JP3278130B2 - Method for producing high-strength heat-treated aluminum alloy sheet for drawing - Google Patents

Method for producing high-strength heat-treated aluminum alloy sheet for drawing

Info

Publication number
JP3278130B2
JP3278130B2 JP08722996A JP8722996A JP3278130B2 JP 3278130 B2 JP3278130 B2 JP 3278130B2 JP 08722996 A JP08722996 A JP 08722996A JP 8722996 A JP8722996 A JP 8722996A JP 3278130 B2 JP3278130 B2 JP 3278130B2
Authority
JP
Japan
Prior art keywords
alloy
strength
treatment
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08722996A
Other languages
Japanese (ja)
Other versions
JPH09256129A (en
Inventor
俊雄 小松原
Original Assignee
スカイアルミニウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by スカイアルミニウム株式会社 filed Critical スカイアルミニウム株式会社
Priority to JP08722996A priority Critical patent/JP3278130B2/en
Publication of JPH09256129A publication Critical patent/JPH09256129A/en
Application granted granted Critical
Publication of JP3278130B2 publication Critical patent/JP3278130B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は高強度が要求され
る絞り加工用の熱処理型アルミニウム合金板の製造方法
に関し、特にアルミニウム2ピースDI缶の缶胴材や缶
蓋材あるいは食缶(DRD缶)などの主として容器材料
として使用される絞り加工用アルミニウム合金板の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a heat-treated aluminum alloy sheet for drawing which requires high strength, and more particularly to a can body material, a can lid material and a food can (DRD can) for an aluminum two-piece DI can. The present invention relates to a method for producing an aluminum alloy plate for drawing used mainly as a container material.

【0002】[0002]

【従来の技術】絞り加工が施されて用いられるアルミニ
ウム容器としては、DI加工(絞り−しごき加工)が施
されて成形される2ピースDI缶や、DRD加工(絞り
−再絞り加工)が施されて成形されるDRD缶(食
缶)、そのほか各種の深絞り缶がある。これらのアルミ
ニウム缶のうち最も代表的なDI缶の製造方法として
は、缶胴素材に対して深絞り加工、しごき加工によるD
I加工を施して缶胴形状を得た後、所定のサイズにトリ
ミングを施してから塗装焼付け処理を施し、その後缶胴
縁部に対してネッキング加工(口絞り加工)、フランジ
加工(口拡げ加工)を行ない、さらに別に成形した缶蓋
(缶エンド)を合せてシーミング加工(巻締め加工)を
行なうのが通常である。このようにDI缶などの製造に
は多種類の加工が施されるところから、深絞り性、しご
き性、口絞り性、口拡げ性、張出性などの種々の加工性
と強度とのバランスから、その材料が選択、検討されて
いる。
2. Description of the Related Art Aluminum containers which have been drawn and used include two-piece DI cans formed by being subjected to DI processing (drawing and ironing) and DRD processing (drawing and redrawing). There are DRD cans (food cans) which are formed by molding and other various deep drawn cans. Among these aluminum cans, the most typical method for producing DI cans is to deep-draw and iron the can body material.
After performing I processing to obtain a can body shape, trimming it to a predetermined size, then applying paint baking processing, and then necking (mouth drawing) and flange processing (mouth opening processing) on the can body edge ), And then a seaming process (sealing process) is usually performed by combining the separately formed can lids (can ends). As described above, since various types of processing are performed in the production of DI cans, etc., a balance between various workability such as deep drawing property, ironing property, mouth drawing property, mouth spreading property, overhang property and strength. Therefore, the material is selected and studied.

【0003】そして前述のような各種のアルミニウム缶
のうち、DI缶の缶胴材としてはJIS 3004合金
やAA3104合金のH19材あるいはH39材などが
多用され、またDI缶の缶蓋材にはJIS 5052合
金やJIS 5082合金、JIS 5182合金のH
18材もしくはH38材などが多用され、さらにDRD
缶やその他の深絞り缶にはJIS 5052合金のH1
8材もしくはH38材やAA5042合金のH38材な
どが多用されている。
Among the various aluminum cans described above, JIS 3004 alloy and AA3104 alloy H19 or H39 are frequently used for the body of the DI can, and JIS is used for the can lid of the DI can. H of 5052 alloy, JIS 5082 alloy, JIS 5182 alloy
18 or H38 materials are frequently used, and DRD
JIS 5052 alloy H1 for cans and other deep drawn cans
Eight materials, H38 materials, and H38 materials of AA5042 alloy are frequently used.

【0004】[0004]

【発明が解決しようとする課題】アルミニウム2ピース
DI缶で代表されるアルミニウム缶に対しては、材料コ
スト低減のために従来より一層薄肉化することが強く望
まれている。そこでこれらのアルミニウム缶の材料に
は、薄肉化しても充分な高強度を有しかつ優れた絞り加
工性などの成形性を確保し得る材料が望まれている。し
かしながら前述のような従来のアルミニウム缶用アルミ
ニウム合金板では、例えば缶胴用合金板の場合製缶後の
200℃×20分程度の塗装焼付処理時において、また
缶蓋用合金板の場合製缶前の270℃×20秒程度の塗
装焼付処理時において軟化を起してしまうため、最終的
に得られる強度はせいぜい300N/mm2 程度となる
から、薄肉化を図るためには強度不足となってしまう。
また前述のような従来の合金系をベースとして例えばC
u等の強化元素を添加したり、あるいは素材の冷間加工
率を大きくするなどの手段によって強度向上を図ること
も考えられるが、その場合には成形性が著しく低下して
しまい、缶材料としては不適当となってしまう。
With respect to aluminum cans represented by aluminum two-piece DI cans, it is strongly desired to further reduce the thickness in order to reduce material costs. Therefore, materials for these aluminum cans that have a sufficiently high strength even if the thickness is reduced and that can secure excellent formability such as excellent drawability are desired. However, in the case of the conventional aluminum alloy plate for an aluminum can as described above, for example, in the case of an alloy plate for a can body, during baking treatment at 200 ° C. for about 20 minutes after the can manufacturing, and in the case of an alloy plate for a can lid, Since softening occurs during the previous baking process at about 270 ° C. for about 20 seconds, the finally obtained strength is at most about 300 N / mm 2. Therefore, the strength is insufficient to reduce the thickness. Would.
Further, based on the above-mentioned conventional alloy system, for example, C
It is conceivable to improve the strength by adding a strengthening element such as u or by increasing the cold working ratio of the material, but in that case, the formability is significantly reduced, and as a can material Becomes inappropriate.

