JPH07310136A - Aluminum alloy sheet for forming and its production - Google Patents

Aluminum alloy sheet for forming and its production

Info

Publication number
JPH07310136A
JPH07310136A JP9880794A JP9880794A JPH07310136A JP H07310136 A JPH07310136 A JP H07310136A JP 9880794 A JP9880794 A JP 9880794A JP 9880794 A JP9880794 A JP 9880794A JP H07310136 A JPH07310136 A JP H07310136A
Authority
JP
Japan
Prior art keywords
less
aluminum alloy
grain size
subjected
cold rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9880794A
Other languages
Japanese (ja)
Inventor
Yoichiro Totsugi
洋一郎 戸次
Minoru Hayashi
稔 林
Satoru Shoji
了 東海林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
JFE Steel Corp
Furukawa Electric Co Ltd
Original Assignee
Honda Motor Co Ltd
Furukawa Electric Co Ltd
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Furukawa Electric Co Ltd, Kawasaki Steel Corp filed Critical Honda Motor Co Ltd
Priority to JP9880794A priority Critical patent/JPH07310136A/en
Publication of JPH07310136A publication Critical patent/JPH07310136A/en
Pending legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

PURPOSE:To improve the strength and formability of an aluminum alloy sheet material used as the forming material of an automotive body sheet, a pressure resistant vessel or the like. CONSTITUTION:An aluminum alloy for forming having a compsn. contg., as essential components, by weight, 4.0 to 10.0% Mg, total 0.01 to 0.5% of one or more kinds among Cr, Zr and Mn, in which the contents of Fe and Si as inevitable impurities are respectively regulated to <=0.2%, the content of other impurity elements is all regulated to <=0.05%, and the balance Al, and furthermore contg. 0.1 to 0.5% Cu and having 10 to 25mum average grain size is subjected to casting and hot rolling, is thereafter subjected to 30 to 80% cold rolling and is subjected to process annealing by holding at 300 to 500 deg.C for >=30min. Next, it is subjected to >=20% cold rolling to form into a prescribed sheet thickness and is subjected to annealing treatment by heating to 450 to 550 deg.C, immediately, or within 60sec, holding and cooling to <=100 deg.C at >=10 deg.C/min rate, by which the average grain size is regulated to 10 to 25mum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は自動車ボディシート、耐
圧容器、包装容器等の成形用材に最適な、優れた強度、
延性を持ち、かつ成形後の外観も優れたアルミニウム合
金板およびその製造方法に関するものである。
FIELD OF THE INVENTION The present invention is suitable for molding materials such as automobile body sheets, pressure resistant containers, and packaging containers, and has excellent strength.
The present invention relates to an aluminum alloy sheet having ductility and an excellent appearance after forming, and a method for producing the same.

【0002】[0002]

【従来の技術】従来、自動車外板には冷延鋼板が主に用
いられていた。しかしながら、最近になり自動車車体の
軽量化要求からアルミニウム合金板を使用することが検
討されている。自動車外板用材料としては、プレス成形
性に優れていること、強度が高いことなどが求められて
いる。このような要求を満足する材料として5052合
金、5182合金などのAl−Mg合金が多く用いられ
ていた。前記した5000系合金は、スチールと比べる
と、延性が低く、成形時に割れ易い欠点があった。延性
を改造するために、様々な添加元素の検討や不純物の低
減等を行ってきたが、充分な延性向上効果が得られてい
なかった。
2. Description of the Related Art Conventionally, cold-rolled steel sheets have been mainly used for automobile outer panels. However, recently, the use of an aluminum alloy plate has been studied due to the demand for weight reduction of automobile bodies. Materials for automobile outer panels are required to have excellent press formability and high strength. Al-Mg alloys such as 5052 alloy and 5182 alloy have been often used as materials satisfying such requirements. The above-described 5000 series alloy has a lower ductility than steel and has a defect that it is easily cracked during molding. In order to modify ductility, various additive elements have been studied and impurities have been reduced, but sufficient ductility improvement effects have not been obtained.

【0003】[0003]

【発明が解決しようとする課題】本発明はこれらを鑑
み、特に絞り成形に必要な材料の特性を詳細に検討した
結果、自動車ボディ材の成形に多用されている低粘度の
洗浄油を用い、材料を型に流入させるためのパンチ肩部
のひずみ速度が比較的低速の場合における最適な特性を
有するアルミニウム合金板とその製造方法を開発したも
のである。
In view of the above, the present invention has made a detailed study of the characteristics of the materials particularly required for drawing, and as a result, uses a low-viscosity cleaning oil that is widely used for molding automobile body materials. The aluminum alloy plate having optimum characteristics when the strain rate of the punch shoulder portion for allowing the material to flow into the mold is relatively low, and the manufacturing method thereof have been developed.

【0004】[0004]

【課題を解決するための手段】本発明は、必須成分とし
てMg4.0〜10.0wt%と、Cr、Zr、Mnの
いずれか一種以上を合計0.01〜0.5wt%含み、
不可避的不純物のFe、Siの量をそれぞれ0.2wt
%以下、その他の不純物元素をいずれも0.05wt%
以下とし、残部Alからなる組成を持ち、かつ平均結晶
粒径が10〜25μmであることを特徴とする成形用ア
ルミニウム合金板を請求項1とし、必須成分としてMg
4.0〜10.0wt%、Cu0.1〜0.5wt%
と、Cr、Zr、Mnのいずれか一種以上を合計0.0
1〜0.5wt%を含み、不可避的不純物Fe、Siの
量をそれぞれ0.2wt%以下、その他の不純物元素を
いずれも0.05wt%以下とし、残部Alからなる組
成を持ち、かつ平均結晶粒径が10〜25μmであるこ
とを特徴とする成形用アルミニウム合金板を請求項2と
し、必須成分としてMg4.0〜10.0wt%と、C
r、Zr、Mnのいずれか一種以上を合計0.01〜
0.5wt%含み、不可避的不純物のFe、Siの量を
それぞれ0.2wt%以下、その他の不純物元素をいず
れも0.05wt%以下とし、残部Alからなるアルミ
ニウム合金を常法で鋳造・均質化処理・熱延した後、3
0〜80%冷延し、300〜500℃で30分以上保持
する中間焼鈍を行い、次いで所定の板厚まで20%以上
の冷間圧延を行い、450〜550℃の温度に加熱し、
直ちにまたは60秒以内保持し、10℃/min 以上の速
度で100℃以下まで冷却する焼鈍処理を行うことによ
り、平均結晶粒径を10〜25μmとすることを特徴と
する成形用アルミニウム合金板の製造方法を請求項3と
し、必須成分としてMg4.0〜10.0wt%、Cu
0.1〜0.5wt%と、Cr、Zr、Mnのいずれか
一種以上を合計0.01〜0.5wt%を含み、不可避
的不純物Fe、Siの量をそれぞれ0.2wt%以下、
その他の不純物元素をいずれも0.05wt%以下と
し、残部Alからなるアルミニウム合金を常法で鋳造・
均質化処理・熱延した後、30〜80%冷延し、300
〜500℃で30分以上保持する中間焼鈍を行い、次い
で所定の板厚まで20%以上の冷間圧延を行い、450
〜550℃の温度に加熱し、直ちにまたは60秒以内保
持し、10℃/min 以上の速度で100℃以下まで冷却
する焼鈍処理を行うことにより、平均結晶粒径を10〜
25μmとすることを特徴とする成形用アルミニウム合
金板の製造方法を請求項4とするものである。
Means for Solving the Problems The present invention contains 4.0 to 10.0 wt% of Mg as an essential component and 0.01 to 0.5 wt% in total of any one or more of Cr, Zr and Mn,
The amount of inevitable impurities Fe and Si is 0.2 wt.
% Or less, 0.05 wt% for all other impurity elements
An aluminum alloy plate for molding which has the composition consisting of the balance Al and has an average crystal grain size of 10 to 25 μm is set forth below, and Mg is used as an essential component.
4.0-10.0 wt%, Cu 0.1-0.5 wt%
And Cr, Zr, or any one or more of Mn, total 0.0
1 to 0.5 wt%, the amount of unavoidable impurities Fe and Si is 0.2 wt% or less, each of the other impurity elements is 0.05 wt% or less, and the balance is Al, and the average crystal An aluminum alloy plate for molding having a particle size of 10 to 25 μm is defined as claim 2, and Mg of 4.0 to 10.0 wt% as an essential component and C
Total of 0.01 or more of any one of r, Zr, and Mn
0.5 wt%, 0.2 wt% or less of Fe and Si as unavoidable impurities, 0.05 wt% or less of all other impurity elements, and aluminum alloy consisting of the balance Al is cast and homogenized by a conventional method. After chemical treatment and hot rolling, 3
0-80% cold rolling, 300-500 ℃ hold for 30 minutes or more intermediate annealing, then 20% or more cold rolling to a predetermined plate thickness, heated to 450-550 ℃ temperature,
Immediately or holding for 60 seconds or less, an annealing treatment of cooling at a rate of 10 ° C./min or more to 100 ° C. or less is performed to obtain an average crystal grain size of 10 to 25 μm. The manufacturing method is defined as claim 3, and Mg 4.0 to 10.0 wt% and Cu as essential components
0.1 to 0.5 wt% and 0.01 to 0.5 wt% in total of any one or more of Cr, Zr, and Mn, and 0.2 wt% or less of the inevitable impurities Fe and Si, respectively.
All the other impurity elements are made 0.05 wt% or less, and the aluminum alloy consisting of the balance Al is cast by a conventional method.
After homogenizing and hot rolling, 30-80% cold rolling, 300
Intermediate annealing is performed by holding at ~ 500 ° C. for 30 minutes or more, and then cold rolling is performed by 20% or more to a predetermined plate thickness.
By heating to a temperature of 550 ° C. to 550 ° C., holding immediately or within 60 seconds, and cooling to 100 ° C. or less at a rate of 10 ° C./min or more, an average crystal grain size of 10
The method for producing a forming aluminum alloy sheet is characterized in that the thickness is 25 μm.

【0005】[0005]

【作用】本発明において、合金組成を限定したのは、以
下の理由による。Mgは固溶することにより、強度を増
大させると共に、加工硬化性を増やすことによって延性
を増大させ、成形性の向上に寄与する。特に、転位との
固着作用が低ひずみ速度で増大することによって低速成
形での強度を著しく増大させる働きがある。その添加量
を4.0〜10.0wt%と限定したのは、4.0wt
%未満ではその効果が小さく、10.0wt%を越える
と耐SSC性を悪化させると共に、熱間加工性を悪化さ
せ、製造が困難となるためである。
In the present invention, the reason why the alloy composition is limited is as follows. When Mg forms a solid solution, it increases the strength and, at the same time, increases the work hardenability to increase the ductility and contributes to the improvement of the formability. In particular, it has a function of remarkably increasing the strength in low-speed molding by increasing the fixing action with dislocations at a low strain rate. The amount added was limited to 4.0 to 10.0 wt% because it was 4.0 wt.
This is because if it is less than 1.0%, the effect is small, and if it exceeds 10.0% by weight, the SSC resistance is deteriorated and the hot workability is deteriorated, and the manufacturing becomes difficult.

【0006】Cr、Zr、Mnはソーキング、熱延、中
間焼鈍時に微細な分散粒子として析出し、結晶粒を微細
化させ、後述のように低ひずみ速度での強度向上に寄与
する。これらの添加量を合計0.01〜0.5wt%と
したのは、0.01wt%未満では結晶粒の微細化効果
が十分でなく、0.5wt%を越えると延性の低下が著
しいためである。
[0006] Cr, Zr and Mn are precipitated as fine dispersed particles during soaking, hot rolling and intermediate annealing to make the crystal grains finer and contribute to the improvement of strength at a low strain rate as described later. The total amount of these added is set to 0.01 to 0.5 wt% because if the amount is less than 0.01 wt%, the grain refining effect is not sufficient, and if it exceeds 0.5 wt%, the ductility is remarkably reduced. is there.

【0007】Cuは焼付け塗装時にGPゾーン、θ’、
S相などを析出し強度を向上させるので、焼付け塗装後
の強度を確保したい場合に添加する。その添加量を0.
1〜0.5wt%と限定したのは、0.1wt%未満で
は強度向上が小さく、0.5wt%を越えると耐食性が
低下するためである。
Cu is used in the GP zone, θ ', and
Since S phase is precipitated to improve the strength, it is added when it is desired to secure the strength after baking coating. The addition amount was set to 0.
The reason for limiting the content to 1 to 0.5 wt% is that if the content is less than 0.1 wt%, the improvement in strength is small, and if it exceeds 0.5 wt%, the corrosion resistance decreases.

【0008】Fe、Siは通常Alの不純物として含ま
れるものである。しかし、FeはSiと化合物を作りや
すく、その化合物が成形時のクラックの起点となるた
め、延性を低下させる。そのため、両者のいずれかが
0.2wt%を越えると延性が低下する。したがってそ
の含有量を両者とも0.2%以下と限定する。Ti、N
i、Zn等のその他の不純物元素はいずれも延性を低下
させるため、0.05%以下に限定する。
Fe and Si are usually contained as impurities of Al. However, Fe easily forms a compound with Si, and the compound becomes a starting point of a crack at the time of molding, thus reducing ductility. Therefore, if either of the two exceeds 0.2 wt%, the ductility decreases. Therefore, the content of both is limited to 0.2% or less. Ti, N
Since other impurity elements such as i and Zn reduce ductility, the content is limited to 0.05% or less.

【0009】次に本発明において平均結晶粒径を限定し
た理由を述べる。5000系合金では、結晶粒が微細な
場合、結晶粒間の拘束力が大きく、強度は大きくなるも
のの、強い剪断帯が発生し、くびれが生じるため、結果
として伸びが低下する現象が知られている。この効果は
Mg原子との固着作用の大きい低ひずみ速度域で、かつ
すべり面が限定される一軸引張で顕著となる。したがっ
て、通常の引張試験において伸びが著しく低下するた
め、従来肌荒れにならない程度まで結晶粒を大きくして
使用する場合が多かった。一方、自動車ボディパネル等
の実部品の成形においては、通常低粘度の洗浄油を使用
しているため、材料を型に流入させるための強度が伸び
以上に重要であることを見出した。さらに、実型での成
形における伸びは主に剪断帯が発生しにくい二軸領域で
成形される場合が多く、また、パンチ面での摺動による
ひずみの均一性が重要で、必ずしも通常の引張試験の伸
びと対応しないことを見出した。
Next, the reason why the average grain size is limited in the present invention will be described. In the 5000 series alloy, when the crystal grains are fine, the binding force between the crystal grains is large and the strength is large, but a strong shear band is generated and a constriction occurs, resulting in a decrease in elongation. There is. This effect becomes remarkable in the low strain rate region where the fixing action with Mg atoms is large and in the uniaxial tension where the slip surface is limited. Therefore, since the elongation is remarkably reduced in a normal tensile test, it has been often the case that the crystal grains are used so large that they do not cause rough skin. On the other hand, in the molding of actual parts such as automobile body panels, it has been found that the strength for allowing the material to flow into the mold is more important than the elongation because a low-viscosity cleaning oil is usually used. Furthermore, the elongation in forming with a real mold is often formed in the biaxial region where shear bands are less likely to occur, and the uniformity of strain due to sliding on the punch surface is important, and it is not always possible to use normal tensile force. It was found that it did not correspond to the elongation of the test.

【0010】すなわち、このような実部品での成形に対
しては引張試験での伸びは小さくても、材料流入、およ
びパンチ面での摺動によるひずみの均一性に有利な高強
度材の方が良好な成形性を示すことが判明した。そこ
で、強度を増大させるために結晶粒度を10〜25μm
に限定する。10μm未満では剪断帯による延性低下の
効果が強度向上効果より大きく、成形性が悪化する。ま
た25μmを越えると強度向上による成形性向上効果が
十分に得られない。このような特徴を持つアルミニウム
合金板は、特に潤滑油粘度を100cSt 以下の場合に顕
著な成形性改善効果をもっており、その粘度が100cS
t を越えると、従来の結晶粒が大きく、延性に優れた材
料の方が良好な成形性を示す場合もあるため、100cS
t 以下の低粘度油を使用する成形への適用が望ましい。
That is, for the molding of such an actual part, a high-strength material which has a small elongation in a tensile test but is advantageous in the uniformity of strain due to material inflow and sliding on the punch surface is preferred. Was found to exhibit good moldability. Therefore, in order to increase the strength, the crystal grain size is 10 to 25 μm.
Limited to If it is less than 10 μm, the effect of reducing the ductility due to the shear band is greater than the effect of improving the strength, and the formability deteriorates. On the other hand, if it exceeds 25 μm, the effect of improving the moldability due to the improvement in strength cannot be sufficiently obtained. The aluminum alloy plate having such characteristics has a remarkable effect of improving the formability especially when the lubricating oil viscosity is 100 cSt or less, and the viscosity is 100 cS.
If it exceeds t, the conventional crystal grains may be large and a material with excellent ductility may exhibit better formability.
Application to molding using low viscosity oil below t is desirable.

【0011】次に本発明の製造方法について説明する。
先ず上記組成のアルミニウム合金を常法で鋳造・均質化
処理・熱延するが、均質化処理は、Mg、Fe、Si等
の鋳造時に形成された化合物をマトリックス中に固溶さ
せ、減少させたり、Cr、Zr、Mn等の析出物を析出
させ、最終の結晶粒を微細化させる効果があるが、前者
は高温・長時間が必要で、後者は比較的低温・短時間の
方がより微細に析出するため望ましい。本発明方法で
は、後述の中間焼鈍で十分な析出が得られるため、均一
化処理時にはあえて微細に析出させる必要は無く、特に
条件は限定しないが、延性確保のためには480℃以上
の均質化処理が望ましい。熱間圧延は後述の中間焼鈍で
十分な析出が得られるため、特に条件の限定は必要な
い。
Next, the manufacturing method of the present invention will be described.
First, an aluminum alloy having the above composition is cast, homogenized, and hot-rolled by a conventional method. In homogenization, a compound such as Mg, Fe, or Si formed during casting is dissolved in the matrix to form a solid solution. It has the effect of precipitating precipitates such as Cr, Zr, Mn, etc. to make the final crystal grains finer, but the former requires high temperature and long time, and the latter is finer at relatively low temperature and short time. It is desirable because it precipitates. In the method of the present invention, since sufficient precipitation can be obtained by the intermediate annealing described later, it is not necessary to intentionally precipitate finely during the homogenization treatment, and the conditions are not particularly limited, but homogenization at 480 ° C. or higher is necessary for ensuring ductility. Treatment is desirable. Since hot rolling can obtain sufficient precipitation by the intermediate annealing described later, the conditions are not particularly limited.

【0012】次いで、30〜80%冷延し、300〜5
00℃で30分以上保持する中間焼鈍を行うが、これは
Cr、Zr、Mn系の析出物を均一、微細に析出させる
ためで、焼鈍前の圧下率が30%未満では析出の均一性
が確保できない。また焼鈍温度が300℃未満の場合、
十分な量の析出が望めず、500℃を越えると析出物が
粗大化し、結晶粒微細化効果が小さくなる。さらに、保
持時間が30分未満ではやはり十分な析出量が得られ
ず、結晶粒の微細化効果が不十分となる。冷延率が80
%を越えると、マクロ的な剪断帯が冷延過程で発生し易
く、外観上の不具合となる。したがって30〜80%冷
延し、300〜500℃で30分以上保持する必要があ
る。
[0012] Then, cold rolled 30-80%, 300-5
Intermediate annealing is carried out at 00 ° C. for 30 minutes or more. This is to uniformly and finely precipitate Cr, Zr, and Mn-based precipitates. If the reduction ratio before annealing is less than 30%, the uniformity of precipitation is Cannot be secured. When the annealing temperature is less than 300 ° C,
A sufficient amount of precipitation cannot be expected, and if it exceeds 500 ° C., the precipitate becomes coarse and the grain refining effect is reduced. Furthermore, if the holding time is less than 30 minutes, a sufficient amount of precipitation cannot be obtained, and the grain refinement effect becomes insufficient. Cold rolling rate is 80
If it exceeds%, a macroscopic shear band is likely to occur during the cold rolling process, resulting in a defect in appearance. Therefore, it is necessary to carry out cold rolling for 30 to 80% and hold at 300 to 500 ° C. for 30 minutes or more.

【0013】次いで所定の板厚まで20%以上の冷間圧
延を行い、450〜550℃の温度に加熱し、直ちにま
たは60秒以内保持し、10℃/min 以上の速度で10
0℃以下まで冷却する焼鈍処理を行うが、焼鈍前の冷延
率が20%未満の場合、再結晶の核発生が少なく、微細
析出物の存在下でも25μm以下の結晶粒系を得ること
ができない。焼鈍温度を450〜550℃としたのは、
十分な溶体化効果があり、かつ結晶粒が粗大化しないた
めであり、450℃未満の場合、結晶粒度が10μm未
満となり、延性低下が過大となり、550℃を越えると
十分な微細析出量下においても結晶粒が25μmを越え
ることによって強度が低下するためである。保持時間を
60秒以内としたのは、60秒を越えると結晶粒が粗大
化するためである。
Next, 20% or more of cold rolling is performed to a predetermined plate thickness, heating to a temperature of 450 to 550 ° C., holding immediately or within 60 seconds, and 10% at a rate of 10 ° C./min or more.
Although an annealing treatment for cooling to 0 ° C. or less is performed, when the cold rolling rate before annealing is less than 20%, nucleation of recrystallization is small, and a crystal grain system of 25 μm or less can be obtained even in the presence of fine precipitates. Can not. The reason why the annealing temperature is 450 to 550 ° C. is that
This is because there is a sufficient solutionizing effect and the crystal grains do not become coarse. When the temperature is lower than 450 ° C, the crystal grain size is less than 10 µm and the ductility is excessively lowered, and when it exceeds 550 ° C, a sufficient fine precipitation amount is obtained. This is also because the strength decreases when the crystal grains exceed 25 μm. The holding time is set within 60 seconds because the crystal grains become coarse when the holding time exceeds 60 seconds.

【0014】次に、10℃/min.以上の冷却速度で10
0℃以下まで冷却するのは、固溶元素の析出を防ぐため
であり、この条件からはずれると、析出により固溶元素
量が減り、延性が低下するとともに、Mg原子による転
位の固着が生じ、ストレッチャーストレインマークが発
生し易くなる。焼鈍後は必要に応じて、テンションレベ
ラー、スキンパス等による強制処理、表面洗浄、エッチ
ング、防錆油塗布等をおこなっても良い。
Next, at a cooling rate of 10 ° C./min.
The cooling to 0 ° C. or lower is for preventing the precipitation of the solid solution element. If the condition is deviated from this condition, the amount of the solid solution element decreases due to the precipitation, the ductility decreases, and the dislocations are fixed by Mg atoms. Stretcher strain marks are more likely to occur. After the annealing, if necessary, forced treatment by a tension leveler, skin pass, etc., surface cleaning, etching, rust preventive oil coating, etc. may be performed.

【0015】[0015]

【実施例】以下に本発明の一実施例について説明する。
表1に示す組成のAl合金を常法により溶解・鋳造後、
表2に示す製造条件で製造し、厚さ1mmの板材とした。
この板材について、引張試験をおこない、引張強さ、耐
力、伸びを求めるとともに、成形試験として、ブランク
φ86mm、絞り比2.15の円筒絞り成形をしわ抑え力
3000kgf 、低粘度(10cSt )の潤滑条件の下で行
った。なお、この成形試験条件により、得られる破断高
さとしては、21mm以上が必要である。これらの結果を
表3に示す。
EXAMPLES An example of the present invention will be described below.
After melting and casting an Al alloy having the composition shown in Table 1 by a conventional method,
A plate material having a thickness of 1 mm was manufactured under the manufacturing conditions shown in Table 2.
A tensile test is performed on this plate material to determine the tensile strength, proof stress, and elongation, and as a forming test, blank drawing is performed with cylindrical blanking with a blank diameter of 86 mm and a drawing ratio of 2.15, a wrinkle suppression force of 3000 kgf, and a low-viscosity (10 cSt) lubricating condition. Went under. It should be noted that the breaking height obtained under these molding test conditions must be 21 mm or more. The results are shown in Table 3.

【0016】[0016]

【表1】 [Table 1]

【0017】[0017]

【表2】 [Table 2]

【0018】[0018]

【表3】 [Table 3]

【0019】表1〜表3より明らかなように、本発明に
係る組成のA,B,C,D,はいずれも結晶粒度が15
〜22μmを示し、引張強さ、耐力に優れ、成形試験の
破断高さも21mm以上で成形性が良好なことを示してい
る。これに対し、比較例EのCr+Mn+Zr=0.5
6と多いものおよびCr、Mn、Zrの添加がないFや
Mg量の少ないGは、いずれも結晶粒度が、著しく小さ
いか、または大き過ぎ、引張強さ、耐力、破断高さが劣
る。また比較例Bは、組成は本発明の範囲であるが、製
造条件が本発明の範囲を外れるため、いずれも上記の特
性が悪い。
As is clear from Tables 1 to 3, all of the compositions A, B, C and D according to the present invention have a crystal grain size of 15.
.About.22 .mu.m, the tensile strength and proof strength are excellent, and the breaking height in the molding test is 21 mm or more, indicating that the moldability is good. On the other hand, in Comparative Example E, Cr + Mn + Zr = 0.5
6 and a large amount of F and a small amount of F and Mg with no addition of Cr, Mn, and Zr have extremely small or excessive crystal grain sizes, and poor tensile strength, proof stress, and breaking height. Further, in Comparative Example B, the composition is within the range of the present invention, but the production conditions are outside the range of the present invention, and thus the above characteristics are poor.

【0020】[0020]

【発明の効果】以上に説明したように、強度、成形性に
優れ、特に低粘度潤滑油を使用する際に高い成形性を示
し、実操業で多用される防錆油、洗浄油を使用する成形
に適しており、工業上顕著な効果を奏するものである。
As described above, excellent strength and moldability are exhibited, and particularly when a low viscosity lubricating oil is used, high moldability is exhibited, and rust preventive oil and cleaning oil which are often used in actual operation are used. It is suitable for molding and has a remarkable industrial effect.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 戸次 洋一郎 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 林 稔 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 (72)発明者 東海林 了 東京都千代田区丸の内2丁目6番1号 古 河電気工業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yoichiro Totsugu 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Minoru Hayashi 2-6-1, Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd. (72) Inventor Ryo Tokaibayashi 2-6-1 Marunouchi, Chiyoda-ku, Tokyo Furukawa Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 必須成分としてMg4.0〜10.0w
t%と、Cr、Zr、Mnのいずれか一種以上を合計
0.01〜0.5wt%含み、不可避的不純物のFe、
Siの量をそれぞれ0.2wt%以下、その他の不純物
元素をいずれも0.05wt%以下とし、残部Alから
なる組成を持ち、かつ平均結晶粒径が10〜25μmで
あることを特徴とする成形用アルミニウム合金板。
1. Mg4.0-10.0w as an essential component
t% and 0.01 to 0.5 wt% in total of any one or more of Cr, Zr, and Mn, and inevitable impurity Fe,
Molding characterized in that the amount of Si is 0.2 wt% or less, each of the other impurity elements is 0.05 wt% or less, the composition is composed of the balance Al, and the average crystal grain size is 10 to 25 μm. Aluminum alloy plate for use.
【請求項2】 必須成分としてMg4.0〜10.0w
t%、Cu0.1〜0.5wt%と、Cr、Zr、Mn
のいずれか一種以上を合計0.01〜0.5wt%を含
み、不可避的不純物Fe、Siの量をそれぞれ0.2w
t%以下、その他の不純物元素をいずれも0.05wt
%以下とし、残部Alからなる組成を持ち、かつ平均結
晶粒径が10〜25μmであることを特徴とする成形用
アルミニウム合金板。
2. Mg4.0-10.0w as an essential component
t%, Cu 0.1 to 0.5 wt% and Cr, Zr, Mn
0.01 wt% to 0.5 wt% in total, and the inevitable impurities Fe and Si are each 0.2 w.
t% or less, 0.05 wt% for all other impurity elements
% Or less, having a composition of the balance Al, and having an average crystal grain size of 10 to 25 μm.
【請求項3】 必須成分としてMg4.0〜10.0w
t%と、Cr、Zr、Mnのいずれか一種以上を合計
0.01〜0.5wt%含み、不可避的不純物のFe、
Siの量をそれぞれ0.2wt%以下、その他の不純物
元素をいずれも0.05wt%以下とし、残部Alから
なるアルミニウム合金を常法で鋳造・均質化処理・熱延
した後、30〜80%冷延し、300〜500℃で30
分以上保持する中間焼鈍を行い、次いで所定の板厚まで
20%以上の冷間圧延を行い、450〜550℃の温度
に加熱し、直ちにまたは60秒以内保持し、10℃/mi
n以上の速度で100℃以下まで冷却する焼鈍処理をお
こなうことにより、平均結晶粒径を10〜25μmとす
ることを特徴とする成形用アルミニウム合金板の製造方
法。
3. Mg4.0-10.0w as an essential component
t% and 0.01 to 0.5 wt% in total of any one or more of Cr, Zr, and Mn, and inevitable impurity Fe,
After the amount of Si is 0.2 wt% or less and each of other impurity elements is 0.05 wt% or less, an aluminum alloy composed of the balance Al is cast, homogenized, and hot rolled by a conventional method, and then 30 to 80%. Cold rolled, 30 at 300-500 ° C
Perform intermediate annealing that holds for more than 10 minutes, then perform cold rolling of 20% or more to a predetermined plate thickness, heat to a temperature of 450 to 550 ° C, hold immediately or within 60 seconds, and hold at 10 ° C / mi
A method of manufacturing an aluminum alloy sheet for forming, which comprises subjecting an average grain size to 10 to 25 μm by performing an annealing treatment for cooling to 100 ° C. or less at a rate of n or more.
【請求項4】 必須成分としてMg4.0〜10.0w
t%、Cu0.1〜0.5wt%と、Cr、Zr、Mn
のいずれか一種以上を合計0.01〜0.5wt%を含
み、不可避的不純物Fe、Siの量をそれぞれ0.2w
t%以下、その他の不純物元素をいずれも0.05wt
%以下とし、残部AlからなるAl合金を常法で鋳造・
均質化処理・熱延した後、30〜80%冷延し、300
〜500℃で30分以上保持する中間焼鈍を行い、次い
で所定の板厚まで20%以上の冷間圧延を行い、450
〜550℃の温度に加熱し、直ちにまたは60秒以内保
持し、10℃/min 以上の速度で100℃以下まで冷却
する焼鈍処理をおこなうことにより、平均結晶粒径を1
0〜25μmとすることを特徴とする成形用アルミニウ
ム合金板の製造方法。
4. Mg4.0-10.0w as an essential component
t%, Cu 0.1 to 0.5 wt% and Cr, Zr, Mn
0.01 wt% to 0.5 wt% in total, and the inevitable impurities Fe and Si are each 0.2 w.
t% or less, 0.05 wt% for all other impurity elements
% Or less, and cast an Al alloy consisting of the balance Al by a conventional method.
After homogenizing and hot rolling, 30-80% cold rolling, 300
Intermediate annealing is performed by holding at ~ 500 ° C. for 30 minutes or more, and then cold rolling is performed by 20% or more to a predetermined plate thickness.
The average crystal grain size is reduced to 1 by heating to a temperature of up to 550 ° C., holding it immediately or within 60 seconds, and then cooling it to a temperature of 10 ° C./min or more and cooling it to 100 ° C. or less.
The manufacturing method of the aluminum alloy plate for shaping | molding characterized by making it 0-25 micrometers.
JP9880794A 1994-05-12 1994-05-12 Aluminum alloy sheet for forming and its production Pending JPH07310136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9880794A JPH07310136A (en) 1994-05-12 1994-05-12 Aluminum alloy sheet for forming and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9880794A JPH07310136A (en) 1994-05-12 1994-05-12 Aluminum alloy sheet for forming and its production

Publications (1)

Publication Number Publication Date
JPH07310136A true JPH07310136A (en) 1995-11-28

Family

ID=14229616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9880794A Pending JPH07310136A (en) 1994-05-12 1994-05-12 Aluminum alloy sheet for forming and its production

Country Status (1)

Country Link
JP (1) JPH07310136A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061744A1 (en) * 2003-12-19 2005-07-07 Nippon Light Metal Company, Ltd. Aluminum alloy sheet excellent in resistance to softening by baking
JP2006200017A (en) * 2005-01-21 2006-08-03 Kobe Steel Ltd Aluminum alloy sheet for forming
JP2006200018A (en) * 2005-01-21 2006-08-03 Kobe Steel Ltd Aluminum alloy sheet for forming
JP2006249480A (en) * 2005-03-09 2006-09-21 Kobe Steel Ltd Aluminum alloy sheet to be formed
US10041154B2 (en) 2011-07-25 2018-08-07 Nippon Light Metal Company, Ltd. Aluminum alloy sheet and method for manufacturing same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005061744A1 (en) * 2003-12-19 2005-07-07 Nippon Light Metal Company, Ltd. Aluminum alloy sheet excellent in resistance to softening by baking
US8524015B2 (en) 2003-12-19 2013-09-03 Nippon Light Metal Company, Ltd. Aluminum alloy sheet excellent in resistance to softening by baking
JP2006200017A (en) * 2005-01-21 2006-08-03 Kobe Steel Ltd Aluminum alloy sheet for forming
JP2006200018A (en) * 2005-01-21 2006-08-03 Kobe Steel Ltd Aluminum alloy sheet for forming
JP4550598B2 (en) * 2005-01-21 2010-09-22 株式会社神戸製鋼所 Aluminum alloy sheet for forming
JP2006249480A (en) * 2005-03-09 2006-09-21 Kobe Steel Ltd Aluminum alloy sheet to be formed
JP4541934B2 (en) * 2005-03-09 2010-09-08 株式会社神戸製鋼所 Manufacturing method of forming aluminum alloy sheet
US10041154B2 (en) 2011-07-25 2018-08-07 Nippon Light Metal Company, Ltd. Aluminum alloy sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
JP2614686B2 (en) Manufacturing method of aluminum alloy for forming process excellent in shape freezing property and paint bake hardenability
JP2823797B2 (en) Manufacturing method of aluminum alloy sheet for forming
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH05263203A (en) Production of rolled sheet of aluminum alloy for forming
US5516374A (en) Method of manufacturing an aluminum alloy sheet for body panel and the alloy sheet manufactured thereby
EP1260600B1 (en) Aluminum alloy sheet material and method for producing the same
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JPH07310136A (en) Aluminum alloy sheet for forming and its production
JP2003321754A (en) Method for manufacturing aluminum alloy sheet with excellent bendability
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JPH0543974A (en) Aluminum alloy sheet excellent in baking hardenability of coating material and press formability and its production
JP3278130B2 (en) Method for producing high-strength heat-treated aluminum alloy sheet for drawing
JP3491819B2 (en) Method for producing aluminum alloy sheet having excellent surface properties after forming
JPH05306440A (en) Manufacture of aluminum alloy sheet for forming excellent baking hardenability
JP3098637B2 (en) Aluminum alloy sheet for high speed forming and method for producing the same
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JP2745254B2 (en) Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same
JP4694770B2 (en) Aluminum alloy plate with excellent bending workability
JPH06228696A (en) Aluminum alloy sheet for di can body
JPH11256291A (en) Manufacture of aluminum alloy sheet for can body
JPH0718389A (en) Production of al-mg series alloy sheet for forming
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JPH07173565A (en) Aluminum alloy sheet for press forming excellent in curability for coating/baking
JPH0723160B2 (en) DI can body made of aluminum alloy with excellent necking and flange formability
KR960007633B1 (en) Al-mg alloy &amp; the preparation