JPH055149A - Hard aluminum alloy sheet for forming and its production - Google Patents

Hard aluminum alloy sheet for forming and its production

Info

Publication number
JPH055149A
JPH055149A JP2693791A JP2693791A JPH055149A JP H055149 A JPH055149 A JP H055149A JP 2693791 A JP2693791 A JP 2693791A JP 2693791 A JP2693791 A JP 2693791A JP H055149 A JPH055149 A JP H055149A
Authority
JP
Japan
Prior art keywords
plate
less
intermetallic compounds
aluminum alloy
per
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2693791A
Other languages
Japanese (ja)
Inventor
Shinji Teruda
伸二 照田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sky Aluminium Co Ltd
Original Assignee
Sky Aluminium Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sky Aluminium Co Ltd filed Critical Sky Aluminium Co Ltd
Priority to JP2693791A priority Critical patent/JPH055149A/en
Publication of JPH055149A publication Critical patent/JPH055149A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a hard Al alloy sheet suitable for Al can lid, having high strength, reduced in strength anisotropy, excellent in formability, such as local bulging property and deep drawing ear rate, and contributing toward facilitating the recycle of cans. CONSTITUTION:The sheet is a hard Al alloy sheet which has a composition consisting of 0.5-3.0% Mg, 0.5-2.5% Mn, 0.1-2.5% Fe, and the balance essentially Al and where specific resistivity value, average crystalline grain size, the number of intermetallic compounds of >=6mum, and the number of intermetallic compounds of >=1mum are regulated to >=4.5muOMEGAcm, <=100mum, <=100pieces/0.2mm<2>, and >=2000pieces/0.2mm<2> respectively. Further, besides the above, Cu or Zn can be incorporated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、主としてアルミニウ
ム缶用材料として用いられる成形用の高強度アルミニウ
ム合金硬質板およびその製造方法に関し、より詳しく
は、塗装焼付け後の強度が高くかつ局部張出し性に優
れ、かつ材料の異方性も少なく、しかも2ピース缶の蓋
材に用いた場合にリサイクル性にも優れたアルミニウム
合金板およびその製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-strength aluminum alloy hard plate for molding, which is mainly used as a material for aluminum cans, and a method for producing the same. More specifically, it has high strength after baking for coating and local protrusion. The present invention relates to an aluminum alloy plate which is excellent in material anisotropy and has excellent recyclability when used as a lid material for a two-piece can, and a method for producing the same.

【0002】[0002]

【従来の技術】周知のようにアルミニウム2ピース缶の
缶体は、DI加工による缶胴(DI缶胴)と缶蓋(エン
ド)とによって組立てられ、また通常のイージーオープ
ンエンドの場合は缶蓋にタブが取付けられている。
As is well known, a can body of an aluminum two-piece can is assembled by a can body (DI can body) and a can lid (end) by DI processing, and in the case of a normal easy open end, the can body is a can lid. The tab is attached to.

【0003】これらのうち、缶体の胴材としては、深絞
り性、しごき性、さらにはDI加工−焼付塗装後のネッ
キング加工性、フランジング加工性等に優れていること
が要求され、一般にはAl−Mn系の3004合金H1
9材やH39材が使用されている。近年の薄肉化の要求
に伴ない、胴材としてもより高強度化が要求されるよう
になっているが、従来の3004合金缶胴材でも焼付塗
装後の耐力で270N/mm2 以上の強度が得られるよう
になっている。
Of these, the body of the can body is required to be excellent in deep drawing property, ironing property, necking workability after DI processing-baking coating, flanging workability, etc. Is an Al-Mn-based 3004 alloy H1
Nine materials and H39 materials are used. With the recent demand for thinner walls, higher strength is required for the body material as well, but even the conventional 3004 alloy can body material has a strength of 270 N / mm 2 or more as the yield strength after baking coating. Is obtained.

【0004】一方缶体の蓋材としては、ビールその他の
炭酸飲料用の缶体の蓋材、すなわち内圧が高くなる用途
の缶体の蓋材では、近年の薄肉化の傾向に伴ない、焼付
塗装後の耐力で300N/mm2 以上の高強度が要求さ
れ、そこで一般にはAl−Mg系の5182合金のH1
8材やH38材が多用されており、このほか特に高強度
が要求されない蓋材では5082合金や5052合金も
使用され、さらに一部ではAl−Mn系の3004合金
も使用されることがある。
On the other hand, as a lid material for a can body, a lid material for a can body for beer or other carbonated beverages, that is, a lid material for a can body for use in which the internal pressure is high, is accompanied by a tendency toward thinning in recent years. A high strength of 300 N / mm 2 or more is required for the proof stress after painting, and therefore, in general, Al-Mg-based 5182 alloy H1 is used.
8 materials and H38 materials are often used. In addition to these, 5082 alloy and 5052 alloy are also used for the lid material that does not particularly require high strength, and Al-Mn-based 3004 alloy is also used in some cases.

【0005】なおタブ材は、特に高強度は要求されず、
耐力250N/mm2 以上で曲げ性に優れていれば良く、
5182合金、5082合金、5052合金、3004
合金のいずれも上述の強度は得られ、かつ低加工度であ
るため、曲げ性に対しても特に問題はない。
The tab material is not particularly required to have high strength,
With a yield strength of 250 N / mm 2 or more and excellent bendability,
5182 alloy, 5082 alloy, 5052 alloy, 3004
Since all the alloys have the above-mentioned strength and have a low workability, there is no particular problem with respect to bendability.

【0006】そのほか、深絞り缶や食缶用のDRD缶
(絞り−再絞り缶)には、5052合金のH18材もし
くはH38材、あるいは5042合金のH38材が多用
されている。
[0006] In addition, deep-drawing cans and DRD cans for food (drawing-redrawing cans) are often made of H52 or H38 of 5052 alloy or H38 of 5042 alloy.

【0007】[0007]

【発明が解決しようとする課題】近年に至り、資源の再
利用および自然環境保護の観点から、アルミニウム缶に
ついても回収して再生使用する動き、すなわちリサイク
ル化の動きが強まっている。ところが、使用済みのアル
ミニウム缶を回収して再溶解する際には、缶の胴部と蓋
部とが混在したまま溶解して鋳塊(再生塊)を得ること
になる。そのため缶胴と缶蓋とが異なる成分組成の合金
で構成されている場合には、目的とする缶胴材または缶
蓋材を製造するためには成分調整を行なう必要があり、
そのためコスト増大を招かざるを得ない。
In recent years, from the viewpoint of reusing resources and protecting the natural environment, there is an increasing tendency to recover and recycle aluminum cans, that is, recycling. However, when used aluminum cans are collected and redissolved, the ingots (recycled ingots) are obtained by melting the cans and the lids of the cans in a mixed state. Therefore, when the can body and the can lid are composed of alloys of different component compositions, it is necessary to adjust the components in order to produce the desired can body material or can lid material,
Therefore, the cost must be increased.

【0008】例えば、前述のように従来のアルミニウム
2ピース缶の胴材としてはAl−Mn系の3004合金
が一般的であり、蓋材としては内圧が加わる用途ではA
l−Mg系の5182合金が主流であるが、このように
3004合金からなる胴材と5182合金からなる蓋材
を組合せたアルミニウム缶を回収して再溶解し、再び胴
材用3004合金もしくは蓋材用5182合金を溶製す
るためには、新たな純アルミ地金やMg添加用の母合
金、その他の合金成分調整用材料を添加して成分調整を
行なわなければならなかった。
For example, as described above, the Al-Mn-based 3004 alloy is generally used as the body material of the conventional aluminum two-piece can, and the lid material is used in applications where internal pressure is applied.
Although the 1-Mg-based 5182 alloy is the mainstream, the aluminum can in which the body material made of the 3004 alloy and the lid material made of the 5182 alloy are combined and remelted as described above, and again the body material 3004 alloy or the lid is used. In order to melt the 5182 alloy for material, a new pure aluminum metal, a mother alloy for adding Mg, and other alloy component adjusting materials had to be added to adjust the components.

【0009】そこで最近では缶胴と缶蓋とを同一成分組
成の合金で構成する所謂ユニアロイ化の試みがなされて
いるが、同一成分組成の合金で缶胴に要求される成形
性、特にDI加工に必要なしごき性を得ると同時に、缶
蓋の成形に要求される成形性、特に良好な局部張り出し
性や深絞り耳率と、内圧が加わる用途で蓋材に要求され
る高強度とを得ることは極めて困難であった。したがっ
て従来は実際にはユニアロイ化を達成することは困難と
されていた。
Therefore, recently, an attempt has been made to form a so-called uni-alloy in which the can body and the can lid are made of an alloy having the same component composition. Formability required for the can body by an alloy having the same component composition, particularly DI processing. In addition to obtaining the necessary ironing property, the moldability required for can lid molding, particularly good local overhanging and deep drawing earrings, and the high strength required for lid materials in applications where internal pressure is applied are obtained. It was extremely difficult. Therefore, in the past, it was actually difficult to achieve uni-alloying.

【0010】また従来から蓋材に使用されている518
2合金では強度異方性が大きく、そのため次のような問
題があった。すなわち5182合金圧延板では、強度は
L方向(圧延方向)、C方向(圧延方向に直交する方
向)、45°方向(L方向、C方向に対し45°の方
向)で異なり、一般にはL方向で最大、45°方向で最
小となり、その差は耐力値で20N/mm2 に及ぶ。この
ように強度異方性が大きい板を缶蓋に用いれば、缶胴と
缶蓋を取付けた後に圧力を加えれば45°方向からバッ
クリングが生じてしまうおそれがあり、また蓋の外形を
打抜く際に充分な真円度が得られなかったり、蓋にタブ
を取付けてリベット部を成形する際にリベット部に充分
な真円度が得られなかったりする問題があった。
518 which is conventionally used as a lid material
The two alloys had large strength anisotropy, and therefore had the following problems. That is, in the 5182 alloy rolled plate, the strength differs in the L direction (rolling direction), the C direction (direction orthogonal to the rolling direction), and the 45 ° direction (L direction, 45 ° to the C direction), and generally the L direction. At the maximum and at the minimum in the direction of 45 °, the difference reaches a proof stress value of 20 N / mm 2 . If a plate with such a large strength anisotropy is used for the can lid, buckling may occur from the 45 ° direction if pressure is applied after attaching the can body and the can lid. There are problems that sufficient roundness cannot be obtained when pulling out, or sufficient roundness cannot be obtained at the rivet portion when the tab is attached to the lid to form the rivet portion.

【0011】さらに蓋材については、既に述べたように
各種の成形性のうちでも特に良好な局部張り出し性を有
し、また深絞り耳率が低いことが望まれるが、従来の5
182合金はこの点でも未だ不充分であった。
Further, as described above, it is desired that the lid member has a particularly excellent local overhanging property among various moldability and a low deep drawing ear ratio.
The 182 alloy was still insufficient in this respect as well.

【0012】すなわち缶蓋にはタブの廻り止めや補強の
ためにいくつかのディンプルが形成されるのが通常であ
り、したがってディンプル形成のための局部張り出し成
形における成形性(局部張り出し性)が良好なことが要
求される。また深絞り耳率に関しては、缶蓋の外形を打
抜いた際に耳が高ければ、打抜き後の缶蓋を重ね合せる
時に高さが一定せず、安定性に欠け、また缶胴とのシー
ミング時のなじみが悪くなり、缶の密封性に問題が生じ
るおそれがあり、したがって深絞り耳率が低いことが要
求される。しかしながら5182合金では局部張り出し
性が充分に優れているとは言えず、また深絞り耳率の点
でも未だ不充分であった。
That is, it is usual that some dimples are formed on the can lid in order to prevent the tabs from rotating and to reinforce, so that the formability (local overhangability) in the local overhang molding for forming the dimples is good. Something is required. Regarding the deep-draw ear ratio, if the outer shape of the can lid is punched, the height is not constant when stacking the can lids after punching, lacking stability, and seaming with the can body. There is a risk that the time will become unfamiliar and the sealing performance of the can will become problematic, and thus a low deep drawing ear rate is required. However, the 5182 alloy cannot be said to be sufficiently excellent in local overhanging property, and the deep drawing ear ratio was still insufficient.

【0013】この発明は以上の事情を背景としてなされ
たもので、アルミニウム缶用の蓋材として用いた場合に
缶のリサイクルが容易であって、しかも焼付塗装処理後
の強度は従来高強度蓋材として用いられていた5182
合金と同等以上であるにもかかわらず、5182合金よ
り強度異方性が格段に少なく、かつ局部張り出し性が良
好であってまた深絞り耳率も低く、その他の成形性にも
優れた成形用アルミニウム合金硬質板を提供することを
目的とするものである。
The present invention has been made in view of the above circumstances, and when used as a lid material for an aluminum can, the can is easily recycled, and the strength after baking coating treatment is the conventional high-strength lid material. Was used as 5182
Despite being at least as good as the alloy, it has significantly less strength anisotropy than the 5182 alloy, good local overhanging properties, low deep-drawing earrings, and other formability. The object is to provide an aluminum alloy hard plate.

【0014】[0014]

【課題を解決するための手段】本発明者等は前述の課題
を解決するべく鋭意実験・検討を重ねた結果、従来DI
缶胴材として用いられていた3004合金をベースとし
て、成分組成を適切に調整するとともに、圧延板の状態
において比抵抗値を指標として表われるMn,Fe等の
合金元素の固溶量と、結晶粒サイズおよび金属間化合物
サイズを適切に制御することにより、塗装焼付け後の強
度が高くかつ強度異方性が少なく、しかも局部張り出し
性が良好であるとともに深絞り耳率が低い成形用アルミ
ニウム合金硬質板が得られることを見出し、この発明を
なすに至った。
Means for Solving the Problems The inventors of the present invention have conducted diligent experiments and studies to solve the above-mentioned problems, and as a result, the DI
Based on the 3004 alloy that was used as a can body material, the composition of the components was appropriately adjusted, and the solid solution amount of alloy elements such as Mn and Fe, which were expressed using the specific resistance value as an index in the state of the rolled plate, and the crystal By appropriately controlling the grain size and intermetallic compound size, the aluminum alloy hard for molding has high strength after paint baking and little strength anisotropy, good local overhanging property, and low deep drawing ear rate. The inventors have found that a plate can be obtained, and have completed the present invention.

【0015】またアルミニウム合金硬質板の製造過程に
おいて、鋳造時における冷却速度を速めるとともに中間
熱処理を急速昇温、急速冷却とすることによって、前述
のような固溶状態、結晶粒サイズ、金属間化合物サイズ
を有する硬質板が得られることを見出し、製造方法の発
明をなすに至ったのである。
In the process of manufacturing the aluminum alloy hard plate, the solid solution state, the crystal grain size, the intermetallic compound as described above are obtained by increasing the cooling rate during casting and rapidly raising the temperature of the intermediate heat treatment. They have found that a hard plate having a size can be obtained, and have invented a manufacturing method.

【0016】具体的には、請求項1の発明の成形用アル
ミニウム合金硬質板は、Mg 0.5〜3.0%、Mn 0.5〜
2.5%、Fe0.1〜 2.5%を含有し、残部がAlおよび不
可避的不純物よりなり、しかも20℃における比抵抗値
が 4.5μΩcm以上であり、かつ圧延方向に対し直角な方
向の平均結晶粒径が100μm以下であり、さらに板表
面における6μm以上の金属間化合物の数が 0.2mm2
り100個以下でしかも1μm以上の金属間化合物の数
が 0.2mm2 当り2000個以上であることを特徴とする
ものである。
Specifically, the aluminum alloy hard plate for molding according to the invention of claim 1 has a Mg content of 0.5-3.0% and a Mn content of 0.5-3.0%.
2.5%, Fe 0.1-2.5%, the balance Al and unavoidable impurities, the specific resistance value at 20 ℃ is 4.5μΩcm or more, and the average grain size in the direction perpendicular to the rolling direction. Is 100 μm or less, the number of intermetallic compounds of 6 μm or more on the plate surface is 100 or less per 0.2 mm 2, and the number of intermetallic compounds of 1 μm or more is 2000 or more per 0.2 mm 2. To do.

【0017】また請求項2の発明の成形用アルミニウム
合金硬質板は、請求項で規定している合金成分のほか、
さらにCu0.05〜 1.0%、Zn 0.1〜 1.0%のうちの1
種または2種を含有し、かつ比抵抗値、平均結晶粒径、
金属間化合物数を請求項1と同様に規定したものであ
る。
Further, the aluminum alloy hard plate for molding according to the invention of claim 2 has the alloy components defined in the claims,
1 out of 0.05-1.0% Cu and 0.1-1.0% Zn
Containing two or more species, and having a specific resistance value, an average crystal grain size,
The number of intermetallic compounds is defined similarly to the first aspect.

【0018】一方請求項3の発明の製造方法は、請求項
1で規定した成形加工用アルミニウム合金硬質板の製造
方法に関するものであって、Mg 0.5〜 3.0%、Mn
0.5〜2.5%、Fe 0.1〜 2.5%を含有し、残部がAlお
よび不可避的不純物よりなる合金を、50℃/sec 以上
の冷却速度で連続鋳造して板厚3〜15mmの連続鋳造板
とし、次いでその連続鋳造板に1次冷間圧延を施した
後、500〜620℃の範囲内の温度に10℃/sec 以
上の加熱速度で昇温し直ちにもしくはその範囲内の温度
で120sec 以下の保持を行なった後、10℃/sec以
上の冷却速度で冷却する中間熱処理と、それに続く2次
冷間圧延とを1回または2回以上行ない、最終の2次冷
間圧延の圧延率を30%以上とし、これにより20℃に
おける比抵抗値が 4.5μΩcm以上であり、かつ圧延方向
に対し直角な方向の平均結晶粒径が100μm以下であ
り、さらに板表面における6μm以上の金属間化合物の
数が0.2mm2 当り100個以下でしかも1μm以上の金
属間化合物の数が 0.2mm2 当り2000個以上であるア
ルミニウム合金硬質板を得ることを特徴とするものであ
る。
On the other hand, the manufacturing method of the invention of claim 3 relates to the manufacturing method of the aluminum alloy hard plate for forming as defined in claim 1, wherein Mg 0.5 to 3.0%, Mn
An alloy containing 0.5 to 2.5%, Fe 0.1 to 2.5%, and the balance being Al and inevitable impurities is continuously cast at a cooling rate of 50 ° C./sec or more to form a continuously cast plate having a plate thickness of 3 to 15 mm, Then, after subjecting the continuously cast plate to primary cold rolling, the temperature is raised to a temperature in the range of 500 to 620 ° C. at a heating rate of 10 ° C./sec or more and immediately or kept at a temperature in the range for 120 sec or less. After that, the intermediate heat treatment for cooling at a cooling rate of 10 ° C./sec or more and the subsequent secondary cold rolling are performed once or twice or more, and the rolling ratio of the final secondary cold rolling is 30%. As a result, the specific resistance value at 20 ° C. is 4.5 μΩcm or more, the average crystal grain size in the direction perpendicular to the rolling direction is 100 μm or less, and the number of intermetallic compounds of 6 μm or more on the plate surface is Less than 100 per 0.2 mm 2 and 1 The present invention is characterized in that an aluminum alloy hard plate is obtained in which the number of intermetallic compounds of μm or more is 2000 or more per 0.2 mm 2 .

【0019】また請求項4の発明の製造方法は、請求項
2で規定した成形用アルミニウム合金硬質板の製造方法
についてのものであって、請求項3中で規定している成
分元素のほか、さらにCu0.05〜 1.0%、Zn 0.1〜
1.0%のうちの1種または2種以上を含有する合金につ
いて、請求項3で規定しているプロセスとほぼ同じプロ
セス(但し最終の2次冷間圧延の圧延率は20%以上)
を適用するものである。
The manufacturing method of the invention of claim 4 relates to the manufacturing method of the aluminum alloy hard plate for molding defined in claim 2, and in addition to the constituent elements defined in claim 3, Cu 0.05-1.0%, Zn 0.1-
For alloys containing one or more of 1.0%, the process is almost the same as the process defined in claim 3 (however, the final secondary cold rolling reduction rate is 20% or more).
Is applied.

【0020】[0020]

【作用】本願各発明の成形用アルミニウム合金硬質板に
おける合金元素は、主としてアルミニウム材料の強度を
高めるとともに、塗装焼付け時における軟化を抑制し、
併せて結晶粒サイズおよび金属間化合物サイズの適切な
制御を容易とするために添加されるものであり、まず請
求項1の発明の成形用アルミニウム合金硬質板における
成分限定理由を説明する。
The alloying elements in the aluminum alloy hard plate for forming according to the invention of the present application mainly increase the strength of the aluminum material and suppress softening during baking of the coating,
At the same time, it is added in order to facilitate appropriate control of the crystal grain size and the intermetallic compound size. First, the reasons for limiting the components in the aluminum alloy hard plate for forming of the invention of claim 1 will be explained.

【0021】Mg:Mgはアルミニウムマトリックス中
に固溶し、加工硬化特性を向上させるに有効な添加元素
である。但しこの発明の方法の場合は、鋳造時の冷却速
度を速めて、強制的に他の成分、特にMn,Feを固溶
させているため、加工硬化に対しては相乗的にそれぞれ
の元素が効いてくるから、通常のDC鋳造の場合のよう
に 4%も添加する必要はない。ここで、Mg添加量が
0.5%未満では塗装焼付け後に所要の高強度が得られ
ず、また再結晶粒が粗大となって成形性を害するととも
に成形時の肌荒れが生じ易くなる。一方Mg添加量が
3.0%を越えれば、冷間圧延性が低下して冷間圧延中に
耳割れが発生し易くなり、歩留りが低下するとともに操
業上も問題が生じ易くなる。したがってMgの添加量は
0.5〜 3.0%の範囲内とした。
Mg: Mg is a solid solution in an aluminum matrix and is an effective additive element for improving work hardening characteristics. However, in the case of the method of the present invention, since the other components, especially Mn and Fe, are forcibly solid-soluted by increasing the cooling rate during casting, each element synergistically affects work hardening. Since it works, it is not necessary to add as much as 4% as in normal DC casting. Here, the amount of Mg added is
If it is less than 0.5%, the required high strength cannot be obtained after coating and baking, and the recrystallized grains become coarse, impairing the formability, and roughening the skin during forming easily. On the other hand, if the amount of Mg added is
If it exceeds 3.0%, cold rolling property is deteriorated, and ear cracks are liable to occur during cold rolling, yield is lowered, and problems are likely to occur in operation. Therefore, the amount of Mg added is
Within the range of 0.5 to 3.0%.

【0022】Mn:Mnは強度向上に寄与するとともに
塗装焼付け時の強度低下を抑制するのに有効な元素であ
る。またこの発明で主用途としている蓋材では、ディン
プル部を形成するために局部的な張り出し成形を行な
う。このような局部張り出し成形箇所でリューダースマ
ークと称される剪断帯が発生すれば、割れ発生の原因と
なるから、このようなリューダースマークの発生は抑制
しなければならないが、Mnの添加による微細な金属間
化合物の晶出はリューダースマークの抑制、ひいては局
部張り出し性の向上に有効であり、また強度の異方性を
少なくするにも有効である。但しMnの添加量が 0.5%
未満ではこの効果が得られず、一方 2.5%を越えれば冷
間圧延性が極端に低下するとともに鋳造性も極めて悪く
なるから、Mnの添加量は 0.5〜 2.5%の範囲内とし
た。
Mn: Mn is an element which contributes to the improvement of strength and is effective in suppressing the decrease in strength during coating baking. Further, in the lid material mainly used in the present invention, local overhang molding is performed in order to form the dimple portion. If a shear band called a Luder's mark is generated at such a local overhang forming portion, it causes cracking. Therefore, the generation of such a Luder's mark must be suppressed. Crystallization of fine intermetallic compounds is effective in suppressing the Luder's mark and, in turn, improving the local overhanging property, and is also effective in reducing the anisotropy of strength. However, the amount of Mn added is 0.5%
If it is less than 2.5%, this effect cannot be obtained. On the other hand, if it exceeds 2.5%, the cold rolling property is extremely deteriorated and the castability is extremely deteriorated. Therefore, the addition amount of Mn is set to the range of 0.5 to 2.5%.

【0023】Fe:FeはMnと同様に強制的に固溶さ
せ、加工硬化性と耐焼付け軟化性を向上させて、塗装焼
付け後の高強度を得るに極めて有効な元素である。なお
Feの添加は、Mnの固溶量を著しく減少させはする
が、Mnの固溶量の減少は、逆に微細な析出物が生じる
ことを意味するから、加工硬化や焼付け軟化抑制につい
ても有効である。Feの添加量が 0.1%未満ではその効
果が得られず、一方 2.5%を越えてFeを添加すれば、
析出物が粗大化してかえって塗装焼付け時に軟化してし
まうことがある。したがってFeの添加量は 0.1〜 2.5
%の範囲内とした。
Fe: Fe is an element which is extremely effective for forcibly forming a solid solution similarly to Mn to improve work hardening and resistance to baking and softening, and to obtain high strength after baking for coating. It should be noted that addition of Fe significantly reduces the solid solution amount of Mn, but since the reduction of the solid solution amount of Mn means that fine precipitates are generated, conversely, work hardening and bake softening suppression are also performed. It is valid. If the added amount of Fe is less than 0.1%, the effect cannot be obtained. On the other hand, if the added amount of Fe exceeds 2.5%,
The precipitates may become coarse and rather soften during coating baking. Therefore, the amount of Fe added is 0.1 to 2.5.
Within the range of%.

【0024】以上のように請求項1の発明の成形用アル
ミニウム合金硬質板においては、必須合金成分としてM
g,Mn,Feを添加し、Mgの固溶による加工硬化
と、遷移元素であるMn,Feの強制固溶による加工硬
化と塗装焼付け時の軟化抑制を図り、さらに成形時のリ
ューダースマーク発生の抑制や強度異方性の低減、冷間
圧延性等を考慮している。
As described above, in the aluminum alloy hard plate for forming according to the invention of claim 1, M is used as an essential alloy component.
Addition of g, Mn, and Fe, work hardening by solid solution of Mg, work hardening by forced solid solution of transition elements Mn, Fe, and suppression of softening during baking of paint, and further generation of Luders mark during molding Are taken into consideration, such as the suppression of cold rolling, reduction of strength anisotropy, and cold rolling property.

【0025】さらに請求項2の発明の成形用アルミニウ
ム合金硬質板では、上述のMg,Mn,Feのほか、C
uおよび/またはZnを添加して、Mg,Mn,Feに
よる前述の効果のほか、さらに塗装焼付け処理時の時効
硬化による塗装焼付け後の強度向上を図っている。次に
請求項2の発明の成形用アルミニウム合金硬質板におけ
るCu,Znの添加量の限定理由を説明する。
Further, in the aluminum alloy hard plate for molding according to the invention of claim 2, in addition to the above-mentioned Mg, Mn, Fe, C
By adding u and / or Zn, in addition to the above-described effects of Mg, Mn, and Fe, the strength after coating baking is further improved by age hardening during coating baking treatment. Next, the reasons for limiting the addition amounts of Cu and Zn in the aluminum alloy hard plate for molding according to the second aspect of the present invention will be described.

【0026】Cu:Cuは前述のように塗装焼付け処理
時において時効硬化を図り、これによる塗装焼付け後の
板の強度向上を図るに有効である。この効果は、Al−
Cu−Mg系析出物の析出過程で生じる。この効果を得
るためには、少なくとも0.05%以上のCuの添加が必要
である。一方Cuを 1.0%以上添加した場合、時効硬化
は容易に得られるものの、冷間圧延中に加工硬化しやす
くなり、加工性を損なう。したがってCuを添加する場
合のCu添加量は0.05〜 1.0%の範囲内とした。
Cu: Cu is effective for age hardening during coating baking as described above, and thereby for improving the strength of the plate after coating baking. This effect is
It occurs during the precipitation process of Cu-Mg based precipitates. To obtain this effect, it is necessary to add at least 0.05% Cu. On the other hand, when Cu is added in an amount of 1.0% or more, age hardening is easily obtained, but work hardening easily occurs during cold rolling, and workability is impaired. Therefore, when Cu is added, the addition amount of Cu is set within the range of 0.05 to 1.0%.

【0027】Zn:ZnもMg,Cuとの相互作用によ
って時効硬化が期待できることは良く知られており、こ
の発明においてもZnの添加は塗装焼付け処理時におけ
る時効硬化による塗装焼付け後の板の強度向上を図って
いる。Znが 0.1%未満ではその効果が得られず、一方
1.0%を越えてZnを添加すれば、強度は向上するもの
の、加工硬化性が強くなって絞り成形性、再絞り成形性
が極端に損なわれる。したがってZnを添加する場合の
Zn添加量は 0.1〜 1.0%の範囲内とした。
It is well known that Zn: Zn can also be expected to age harden due to the interaction with Mg and Cu. In the present invention as well, the addition of Zn is the strength of the plate after coating baking due to age hardening during coating baking treatment. We are trying to improve. If Zn is less than 0.1%, the effect cannot be obtained.
If Zn is added in an amount of more than 1.0%, the strength is improved, but the work-hardening property is strengthened, and the draw formability and redraw formability are extremely impaired. Therefore, the amount of Zn added when Zn is added is within the range of 0.1 to 1.0%.

【0028】以上の各成分の残部は、基本的には、本願
のいずれの発明においてもAlおよび不可避的不純物と
すれば良いが、Cr,Zr,Vは強度向上に寄与し、ま
たいずれも 0.3%程度までであればこの発明の効果を損
なわないから、それぞれ 0.3%程度までは許容される。
Basically, the balance of each of the above components may be Al and inevitable impurities in any of the inventions of the present application, but Cr, Zr, and V contribute to the improvement of strength, and all 0.3 %, The effects of the present invention will not be impaired, so about 0.3% is allowed for each.

【0029】なお通常のアルミニウム合金においては、
鋳塊の結晶粒微細化のためにTi、あるいはTiおよび
Bを微量添加することがあり、この発明の成形用アルミ
ニウム合金硬質板においても、微量のTi、もしくはT
iおよびBを含有していても良い。但し、Tiを添加す
る場合、その添加量が0.01%未満ではTi添加の効果が
得られず、0.50%を越えれば初晶TiAl3が晶出して
成形性を害するから、Tiは0.01〜0.50%の範囲内とす
ることが好ましい。またTiとともにBを添加する場
合、Bの添加量が1ppm 未満ではB添加の効果がなく、
一方1000ppmを越えれば、TiB2 の粗大粒子が混
入して成形性を害するから、Bは1〜1000ppm の範
囲内とすることが好ましい。
In a normal aluminum alloy,
A small amount of Ti or Ti and B may be added for refining the crystal grains of the ingot. Even in the aluminum alloy hard plate for molding of the present invention, a small amount of Ti or T may be added.
i and B may be contained. However, when Ti is added, if the addition amount is less than 0.01%, the effect of Ti addition cannot be obtained, and if it exceeds 0.50%, TiAl 3 crystallizes and impairs formability, so Ti is 0.01 to 0.50%. It is preferable to set it within the range. When B is added together with Ti, if the amount of B added is less than 1 ppm, the effect of B addition is not
On the other hand, if it exceeds 1000 ppm, coarse particles of TiB 2 are mixed and impair the formability. Therefore, it is preferable that B is in the range of 1 to 1000 ppm.

【0030】さらに本願各発明の成形用アルミニウム合
金硬質板においては、前述のような各合金元素を含有す
るほか、最終圧延板の状態において20℃(室温)で測
定した比抵抗値が 4.5μΩcm以上であること、また結晶
粒サイズ条件として、圧延方向に対し直角な方向の平均
結晶粒径が100μm以下であること、さらに金属間化
合物晶出物サイズ条件として、板表面における6μm以
上の金属間化合物晶出物の数が 0.2mm2 当り100個以
下でしかも1μm以上の金属間化合物晶出物の数が 0.2
mm2 当り2000個以上であることが必要である。
Further, in the aluminum alloy hard plate for forming of the present invention, in addition to containing the above alloy elements, the specific resistance value measured at 20 ° C. (room temperature) in the state of the final rolled plate is 4.5 μΩcm or more. And the average grain size in the direction perpendicular to the rolling direction is 100 μm or less as the crystal grain size condition, and the intermetallic compound of 6 μm or more on the plate surface as the intermetallic compound crystallized product size condition. The number of crystallized substances is 0.2 or less per 0.2 mm 2 , and the number of crystallized intermetallic compounds of 1 μm or more is 0.2.
It is necessary that the number is 2000 or more per mm 2 .

【0031】金属材料における比抵抗値は固溶量に対応
するが、本願各発明において固溶元素、主としてMn,
Feの固溶による耐焼付け軟化特性および時効硬化性を
有効に機能させるためには、固溶量の指標となる比抵抗
値(於20℃)が 4.5μΩcm以上である必要がある。2
0℃での比抵抗値が 4.5μΩcm未満では塗装焼付け後に
充分な強度を得ることができない。
Although the specific resistance value of a metal material corresponds to the solid solution amount, in each invention of the present application, solid solution elements, mainly Mn,
In order to effectively function the bake softening resistance and age hardening due to the solid solution of Fe, the specific resistance value (at 20 ° C.), which is an index of the solid solution amount, needs to be 4.5 μΩcm or more. Two
If the specific resistance value at 0 ° C. is less than 4.5 μΩcm, sufficient strength cannot be obtained after baking.

【0032】また径が6μm以上の比較的大きな金属間
化合物は局部的な張り出し成形の際に割れの起点となり
やすく、そこで局部張り出し成形性を向上させるために
は6μm以上の金属間化合物を 0.2mm2 当り100個以
下に規制する必要がある。一方6μmより小さい比較的
微細な金属間化合物が多数存在すれば強度異方性を低減
することができると同時に、局部張り出し成形における
剪断帯の発生を防止して局部張り出し成形性の向上に寄
与し、さらには強度向上にも寄与する。但し実際上正し
くカウント可能なのは1μm以上の金属間化合物であ
り、したがって1μm以上の金属間化合物数を 0.2mm2
当り2000個以上と規定した。なおこれらの金属間化
合物数は、画像解析装置を用いて調べれば良い。
Further, a relatively large intermetallic compound having a diameter of 6 μm or more is likely to be a starting point of cracking during local stretch forming, and in order to improve local stretch formability, an intermetallic compound having a diameter of 6 μm or more is 0.2 mm. It is necessary to limit the number to 100 or less per 2 . On the other hand, if a large number of relatively fine intermetallic compounds smaller than 6 μm are present, the strength anisotropy can be reduced, and at the same time, the occurrence of shear bands in the local stretch forming can be prevented and the local stretch forming property can be improved. It also contributes to the improvement of strength. However, it is actually possible to count correctly the intermetallic compounds of 1 μm or more. Therefore, the number of intermetallic compounds of 1 μm or more is 0.2 mm 2
It is defined as more than 2000 pieces. The number of these intermetallic compounds may be investigated using an image analyzer.

【0033】さらに結晶粒径については、100μm以
上の粗大な結晶粒が存在すれば、一般に成形性が悪くな
るばかりでなく、成形時に肌荒れが発生し、外観不良と
なる。そこて平均結晶粒径を100μm以下と規定し
た。なお圧延板では結晶粒が圧延方向に伸長しているか
ら、上記の100μm以下の粒径規定は、圧延方向に対
し直角な方向での粒径を意味するものとした。
Regarding the crystal grain size, if coarse crystal grains of 100 μm or more are present, not only the moldability is generally deteriorated, but also rough skin is generated during molding, resulting in poor appearance. Then, the average crystal grain size was defined as 100 μm or less. Since the crystal grains in the rolled plate are elongated in the rolling direction, the above grain size regulation of 100 μm or less means the grain size in the direction perpendicular to the rolling direction.

【0034】次に前述のような成形用アルミニウム合金
硬質板を製造する方法、すなわち請求項3、請求項4の
発明の方法について説明する。
Next, a method for producing the above-described aluminum alloy hard plate for forming, that is, the methods of the inventions of claims 3 and 4 will be described.

【0035】先ず前述のような成分組成を有する合金の
溶湯を常法にしたがって溶製し、薄板連続鋳造法(連続
鋳造圧延法)等の連続鋳造法によって板厚 3〜15mmの板
に連続鋳造し、コイル状に巻取る。この連続鋳造時にお
ける冷却速度は50℃/sec以上の速い冷却速度とする
必要がある。本来、遷移金属であるMn,Feは、アル
ミニウムに対し固溶しにくく、鋳造時の冷却速度が低い
場合には大半が晶出してしまうから、既に述べたような
Mn,Feの強制固溶による効果を図るためには、50
℃/sec 以上の冷却速度が必要となるのである。鋳造時
の冷却速度が50℃/sec 未満では、固溶量が不足する
ため塗装焼付け後の板の充分な強度向上が図れない。な
おFeは、50℃/sec 以上の冷却速度としてもある程
度は晶出あるいは析出してしまう。しかしながら、この
発明の成分組成範囲内であれば、50℃/sec 以上の速
い速度では晶出物や析出物は極めて微細なものとなり、
強度向上やリューダースマーク抑制の点、さらには強度
異方性低減の点からは有利に作用する。
First, a melt of an alloy having the above-described composition is melted according to a conventional method, and continuously cast into a plate having a thickness of 3 to 15 mm by a continuous casting method such as a thin plate continuous casting method (continuous casting and rolling method). Then, wind it into a coil. The cooling rate during this continuous casting needs to be a high cooling rate of 50 ° C./sec or more. Originally, the transition metals Mn and Fe are difficult to form a solid solution with aluminum, and most of them crystallize when the cooling rate during casting is low. To achieve the effect, 50
A cooling rate of ℃ / sec or more is required. If the cooling rate during casting is less than 50 ° C./sec, the amount of solid solution is insufficient, and it is not possible to sufficiently improve the strength of the plate after baking. Note that Fe crystallizes or precipitates to some extent even at a cooling rate of 50 ° C./sec or more. However, within the component composition range of the present invention, crystallized substances and precipitates become extremely fine at a high speed of 50 ° C./sec or more,
This is advantageous in terms of improving strength, suppressing Ludersmarks, and reducing strength anisotropy.

【0036】上述のようにして得られた連続鋳造板は、
引続いて、1回または2回以上の中間熱処理(中間焼
鈍)を挟んで冷間圧延を行なう。すなわち、1次冷間圧
延によって中間板厚とした後、中間熱処理を行ない、さ
らに最終冷間圧延として2次冷間圧延を行なって製品板
厚に仕上げるか、あるいは1次冷間圧延の後、中間熱処
理と2次冷間圧延とを繰返し、最終の2次冷間圧延によ
って製品板厚に仕上げる。
The continuous cast plate obtained as described above is
Subsequently, cold rolling is performed by sandwiching one or more intermediate heat treatments (intermediate annealing). That is, after the intermediate plate thickness is obtained by the primary cold rolling, the intermediate heat treatment is performed, and then the final cold rolling is performed by the secondary cold rolling to finish the product sheet thickness, or after the primary cold rolling, The intermediate heat treatment and the secondary cold rolling are repeated, and the final secondary cold rolling is performed to finish the product sheet thickness.

【0037】上述の過程における中間熱処理は、固溶し
たCu,Zn,Mgによる時効効果や遷移金属Fe,M
nによる耐焼付け軟化性の効果を損なうことなく圧延性
を改善し、かつまた深絞り耳率やその他成形性の改善を
図ることを目的とするものである。この中間熱処理にお
いては、加熱中(昇温中)および冷却中に析出が生じな
いように、加熱速度および冷却速度はいずれも10℃/
sec 以上が必要であり、また完全に再結晶した均一な組
織を得るためには500℃以上の到達温度が必要となる
が、620℃を越えれば共晶融解が発生して操業中に板
切れを発生する危険があるから、到達温度は500〜6
20℃の範囲内とした。この500〜620℃の範囲内
の温度での保持は極力短い方が析出が少ないので好まし
いが、120sec 以下であれば許容される。このような
10℃/sec 以上の急速加熱、急速冷却でしかも保持な
しもしくは120sec 以下の短時間保持の中間熱処理
は、連続焼鈍炉を用いることによって達成できる。また
このような急速加熱、急速冷却の連続焼鈍を適用するこ
とにより、再結晶粒は微細化され、成形性の向上にも寄
与する。
In the intermediate heat treatment in the above process, the aging effect by the solid solution Cu, Zn, Mg and the transition metals Fe, M
It is intended to improve the rolling property without impairing the effect of the bake softening resistance due to n, and also to improve the deep drawing earring ratio and other formability. In this intermediate heat treatment, both the heating rate and the cooling rate were 10 ° C / ° C so that precipitation did not occur during heating (during temperature increase) and during cooling.
sec or more is required, and the ultimate temperature of 500 ° C or more is required to obtain a completely recrystallized uniform structure, but if it exceeds 620 ° C, eutectic melting occurs and the plate is cut during operation. There is a danger of causing
It was within the range of 20 ° C. It is preferable to keep the temperature within the range of 500 to 620 ° C. as short as possible because precipitation is less, but 120 seconds or less is acceptable. Such an intermediate heat treatment of rapid heating of 10 ° C./sec or more, rapid cooling and no holding or short-time holding of 120 sec or less can be achieved by using a continuous annealing furnace. Further, by applying such continuous annealing of rapid heating and rapid cooling, recrystallized grains are made finer, which contributes to improvement of formability.

【0038】最終の冷間圧延(製品板厚に仕上げるため
の最終の2次冷間圧延)における圧延率は、Cuおよび
/またはZnを実質的に含有していない請求項1の発明
の成分組成の合金では30%以上、Cuおよび/または
Znを含有する請求項2の発明の成分組成の合金では2
0%以上とする必要がある。最終の冷間圧延率がそれぞ
れ上記の範囲未満では、塗装焼付け後の所要の強度を得
ることができない。一方最終の冷間圧延における圧延率
は、深絞り耳率を低減するためには極力小さいことが好
ましいので、通常は90%以下とする。Cuおよび/ま
たはZnを実質的に含有しない場合、およびCuおよび
/またはZnを含有する場合のいずれにおいても、90
%以下の圧延率で充分に従来材より高い塗装焼付け後強
度を得ることができ、しかも90%以下の圧延率であれ
ば実際上支障のない程度の深絞り耳率とすることができ
る。
The composition ratio of the invention according to claim 1, wherein the rolling ratio in the final cold rolling (final secondary cold rolling for finishing the product sheet thickness) does not substantially contain Cu and / or Zn. The alloy according to claim 2 contains Cu and / or Zn in an amount of 30% or more.
It should be 0% or more. If the final cold rolling ratio is less than the above range, the required strength after baking the coating cannot be obtained. On the other hand, the rolling ratio in the final cold rolling is preferably as small as possible in order to reduce the deep drawing earring ratio, and therefore is usually 90% or less. 90 both when substantially free of Cu and / or Zn and when containing Cu and / or Zn
A rolling ratio of less than or equal to 10% can obtain a sufficiently higher strength after coating baking than that of the conventional material, and a rolling ratio of less than or equal to 90% can provide a deep drawing earring with practically no problem.

【0039】なお、中間熱処理の回数は、圧延性を考慮
して最少限の回数とすれば良いが、耳率の点から少なく
とも2回以上行なうことが好ましく、このようにするこ
とによって耳の発生のない所謂ノンイヤー材を得ること
ができる。
The number of intermediate heat treatments may be set to the minimum number in consideration of rollability, but it is preferable to perform the intermediate heat treatment at least twice from the viewpoint of ear ratio. It is possible to obtain a so-called non-ear material that has no

【0040】なおまた、最終冷間圧延により得られた最
終板厚の圧延板はそのまま缶蓋等の用途に供しても良い
が、100〜200℃の範囲内の温度で30分〜10時
間程度の最終焼鈍を施しても良く、この場合には塗装焼
付処理による強度低下をより少なくすることができる。
The rolled plate having the final plate thickness obtained by the final cold rolling may be directly used for a can lid or the like, but at a temperature in the range of 100 to 200 ° C. for about 30 minutes to 10 hours. The final annealing may be performed, and in this case, the reduction in strength due to the coating baking treatment can be further reduced.

【0041】以上のような工程を経て得られた成形用ア
ルミニウム合金硬質板は、主としてイージーオープン缶
用の缶蓋に使用される材料としての必要条件である塗装
焼付け後の強度が、従来材であるJIS 5182合金
H38材より優れ、しかも強度異方性も少なく、かつ深
絞り耳率が低いとともに局部張り出し性に優れ、従来よ
りも缶蓋の薄肉化、軽量化を図り得る成形用素材とな
る。また、従来から缶胴材として使用されている300
4合金の成分組成に近い成分組成を有するため、2ピー
ス缶の缶蓋として使用するにあたっては、缶胴材と近い
成分組成とするかまたは缶胴材と同一の成分組成とする
ことによってアルミニウム缶のリサイクルを容易化する
ことができる。
The aluminum alloy hard plate for molding obtained through the above steps has a strength after coating baking which is a necessary condition as a material mainly used for a can lid for an easy-open can. It is superior to a JIS 5182 alloy H38 material, has less strength anisotropy, has a low deep-drawing earring rate, and has excellent local overhanging properties. It is a molding material that can make the can lid thinner and lighter than before. .. In addition, 300 which is conventionally used as a can body
Since it has a composition close to that of the 4-alloy, it can be used as a can lid for a two-piece can by making the composition close to that of the body of the can or the same composition as the body of the can. Can be easily recycled.

【0042】なお以上のような成形用アルミニウム合金
硬質板を缶蓋等に使用するにあたっては、焼付塗装処理
を施すのが通常であるが、この焼付塗装処理は一般には
180〜400℃×5〜1800sec 程度の条件で施さ
れる。
When the aluminum alloy hard plate for forming as described above is used for a can lid or the like, it is usual to apply a baking coating treatment, but this baking coating treatment is generally 180 to 400 ° C. × 5 to 5 ° C. It is applied under the condition of about 1800 seconds.

【0043】[0043]

【実施例】【Example】

実施例1 表1に示すような本願の請求項1の発明で規定している
成分組成範囲内の符号A,Bの合金と、従来合金である
JIS 5182合金に相当する成分組成の符号Cの合
金とについて、表2に示すようなプロセスを適用して、
最終板厚 0.3mmの圧延板を得た。ここで、表2において
製造プロセス番号1,3の条件は本願の請求項3の発明
のプロセス条件範囲内、製造プロセス番号2,4,5の
条件はそのプロセス条件範囲外である。
Example 1 As shown in Table 1, the alloys of reference symbols A and B within the compositional range defined in the invention of claim 1 of the present application and the reference symbol C of the compositional composition corresponding to the conventional alloy JIS 5182 alloy are shown. For alloys, applying the process shown in Table 2,
A rolled plate having a final plate thickness of 0.3 mm was obtained. Here, in Table 2, the conditions of manufacturing process numbers 1 and 3 are within the process condition range of the invention of claim 3 of the present application, and the conditions of manufacturing process numbers 2, 4 and 5 are outside the process condition range.

【0044】[0044]

【表1】 [Table 1]

【0045】[0045]

【表2】 [Table 2]

【0046】実施例2 表3に示すような本願発明の請求項2の発明で規定して
いる成分組成範囲内の符号D,Eの合金と、従来合金で
あるJIS 5182合金に相当する成分組成の符号F
の合金とについて、表4に示すようなプロセスを適用し
て、最終板厚0.3mmの圧延板を得た。ここで、表4にお
ける製造プロセス番号6,7,9の条件は本願の請求項
4の発明のプロセス条件範囲内、製造プロセス番号8,
10,11の条件はそのプロセス条件範囲外である。
Example 2 As shown in Table 3, alloys designated by reference symbols D and E within the compositional range defined by the invention of claim 2 of the present invention, and the compositional composition corresponding to the conventional alloy JIS 5182 alloy. Sign F of
By applying the process as shown in Table 4 to the alloy of No. 1 and No. 2 of No. 1, a rolled plate having a final plate thickness of 0.3 mm was obtained. Here, the conditions of the manufacturing process numbers 6, 7, and 9 in Table 4 are within the process condition range of the invention of claim 4 of the present application, the manufacturing process number 8,
The conditions of 10 and 11 are outside the process condition range.

【0047】[0047]

【表3】 [Table 3]

【0048】[0048]

【表4】 [Table 4]

【0049】以上の各実施例により得られた各圧延板に
ついて、画像解析装置を用いて表面における6μm以上
の金属間化合物の数( 0.2mm2 当り)と、1μm以上の
金属間化合物の数を調べ、また圧延方向に対し直角な方
向の平均結晶粒径を調べ、さらに20℃における比抵抗
値を調べた。その結果を表5に示す。
For each rolled plate obtained by each of the above examples, the number of intermetallic compounds of 6 μm or more (per 0.2 mm 2 ) and the number of intermetallic compounds of 1 μm or more on the surface were measured using an image analyzer. The average crystal grain size in the direction perpendicular to the rolling direction was investigated, and the specific resistance value at 20 ° C. was further investigated. The results are shown in Table 5.

【0050】さらに、各実施例により得られた各圧延板
に対し、連続塗装焼付に相当する熱処理として、オイル
バスによる270℃×20秒の熱処理を施した。この熱
処理後の板について、面内各方向の耐力を調べた。面内
各方向のうち耐力最大の方向(実際にはL方向)の耐力
値を表6に示すとともに、その耐力最大方向の耐力値と
耐力最小方向(実際には45°方向)の耐力値との差を
表6中に示す。
Further, each rolled plate obtained in each of the examples was subjected to a heat treatment at 270 ° C. for 20 seconds in an oil bath as a heat treatment corresponding to continuous coating baking. With respect to the plate after this heat treatment, the proof stress in each in-plane direction was examined. Among the in-plane directions, the yield strength value in the direction of maximum yield strength (actually L direction) is shown in Table 6, and the yield strength value in the maximum yield strength direction and the yield strength value in the minimum yield strength direction (actually 45 ° direction) The difference is shown in Table 6.

【0051】また、前記同様に270℃×20秒の塗装
焼付相当熱処理程度の各圧延板について、耳率、エリク
セン値、成形時の肌荒れ性を調べるとともに、局部張り
出し試験を行なった。それらの結果を表6中に併せて示
す。
Further, as in the above, with respect to each rolled plate subjected to a heat treatment equivalent to coating baking of 270 ° C. for 20 seconds, the ear ratio, Erichsen value, and skin roughness at the time of molding were examined, and a local overhanging test was conducted. The results are also shown in Table 6.

【0052】なおここで肌荒れ性は、各板を缶蓋形状に
実際に成形して、目視観察により各部に肌荒れの発生が
認められなかった場合に○印を付し、肌荒れが認められ
た場合に×印を付した。
Here, the rough skin property means that each plate is actually formed into a can lid shape, and when no rough skin is observed in each part by visual observation, a mark of ○ is given, and rough skin is recognized. Is marked with a cross.

【0053】また局部張り出し試験は、図1に示すよう
に、直径φ= 2mm、先端曲率R= 1mmのポンチ1を用
い、ダイス板2上に試験材料3を載置して局部張り出し
プレス成形を行ない、かつポンチ長さLを 1.0mmから
1.9mmまで 0.1mm置きに10段階に変化させ、割れが発
生した段階のポンチ長さより1段階短いポンチ長さを割
れの発生しない限界として表示した。例えばポンチ長さ
L= 1.5mmの段階で割れが発生した場合は 1.4mmと表示
した。したがってこの試験値の値が大きいほど局部張り
出し成形性は良好と言える。
In the local overhanging test, as shown in FIG. 1, a punch 1 having a diameter φ = 2 mm and a tip curvature R = 1 mm was used, and a test material 3 was placed on a die plate 2 to carry out local overhang press forming. And punch length L from 1.0mm
The punch length was changed from 1.9 mm to 0.1 mm every 10 steps, and the punch length which was one step shorter than the punch length at which cracking occurred was indicated as the limit at which cracking did not occur. For example, if a crack occurs at the punch length L = 1.5 mm, it is displayed as 1.4 mm. Therefore, the larger the test value, the better the local overhang formability.

【0054】[0054]

【表5】 [Table 5]

【0055】[0055]

【表6】 [Table 6]

【0056】以上の各実施例において、製造プロセス番
号2の比較例の場合は、鋳造時の冷却速度が遅いことか
ら、最終板における6μm以上の大きな金属間化合物の
数が100個を越え、そのため局部張り出し性が劣り、
また微細な1〜6μm未満の金属間化合物数も比較的少
ないためエリクセン値で表わさせる成形性も劣り、また
最終冷間圧延の圧延率が高いため耳率も大きくなった。
In each of the above examples, in the case of the comparative example of manufacturing process No. 2, since the cooling rate during casting was slow, the number of large intermetallic compounds of 6 μm or more in the final plate exceeded 100, and therefore, Local protrusion is inferior,
Further, since the number of fine intermetallic compounds having a size of less than 1 to 6 μm is relatively small, the formability expressed by the Erichsen value is also poor, and the earring ratio is large because the rolling ratio of the final cold rolling is high.

【0057】また製造プロセス番号4の比較例の場合
は、中間熱処理がバッチ炉による徐昇温・徐冷であるた
め、充分な焼付塗装後の耐力(L方向耐力)が得られ
ず、また最終板における平均結晶粒が大きいとともに比
抵抗値が小さく(したがってMn,Feの固溶量が少な
く)、そのため肌荒れ性、局部張り出し性も劣り、さら
には中間熱処理後の最終冷間圧延の圧延率も高いため耳
率も大きくなった。
Further, in the case of the comparative example of manufacturing process No. 4, since the intermediate heat treatment is the gradual temperature rise and gradual cooling in the batch furnace, a sufficient yield strength (L-direction yield strength) after baking coating cannot be obtained, and the final plate Since the average grain size is large and the specific resistance value is small (there is a small amount of Mn and Fe in solid solution), the surface roughness and local overhanging property are poor, and the rolling ratio of the final cold rolling after the intermediate heat treatment is high. Ear ratio has also increased.

【0058】また製造プロセス番号8の比較例の場合
も、製造プロセス番号2の比較例と同様に、鋳造時の冷
却速度が遅いため、最終板における6μm以上の大きな
金属間化合物の数が多いと同時に1〜6μm未満の微細
な金属間化合物の数が少なく、そのため、エリクセン値
で表わされる成形性が劣るとともに、局部張り出し性も
劣っていた。
Also in the case of the comparative example of manufacturing process No. 8, as in the comparative example of manufacturing process No. 2, since the cooling rate at the time of casting is slow, if the number of large intermetallic compounds of 6 μm or more in the final plate is large. At the same time, the number of fine intermetallic compounds having a size of 1 to less than 6 μm was small, so that the moldability represented by the Erichsen value was poor, and the local overhanging property was also poor.

【0059】さらに製造プロセス番号10の比較例の場
合、鋳造時の冷却速度が遅く、かつ中間熱処理も徐昇
温、徐冷却でしかも最終冷間圧延率も大きく、この場合
は最終板における金属間化合物の条件、平均結晶粒サイ
ズ条件、比抵抗値(Mn,Fe固溶量)条件の全てがこ
の発明で規定する範囲内を満たさず、性能的にも全体的
に劣っていた。
Further, in the case of the comparative example of manufacturing process No. 10, the cooling rate during casting was slow, the intermediate heat treatment was gradually heated and gradually cooled, and the final cold rolling rate was also large. In this case, the intermetallic compound in the final plate was All of the conditions, the average crystal grain size conditions, and the specific resistance value (Mn, Fe solid solution amount) conditions did not satisfy the range defined by the present invention, and the performance was generally poor.

【0060】一方製造プロセス番号5は従来蓋材として
用いられていた5182合金相当の合金を用い、鋳造速
度が遅い従来の通常のプロセスを適用したものである
が、この場合は最終板における1〜6μm未満の微細な
金属間化合物数が少ないため、耐力値の方向による差が
著しく大きくて強度異方性が強く、かつエリクセン値で
表わされる成形性が若干劣り、またMg量が多いため局
部張り出し性も劣っていた。
On the other hand, manufacturing process No. 5 uses an alloy corresponding to the 5182 alloy which has been conventionally used as a lid material, and applies a conventional ordinary process with a slow casting speed. Since the number of fine intermetallic compounds of less than 6 μm is small, the difference in the proof stress direction is significantly large and the strength anisotropy is strong, and the formability represented by the Erichsen value is slightly inferior. He was also inferior.

【0061】また製造プロセス番号11も従来の518
2合金相当の合金を用い、通常の鋳造冷却速度が遅いプ
ロセスを適用したものであるが、この場合も製造プロセ
ス番号5とほぼ同様な結果であった。
The manufacturing process number 11 is also the same as the conventional 518.
Although an alloy corresponding to the two alloys was used and a process in which a normal casting cooling rate was low was applied, the result was almost the same as that of the manufacturing process No. 5 also in this case.

【0062】これに対し製造プロセス番号1,3,6,
7,9の本発明例では、最終板における金属間化合物条
件、結晶粒サイズ条件、比抵抗値(Mn,Fe固溶量)
条件がすべてこの発明で規定する範囲を満たしており、
この場合は塗装焼付後の耐力値として充分な耐力値が得
られるとともに強度異方性も少なく、かつ耳率、肌荒れ
性、局部張り出し性も良好であり、またエリクセン値で
表わされる成形性も良好であった。
On the other hand, manufacturing process numbers 1, 3, 6,
In Examples 7 and 9 of the present invention, the intermetallic compound condition, the crystal grain size condition, and the specific resistance value (Mn, Fe solid solution amount) in the final plate
All the conditions satisfy the range specified in this invention,
In this case, a sufficient yield value is obtained as a yield value after baking, the strength anisotropy is small, and the ear ratio, skin roughness, and local overhanging property are good, and the moldability represented by the Erichsen value is also good. Met.

【0063】[0063]

【発明の効果】前述の実施例からも明らかなように、こ
の発明による成形用アルミニウム合金硬質板は、内圧が
加わる用途の2ピースアルミニウム缶の蓋材として充分
な焼付塗装後耐力を有すると同時に、強度異方性が小さ
く、かつ局部張り出し性に優れるとともに、深絞り耳率
も小さく、その他肌荒れ性やエリクセン値等の成形性に
も優れており、したがって蓋材に最適であり、しかも胴
材として従来から使用されている3004合金の成分組
成に近いため、蓋材を胴材と同一成分組成としてアルミ
ニウム缶をユニアロイ化するかまたは少なくとも蓋材を
胴材に近い成分組成とすることができ、そのためアルミ
ニウム缶のリサイクルのために再溶解する際にも成分調
整の必要が少なく、低コストでリサイクルを行なうこと
ができる。さらには、アルミニウム缶のリサイクル時に
は鉄缶が混入することがあるが、この発明の硬質板では
特に性能の低下を招くことなくFeの 2.5%までの含有
が許容されるため、鉄が混入した場合でも通常はそのま
まで蓋材としても特に支障はなく、したがってこの点か
らもアルミニウム缶のリサイクルの容易化に寄与するこ
とができる。
As is clear from the above-mentioned embodiments, the aluminum alloy hard plate for molding according to the present invention has sufficient post-baking proof stress as a lid material for a two-piece aluminum can for applications where internal pressure is applied. Its strength anisotropy is small, its local overhanging property is excellent, its deep-drawing ear ratio is small, and it is also excellent in moldability such as rough skin and Erichsen value. Since it is close to the component composition of the 3004 alloy that has been conventionally used as, the aluminum can can be uni-alloyed with the lid material having the same component composition as the body material, or at least the lid material can have a component composition close to the body material, Therefore, it is not necessary to adjust the components even when redissolving the aluminum can for recycling, and the recycling can be performed at low cost. Furthermore, iron cans may be mixed in when recycling aluminum cans, but in the hard plate of the present invention, up to 2.5% of Fe is allowed without causing a decrease in performance. However, normally, there is no particular problem even if it is used as a lid material as it is, and from this point as well, it can contribute to facilitating the recycling of the aluminum can.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例において局部張り出し成形性の評価を行
なうためのプレス成形の態様を示す略解図である。
FIG. 1 is a schematic diagram showing a mode of press molding for evaluating local overhang formability in Examples.

Claims (1)

【特許請求の範囲】 【請求項1】 Mg 0.5〜 3.0%(重量%、以下同
じ)、Mn 0.5〜 2.5%、Fe 0.1〜 2.5%を含有し、
残部がAlおよび不可避的不純物よりなり、しかも20
℃における比抵抗値が4.5μΩcm以上であり、かつ圧延
方向に対し直角な方向の平均結晶粒径が100μm以下
であり、さらに板表面における6μm以上の金属間化合
物の数が 0.2mm2 当り100個以下でしかも1μm以上
の金属間化合物の数が 0.2mm2 当り2000個以上であ
ることを特徴とする成形用アルミニウム合金硬質板。 【請求項2】 Mg 0.5〜 3.0%、Mn 0.5〜 2.5%、
Fe 0.1〜 2.5%を含有し、かつCu0.05〜 1.0%、Z
n 0.1〜 1.0%のうちの1種または2種を含有し、残部
がAlおよび不可避的不純物よりなり、しかも20℃に
おける比抵抗値が 4.5μΩcm以上であり、かつ圧延方向
に対し直角な方向の平均結晶粒径が100μm以下であ
り、さらに板表面における6μm以上の金属間化合物の
数が0.2mm2 当り100個以下でしかも1μm以上の金
属間化合物の数が 0.2mm2 当り2000個以上であるこ
とを特徴とする成形用アルミニウム合金硬質板。 【請求項3】 Mg 0.5〜 3.0%、Mn 0.5〜 2.5%、
Fe 0.1〜 2.5%を含有し、残部がAlおよび不可避的
不純物よりなる合金を、50℃/sec 以上の冷却速度で
連続鋳造して板厚3〜15mmの連続鋳造板とし、次いで
その連続鋳造板に1次冷間圧延を施した後、500〜6
20℃の範囲内の温度に10℃/sec以上の加熱速度で
昇温し直ちにもしくはその範囲内の温度で120sec 以
下の保持を行なった後、10℃/sec 以上の冷却速度で
冷却する中間熱処理と、それに続く2次冷間圧延とを1
回または2回以上行ない、最終の2次冷間圧延の圧延率
を30%以上とし、これにより20℃における比抵抗値
が 4.5μΩcm以上であり、かつ圧延方向に対し直角な方
向の平均結晶粒径が100μm以下であり、さらに板表
面における6μm以上の金属間化合物の数が 0.2mm2
り100個以下でしかも1μm以上の金属間化合物の数
が 0.2mm2 当り2000個以上であるアルミニウム合金
硬質板を得ることを特徴とする、成形用アルミニウム合
金硬質板の製造方法。 【請求項4】 Mg 0.5〜 3.0%、Mn 0.5〜 2.5%、
Fe 0.1〜 2.5%を含有し、かつCu0.05〜 1.0%、Z
n 0.1〜 1.0%のうちの1種または2種を含有し、残部
がAlおよび不可避的不純物よりなる合金を、50℃/
sec以上の冷却速度で連続鋳造して板厚3〜15mmの連
続鋳造板とし、次いでその連続鋳造板に1次冷間圧延を
施した後、500〜620℃の範囲内の温度に10℃/
sec 以上の加熱速度で昇温し直ちにもしくはその範囲内
の温度で120sec 以下の保持を行なった後、10℃/
sec 以上の冷却速度で冷却する中間熱処理と、それに続
く2次冷間圧延とを1回または2回以上行ない、最終の
2次冷間圧延の圧延率を20%以上とし、これにより2
0℃における比抵抗値が 4.5μΩcm以上であり、かつ圧
延方向に対し直角な方向の平均結晶粒径が100μm以
下であり、さらに板表面における6μm以上の金属間化
合物の数が 0.2mm2 当り100個以下でしかも1μm以
上の金属間化合物の数が 0.2mm2 当り2000個以上で
あるアルミニウム合金硬質板を得ることを特徴とする、
成形用アルミニウム合金硬質板の製造方法。
Claims 1. Mg 0.5-3.0% (weight%, the same applies hereinafter), Mn 0.5-2.5%, Fe 0.1-2.5%,
The balance consists of Al and inevitable impurities, and
The specific resistance at ℃ is 4.5μΩcm or more, the average grain size in the direction perpendicular to the rolling direction is 100μm or less, and the number of intermetallic compounds of 6μm or more on the plate surface is 100 per 0.2mm 2. An aluminum alloy hard plate for forming, characterized in that the number of intermetallic compounds having a size of 1 μm or more is 2000 or more per 0.2 mm 2 . 2. Mg 0.5-3.0%, Mn 0.5-2.5%,
Fe 0.1-2.5% and Cu 0.05-1.0%, Z
n 0.1 to 1.0% of 1 type or 2 types, the balance is made of Al and unavoidable impurities, the specific resistance value at 20 ° C. is 4.5 μΩcm or more, and the direction perpendicular to the rolling direction is contained. The average grain size is 100 μm or less, the number of intermetallic compounds of 6 μm or more on the plate surface is 100 or less per 0.2 mm 2, and the number of intermetallic compounds of 1 μm or more is 2000 or more per 0.2 mm 2. An aluminum alloy hard plate for forming, characterized in that 3. Mg 0.5-3.0%, Mn 0.5-2.5%,
An alloy containing 0.1 to 2.5% of Fe and the balance of Al and unavoidable impurities is continuously cast at a cooling rate of 50 ° C./sec or more to form a continuously cast plate having a plate thickness of 3 to 15 mm, and then the continuously cast plate. After the first cold rolling on
Intermediate heat treatment in which the temperature is raised to a temperature in the range of 20 ° C at a heating rate of 10 ° C / sec or more, and immediately or at a temperature in the range is held for 120 seconds or less, and then cooled at a cooling rate of 10 ° C / sec or more. And subsequent cold rolling 1
One or two or more times, and the final secondary cold rolling has a rolling rate of 30% or more, whereby the specific resistance value at 20 ° C is 4.5 μΩcm or more, and the average crystal grain in the direction perpendicular to the rolling direction. Aluminum alloy having a diameter of 100 μm or less, and the number of intermetallic compounds of 6 μm or more on the plate surface is 100 or less per 0.2 mm 2, and the number of intermetallic compounds of 1 μm or more is 2000 or more per 0.2 mm 2. A method for producing an aluminum alloy hard plate for molding, which comprises obtaining a plate. 4. Mg 0.5-3.0%, Mn 0.5-2.5%,
Fe 0.1-2.5% and Cu 0.05-1.0%, Z
An alloy containing one or two of 0.1 to 1.0% of n and the balance of Al and inevitable impurities at 50 ° C. /
After continuously casting at a cooling rate of sec or more to obtain a continuously cast plate having a plate thickness of 3 to 15 mm, and then subjecting the continuous cast plate to primary cold rolling, the temperature is within the range of 500 to 620 ° C at 10 ° C /
Immediately after raising the temperature at a heating rate of sec or more and holding at a temperature within the range for 120 seconds or less, 10 ° C /
The intermediate heat treatment for cooling at a cooling rate of sec or more and the subsequent secondary cold rolling are performed once or twice or more, and the final secondary cold rolling reduction rate is set to 20% or more.
The specific resistance at 0 ° C is 4.5 µΩcm or more, the average grain size in the direction perpendicular to the rolling direction is 100 µm or less, and the number of intermetallic compounds of 6 µm or more on the plate surface is 100 per 0.2 mm 2. Characterized by obtaining an aluminum alloy hard plate in which the number of intermetallic compounds of 1 or less and 1 μm or more is 2000 or more per 0.2 mm 2 .
Manufacturing method of aluminum alloy hard plate for forming.
JP2693791A 1991-01-28 1991-01-28 Hard aluminum alloy sheet for forming and its production Withdrawn JPH055149A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2693791A JPH055149A (en) 1991-01-28 1991-01-28 Hard aluminum alloy sheet for forming and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2693791A JPH055149A (en) 1991-01-28 1991-01-28 Hard aluminum alloy sheet for forming and its production

Publications (1)

Publication Number Publication Date
JPH055149A true JPH055149A (en) 1993-01-14

Family

ID=12207067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2693791A Withdrawn JPH055149A (en) 1991-01-28 1991-01-28 Hard aluminum alloy sheet for forming and its production

Country Status (1)

Country Link
JP (1) JPH055149A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081947A (en) * 1996-04-10 1998-03-31 Toyo Kohan Co Ltd Production of resin coated aluminum alloy sheet for draw-shear spun can
WO1999013118A1 (en) * 1997-09-11 1999-03-18 Nippon Light Metal Company Ltd. Aluminum alloy sheet for spot welding
WO2003023080A1 (en) * 2001-09-04 2003-03-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Aluminum alloy, cast article of aluminum alloy, and method for producing cast article of aluminum alloy
WO2005061744A1 (en) * 2003-12-19 2005-07-07 Nippon Light Metal Company, Ltd. Aluminum alloy sheet excellent in resistance to softening by baking
WO2009041429A1 (en) * 2007-09-27 2009-04-02 Toyo Aluminium Kabushiki Kaisha Aluminum alloy foil
US10041154B2 (en) 2011-07-25 2018-08-07 Nippon Light Metal Company, Ltd. Aluminum alloy sheet and method for manufacturing same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1081947A (en) * 1996-04-10 1998-03-31 Toyo Kohan Co Ltd Production of resin coated aluminum alloy sheet for draw-shear spun can
WO1999013118A1 (en) * 1997-09-11 1999-03-18 Nippon Light Metal Company Ltd. Aluminum alloy sheet for spot welding
US6369347B1 (en) 1997-09-11 2002-04-09 Nippon Light Metal Company, Ltd. Aluminum alloy sheet for spot welding
CN1097096C (en) * 1997-09-11 2002-12-25 日本轻金属株式会社 Aluminum alloy sheet for spot welding
WO2003023080A1 (en) * 2001-09-04 2003-03-20 Kabushiki Kaisha Toyota Chuo Kenkyusho Aluminum alloy, cast article of aluminum alloy, and method for producing cast article of aluminum alloy
EP1698710A1 (en) * 2003-12-19 2006-09-06 Nippon Light Metal, Co., Ltd. Aluminum alloy sheet excellent in resistance to softening by baking
WO2005061744A1 (en) * 2003-12-19 2005-07-07 Nippon Light Metal Company, Ltd. Aluminum alloy sheet excellent in resistance to softening by baking
EP1698710A4 (en) * 2003-12-19 2007-10-03 Nippon Light Metal Co Aluminum alloy sheet excellent in resistance to softening by baking
KR101023617B1 (en) * 2003-12-19 2011-03-21 니폰게이긴조쿠가부시키가이샤 Aluminum alloy sheet excellent in resistance to softening by baking
US8524015B2 (en) * 2003-12-19 2013-09-03 Nippon Light Metal Company, Ltd. Aluminum alloy sheet excellent in resistance to softening by baking
WO2009041429A1 (en) * 2007-09-27 2009-04-02 Toyo Aluminium Kabushiki Kaisha Aluminum alloy foil
JP2009097077A (en) * 2007-09-27 2009-05-07 Toyo Aluminium Kk Aluminum alloy foil
JP5413734B2 (en) * 2007-09-27 2014-02-12 東洋アルミニウム株式会社 Aluminum alloy foil
KR20150113209A (en) * 2007-09-27 2015-10-07 도요 알루미늄 가부시키가아샤 Aluminum alloy foil, molded container with aluminum alloy foil, food package, and method for manufacturing aluminum alloy foil
US10041154B2 (en) 2011-07-25 2018-08-07 Nippon Light Metal Company, Ltd. Aluminum alloy sheet and method for manufacturing same

Similar Documents

Publication Publication Date Title
US4753685A (en) Aluminum alloy sheet with good forming workability and method for manufacturing same
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JPH055149A (en) Hard aluminum alloy sheet for forming and its production
JP4257135B2 (en) Aluminum alloy hard plate for can body
JPH08325664A (en) High-strength heat treatment type aluminum alloy sheet for drawing and its production
JP2862198B2 (en) Aluminum alloy plate for DI can body
JP2745340B2 (en) Method for manufacturing aluminum two-piece can
JP3278130B2 (en) Method for producing high-strength heat-treated aluminum alloy sheet for drawing
JP3644819B2 (en) Method for producing aluminum alloy plate for can body
JP2783311B2 (en) Al alloy plate for negative pressure can stay tab type end with excellent openability and method of manufacturing the same
JP2626859B2 (en) Method for producing aluminum alloy sheet for high strength forming with low anisotropy
JPH11256290A (en) Manufacture of aluminum alloy sheet for can body
JP2891620B2 (en) High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same
JPH05331588A (en) Aluminum alloy sheet for forming excellent in flange formability and its production
JP2000234158A (en) Production of aluminum alloy sheet for can barrel
JP2745254B2 (en) Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same
JPH04276047A (en) Production of hard aluminum alloy sheet for forming
JPH0860283A (en) Aluminum alloy sheet for di can body and its production
JPH0723160B2 (en) DI can body made of aluminum alloy with excellent necking and flange formability
JP3247447B2 (en) Manufacturing method of aluminum alloy sheet for forming with low ear ratio
JP3713614B2 (en) Method for producing aluminum alloy plate for can body
JP3248803B2 (en) Al alloy plate for full open end with excellent openability and method for producing the same
JP3069008B2 (en) Method for manufacturing aluminum alloy DI can body
JPH05222497A (en) Production of hard aluminum alloy sheet reduced in edge rate
JP2613522B2 (en) Aluminum alloy plate for stay tub

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514