【0005】ところで各種のアルミニウム合金のうちで
も2000系(Al−Cu−Mg系)あるいは7000
系(Al−Zn−Mg系)の熱処理型合金では、耐力で
400N/mm2 を越える高強度を得ることができるこ
とから、高強度を要する構造用材料として多用されてい
るが、構造用材料の場合溶体化処理のままの状態、ある
いは人工時効処理を施した状態で使用されるのが通常で
あり、成形加工が施されたとしても極く軽微な加工に過
ぎない。またこれらの熱処理型合金を強い成形加工を必
要とする用途に用いる場合には、軟質材の状態で成形し
て、その後溶体化処理や人工時効処理を施して強度を確
保することも行なわれているが、缶用材料としてはこの
ようなプロセスは不適切である。いずれにしても、これ
らの従来の熱処理型合金では、強度は充分に高いもの
の、溶体化処理後の状態で成形性、とりわけ絞り性、し
ごき性、張出し性に劣り、そのため缶用材料に適用する
ことは考えられていなかった。
By the way, among various aluminum alloys, 2000 (Al-Cu-Mg) or 7000 series
Heat-treatable alloys of the Al-Zn-Mg type can be used as structural materials requiring high strength, since high strength exceeding 400 N / mm 2 can be obtained with a proof stress. In this case, it is usually used in the state of solution treatment or in the state of being subjected to artificial aging treatment, and even if it is formed, it is only a very slight processing. When these heat-treated alloys are used for applications that require strong forming, they are formed in the state of a soft material and then subjected to a solution treatment or an artificial aging treatment to secure the strength. However, such a process is unsuitable as a material for cans. In any case, these conventional heat-treated alloys, although having sufficiently high strength, are inferior in formability, especially drawability, ironing property, overhanging property after the solution treatment, and are therefore applied to can materials. That was not considered.

【0006】さらにDI缶の缶胴用材料の場合、高強度
と優れたDI成形性(絞り加工性、しごき加工性)が要
求されるばかりでなく、DI缶胴に成形して塗装焼付処
理を施した後のネッキング加工、フランジ加工、シーミ
ング加工での成形性も要求される。近年の缶胴の薄肉化
に伴ってフランジ部の肉厚も減少してきているため、フ
ランジ加工、シーミング加工中におけるフランジ部の破
断が生じやすくなっており、そのためフランジ加工性や
シーミング加工性の改善が強く望まれ、さらに缶蓋の軽
量化のためにネック径の小径化、したがってネッキング
加工量の増加の要請もあり、そこでより一層のフランジ
部の成形性向上が求められている。また缶蓋材の場合は
深絞り性のほか、張出し性、開口性のより一層の向上も
望まれている。
[0006] Further, in the case of a material for a body of a DI can, not only high strength and excellent DI formability (drawing workability, ironing workability) are required, but also a DI can body is formed and subjected to a paint baking treatment. Formability in necking, flange processing and seaming after application is also required. As the thickness of the flange has been reduced along with the recent reduction in the thickness of the can body, the flange has been easily broken during flanging and seaming, thus improving the frangibility and seamability. In addition, there is a demand for a reduction in the diameter of the neck in order to reduce the weight of the can lid, and therefore an increase in the amount of necking is required. Therefore, further improvement in the formability of the flange portion is required. Further, in the case of a can lid material, it is desired to further improve not only the deep drawing property but also the overhang property and the opening property.

【0007】ところで本願発明は、既に特願平7−15
3899号において、「絞り加工用高強度熱処理型アル
ミニウム合金板およびその製造方法」を提案している。
この提案は、基本的には7000系合金をベースとした
熱処理型DI缶用合金と、その熱処理方法についてのも
のである。具体的には、Zn3〜6wt%、Mg0.5
〜3wt%、Mn0.5wt%を越え1.5%wt以下
を含有し、残部がAlおよび不可避的不純物よりなるD
I缶用合金、あるいは前記各合金元素のほか、Cu0.
1〜2.5wt%を添加したDI缶用の合金を提案する
と同時に、これらの合金について、所定の板厚まで仕上
げた後、450〜550℃の範囲内あるいは450〜5
40℃の範囲内の温度で溶体化処理を施し、さらに30
%を越え75%以下の圧延率で冷間圧延を施す方法を提
案している。
The invention of the present application has already been disclosed in Japanese Patent Application No. Hei.
No. 3899 proposes "a high-strength heat-treated aluminum alloy sheet for drawing and a method for producing the same".
This proposal basically relates to a heat treatment type DI can alloy based on a 7000 series alloy and a heat treatment method thereof. Specifically, Zn 3 to 6 wt%, Mg 0.5
-3% by weight, Mn more than 0.5% by weight and 1.5% by weight or less, with the balance being Al and unavoidable impurities.
I can alloy, or in addition to the above alloy elements, CuO.
At the same time as proposing alloys for DI cans to which 1 to 2.5 wt% is added, these alloys are finished to a predetermined thickness, and then within the range of 450 to 550 ° C. or 450 to 550 ° C.
Solution treatment at a temperature within the range of 40 ° C.
%, And a method of performing cold rolling at a rolling rate of 75% or less.

【0008】上記提案によれば、熱処理型合金として高
強度を示すと同時に、絞り加工性等の良好な成形性を確
保することができ、そのほか前述の諸要求を満たすこと
が可能となった。しかしながらさらに実用化のための検
討を進めたところ、上記提案の合金は、素材製造メーカ
ーにおいて板材を製造後、製造メーカーにおいて製缶す
るまでの間の保管などの期間中において熱処理型合金に
特有の経時変化によって材料の強度、特に耐力が上昇
し、そのため板製造から製缶まで長期間経過した場合に
は製缶時におけるしごき性などの成形加工性が低下して
しまう問題があり、そのほか板製造後の製缶までの期間
によって製缶時の強度、成形性にばらつきが生じてしま
う問題があることが判明した。
According to the above proposal, it is possible to secure high formability such as drawability at the same time as exhibiting high strength as a heat-treatable alloy, and to satisfy the above-mentioned various requirements. However, after further study for practical application, the above proposed alloy is unique to the heat-treated alloy during the period of storage, such as storage between the production of the sheet material at the material manufacturer and the canning at the manufacturer. Due to the aging, the strength of the material, especially the proof stress, increases.Therefore, if a long period of time elapses from plate manufacturing to can making, there is a problem that the formability such as ironing property at the time of can making deteriorates. It has been found that there is a problem that the strength and moldability at the time of can making vary depending on the period up to the later can making.

【0009】この発明は以上の事情を背景としてなされ
たもので、前述の諸要求を満たすことができると同時
に、板製造後の経時変化が少なく、板を製造してから長
期間経過してから製缶する場合でもしごき性等の成形加
工性の低下や材料特性のばらつきを招くおそれが少ない
絞り加工用アルミニウム合金板の製造方法を提供するこ
とを目的とするものである。
The present invention has been made in view of the above circumstances, and can satisfy the above-mentioned various requirements, and at the same time, there is little change with time after the manufacture of the plate, and after a long time has passed since the manufacture of the plate. It is an object of the present invention to provide a method for producing an aluminum alloy sheet for drawing, which is less likely to cause a reduction in molding workability such as ironing property and a variation in material properties even in the case of can making.

【0010】[0010]

【課題を解決するための手段】前述の課題を解決するた
め、本発明者等が鋭意実験・研究を重ねた結果、前記提
案の成分組成の合金に対する製造プロセス、製造条件を
適切に定めることによって、熱処理型合金として高強度
を示すと同時に絞り加工性等の良好な成形性を確保する
ことができるばかりでなく、板製造後の経時変化が少な
いアルミニウム合金板が得られることを見出し、この発
明をなすに至った。
Means for Solving the Problems In order to solve the above-mentioned problems, the present inventors have conducted intensive experiments and studies, and as a result, by appropriately determining the manufacturing process and the manufacturing conditions for the alloy having the above-mentioned component composition. The present invention has found that not only can a heat-treatable alloy exhibit high strength and at the same time ensure good formability such as drawing workability, but also provide an aluminum alloy plate with little change over time after plate manufacture. Was reached.

【0011】具体的には、請求項1の発明の絞り加工用
高強度熱処理型アルミニウム合金板の製造方法は、Zn
3〜6%、Mg0.5〜3%、Mn0.5%を越え1.
5%以下を含有し、残部がAlおよび不可避的不純物よ
りなる合金を所定の板厚まで仕上げた後、450〜55
0℃の範囲内の温度で5分以下の溶体化処理を施し、次
いで80〜150℃の範囲内の温度で1〜24時間の人
工時効処理を施し、さらに70%以下の圧延率で冷間圧
延を施すことを特徴とするものである。
More specifically, the method for producing a high-strength heat-treated aluminum alloy sheet for drawing according to the first aspect of the present invention comprises the steps of:
3-6%, Mg 0.5-3%, Mn more than 0.5%
After finishing an alloy containing 5% or less and the balance consisting of Al and unavoidable impurities to a predetermined thickness, 450-55
A solution treatment at a temperature in the range of 0 ° C. for 5 minutes or less, an artificial aging treatment at a temperature in the range of 80 to 150 ° C. for 1 to 24 hours, and a cold rolling at a rolling reduction of 70% or less It is characterized by rolling.

【0012】また請求項2の発明の絞り加工用高強度熱
処理型アルミニウム合金板の製造方法は、Zn3〜6
%、Mg0.5〜3%、Cu0.1〜2.5%、Mn
0.5%を越え1.5%以下を含有し、残部がAlおよ
び不可避的不純物よりなる合金を所定の板厚まで仕上げ
た後、450〜540℃の範囲内の温度で5分以下の溶
体化処理を施し、次いで80〜150℃の範囲内の温度
で1〜24時間の人工時効処理を施し、さらに70%以
下の圧延率で冷間圧延を施すことを特徴とするものであ
る。
Further, the method for producing a high-strength heat-treated aluminum alloy sheet for drawing according to the second aspect of the present invention is characterized in that:
%, Mg 0.5-3%, Cu 0.1-2.5%, Mn
After finishing an alloy containing more than 0.5% and not more than 1.5% and the balance consisting of Al and unavoidable impurities to a predetermined plate thickness, a solution of not more than 5 minutes at a temperature in the range of 450 to 540 ° C. Aging treatment, followed by artificial aging treatment at a temperature in the range of 80 to 150 ° C. for 1 to 24 hours, and cold rolling at a rolling reduction of 70% or less.

【0013】[0013]

【発明の実施の形態】この発明においては、成分組成面
においては、基本的には熱処理型合金としてZnおよび
Mgによる析出硬化に基づく強度向上を図るとともにM
nの添加により組織の安定化、しごき加工性の向上を図
り、さらに必要に応じてCuを添加して固溶強化により
強度向上を図り、また製造プロセス面からは、溶体化処
理の時間を短時間として絞り加工用材料として充分な成
形性が確保されるようにし、併せて溶体化処理後に適切
な条件で人工時効処理を行なうことによって、板製造後
の経時変化を抑制することとしている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, in terms of the composition of components, as a heat-treatable alloy, the strength is enhanced by precipitation hardening by Zn and Mg, and M
The addition of n improves the stability of the structure and the workability of ironing, and further improves the strength by solid solution strengthening by adding Cu as necessary, and shortens the time of solution treatment from the viewpoint of the manufacturing process. The time is set so that sufficient formability as a material for drawing processing is ensured, and at the same time, an aging treatment under appropriate conditions after the solution treatment is carried out to suppress a temporal change after the production of the plate.

【0014】そこで先ずこの発明における成分組成の限
定理由を説明する。
First, the reasons for limiting the component composition in the present invention will be described.

【0015】Zn:ZnはMgとともにMgZn2 を形
成して、析出硬化による強度向上に有効である。Zn量
が3%未満では強度向上の効果が充分に得られず、一方
6%を越えれば圧延性が低下するとともに缶成形性も低
下させ、さらには耐食性の低下を招く。したがってZn
量は3〜6%の範囲内とした。
Zn: Zn forms MgZn 2 together with Mg and is effective for improving strength by precipitation hardening. If the amount of Zn is less than 3%, the effect of improving the strength cannot be sufficiently obtained, while if it exceeds 6%, the rolling property is reduced, the moldability of the can is also reduced, and the corrosion resistance is further reduced. Therefore Zn
The amount was in the range of 3-6%.

【0016】Mg:MgはZnとともにMgZn2 を形
成して、析出硬化による強度向上に有効である。またM
gは、単独でも固溶強化による強度向上に有効である。
Mg量が0.5%未満では強度向上の効果が充分に得ら
れず、一方3%を越えれば圧延性が低下するとともに、
缶成形性を低下させる。したがってMg量は0.5〜3
%の範囲内とした。
Mg: Mg forms MgZn 2 together with Zn and is effective in improving the strength by precipitation hardening. Also M
g alone is effective for improving strength by solid solution strengthening.
If the Mg content is less than 0.5%, the effect of improving the strength cannot be sufficiently obtained, while if it exceeds 3%, the rollability decreases, and
Decreases can moldability. Therefore, the amount of Mg is 0.5-3.
%.

【0017】Mn:Mnは結晶粒の微細化、安定化に有
効な元素であり、またMn系金属間化合物による固体潤
滑効果によってしごき加工性を向上させる。Mn量が
0.5%以下ではこれらの効果が充分に得られず、一方
1.5%を越えればMnAl6 の初晶巨大金属間化合物
が生成されて、成形性、とりわけフランジ成形性を著し
く損なってしまい、またMn系金属間化合物にMgZn
2 析出物が不均一に粗大析出して、強度向上が図れなく
なってしまう。したがってMn量は0.5%を越え1.
5%以下の範囲内とした。
Mn: Mn is an element effective for refining and stabilizing crystal grains, and improves ironing workability by a solid lubrication effect of a Mn-based intermetallic compound. When the Mn content is 0.5% or less, these effects cannot be sufficiently obtained. On the other hand, when the Mn content exceeds 1.5%, a primary crystal giant intermetallic compound of MnAl 6 is generated, and the formability, particularly the flange formability, is remarkably improved. And the Mn-based intermetallic compound is MgZn.
(2) Precipitates are non-uniformly and coarsely deposited, making it impossible to improve strength. Therefore, the Mn content exceeds 0.5%.
It was within the range of 5% or less.

【0018】Cu:Cuは固溶強化による強度向上に有
効な元素であり、そこで請求項2の発明の合金において
積極的に添加することとした。Cu量が0.1%未満で
は強度向上の効果が充分に得られず、一方2.5%を越
えれば成形性、耐食性が劣化する。したがって請求項2
の発明においてCu量は0.1〜2.5%の範囲内とし
た。なお請求項1の発明の合金においても、Cuは不純
物として0.1%未満含有される場合があることは勿論
である。
Cu: Cu is an element effective for improving the strength by solid solution strengthening. Therefore, Cu is positively added in the alloy according to the second aspect of the present invention. If the Cu content is less than 0.1%, the effect of improving the strength cannot be sufficiently obtained, while if it exceeds 2.5%, moldability and corrosion resistance deteriorate. Therefore, claim 2
In the invention of (1), the Cu content was in the range of 0.1 to 2.5%. In the alloy according to the first aspect of the present invention, it is needless to say that Cu may be contained as an impurity in an amount of less than 0.1%.

【0019】以上の各元素のほかは、基本的にはAlお
よび不可避的不純物とすれば良い。一般的な不純物とし
てはFe,Si,Cr,Zr等があるが、Feは0.7
%未満、Siは0.5%未満、Crは0.3%未満、Z
rは0.3%未満であればこの発明の効果を損なうこと
はない。また一般のアルミニウム合金では鋳塊組織微細
化のために微量のTiを単独であるいはBと複合して添
加することがあり、またTi,Bは不純物として含有さ
れることもあるが、この発明でもTiは0.2%未満、
Bは0.05%未満であれば特にこの発明の効果を損な
うことはない。
In addition to the above elements, Al and unavoidable impurities may be basically used. Common impurities include Fe, Si, Cr, Zr and the like.
%, Si is less than 0.5%, Cr is less than 0.3%, Z
If r is less than 0.3%, the effect of the present invention is not impaired. In general aluminum alloys, a small amount of Ti may be added alone or in combination with B to refine the ingot structure. Ti and B may be contained as impurities. Ti is less than 0.2%,
If B is less than 0.05%, the effect of the present invention is not particularly impaired.

【0020】次にこの発明における製造プロセスについ
て説明する。
Next, the manufacturing process according to the present invention will be described.

【0021】前述のような成分組成の合金を所定の中間
板厚に仕上げるまでの工程(溶体化処理前までのプロセ
ス)は特に限定しないが、通常はDC鋳造法(半連続鋳
造法)によって鋳造した後、均質化処理を施し、さらに
熱間圧延を行ない、必要に応じて冷間圧延を施して、所
定の中間板厚とすれば良い。あるいはまた連続鋳造法を
適用し、さらに必要に応じて均質化処理、冷間圧延を行
なって、所定の中間板厚としても良い。
The steps until the alloy having the above-mentioned composition is finished to a predetermined intermediate plate thickness (the process before the solution treatment) are not particularly limited, but are usually cast by DC casting (semi-continuous casting). After that, a homogenization treatment is performed, hot rolling is further performed, and cold rolling is performed as necessary, so that a predetermined intermediate plate thickness is obtained. Alternatively, a continuous casting method may be applied, and if necessary, homogenization treatment and cold rolling may be performed to obtain a predetermined intermediate plate thickness.

【0022】ここで、DC鋳造は常法に従って行なえば
良い。また均質化処理も常法に従って400〜500℃
において1〜24時間程度加熱すれば良い。均質化処理
の加熱時間が1時間未満、加熱温度が400℃未満では
いずれも均質化の効果が得られず、一方加熱時間が24
時間を越えれば均質化の効果が飽和して経済性を損なう
だけであり、また加熱温度が500℃を越えれば共晶融
解による局所溶解が発生するおそれがある。
Here, DC casting may be performed according to a conventional method. Also, the homogenization treatment is performed at 400 to 500 ° C. according to a conventional method.
Heating for about 1 to 24 hours. If the heating time of the homogenization treatment is less than 1 hour and the heating temperature is less than 400 ° C., none of the effects of homogenization can be obtained.
If the heating time exceeds 500 ° C., the effect of homogenization is saturated and the economic efficiency is impaired. If the heating temperature exceeds 500 ° C., local melting due to eutectic melting may occur.

【0023】均質化処理後には直ちに、あるいは熱間圧
延前予備加熱を行なってから、熱間圧延を行なうが、こ
の熱間圧延は、その開始温度を400〜500℃の範囲
内、終了温度を200〜350℃の範囲内とすることが
好ましい。熱間圧延開始温度が400℃未満では変形抵
抗が大きく、圧延性が悪くなり、一方500℃を越える
熱間圧延開始温度では熱延割れが発生するおそれがあ
る。なおこの熱間圧延は、均質化処理温度以上で開始す
ることが望ましく、このようにすることによって、均質
化処理後の粗大析出物の形成を抑制することができる。
また熱間圧延終了温度が200℃未満では圧延が困難で
あり、一方350℃を越える熱間圧延終了温度では熱間
圧延上り後に金属間化合物の不均一な粗大析出が促進さ
れてしまって、その後の溶体化処理性が低下し、さらに
は絞り性、張出性、口拡げ性を劣化させる。
Immediately after the homogenization treatment, or after preheating before hot rolling, hot rolling is performed. In this hot rolling, the starting temperature is in the range of 400 to 500 ° C. and the ending temperature is It is preferable to be in the range of 200 to 350 ° C. If the hot rolling start temperature is lower than 400 ° C., the deformation resistance is large and the rollability is deteriorated. On the other hand, if the hot rolling start temperature exceeds 500 ° C., hot rolling cracks may occur. It is desirable that the hot rolling be started at a temperature equal to or higher than the homogenization treatment temperature, and thereby, formation of coarse precipitates after the homogenization treatment can be suppressed.
If the hot-rolling end temperature is lower than 200 ° C., it is difficult to perform rolling. On the other hand, if the hot-rolling end temperature is higher than 350 ° C., uneven coarse precipitation of the intermetallic compound is promoted after hot rolling, and thereafter, , The solution-treating property of the powder decreases, and furthermore, the drawability, the overhang property, and the opening property are deteriorated.

【0024】一方連続鋳造法を適用する場合、ロール間
に直接溶湯を注入して凝固させる方法(薄板連続鋳造
法)を適用しても、あるいはベルトやブロック間に溶湯
を注入して凝固させる方法を適用しても良く、いずれの
場合も必要に応じて熱間圧延を行なっても良い。なお連
続鋳造法を適用する場合、鋳造板厚は1〜10mmの範
囲内が好ましい。鋳造板厚が1mm未満では鋳造が困難
であり、一方10mmを越えればその後の製品板厚まで
の冷間圧延の負荷が大きくなり、量産性が低下する。
On the other hand, when the continuous casting method is applied, a method of directly injecting a molten metal between rolls and solidifying it (a continuous casting method of a thin plate), or a method of injecting a molten metal between belts and blocks to solidify the same. May be applied, and in any case, hot rolling may be performed as necessary. When the continuous casting method is applied, the thickness of the cast plate is preferably in the range of 1 to 10 mm. If the thickness of the cast sheet is less than 1 mm, casting is difficult. On the other hand, if the thickness exceeds 10 mm, the load of the subsequent cold rolling to the product sheet thickness increases, and mass productivity decreases.

【0025】熱間圧延後あるいは連続鋳造後に必要に応
じて中間板厚とするために行なう冷間圧延は、常法に従
って行なえば良く、圧延率も特に限定されるものではな
い。
The cold rolling performed after hot rolling or continuous casting to obtain an intermediate sheet thickness as necessary may be performed according to a conventional method, and the rolling ratio is not particularly limited.

【0026】上述のようにして中間板厚まで仕上げた後
には、溶体化処理を施す。この溶体化処理は、450〜
550℃の範囲内の温度もしくは450〜540℃の範
囲内の温度で5分以下の短時間加熱とする必要がある。
溶体化処理温度が450℃未満では、時効析出によって
強度向上に寄与する元素の溶体化が不充分となり、その
ため充分な強度向上を図れなくなる。またCuを積極的
に添加していない請求項1の合金の場合、溶体化処理温
度が550℃を越えれば共晶融解が生じてしまうおそれ
があり、一方Cuを積極的に添加した請求項2の合金の
場合は、Cu添加により融点が下がるため、溶体化処理
温度が540℃を越えれば共晶融解が生じてしまうおそ
れがある。さらにこの溶体化処理は、その処理時間を5
分以下の短時間とし、不完全溶体化とすることが重要で
ある。すなわち、一般に7000系熱処理合金の溶体化
処理時間はJIS 4000において板厚との関係で最
低時間が規定されているが、JISに準拠した長時間の
溶体化処理を施して、完全に溶体化させた場合、高強度
は得られるものの、その後の冷間圧延性が低下するばか
りでなく、絞り性、張出性などの缶成形性が劣化する。
また長時間溶体化処理を行なえば、表面酸化皮膜が厚く
なって、これにより成形性、特にしごき性を劣化させて
しまうところから、溶体化処理後にアルカリ洗浄や酸洗
浄などの表面洗浄処理が必要となり、コストアップを招
いてしまう。これに対し溶体化処理時間を5分以下とし
て、不完全な溶体化を行なえば、缶の肉薄化に必要な程
度の高強度化を図りつつも、絞り性、張出性、しごき性
などの缶成形性を充分に確保することができ、かつ溶体
化処理後の表面洗浄処理も不要となる。このような短時
間の溶体化処理は、連続焼鈍炉を用いれば容易に行なう
ことができる。なお溶体化処理後の冷却速度は、10℃
/sec以上であれば充分である。したがって溶体化処
理後の冷却は、水焼入れのみならず、強制空冷を適用す
ることもできる。
After finishing to the intermediate plate thickness as described above, a solution treatment is performed. This solution treatment is performed at 450 to
It is necessary to heat at a temperature in the range of 550 ° C or a temperature in the range of 450 to 540 ° C for a short time of 5 minutes or less.
If the solution treatment temperature is lower than 450 ° C., the elements that contribute to the strength improvement due to aging precipitation become insufficiently solutionized, so that sufficient strength improvement cannot be achieved. Further, in the case of the alloy of claim 1 in which Cu is not positively added, eutectic melting may occur if the solution treatment temperature exceeds 550 ° C., while Cu is positively added. In the case of the alloy (1), since the melting point is lowered by adding Cu, if the solution treatment temperature exceeds 540 ° C., eutectic melting may occur. Furthermore, this solution treatment reduces the processing time to 5 times.
It is important to use a short time of not more than a minute to achieve incomplete solution. That is, in general, the minimum time for the solution treatment of the 7000 series heat-treated alloy is specified in JIS 4000 in relation to the plate thickness, but the solution treatment is performed for a long time in accordance with JIS to complete the solution treatment. In such a case, although high strength is obtained, not only the subsequent cold rolling property is reduced, but also the formability of the can such as drawability and overhang is deteriorated.
In addition, if the solution treatment is performed for a long time, the surface oxide film becomes thicker, which deteriorates the formability, especially the ironing property. Therefore, it is necessary to perform a surface cleaning treatment such as alkali cleaning or acid cleaning after the solution treatment. This leads to an increase in cost. On the other hand, if the solution heat treatment time is set to 5 minutes or less and incomplete solution heat treatment is performed, the strength required for thinning the can can be increased, but the drawability, overhang property, ironing property, etc. Can moldability can be sufficiently ensured, and surface cleaning treatment after solution treatment is not required. Such a short-time solution treatment can be easily performed by using a continuous annealing furnace. The cooling rate after the solution treatment was 10 ° C.
/ Sec or more is sufficient. Therefore, for cooling after the solution treatment, not only water quenching but also forced air cooling can be applied.

【0027】溶体化処理後には80〜150℃の範囲内
の温度で1〜24時間保持する人工時効処理を施す。こ
のような人工時効処理を施すことによって、微細な析出
物が生成されて加工歪が均質化されるとともに材料強度
の向上が図られ、またその後の最終冷間圧延によって付
与される強度が安定化して冷間圧延性が向上するばかり
でなく、特に最終板の経時変化が抑制されて、製缶時ま
で長期間経過しても製缶時の成形性の低下が少なく、ま
た製缶までの経過期間による強度、成形性のばらつきを
少なくすることができる。すなわち、溶体化処理後にそ
のまま最終の冷間圧延を行なった場合には板製造後に経
時変化が生じて製缶時の強度が上昇して成形性が低下し
たり、製缶時の強度、成形性にばらつきが生じるおそれ
があるが、溶体化処理後に人工時効処理を行なって予め
微細な析出物を生成させておくことにより、板製造時の
放置期間中における微細析出物の析出が少なくなり、経
時変化を防止することができるのである。ここで、人工
時効処理における温度が80℃未満、または保持時間が
1時間未満では上述の効果が充分に得られず、一方温度
が150℃を越えるかまたは保持時間が24時間を越え
れば過時効となって強度の低下を招いてしまう。したが
って人工時効処理は80〜150℃の温度で1〜24時
間と規定した。
After the solution treatment, an artificial aging treatment is performed at a temperature in the range of 80 to 150 ° C. for 1 to 24 hours. By applying such an artificial aging treatment, fine precipitates are generated, the working strain is homogenized, the material strength is improved, and the strength given by the final final cold rolling is stabilized. In addition to improving cold rollability, the change over time of the final sheet is particularly suppressed, and even if a long time has passed until can making, there is little decrease in formability during can making, and the progress up to can making Variations in strength and moldability over time can be reduced. That is, when the final cold rolling is performed as it is after the solution treatment, a change with time occurs after the plate is manufactured, and the strength at the time of can making increases and the formability decreases. However, by performing artificial aging treatment after the solution treatment and generating fine precipitates in advance, precipitation of fine precipitates during the standing period at the time of plate manufacturing is reduced, and The change can be prevented. Here, when the temperature in the artificial aging treatment is less than 80 ° C. or the holding time is less than 1 hour, the above-mentioned effects cannot be sufficiently obtained. On the other hand, when the temperature exceeds 150 ° C. or the holding time exceeds 24 hours, the overaging is performed. As a result, the strength is reduced. Therefore, the artificial aging treatment was specified at a temperature of 80 to 150 ° C. for 1 to 24 hours.

【0028】なお溶体化処理後には、直ちに人工時効処
理を施さず、室温に1日(24時間)以上放置して室温
時効させてから人工時効処理を施すことが望ましい。こ
のように人工処理前に24時間以上の室温時効を行なえ
ば、その室温時効中に生成される微細析出物がその後の
人工時効処理による析出物分布を緻密化し、その結果そ
の後の冷間圧延で導入される転位(加工歪)を均質化さ
せる効果を奏することができる。
After the solution treatment, it is preferable that the artificial aging treatment is not immediately performed, but left at room temperature for one day (24 hours) or more to allow the room temperature aging, and then the artificial aging treatment is performed. If the room temperature aging is performed for 24 hours or more before the artificial treatment as described above, fine precipitates generated during the room temperature aging densify the precipitate distribution by the subsequent artificial aging treatment, and as a result, in the subsequent cold rolling. An effect of homogenizing introduced dislocations (processing strain) can be obtained.

【0029】前述のようにして人工時効処理を行なった
後には、最終板厚とするための冷間圧延を行なう。この
最終冷間圧延は、圧延率70%以下とする必要がある。
圧延率が70%を越えれば、高強度は得られるものの成
形性が著しく低下し、また深絞り加工における耳率も大
きくなる。なお最終の冷延圧延における圧延率の下限は
特に定めないが、充分な高強度を得るためには30%以
上とすることが望ましい。
After performing the artificial aging treatment as described above, cold rolling is performed to obtain the final sheet thickness. This final cold rolling needs to have a rolling reduction of 70% or less.
If the rolling ratio exceeds 70%, high strength can be obtained, but formability is significantly reduced, and the ear ratio in deep drawing becomes large. Although the lower limit of the rolling reduction in the final cold rolling is not particularly defined, it is preferably at least 30% in order to obtain a sufficiently high strength.

【0030】最終の冷間圧延によって製品板厚に仕上げ
られた後には、必要に応じて80〜160℃の範囲内の
温度で1〜12時間保持する最終焼鈍を行なっても良
い。このような最終焼鈍を行なうことによって歪を安定
化し、深絞り性を一層改善することができる。最終焼鈍
の温度が80℃未満、時間が1時間未満では、上述の効
果が得られない。一方最終焼鈍の温度が160℃を越え
れば過時効となって強度低下を招き、また最終焼鈍の時
間が12時間を越えれば強度が高くなり過ぎて成形性、
特に絞り加工性、しごき加工性、フランジ成形性が低下
し、またこの場合、温度によっては過時効となって強度
低下を招く。なお最近の冷間圧延機は高速高圧下のた
め、上り温度が100℃を越えることが多く、この場合
は特に積極的な加熱を行なわなくても、冷間圧延直後の
巻取コイル冷却中の自己焼鈍により最終焼鈍を行なうこ
とができる。
After finishing to a product thickness by final cold rolling, if necessary, final annealing may be performed at a temperature in the range of 80 to 160 ° C. for 1 to 12 hours. By performing such final annealing, the strain can be stabilized, and the deep drawability can be further improved. If the temperature of the final annealing is less than 80 ° C. and the time is less than 1 hour, the above effects cannot be obtained. On the other hand, if the final annealing temperature exceeds 160 ° C., overaging occurs and the strength is reduced, and if the final annealing time exceeds 12 hours, the strength becomes too high and the formability is increased.
In particular, drawability, ironability, and flange formability deteriorate, and in this case, depending on the temperature, overaging occurs, resulting in a decrease in strength. Since recent cold rolling mills are under high-speed and high-pressure conditions, the ascending temperature often exceeds 100 ° C. In this case, even if active heating is not particularly performed, the winding coil during cooling immediately after cold rolling is not required. Final annealing can be performed by self-annealing.

【0031】[0031]

【実施例】表1の合金No.1,2の合金について、常
法に従ってDC鋳造法により鋳造し、得られた鋳塊に4
60℃×12時間の均質化処理を施し、面削後470℃
で熱間圧延を開始し、板厚3mmの熱延板とした。また
表1の合金No.3の合金について5mm厚に連続鋳造
圧延し、その後460℃×12時間の均質化処理を施し
た。一方表1の合金No.4はJIS 3004合金相
当の従来材であり、これについてはDC鋳造後、600
℃×5時間の均質化処理を施し、面削後常法に従って2
mm厚まで熱間圧延した。
EXAMPLE Alloy No. 1 in Table 1 was used. The alloys 1 and 2 were cast by a DC casting method according to a conventional method, and 4
Apply homogenization treatment at 60 ° C x 12 hours, 470 ° C after facing
To start hot rolling to obtain a hot-rolled sheet having a thickness of 3 mm. Further, alloy No. 1 in Table 1 was used. The alloy No. 3 was continuously cast and rolled to a thickness of 5 mm, and then subjected to a homogenization treatment at 460 ° C. × 12 hours. On the other hand, alloy No. No. 4 is a conventional material equivalent to JIS 3004 alloy.
After homogenization at 5 ℃ for 5 hours, after facing,
It was hot rolled to a thickness of mm.

【0032】このようにして得られた熱延板(もしくは
連続鋳造圧延版)に対して、表2の製造条件符号A〜K
に示す各条件で1次冷間圧延→溶体化処理→人工時効処
理→2次冷間圧延→最終焼鈍を施した。なお一部の製造
条件符号B,E,G〜Iでは人工時効処理または最終焼
鈍を省き、また従来材(合金No.4)に対する製造条
件Kでは人工時効処理を行なわなかった。
The hot-rolled sheet (or continuous cast and rolled plate) thus obtained was subjected to production condition codes A to K in Table 2.
Under the conditions shown in the following, primary cold rolling → solution treatment → artificial aging treatment → secondary cold rolling → final annealing was performed. The artificial aging treatment or the final annealing was omitted in some of the production condition codes B, E, and G to I, and the artificial aging treatment was not performed in the production condition K for the conventional material (alloy No. 4).

【0033】以上のようにして得られた各板について、
機械的性能を調べるとともに、DI缶特性を調べた。そ
の結果を表3に示す。なお機械的性能としては、前述の
ような板製造直後(人工時効処理直後)の状態と、その
後塗装焼付処理として200℃×20分の加熱を行なっ
た後の状態との2状態において引張強度(TS)、耐力
(YS)、伸び(EL)を調べた。一方DI缶特性とし
ては製缶性、フランジ成形性、耐圧強度、外観品質につ
いて調べ、従来材(合金番号4;製造条件符号K)と比
較して評価し、従来材と同等の場合に○印、優れている
場合に◎印、劣る場合に×印を付した。ここで、製缶性
はDI缶胴を4000缶連続して成形し、DI加工での
破断の発生率で評価し、またフランジ加工性については
DI加工後のDI缶胴にネッキング加工を行なった後、
円錐型ポンチを押し込み、フランジ部の破断時の口拡げ
率で評価し、耐圧強度はDI缶に内圧を加えてバックリ
ング発生時の圧力で評価し、さらに外観品質はDI缶胴
表面におけるゴーリングおよびフローラインの発生の有
無および光沢の程度で評価した。
With respect to each plate obtained as described above,
In addition to examining the mechanical performance, the characteristics of the DI can were examined. Table 3 shows the results. In addition, as for the mechanical performance, the tensile strength (in the state immediately after the production of the plate as described above (immediately after the artificial aging treatment)) and the state in which the coating was heated at 200 ° C. for 20 minutes as a coating baking treatment thereafter were used. TS), yield strength (YS), and elongation (EL) were examined. On the other hand, the characteristics of DI cans were examined for can-manufacturability, flange formability, compressive strength, and appearance quality, and evaluated in comparison with conventional materials (alloy No. 4; production condition code K). And 印 for excellent, and x for poor. Here, the can-making properties were evaluated by continuously forming 4000 cans of a DI can body and evaluating the rate of occurrence of breakage in the DI processing, and the flanging workability was performed by necking the DI can body after the DI processing. rear,
The conical punch is pushed in, and the opening rate at the time of fracture of the flange portion is evaluated. The pressure resistance is evaluated by applying internal pressure to the DI can and the pressure when buckling occurs. Evaluation was made based on the occurrence of flow lines and the degree of gloss.

【0034】また、表1の合金No.1の合金につい
て、表2の製造条件符号A〜Dの各プロセスで製造して
得られた各板の材料特性の経時変化として、板製造直後
(最終焼鈍直後)から1日目、3日目、7日目、1ケ月
目、6ケ月目の耐力値を調べた。その結果を表4に示
す。なお表4において「耐力上昇量」は、6ケ月経過時
の耐力と1日目の耐力との差を表わす。また評価として
は、耐力上昇量が10N/mm2 以内の場合に○印を、
10N/mm2 を越える場合に×印を付した。
Further, alloy No. 1 shown in Table 1 was used. As for the alloy No. 1, as a time-dependent change in the material properties of each plate manufactured by the processes indicated by the manufacturing condition codes A to D in Table 2, the first day and the third day immediately after the plate manufacturing (immediately after final annealing) , On the seventh day, the first month, and the sixth month. Table 4 shows the results. In addition, in Table 4, the "proof stress increase amount" represents the difference between the proof stress after 6 months and the proof stress on the first day. As the evaluation, when the increase in proof stress was within 10 N / mm 2 ,
A cross mark was given when the value exceeded 10 N / mm 2 .

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【表2】 [Table 2]

【0037】[0037]

【表3】 [Table 3]

【0038】[0038]

【表4】 [Table 4]

【0039】表3に示されるように、この発明で規定す
る成分組成範囲内の合金(合金No.1〜No.3)に
ついて、この発明で規定するプロセス範囲内の条件で板
を製造した場合(製造条件符号A,G,J)は、従来材
(合金No.4、製造条件符号K;3004合金)と比
較して高強度が達成されており、しかもDI缶特性も同
等以上であることが確認された。
As shown in Table 3, when an alloy (alloy No. 1 to No. 3) within the component composition range specified by the present invention was manufactured under conditions within the process range specified by the present invention, (Production condition codes A, G, J) have achieved higher strength than conventional materials (alloy No. 4, production condition code K: 3004 alloy), and have the same or better DI can characteristics. Was confirmed.

【0040】一方、製造条件符号Cは人工時効処理の温
度が高過ぎた比較例、製造条件符号Eは人工時効処理の
時間が長過ぎた比較例であり、いずれも過時効によって
強度が低下し、またフランジ成形性にも劣っていた。ま
た製造条件符号Fは最終冷間圧延の圧延率が高過ぎた比
較例であるが、この場合は強度が高過ぎて製缶性に劣る
とともに、DI加工後の耳率が高かった。さに製造条件
符号Hは溶体化処理の温度が高過ぎた比較例であるが、
この場合は共晶融解の発生により絞り性が低下し、また
DI缶表面のフローラインの発生により外観品質不良が
生じた。製造条件符号Iは溶体化処理の時間が長過ぎた
比較例であるが、この場合は製缶性が低下するとともに
酸化皮膜によるフローラインの発生によって外観不良が
生じた。
On the other hand, the manufacturing condition code C is a comparative example in which the temperature of the artificial aging treatment is too high, and the manufacturing condition code E is a comparative example in which the time of the artificial aging treatment is too long. Also, the flange formability was poor. The production condition code F is a comparative example in which the rolling reduction in the final cold rolling was too high. In this case, the strength was too high and the can-making property was poor, and the ear ratio after DI processing was high. The production condition code H is a comparative example in which the solution treatment temperature was too high.
In this case, the drawability was reduced due to the occurrence of eutectic melting, and the appearance quality was poor due to the occurrence of flow lines on the surface of the DI can. The production condition code I is a comparative example in which the solution treatment time was too long, but in this case, the can-making property was reduced and the appearance was poor due to the generation of flow lines due to the oxide film.

【0041】また材料特性の経時変化については、表4
に示すように、この発明で規定する成分組成範囲内の合
金についてこの発明で規定するプロセス条件で製造した
製造条件符号Aの場合は、6ケ月経過時でも耐力値の上
昇はわずか7N/mm2 に過ぎず、安定した材料特性を
有していることが判る。一方製造条件符号Bは溶体化処
理後に人工時効処理を施さなかった比較例、製造条件符
号Dは溶体化処理後の人工時効処理の温度が低過ぎた比
較例であり、これらの場合はいずれも1ケ月〜6ケ月経
過時の耐力値の上昇が著しく大きく、しごき性も低下し
てしまうことが判明した。
Table 4 shows the change over time in the material properties.
As shown in the above, in the case of the manufacturing condition code A manufactured under the process conditions specified in the present invention for the alloy within the component composition range specified in the present invention, the increase in the yield strength value is only 7 N / mm 2 even after 6 months. It can be seen that the material has stable material properties. On the other hand, the production condition code B is a comparative example in which the artificial aging treatment was not performed after the solution treatment, and the production condition code D was a comparative example in which the temperature of the artificial aging treatment after the solution treatment was too low. It was found that the increase in proof stress after a lapse of one to six months was remarkably large, and the ironing property was also reduced.

【0042】[0042]

【発明の効果】以上の実施例からも明らかなように、こ
の発明によれば、各種の缶等に使用される絞り加工用ア
ルミニウム合金板として、高強度を有すると同時に、優
れた成形性、特に優れた絞り性、しごき性を有し、しか
も経時変化が少なく、材料特性が長期間安定しているア
ルミニウム合金板を得ることが可能となった。すなわ
ち、従来のAl−Mn−Mg−Cu系合金やAl−Mg
−Mn系合金では強度を高めれば絞り性、しごき性が低
下するとされていたが、この発明の場合、成分組成を厳
しく規定し、さらには熱処理型合金として適切な溶体化
処理条件を適用して合金元素の固溶析出状態を適正化す
ることによって、強度を高めながらも良好な成形性を確
保することが可能となり、なおかつ溶体化処理後に適切
な人工時効処理を施しておくことによって、熱処理型合
金に特有の経時変化を抑制することが可能となったので
ある。したがってこの発明によるアルミニウム合金板を
用いれば、特に缶用素材として、薄肉化、高強度化が可
能となり、また板製造から製缶までの経過期間によって
製缶時の材料特性にばらつきが生じることが少なく、特
に板製造から製缶までに長期間経過しても製缶時の成形
性の低下を防止し、安定して製缶することができる。ま
たこの発明の方法によるアルミニウム合金板は、DI缶
胴、DRD缶胴のみならず缶蓋にも適用可能であり、そ
のため缶のユニアロイ化を達成できるから、リサイクル
性を良好にすることもできる。
As is clear from the above embodiments, according to the present invention, as an aluminum alloy sheet for drawing used for various cans, etc., not only high strength but also excellent formability, In particular, it has become possible to obtain an aluminum alloy sheet having excellent drawability and ironing property, with little change over time, and stable material properties for a long time. That is, a conventional Al-Mn-Mg-Cu alloy or Al-Mg
-In Mn-based alloys, it was said that if the strength was increased, the drawability and ironability would decrease, but in the case of the present invention, the component composition was strictly specified, and further, by applying appropriate solution treatment conditions as a heat treatment type alloy. By optimizing the solid solution precipitation state of alloying elements, it is possible to ensure good formability while increasing strength, and by performing appropriate artificial aging treatment after solution treatment, heat treatment type This makes it possible to suppress the time-dependent change peculiar to the alloy. Therefore, if the aluminum alloy plate according to the present invention is used, particularly as a material for a can, it becomes possible to make the material thinner and have a higher strength. In particular, even when a long period of time elapses from plate manufacturing to can making, a reduction in moldability during can making can be prevented, and can can be made stably. Further, the aluminum alloy plate according to the method of the present invention is applicable not only to DI cans and DRD cans, but also to can lids, and thus can be made into a unialloy can, so that recyclability can be improved.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C22F 1/04 - 1/057 C22C 21/00 - 21/18 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C22F 1/04-1/057 C22C 21/00-21/18

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Zn3〜6%(重量%、以下同じ)、M
g0.5〜3%、Mn0.5%を越え1.5%以下を含
有し、残部がAlおよび不可避的不純物よりなる合金を
所定の板厚まで仕上げた後、450〜550℃の範囲内
の温度で5分以下の溶体化処理を施し、次いで80〜1
50℃の範囲内の温度で1〜24時間の人工時効処理を
施し、さらに70%以下の圧延率で冷間圧延を施すこと
を特徴とする、絞り加工用高強度熱処理型アルミニウム
合金板の製造方法。
1. Zn 3 to 6% (% by weight, hereinafter the same), M
After finishing an alloy containing 0.5 to 3%, Mn of more than 0.5% and 1.5% or less, and the balance consisting of Al and unavoidable impurities to a predetermined thickness, the temperature is in the range of 450 to 550 ° C. Solution treatment at a temperature of 5 minutes or less, and then 80-1
Manufacture of a high-strength heat-treated aluminum alloy sheet for drawing, which is subjected to an artificial aging treatment at a temperature in the range of 50 ° C. for 1 to 24 hours, and further to a cold rolling at a rolling reduction of 70% or less. Method.
【請求項2】 Zn3〜6%、Mg0.5〜3%、Cu
0.1〜2.5%、Mn0.5%を越え1.5%以下を
含有し、残部がAlおよび不可避的不純物よりなる合金
を所定の板厚まで仕上げた後、450〜540℃の範囲
内の温度で5分以下の溶体化処理を施し、次いで80〜
150℃の範囲内の温度で1〜24時間の人工時効処理
を施し、さらに70%以下の圧延率で冷間圧延を施すこ
とを特徴とする、絞り加工用高強度熱処理型アルミニウ
ム合金板の製造方法。
2. 3 to 6% of Zn, 0.5 to 3% of Mg, Cu
After finishing an alloy containing 0.1 to 2.5%, Mn of more than 0.5% and 1.5% or less, and the balance consisting of Al and unavoidable impurities to a predetermined plate thickness, a range of 450 to 540 ° C. Solution treatment for 5 minutes or less at a temperature within
Manufacture of a high-strength heat-treated aluminum alloy sheet for drawing, which is subjected to artificial aging treatment at a temperature in the range of 150 ° C. for 1 to 24 hours, and further to cold rolling at a rolling rate of 70% or less. Method.
JP08722996A 1996-03-15 1996-03-15 Method for producing high-strength heat-treated aluminum alloy sheet for drawing Expired - Fee Related JP3278130B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08722996A JP3278130B2 (en) 1996-03-15 1996-03-15 Method for producing high-strength heat-treated aluminum alloy sheet for drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08722996A JP3278130B2 (en) 1996-03-15 1996-03-15 Method for producing high-strength heat-treated aluminum alloy sheet for drawing

Publications (2)

Publication Number Publication Date
JPH09256129A JPH09256129A (en) 1997-09-30
JP3278130B2 true JP3278130B2 (en) 2002-04-30

Family

ID=13909041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08722996A Expired - Fee Related JP3278130B2 (en) 1996-03-15 1996-03-15 Method for producing high-strength heat-treated aluminum alloy sheet for drawing

Country Status (1)

Country Link
JP (1) JP3278130B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101479397B (en) * 2006-06-30 2013-03-13 肯联铝业轧制品-雷文斯伍德有限公司 High strength, heat treatable al-zn-mg aluminum alloy
BR112013005557A2 (en) * 2010-09-08 2016-05-03 Alcoa Inc "Rolled or Forged 6xxx Enhanced Aluminum Alloy Product, and Its Production Process"
WO2013172910A2 (en) 2012-03-07 2013-11-21 Alcoa Inc. Improved 2xxx aluminum alloys, and methods for producing the same
US9890443B2 (en) 2012-07-16 2018-02-13 Arconic Inc. 6XXX aluminum alloys, and methods for producing the same
US9587298B2 (en) 2013-02-19 2017-03-07 Arconic Inc. Heat treatable aluminum alloys having magnesium and zinc and methods for producing the same
BR112017009721A2 (en) 2014-12-09 2018-02-20 Novelis Inc. method of achieving the desired yield strength and elongation on an aluminum alloy sheet, and aluminum alloy sheet.

Also Published As

Publication number Publication date
JPH09256129A (en) 1997-09-30

Similar Documents

Publication Publication Date Title
JPH07228956A (en) Production of aluminum alloy sheet for forming work
JPH11181558A (en) Production of aluminum alloy sheet for low and positive pressure can body
JP3278130B2 (en) Method for producing high-strength heat-treated aluminum alloy sheet for drawing
JPH08325664A (en) High-strength heat treatment type aluminum alloy sheet for drawing and its production
JPH10152762A (en) Production of hard aluminum alloy sheet excellent in di workability
JPH09137243A (en) Aluminum alloy sheet excellent in bendability after press forming and its production
JP2933501B2 (en) Method for producing aluminum alloy sheet excellent in formability of DI can bottom
JP2595836B2 (en) Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same
JP2001288523A (en) High formability aluminum alloy sheet and its producing method
JP3644818B2 (en) Method for producing aluminum alloy plate for can body
JP3155678B2 (en) Manufacturing method of aluminum alloy sheet for automobile body sheet
JP2525017B2 (en) Aluminum alloy material for can ends
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JPH07233456A (en) Production of aluminum alloy sheet excellent in formability
JP2003034835A (en) Aluminum alloy sheet and manufacturing method therefor
JP2001262261A (en) Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
JPH055149A (en) Hard aluminum alloy sheet for forming and its production
JPH05271836A (en) Aluminum alloy material excellent in strength and ductility and its production
JP2773874B2 (en) Manufacturing method of aluminum alloy plate
JP4750392B2 (en) Aluminum alloy plate for bottle-shaped cans
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JPH07310136A (en) Aluminum alloy sheet for forming and its production
JP3713614B2 (en) Method for producing aluminum alloy plate for can body
JP3103122B2 (en) Aluminum alloy sheet for forming process with high formability and method for producing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees