの生成を少なくする効果があ
る。Mn量が0.05%未満ではその効果がない。上記
の化合物のうち長手方向の直径が0.5μm以下の微細
化合物は、後述するように時効性及び成形性を著しく阻
害するが、Mn量が0.6%を越えてはこのAl(M
n,Fe)Si系不溶性化合物の0.5μm以下の微細
化合物量が多くなる。従ってMn量は0.05〜0.6
wt%の範囲内とした。Fe;FeはMnと共にSiの
析出を促進しMg2Siの生成を少なくするのに必要な
元素である。Fe量が0.05wt%未満ではその効果
が少なく、Fe量が0.6wt%を越えてはMnと共存
することによりAl(Mn,Fe)Si系不溶性化合物
の0.5μm以下の微細化合物量を多くする。従ってF
e量は0.05〜0.6wt%の範囲内とした。またこ
のほかに、Cr、Zr、V、ZnはいずれもCr量は
0.3wt%未満、Zr量は0.3wt%未満、V量は
0.3wt%未満、Zn量は0.5wt%未満ならば本
発明の効果を失わずに強度向上に寄与する。しかしM
n,Fe,Cr,Zr、Vが共存する状態ではアルミニ
ウムマトリックス中で微細な不溶性化合物を生成するの
で、これらの元素の総量はMn+Fe+Cr+Zr+V
<1.0wt%でなければならない。
First, the reasons for limiting the range of the component composition of the raw aluminum alloy in the present invention will be described. The alloying element in the aluminum hard plate for molding of the present invention mainly increases the strength of the base aluminum alloy, suppresses softening during baking, and facilitates appropriate control of fine intermetallic compound size. It is added. Mg; Mg coexists with Cu; P. zone,
The precipitation process of S′Al 2 CuMg and SAl 2 CuMg contributes to the improvement of strength and the age hardening in the precipitation stage of the intermediate phase. Further, Mg alone contributes to solid solution strengthening. As described above, it is an indispensable element for improving the strength. However, if the amount of Mg is less than 3 wt%, the strength required for the lid material of the internal pressure container cannot be obtained. On the other hand, when the amount of Mg exceeds 6%, it hardens workability due to excessive work hardening, and significantly impairs the rollability during hot rolling. Therefore, the amount of Mg is 3 ~
It was within the range of 6%. Cu; Cu itself contributes to solid solution strengthening similarly to Mg, and Al during the baking treatment.
-An element that contributes to improvement in strength after baking coating by age hardening due to precipitation of Cu-Mg based precipitates. When the Cu content exceeds 0.5 wt%, age hardening is easily obtained, but excessive hardening impairs the formability. Therefore, the upper limit of the Cu content is set to 0.5 wt%. On the other hand, if the content is less than 0.15%, the effect is small.
%. Si: Si generally has an effect of contributing to age hardening by precipitating a Mg 2 Si-based compound by coexistence with Mg. However, in an alloy system having a high Mg content, a large intermetallic compound is easily generated, so that formability is high. Significantly inhibits If the amount of Si is less than 0.3%, the effect is relatively small, so the amount of Si is set to less than 0.3% by weight. Mn; M
n not only contributes to the strength improvement but also has the function of improving the high temperature strength. Mn coexists with Fe,
i is generated in the form of an Al (Mn, Fe) Si-based insoluble compound, and thus has the effect of reducing the generation of Mg 2 Si. If the Mn content is less than 0.05%, there is no effect. Of the above compounds, fine compounds having a diameter in the longitudinal direction of 0.5 μm or less significantly impair aging and formability as described later, but when the Mn content exceeds 0.6%, the Al (M
The amount of the fine compound of 0.5 μm or less in the n, Fe) Si-based insoluble compound increases. Therefore, the Mn content is 0.05 to 0.6.
wt%. Fe; Fe is an element required to promote the precipitation of Si together with Mn and reduce the generation of Mg 2 Si. When the Fe content is less than 0.05 wt%, the effect is small, and when the Fe content exceeds 0.6 wt%, the amount of fine compounds of 0.5 μm or less of the Al (Mn, Fe) Si-based insoluble compound coexists with Mn. More. Therefore F
The e content was in the range of 0.05 to 0.6 wt%. In addition, Cr, Zr, V, and Zn all have a Cr content of less than 0.3 wt%, a Zr content of less than 0.3 wt%, a V content of less than 0.3 wt%, and a Zn content of less than 0.5 wt%. If so, it contributes to the improvement in strength without losing the effect of the present invention. But M
When n, Fe, Cr, Zr, and V coexist, a fine insoluble compound is formed in the aluminum matrix. Therefore, the total amount of these elements is Mn + Fe + Cr + Zr + V.
<1.0 wt%.

【0008】以上の各成分の残部はAl及び不純物とす
れば良い。なお通常のアルミニウム合金においては、鋳
塊結晶粒微細化のためにTi単独あるいはTiとBを組
み合わせて微量添加することがあり、本発明においても
微量のTi、あるいはTiおよびBを含有することは許
容される。但しTiを添加する場合、その添加量は0.
01wt%未満では鋳塊結晶粒微細化の効果が得られ
ず、一方0.2wt%を越えては初晶TiAl3が晶出
して成形性を阻害することから、Ti量は0.01〜
0.2wt%の範囲内とすることが好ましい。またTi
と共にBを添加する場合、B添加量は1ppm未満では
その効果がなく、500ppmを越えるとTiB2の粗
大粒子が混入して成形性を害することから、B量は1〜
500ppmの範囲内とすることが好ましい。
The balance of each of the above components may be Al and impurities. In ordinary aluminum alloys, a small amount of Ti alone or a combination of Ti and B may be added in order to refine the ingot crystal grains. In the present invention, a small amount of Ti or Ti and B may not be contained. Permissible. However, when Ti is added, the amount of addition is 0.1.
If the content is less than 01 wt%, the effect of refining the ingot crystal grains cannot be obtained, while if it exceeds 0.2 wt%, primary TiAl 3 is crystallized to inhibit the formability.
It is preferable to be within the range of 0.2 wt%. Also Ti
When B is added together with B, if the amount of B added is less than 1 ppm, there is no effect, and if it exceeds 500 ppm, coarse particles of TiB 2 are mixed and formability is impaired.
It is preferable to be within the range of 500 ppm.

【0009】本願発明の成形用アルミニウム合金硬質板
においては、前述のように各合金成分組成を規定するだ
けでなく、最終圧延板の状態においての金属間化合物の
分散状態を適切に調整することが極めて重要である。す
なわち、請求項記載のごとく0.5μm以下の不溶性の
金属間化合物が400μm2当り800個以下であるこ
とが必要である。これを模式図で示すと図1のようにな
る。このような金属間化合物の分散状態とすることによ
り、以下のような効果がある。 a)本来、時効析出による硬化現象は図1に示すように
GPゾーンのような極微細な析出物2がアルミニウムマ
トリックス中に析出して転位の移動を妨げることにより
硬化するものである。しかるに組織中に不溶性金属間化
合物1が存在すると、上記の極微細析出物は塗装焼付の
ような時効に相当する熱処理においてこの不溶性化合物
上に優先的に析出してしまい、その分強度への寄与はな
くなりその結果硬化が不充分となる。特に0.5μm以
下の不溶性の金属間化合物はAl2CuMg等の時効析
出物の析出核となりやすい。本発明では0.5μm以下
の不溶性の金属間化合物を400μm2当り800個以
下と規定することにより、時効析出物はアルミニウムマ
トリックス中に分散して存在する量が多くなり、強度向
上や軟化の抑制の効果が増大する。 b)また、時効析出物であるAl−Cu−Mg系化合物
がアルミニウムマトリックス中に存在すると、転位の動
きをピン止して強度が上がる時効硬化性を示すととも
に、焼付塗装等の熱履歴において転位をピン止して転位
の回復による軟化を抑える作用がある。従って焼付塗装
における軟化防止のためにもマトリックス中に時効析出
物を多量に析出させる必要がある。 c)また、上記の金属間化合物が多くなると成形加工時
に材料の流動を阻害し、曲げ加工時などに曲げ割れを生
じたり局部張出性が悪くなるなどの成形性の悪化が生じ
る。従って、この点においても金属間化合物は少ないほ
うが望ましい。
In the aluminum alloy hard plate for forming according to the present invention, not only the composition of each alloy component is regulated as described above, but also the dispersion state of the intermetallic compound in the state of the final rolled sheet is appropriately adjusted. Very important. That is, as described in the claims, it is necessary that the number of insoluble intermetallic compounds of 0.5 μm or less is 800 or less per 400 μm 2 . This is schematically shown in FIG. By setting such an intermetallic compound in a dispersed state, the following effects can be obtained. a) Originally, the hardening phenomenon due to aging precipitation is such that an extremely fine precipitate 2 such as a GP zone precipitates in an aluminum matrix as shown in FIG. However, when the insoluble intermetallic compound 1 is present in the structure, the ultrafine precipitate is preferentially precipitated on the insoluble compound in a heat treatment corresponding to aging such as baking of paint, contributing to the strength. Disappears, resulting in insufficient curing. In particular, an insoluble intermetallic compound having a size of 0.5 μm or less tends to become a precipitation nucleus of an aging precipitate such as Al 2 CuMg. In the present invention, by defining the number of insoluble intermetallic compounds of 0.5 μm or less as 800 or less per 400 μm 2, the amount of the aging precipitates dispersed and present in the aluminum matrix increases, thereby improving the strength and suppressing the softening. Effect is increased. b) When the Al-Cu-Mg-based compound, which is an aging precipitate, is present in the aluminum matrix, it exhibits age hardening properties in which the movement of dislocations is pinned to increase the strength, and dislocations are observed in the heat history of baking coating and the like. Has the effect of suppressing softening due to the recovery of dislocation. Therefore, in order to prevent softening in baking coating, it is necessary to precipitate a large amount of aging precipitates in the matrix. c) In addition, when the amount of the intermetallic compound increases, the flow of the material is hindered at the time of forming, and the formability is deteriorated such as the occurrence of bending cracks at the time of bending or the deterioration of local overhanging property. Therefore, in this respect, it is desirable that the amount of the intermetallic compound is small.

【0010】次に、請求項2記載の成形用アルミニウム
硬質板を製造する方法について説明する。まず前述のよ
うな合金組成を有する合金の溶湯をDC鋳造する。つい
で500〜580℃2時間以上の均熱または加熱を行
う。本発明の合金成分組成において生成する0.5μm
以下の不溶性の金属間化合物は、主に鋳塊の加熱段階で
生じる析出物である。この0.5μm以下の微細な不溶
性の金属間化合物の析出は450〜500℃近傍がもっ
とも進行し、500℃より高温側ではこの微細な析出物
は固溶して平衡関係にある比較的粗大な金属間化合物の
形態で析出し、その結果微細な析出物は減少し粗大なも
のがさらに大きくなり球状化する。従って、0.5μm
以下の金属間化合物を少なくするために、500℃以上
でしかも2時間以上の保持を行なう。一方、580℃を
越えると部分的な溶解が始り操業上好ましくない。この
ことから均熱または加熱の条件として500〜580℃
2時間以上の保持時間とする。均熱または加熱の後、常
法に従い熱間圧延及び冷間圧延を施して所要の中間板厚
とする。この時、所要の板厚によっては冷間圧延が入ら
ず熱間圧延のみによっても良い。その後、加熱速度およ
び冷却速度が1℃/sec以上で到達温度400〜58
0℃、保持時間0〜2minの中間焼鈍を施すことによ
りCu等の時効硬化に寄与する合金成分を固溶状態と
し、引続き冷間圧延で転位を導入することにより、最終
焼鈍もしくは焼付塗装処理時に時効析出物であるAl2
CuMg等が析出して軟化を抑えることができる。この
中間焼鈍においては、到達温度は400℃未満では上述
の効果が得られず一方580℃より高温では部分的な溶
解が生じCAL(連続焼鈍炉)のような通常の設備で焼
鈍することが難しくなる。また、高温での焼鈍であるこ
とから表面酸化を少なくすること等を考慮して加熱速度
および冷却速度は1℃/sec以上とし、保持時間は2
分以内であればその障害は少ない。また一旦固溶した元
素の再析出を防ぐ意味でも冷却速度は速い方がよい。特
にMn系の析出物は中間焼鈍のように転位が存在する状
態においては300℃程度の温度でも十分析出を開始す
る。従って本発明に規定するごとく0.5μm以下の金
属間化合物を少なくするために、中間焼鈍は上述のごと
く急速加熱、急速冷却の高温短時間保持とする必要があ
る。中間焼鈍後、圧延率30%以上の最終冷間圧延を施
す。冷間圧延率は30%以上でないと所望の強度が得ら
れない。なお、冷間圧延後のコイル巻取温度は110℃
以下とすることが好ましい。コイル巻取後の温度が11
0℃以上の温度になると、冷間圧延時の内部および冷延
ロールとの摩擦により一時的に温度が上昇し、時効析出
する前に転位の回復が起こるため充分な最終強度が得に
くくなる。従って比較的回復速度の遅い110℃より低
い温度で冷間圧延が仕上がれば強度低下は少ない。
Next, a method for producing the aluminum hard plate for forming according to claim 2 will be described. First, a melt of an alloy having the above-described alloy composition is DC-cast. Then, soaking or heating at 500 to 580 ° C for 2 hours or more is performed. 0.5 μm produced in the alloy composition of the present invention
The following insoluble intermetallic compounds are mainly precipitates generated during the heating stage of the ingot. The precipitation of the fine insoluble intermetallic compound of 0.5 μm or less progresses most in the vicinity of 450 to 500 ° C., and at a temperature higher than 500 ° C., the fine precipitate forms a solid solution and is relatively coarse in equilibrium. Precipitates in the form of an intermetallic compound, and as a result, fine precipitates are reduced, and coarse ones are further enlarged and spheroidized. Therefore, 0.5 μm
In order to reduce the following intermetallic compounds, the temperature is kept at 500 ° C. or more and for 2 hours or more. On the other hand, when the temperature exceeds 580 ° C., partial melting starts, which is not preferable in operation. From this, the condition of soaking or heating is 500-580 ° C.
The holding time is 2 hours or more. After soaking or heating, hot rolling and cold rolling are performed according to a conventional method to obtain a required intermediate plate thickness. At this time, depending on the required sheet thickness, cold rolling may not be performed, and only hot rolling may be performed. Thereafter, when the heating rate and the cooling rate are 1 ° C./sec or more, the ultimate temperature is 400 to 58.
By performing intermediate annealing at 0 ° C. and a holding time of 0 to 2 min to make an alloy component contributing to age hardening such as Cu into a solid solution state, and subsequently introducing dislocations by cold rolling, during final annealing or baking coating processing Al 2 which is an aging precipitate
CuMg or the like precipitates and softening can be suppressed. In this intermediate annealing, if the ultimate temperature is lower than 400 ° C., the above-mentioned effects cannot be obtained. On the other hand, if the temperature is higher than 580 ° C., partial melting occurs and it is difficult to perform annealing with ordinary equipment such as CAL (continuous annealing furnace). Become. Further, since the annealing is performed at a high temperature, the heating rate and the cooling rate are set to 1 ° C./sec or more and the holding time is 2
Within a minute, there are few obstacles. Further, the cooling rate is preferably higher in order to prevent re-precipitation of the element once dissolved. In particular, Mn-based precipitates sufficiently start to precipitate even at a temperature of about 300 ° C. in a state where dislocations exist as in the case of intermediate annealing. Therefore, as described in the present invention, in order to reduce the amount of intermetallic compounds having a size of 0.5 μm or less, it is necessary to carry out rapid heating and rapid cooling at a high temperature for a short time as described above. After the intermediate annealing, final cold rolling at a rolling reduction of 30% or more is performed. Unless the cold rolling reduction is 30% or more, the desired strength cannot be obtained. The coil winding temperature after cold rolling was 110 ° C.
It is preferable to set the following. Temperature after coil winding is 11
At a temperature of 0 ° C. or higher, the temperature temporarily rises due to friction between the inside and the cold roll during cold rolling, and dislocation recovery occurs before aging precipitation, so that it is difficult to obtain sufficient final strength. Therefore, if the cold rolling is completed at a temperature lower than 110 ° C. where the recovery speed is relatively slow, the strength decreases little.

【0011】また最終焼鈍は施さなくても充分に効果が
あるが、さらに高強度の材料を得るためには、請求項3
記載のごとく加熱速度100℃/hr以下で到達温度1
00〜200℃,保持時間30min以上の最終焼鈍を
施すことが望ましい。この最終焼鈍を施すことにより高
強度化することができるとともに、高強度化をそれほど
必要としない場合においてはその分の冷間加工率を下げ
ることができ成形性向上を期待することができる。缶蓋
の焼付塗装は比較的高温短時間の処理であるので、焼付
塗装処理前の状態であらかじめAl−Cu−Mg系G.
P.ゾーン、S’相の析出物を存在させることにより、
焼付塗装処理時の加熱における転位の回復をピン止して
軟化を抑える効果がある。このためにも予備時効として
最終焼鈍を施すことが望ましい。焼鈍条件として短時間
で高温に到達すると析出よりも回復が優先してしまうた
め強度向上が得られない。従って昇温時の比較的回復速
度の遅い時点から時効析出させるために加熱速度は10
0℃/hr以下であればよい。また時効析出を十分に行
なうためには、到達温度は100−200℃でかつ保持
時間は30min以上必要である。具体的には最終焼鈍
を行うことにより、塗装焼付処理後の耐力で最大20N
/mm2程度高めることが出来る。
Although a sufficient effect can be obtained even if the final annealing is not carried out, in order to obtain a material having a higher strength, it is desirable to use a third embodiment.
As described, the ultimate temperature is 1 at a heating rate of 100 ° C / hr or less.
It is desirable to perform final annealing at 00 to 200 ° C. for a holding time of 30 minutes or more. By performing this final annealing, the strength can be increased, and when the strength is not so much required, the cold working rate can be reduced correspondingly, and improvement in formability can be expected. Since the baking coating of the can lid is a relatively high-temperature and short-time treatment, the Al-Cu-Mg based G.I.
P. Zone, the presence of S ′ phase precipitates,
This has the effect of pinning the recovery of dislocations during heating during the baking coating process to suppress softening. For this reason, it is desirable to perform final annealing as preliminary aging. When the temperature reaches a high temperature in a short time as the annealing condition, the recovery is prioritized over the precipitation, so that the strength cannot be improved. Therefore, the heating rate is set to 10 in order to precipitate by aging from the point of relatively slow recovery rate at the time of temperature rise.
The temperature may be 0 ° C./hr or less. In order to sufficiently perform aging precipitation, the ultimate temperature must be 100-200 ° C. and the holding time must be 30 minutes or more. Specifically, by performing the final annealing, the proof stress after the paint baking treatment is up to 20N.
/ Mm 2 .

【0012】この様にして得られたアルミニウム硬質板
においては、TEMにより3000倍の視野で、どの視
野を見ても0.5μm以下の不溶性の金属間化合物が4
00μm2当り800個以下となる組織が得られる。上
述した製造方法等による本発明の合金成分組成割合およ
び金属間化合物の分散状態を有した成形用アルミニウム
硬質板は、イージーオープン缶用の蓋等に使用される材
料として必要な塗装焼付け後の強度が従来材の5182
合金と同等ないしそれ以上であり、かつ成形性特に曲げ
性および局部張出し性が従来材より格段に優れたもので
ある。従って従来よりも缶蓋の薄肉化、軽量化を計り得
る成形用素材となる。
In the aluminum hard plate thus obtained, the insoluble intermetallic compound having a size of 0.5 μm or less was observed in a 3,000-fold visual field by a TEM.
A texture of 800 or less per 00 μm 2 is obtained. The aluminum hard plate for forming having the composition ratio of the alloy component and the dispersed state of the intermetallic compound according to the present invention by the above-described manufacturing method and the like has a necessary strength after painting and baking necessary as a material used for a lid or the like for an easy-open can. Is 5182 of the conventional material
It is equal to or more than an alloy, and has much better formability, especially bending property and local overhang property than conventional materials. Therefore, it becomes a molding material that can reduce the thickness and weight of the can lid as compared with the related art.

【0013】[0013]

【実施例】以下、本発明の実施例について説明する。表
1は合金成分組成割合を示したもので、製造符号A〜E
の合金は本願発明で規定している成分組成範囲内のも
の、製造符号Fの合金はMnの組成範囲およびMn+F
e+Cr+Zr+Vの合計量が本発明の規定からはずれ
ているもの、また製造符号Gの合金は5182合金に相
当するものである。
Embodiments of the present invention will be described below. Table 1 shows the composition ratio of the alloy components.
Is within the component composition range defined in the present invention, and the alloy of production code F is the Mn composition range and Mn + F
The total amount of e + Cr + Zr + V deviates from the definition of the present invention, and the alloy of manufacturing code G corresponds to the 5182 alloy.

【0014】[0014]

【表1】 [Table 1]

【0015】表2は製造条件および本発明で規定する
0.5μm以下の不溶性化合物の個数を示したものであ
る。表1に示した各合金について表2に示す製造プロセ
スを適用して、最終板厚0.3mmの圧延板を得た。製
造においては従来例である製造符号Gの耐力値300N
/mm2にあわせて冷間圧延率を調整してある。製造符
号A、B、C、F、Gについては本発明の製造方法の範
囲内で条件を変化させたものであり、製造符号Dは中間
焼鈍時の昇温速度を本発明の製造条件より遅くしたも
の、製造符号Eは本発明に比較して均熱温度が低いもの
であり他の条件は製造符号Cと同一製造工程で製造し
た。またGは従来例である。すなわち、 Aは、本発明で請求項2の製造条件に従うもの Bは、本発明で最終焼鈍を施したもので請求項3の条件
に従うもの Cは、本発明でBと同様最終焼鈍し、最終冷間圧延率を
50%としたもの Dは、比較例で中間焼鈍時の昇温速度を遅くしたもの Eは、比較例で均熱温度が低いもの Fは、比較例で合金組成が異なるもの Gは、従来例で5182合金を本発明記載の製造条件で
製造したものである。
Table 2 shows the production conditions and the number of insoluble compounds having a size of 0.5 μm or less as specified in the present invention. The production process shown in Table 2 was applied to each alloy shown in Table 1 to obtain a rolled plate having a final plate thickness of 0.3 mm. In manufacturing, the proof stress value of the production code G of 300 N which is a conventional example
/ Mm 2 , the cold rolling reduction is adjusted. The production codes A, B, C, F, and G are obtained by changing the conditions within the range of the production method of the present invention, and the production code D has a lower heating rate during the intermediate annealing than the production conditions of the present invention. The production code E had a lower soaking temperature than that of the present invention, and was manufactured in the same manufacturing process as the production code C under other conditions. G is a conventional example. That is, A is the present invention that conforms to the manufacturing conditions of claim 2, B is the one that has been subjected to final annealing according to the present invention, and that complies with the conditions of claim 3, and C is the same as B according to the present invention. D: Cold rolling reduction of 50% D: Comparative example in which heating rate during intermediate annealing was slow E: Comparative example with low soaking temperature F: Comparative example with different alloy composition G is a conventional example in which a 5182 alloy was manufactured under the manufacturing conditions described in the present invention.

【0016】[0016]

【表2】 [Table 2]

【0017】このようにして得られた材料についてその
性能を調べた結果を表3に示した。性能としては275
℃x20secの熱履歴に相当する塗装焼付処理を各材
料に施して、機械的性質、曲げ性、局部張出性の評価お
よびエリクセン試験を行なった。曲げ性の試験は、曲げ
ラインが圧延方向となる方向で曲げ半径を板厚の1/2
(実施例においては0.15mm)とした180゜曲げ
を行ない、その曲げ面の割れの評価でランクづけした。 ランク評価は 1:割れ無し 2:クビレ程度の割れ有り 3:割れが認められる 4:割れが全域に認められる 局部張り出し試験は、直径φ=2mm、先端曲率半径R
=1mmのポンチ4を用い、ダイス5上に試験材料6を
載置して局部張り出しプレス成形を行なうことらより評
価した。試験値の評価方法は、ポンチ4の長さを1.0
mmから1.9mmまで0.1mm置きに10段階に変
化させ、割れが発生した段階のポンチ長さより1段階短
いもののポンチ長さを割れの発生しない限界として表示
した。例えばポンチ長さ=1.5mmの段階で割れが発
生した場合は局部張り出し試験値は1.4mmと表示し
た。従ってこの試験値の値が大きいほど局部張り出し成
形性は良好と評価することができる。
Table 3 shows the results of examining the performance of the material thus obtained. Performance is 275
Each material was subjected to a paint baking treatment corresponding to a heat history of 20 ° C. × 20 sec, and mechanical properties, bending properties, local overhang property evaluation, and Erichsen test were performed. In the bending test, the bending radius was set to 1 / of the plate thickness in the direction in which the bending line was in the rolling direction.
(In the example, 0.15 mm), a 180 ° bending was performed, and the evaluation was made based on the evaluation of cracks on the bending surface. Rank evaluation: 1: No crack 2: Crack of crack level 3: Crack is found 4: Crack is found in the whole area In the local overhang test, the diameter φ = 2 mm and the radius of curvature of the tip R
Using a punch 4 of = 1 mm, the test material 6 was placed on a die 5 and local extrusion press molding was performed. The test value was evaluated by setting the length of the punch 4 to 1.0
The distance was changed from 10 mm to 1.9 mm in 10 steps at intervals of 0.1 mm, and the punch length, which was one step shorter than the punch length at the stage where cracks occurred, was indicated as the limit at which cracks did not occur. For example, when cracks occurred at the stage of punch length = 1.5 mm, the local overhang test value was indicated as 1.4 mm. Therefore, it can be evaluated that the larger the value of the test value, the better the local overhang formability.

【0018】[0018]

【表3】 [Table 3]

【0019】表3からわかるように、本発明に係る合金
組成割合のものを本発明に規定する金属間化合物の分散
状態にした場合、強度も充分にありまた曲げ性等の成形
性も格段と良好なものが得られている。そして、本発明
の請求項2ないし請求項3の製造方法によることで、上
記の金属間化合物の分散状態を得ることができる。一
方、本発明の合金組成割合であっても製造条件が従来法
である場合は金属間化合物の分散状態が本発明と異な
り、軟化が大きく高強度も得られず従来技術と同程度の
ものでしかない。また本発明の製造条件であっても、合
金組成割合が本発明と異なる場合において同様に充分な
強度、成形性がなく従来技術と同程度でしかない。以
下、各々について説明する。Cは本願発明のうちで最良
の合金組成、冷間圧延条件および最終焼鈍方法としたも
ので、引張強さ、耐力等の強度も充分にあり、また曲げ
性ランク、エリクセン、局部張出し等の成形性において
も格段と良好なものが得られている。Aは、発明例であ
るがCに対して最終焼鈍を行なわないもので、Cの発明
例と同一強度にするためには冷間圧下率を高めざるを得
ず、性能的には若干劣っているものの従来例Gと比較し
て優れた結果となっている。Bは、発明例であるがCに
対して冷延上がり温度が高いもので、Cの発明例と同一
強度にするために冷間圧下率を高めざるを得ず、Aと同
様に性能的には若干劣っているものの従来例Gに比較し
て優れた結果となっている。Dは本発明と比較するため
中間焼鈍時の加熱速度を遅くしたもので、耐力値を合せ
るために冷間圧下率を高めてあり、金属間化合物の数は
本発明の範囲内をはずれ従来例Gより劣る性能となっ
た。Eは発明例Cに比較して、均熱条件を変えたもので
ある。この場合0.5μm以下の不溶性化合物の個数は
表2に示すように1500個/400μm2と多くなり、その
結果詳述した作用効果により耐力値で5N/mm2低く
なり、さらに曲げ性等の性能は従来例と同程度となっ
た。Fは発明例に比較して、製造方法は本発明の範囲内
であるが成分のうちMn含有量が多いものである。この
場合0.5μm以下の不溶性化合物の個数は表2に示す
ように2000個/400μm2と多くなっており、強度的に
は冷間圧延率が低くても充分な強度が得ることができる
が、曲げ性等の成形性は従来例よりも劣る結果となって
いる。Gは従来用いられている5182合金を本発明記
載の製造条件で製造したものであるが、発明例に対して
強度で10N/mm2低くまた曲げ性等の成形性も大幅
に低い。以上のように、本発明に係る合金組成および
0.5μm以下の不溶性の金属間化合物が400μm2
当り800個以下という分散状態であるアルミニウム硬
質板においては、強度ならびに成形性の面で従来より格
段と優れてものを得ることができる。また本発明材にお
いて、曲げ性等の成形性を従来材と同等で構わないなら
ば、さらに冷間圧延率を増加させることで高強度な材料
を得ることが可能である。すなわち、缶材の薄肉化に対
応した高強度材料を得ることができる。
As can be seen from Table 3, when the alloy composition ratio according to the present invention is made into a dispersed state of the intermetallic compound specified in the present invention, the strength is sufficient and the formability such as bendability is remarkably improved. Good ones have been obtained. And, according to the production method of claim 2 or claim 3 of the present invention, the above-mentioned dispersed state of the intermetallic compound can be obtained. On the other hand, even if the alloy composition ratio of the present invention is the conventional manufacturing method, the dispersion state of the intermetallic compound is different from that of the present invention. There is only. Even under the production conditions of the present invention, when the composition ratio of the alloy is different from that of the present invention, there is no sufficient strength and formability, which is equivalent to that of the conventional technology. Hereinafter, each will be described. C is the best alloy composition, cold rolling condition and final annealing method in the present invention, and has sufficient strength such as tensile strength and proof stress, and also has a bendability rank, Erichsen, local overhang, etc. A remarkably good quality was also obtained. A is an example of the invention, but does not perform final annealing on C. In order to obtain the same strength as the invention example of C, the cold rolling reduction must be increased, and the performance is slightly inferior. However, the results are excellent as compared with the conventional example G. B is an example of the invention, but the cold-rolling temperature is higher than that of C. In order to obtain the same strength as that of the invention of C, the cold rolling reduction has to be increased. Although slightly inferior, the results were excellent as compared with Conventional Example G. In D, the heating rate during intermediate annealing was reduced for comparison with the present invention, and the cold rolling reduction was increased in order to match the proof stress, and the number of intermetallic compounds was out of the range of the present invention. The performance was inferior to G. E is the one obtained by changing the soaking conditions as compared with Invention Example C. In this case the number of the following insoluble compounds 0.5μm becomes large as 1500/400 [mu] m 2 as shown in Table 2, the results in proof stress by detail the operational effect 5N / mm 2 lower, further bending or the like of The performance was about the same as the conventional example. F has a higher Mn content among the components although the production method is within the scope of the present invention as compared with the invention examples. The number of this case 0.5μm or less insoluble compounds has become large as 2000/400 [mu] m 2 as shown in Table 2, although the strength can be obtained sufficient strength even at low rolling reduction As a result, the moldability such as bending property was inferior to the conventional example. G is a conventionally used 5182 alloy manufactured under the manufacturing conditions described in the present invention. However, the strength is 10 N / mm 2 lower than that of the inventive example, and the formability such as bendability is significantly lower. As described above, intermetallic compounds of the alloy composition and 0.5μm or less insoluble according to the present invention is 400 [mu] m 2
In the case of a hard aluminum plate in a dispersed state of not more than 800 pieces per one, it is possible to obtain a material having much better strength and formability than before. Further, in the material of the present invention, if the formability such as the bending property is not required to be equal to that of the conventional material, it is possible to obtain a high-strength material by further increasing the cold rolling reduction. That is, a high-strength material corresponding to a reduction in the thickness of the can material can be obtained.

【0020】[0020]

【効果】以上、詳述したごとく本発明の素材アルミニウ
ム合金の成分組成範囲で、かつ最終圧延板の状態におい
ての金属間化合物の分散状態を適切に調整することによ
り、塗装焼付け後の強度が従来材である5182合金と
同等ないしそれ以上であり、かつ成形性特に曲げ性およ
び局部張出し性が従来材より格段に優れた缶蓋材等に好
適なアルミニウム合金硬質板が得られる。従ってイージ
ーオープン缶用の蓋等に使用される材料として従来より
も缶蓋の薄肉化、軽量化を計り得る成形用素材となる。
また、本発明の請求項2記載の製造方法により、上記の
金属間化合物の分散状態を容易にかつ品質的に安定して
得ることができる。また、請求項3記載のごとく最終焼
鈍を施すことによりさらに高強度化することができると
ともに、高強度化をそれほど必要としない場合において
はその分の冷間加工率を下げることができ、その結果成
形性を向上することができる。具体的には最終焼鈍を行
うことにより、塗装焼付処理後の耐力で最大20N/m
2程度高めることが出来る。従って最終焼鈍を施すこ
とが好ましい。
As described in detail above, by appropriately adjusting the dispersing state of the intermetallic compound in the state of the final rolled sheet in the range of the component composition of the aluminum alloy according to the present invention, the strength after baking of the coating can be reduced. An aluminum alloy hard plate which is equal to or higher than the 5182 alloy, which is a material, and which is excellent in moldability, particularly bendability and local overhangability, and which is particularly excellent for can lid materials and the like, is obtained. Therefore, as a material used for a lid or the like for an easy-open can, it becomes a molding material that can reduce the thickness and weight of the can lid as compared with the related art.
According to the production method of the second aspect of the present invention, the dispersed state of the intermetallic compound can be easily and stably obtained in quality. In addition, when the final annealing is performed as described in claim 3, the strength can be further increased, and when the strength is not so much required, the cold working rate can be reduced by that amount. Formability can be improved. Specifically, by performing the final annealing, the proof stress after the paint baking treatment is up to 20 N / m.
m 2 can be increased. Therefore, it is preferable to perform final annealing.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例における化合物の分散状態を示
す図である。
FIG. 1 is a diagram showing a dispersion state of a compound in an example of the present invention.

【図2】本発明の実施例における局部張り出し試験方法
を示す断面である。
FIG. 2 is a cross-sectional view showing a local overhang test method in an example of the present invention.

【符号の説明】[Explanation of symbols]

1 0.5μm以下の不溶性化合物 2 不溶性化合物上に時効析出したAl−Cu−Mg系
析出物 3 マトリックス中に時効析出したAl−Cu−Mg系
析出物 4 ポンチ 5 ダイス 6 試験材料
Reference Signs List 1 Insoluble compound of 0.5 μm or less 2 Al-Cu-Mg-based precipitate that has been aged and deposited on insoluble compound 3 Al-Cu-Mg-based precipitate that has been aged and deposited in a matrix 4 Punch 5 Die 6 Test material

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 686 C22F 1/00 686B 691 691A 691B 691C 692 692A 694 694A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 686 C22F 1/00 686B 691 691A 691B 691C 692 692A 694 694A

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Mg3.0〜6.0wt%,Cu0.1
5〜0.5wt%,Fe0.05〜0.6wt%、Si
<0.3wt%を含有することを必須とし、Mn0.0
5〜0.6wt%Cr<0.3wt%,Zr<0.3
wt%、V<0.3wt%、Zn<0.5wt%のうち
1種または2種以上を含有し、かつMn+Fe+Cr+
Zr+V<1.0wt%であり残部実質的にアルミニウ
ムおよび不純物とする合金で、長手方向の直径が0.5
μm以下の不溶性の金属間化合物が400μm2当り8
00個以下であることを特徴とする局部張出性に優れた
アルミニウム合金硬質板。
1. Mg 3.0 to 6.0 wt%, Cu 0.1
5 to 0.5 wt% , Fe 0.05 to 0.6 wt%, Si
<0.3 wt% , Mn 0.0
5 to 0.6 wt% , Cr <0.3 wt%, Zr <0.3
wt.%, V <0.3 wt.%, Zn <0.5 wt.%, and Mn + Fe + Cr +
Zr + V <1.0 wt%, with the balance being substantially aluminum and impurities, having a longitudinal diameter of 0.5
8 μm / 400 μm 2
Aluminum alloy hard plate having excellent to that station BuCho Desei wherein the 00 pieces or less.
【請求項2】 Mg3.0〜6.0wt%,Cu0.1
5〜0.5wt%,Fe0.05〜0.6wt%、Si
<0.3wt%を含有することを必須としMn0.0
5〜0.6wt%Cr<0.3wt%,Zr<0.3
wt%、V<0.3wt%、Zn<0.5wt%のうち
1種または2種以上を含有し、かつMn+Fe+Cr+
Zr+V<1.0wt%であり残部実質的にアルミニウ
ムおよび不純物とする合金を、DC鋳造した後500〜
580℃で2時間以上の加熱を行ない、その後常法に従
い圧延を施した後、1℃/sec以上の加熱速度で40
0〜580℃の範囲の温度に加熱して直ちにもしくは1
20sec以内の短時間保持後、1℃/sec以上の冷
却速度で冷却する中間焼鈍を施し、さらに30%以上の
圧延率で最終冷間圧延を施すことにより、長手方向の直
径が0.5μm以下の不溶性の金属間化合物が400μ
2当り800個以下である板を得ることを特徴とす
部張出性に優れたアルミニウム合金硬質板の製造方
法。
2. Mg 3.0 to 6.0 wt%, Cu 0.1
5 to 0.5 wt% , Fe 0.05 to 0.6 wt%, Si
<0.3 wt% , Mn 0.0
5 to 0.6 wt% , Cr <0.3 wt%, Zr <0.3
wt.%, V <0.3 wt.%, Zn <0.5 wt.%, and Mn + Fe + Cr +
Zr + V <1.0 wt%, the balance being substantially aluminum and impurities, 500 to 500% after DC casting.
After heating at 580 ° C. for 2 hours or more, and then rolling according to a conventional method, heating at 40 ° C. at a heating rate of 1 ° C./sec or more.
Immediately after heating to a temperature in the range of 0 to 580 ° C or 1
After holding for a short time within 20 sec, intermediate annealing for cooling at a cooling rate of 1 ° C./sec or more is performed, and final cold rolling is performed at a rolling rate of 30% or more, so that the diameter in the longitudinal direction is 0.5 μm or less. 400μ of insoluble intermetallic compound
It and obtaining a m 2 per 800 less is plate
Excellent production method of an aluminum alloy hard plate to station BuCho Desei.
【請求項3】 請求項2記載の方法において、前最終
冷間圧延の後に100℃/hr以下の加熱速度で100
〜200℃の範囲の温度に加熱し30分以上保持する最
終焼鈍を施すことを特徴とする局部張出性に優れたアル
ミニウム合金硬質板の製造方法。
3. A method according to claim 2, wherein, before Symbol final cold 100 ° C. / hr or less in the heating rate after the rolling 100
Method for producing an aluminum alloy hard plate having excellent to that station BuCho Desei characterized by applying final annealing to hold to 200 DEG ° C. range temperature in a heated 30 minutes or more of.
JP3162185A 1991-06-06 1991-06-06 Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same Expired - Fee Related JP2745254B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3162185A JP2745254B2 (en) 1991-06-06 1991-06-06 Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3162185A JP2745254B2 (en) 1991-06-06 1991-06-06 Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH04362151A JPH04362151A (en) 1992-12-15
JP2745254B2 true JP2745254B2 (en) 1998-04-28

Family

ID=15749627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3162185A Expired - Fee Related JP2745254B2 (en) 1991-06-06 1991-06-06 Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2745254B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2925891B2 (en) * 1993-04-14 1999-07-28 住友軽金属工業株式会社 Aluminum alloy material for shutter of recording medium cassette, method of manufacturing the same, and aluminum alloy shutter using the same
AU7080598A (en) * 1997-04-25 1998-11-24 Toyo Kohan Co. Ltd. Resin-coated aluminum alloy sheet for drawn and ironed cans
JP4667722B2 (en) * 2003-03-28 2011-04-13 住友軽金属工業株式会社 Aluminum alloy can body design method
JP5961839B2 (en) * 2009-03-31 2016-08-02 株式会社神戸製鋼所 Aluminum alloy plate for can body and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02170940A (en) * 1988-12-22 1990-07-02 Kobe Steel Ltd High strength aluminum alloy thin sheet for baking finish and its production
JPH06104882A (en) * 1992-09-22 1994-04-15 Matsushita Electric Ind Co Ltd Network synchronizing clock supply device

Also Published As

Publication number Publication date
JPH04362151A (en) 1992-12-15

Similar Documents

Publication Publication Date Title
JP4939093B2 (en) Method for producing 6000 series aluminum alloy plate for automobile panel having excellent hem bendability and bake hardness
JP4634249B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2007277694A (en) Painted aluminum-alloy sheet for lid of positive pressure can, and manufacturing method therefor
JP2000212673A (en) Aluminum alloy sheet for aircraft stringer excellent in stress corrosion cracking resistance and its production
JP2745254B2 (en) Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same
JP3210419B2 (en) Aluminum alloy sheet for DI can excellent in flange formability and method for producing the same
JP2626958B2 (en) Method for producing aluminum alloy sheet excellent in formability and bake hardenability
JP2862198B2 (en) Aluminum alloy plate for DI can body
CN113474479B (en) Method for producing sheet or strip from aluminium alloy and sheet, strip or shaped part produced therefrom
JP2002105574A (en) Aluminum alloy hard sheet for can peever and its production method
JP3201783B2 (en) Method of manufacturing aluminum alloy hard plate excellent in strength and formability
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP4933725B2 (en) Manufacturing method of aluminum alloy plate for bottle can with excellent formability
JPH10330897A (en) Production of aluminum base alloy sheet for deep drawing
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
JPH055149A (en) Hard aluminum alloy sheet for forming and its production
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JPH11256291A (en) Manufacture of aluminum alloy sheet for can body
JPH0565587A (en) Aluminum alloy rolled sheet for forming and its production
JPH0565586A (en) Aluminum alloy rooled sheet for forming and its production
JPH07310136A (en) Aluminum alloy sheet for forming and its production
JPH07150282A (en) Al-mg-si alloy sheet excellent in formability and baking hardenability by crystalline grain control and its production
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
JP3359428B2 (en) Manufacturing method of aluminum alloy sheet for forming
JPH07228957A (en) Production of aluminum alloy sheet having excellent formability and quench-hardenability

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080213

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090213

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100213

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees