JP2525017B2 - Aluminum alloy material for can ends - Google Patents
Aluminum alloy material for can endsInfo
- Publication number
- JP2525017B2 JP2525017B2 JP62273573A JP27357387A JP2525017B2 JP 2525017 B2 JP2525017 B2 JP 2525017B2 JP 62273573 A JP62273573 A JP 62273573A JP 27357387 A JP27357387 A JP 27357387A JP 2525017 B2 JP2525017 B2 JP 2525017B2
- Authority
- JP
- Japan
- Prior art keywords
- alloy material
- aluminum alloy
- rivet
- rare earth
- formability
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- Rigid Containers With Two Or More Constituent Elements (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明はキャンエンド用アルミニウム合金材に関し、
より詳しくは優れたリベット成形性を有し、薄肉化に好
適なキャンエンド用アルミニウム合金材に関する。The present invention relates to an aluminum alloy material for can ends,
More specifically, it relates to an aluminum alloy material for can ends which has excellent rivet formability and is suitable for thinning.
(従来の技術) 飲料缶として広く用いられているイージーオープン缶
はキャンボディ(缶胴)とキャンエンド(缶蓋)からな
り、キャンボディはDI成形によりカップ状に加工され、
キャンエンドはスコア加工ならびにリベット成形(多段
張出し成形)してタブが取付けられた後、ギャンボディ
に巻締め接合される。キャンボディ材としては深絞り性
及びしごき加工性(DI成形性)に優れたJIS 3004合金
材又はティンフリースチールが用いられ、キャンエンド
材としてはコーヒー、果汁用等にはリベット成形性の優
れたJIS 5052合金材、内圧の発生する炭酸飲料やビー
ル用にはさらに強度の高いJIS 5082合金材、JIS 5182
合金材の0.3mm程度の板厚のものが使用されている。(Prior Art) Easy-open cans widely used as beverage cans consist of a can body (can body) and a can end (can lid), and the can body is processed into a cup shape by DI molding.
The can end is scored and rivet-molded (multi-stage overhang molding), and after the tab is attached, the can end is wound and joined to the gan body. JIS 3004 alloy material or tin-free steel with excellent deep drawability and ironing workability (DI formability) is used as the can body material, and coffee and rivet formability is excellent as the can end material for the can end material. JIS 5052 alloy material, JIS 5082 alloy material with higher strength for carbonated drinks and beer that generate internal pressure, JIS 5182
An alloy material with a plate thickness of about 0.3 mm is used.
ところで近年アルミニウム缶の需要が急速に増大して
いるが、製造価格低減のため缶体の薄肉軽量化が強く望
まれている。By the way, in recent years, the demand for aluminum cans has been rapidly increasing, and it has been strongly desired to reduce the thickness and weight of cans in order to reduce the manufacturing cost.
(発明が解決しようとする問題点) しかしながら、上記従来合金材では薄肉化した場合、
リベット成形性が不十分となり、リベット成形割れが発
生しやすいという欠点があった。すなわち、リベット成
形は通常3段階の張出し成形により最終的に直径3mm程
度のリベットを形成させた後タブを取付ける(リベット
打ちする)のであるが、この張出し成形は板厚が薄くな
ればなるほど困難になるため、上記従来材では0.25mm程
度までの薄肉化が限度であった。(Problems to be Solved by the Invention) However, when the conventional alloy material is thinned,
There was a drawback that the rivet moldability became insufficient and rivet mold cracks tended to occur. That is, the rivet forming is usually carried out by forming the rivet with a diameter of about 3 mm by three-step bulging, and then attaching the tab (rivet setting), but this bulging becomes more difficult as the plate thickness becomes thinner. Therefore, in the above-mentioned conventional material, the limit was thinning to about 0.25 mm.
したがって、本発明はリベット成形性に優れ、厚さ0.
20mm程度までの薄肉化が可能なキャンエンド用アルミニ
ウム合金材を提供することを目的とする。Therefore, the present invention has excellent rivet formability and a thickness of 0.
It is an object of the present invention to provide an aluminum alloy material for can ends which can be thinned to about 20 mm.
(問題点を解決するための手段) 本発明者は上記の問題点に解決するため鋭意研究を重
ねた結果、所定量のMg及び希土類元素を含有させたアル
ミニウム合金により上記目的が達成されること及びさら
にこのアルミニウム合金に機械的強度を向上させる金属
元素を添加するとより好ましい合金材が得られることを
見出した。本発明はこの知見に基づいてなされるに至っ
たものである。(Means for Solving the Problems) As a result of intensive studies conducted by the present inventor to solve the above problems, the above object can be achieved by an aluminum alloy containing a predetermined amount of Mg and a rare earth element. It has also been found that a more preferable alloy material can be obtained by further adding a metal element that improves mechanical strength to this aluminum alloy. The present invention has been accomplished based on this finding.
すなわち本発明は、(1)Mg2〜6%(以下重量%を
単に%と記す。)(但し、2%を除く)、希土類元素0.
005〜1%を含有し、残部がAlと不可避不純物からなる
ことを特徴とするキャンエンド用アルミニウム合金材、
(2)Mg2〜6%(但し、2%を除く)、希土類元素0.0
05〜1%を含有し、さらにCu0.05〜1%を含有し、残部
がAlと不可避不純物からなることを特徴とするキャンエ
ンド用アルミニウム合金材、(3)Mg2〜6%(但し、
2%を除く)、希土類元素0.005〜1%を含有し、さら
にZn0.05〜1.5%を含有し、残部がAlと不可避不純物か
らなることを特徴とするキャンエンド用アルミニウム合
金材、(4)Mg2〜6%(但し、2%を除く)、希土類
元素0.005〜1%を含有し、さらにMn0.05〜0.5%を含有
し、残部がAlと不可避不純物からなることを特徴とする
キャンエンド用アルミニウム合金材、及び(5)Mg2〜
6%(但し、2%を除く)、希土類元素0.005〜1%を
含有し、さらにCr0.05〜0.3%又はZr0.05〜0.3%のうち
1種以上を含有し、残部がAlと不可避不純物からなるこ
とを特徴とするキャンエンド用アルミニウム合金材、を
提供するものである。That is, according to the present invention, (1) Mg2 to 6% (hereinafter, weight% is simply referred to as%) (however, 2% is excluded), rare earth element 0.1.
An aluminum alloy material for can ends, characterized by containing 005 to 1% and the balance being Al and unavoidable impurities,
(2) Mg2-6% (excluding 2%), rare earth element 0.0
Aluminum alloy material for can ends, characterized by containing 05 to 1%, further containing 0.05 to 1% Cu, and the balance being Al and inevitable impurities, (3) Mg2 to 6% (however,
Aluminum alloy material for can ends, characterized in that it contains 0.005 to 1% of rare earth elements, further contains 0.05 to 1.5% of Zn, and the balance is Al and inevitable impurities (4). For can ends characterized by containing Mg2 to 6% (excluding 2%), rare earth element 0.005 to 1%, Mn 0.05 to 0.5%, and the balance Al and unavoidable impurities. Aluminum alloy material, and (5) Mg2〜
6% (excluding 2%), 0.005 to 1% rare earth element, and further contains one or more of Cr0.05 to 0.3% or Zr0.05 to 0.3%, the balance Al and unavoidable impurities An aluminum alloy material for can ends, comprising:
本発明においてキャンエンド用アルミニウム合金材の
含有成分及びその成分含有量を限定した理由は次の通り
である。The reasons for limiting the components contained in the can end aluminum alloy material and the component contents in the present invention are as follows.
Mgの含有量は2〜6%とする。Mgはアルミニウム合金
材に強度を付与する重要な元素である。Mg含有量が2%
未満では強度向上が不十分であり、Mgを6%を越えて含
有させると圧延性が悪くなるとともに成形性も劣化す
る。The content of Mg is 2 to 6%. Mg is an important element that gives strength to an aluminum alloy material. 2% Mg content
If the content is less than the above range, the strength is not sufficiently improved, and if the content of Mg exceeds 6%, the rolling property is deteriorated and the formability is deteriorated.
希土類元素の含有量は0.005〜1%とする。希土類元
素は、その種類が特に限定されるものではないが、具体
的には例えばY、La、Ce、Pr、Nd、Sm及びその混合物を
好適に使用することができる。希土類元素はリベット成
形性を向上する作用を有する。すなわち、希土類元素は
ごく微量添加するだけでも張出し成形時におけるリベッ
ト部分の加工硬化量を減少させ、しかも板厚分布を均一
にするので、加工硬化や局所的な板厚減少(ネッキン
グ)によるタブ取付け時の割れの発生を防止する。希土
類元素の含有量の総量が0.005%未満ではその効果が少
なく、1%を越えて含有されると粗大な金属間化合物を
形成し、リベット成形性が逆に劣化する。希土類元素の
好ましい含有量範囲は、コスト面も考慮した場合、0.05
〜0.5%程度である。The content of rare earth elements is 0.005 to 1%. Although the kind of the rare earth element is not particularly limited, specifically, for example, Y, La, Ce, Pr, Nd, Sm and a mixture thereof can be preferably used. The rare earth element has the function of improving the rivet formability. That is, even if only a very small amount of rare earth element is added, the amount of work hardening in the rivet portion during overhang forming is reduced and the plate thickness distribution is made uniform, so work mounting and tab attachment due to local plate thickness reduction (necking) Prevents the occurrence of cracks. If the total content of rare earth elements is less than 0.005%, its effect is small, and if it exceeds 1%, a coarse intermetallic compound is formed and rivet formability is deteriorated. The preferable content range of the rare earth element is 0.05 when considering the cost.
It is about 0.5%.
上記のMg及び希土類元素を含有することにより、リベ
ット成形性は大いに向上するが、機械的強度等をさらに
改善するためには以下の元素をさらに添加するのが有効
である。Although the rivet formability is greatly improved by containing the above Mg and rare earth elements, it is effective to add the following elements further in order to further improve the mechanical strength and the like.
Cuの含有量は0.05〜1%とする。Cuは強度を付与する
元素である。Cu含有量が0.05%未満ではその効果が少な
く、1%を越えると成形性及び耐食性が劣化する。Znの
含有量は0.05〜1.5%とする。Znは強度を付与するため
に添加される元素の一つであり、また、リベット成形性
を向上させる元素である。Znの含有量が0.05%未満では
その効果が不十分であり、1.5%を越えるとリベット成
形性が劣化する。The Cu content is 0.05 to 1%. Cu is an element that imparts strength. If the Cu content is less than 0.05%, its effect is small, and if it exceeds 1%, the formability and corrosion resistance deteriorate. The Zn content is 0.05 to 1.5%. Zn is one of the elements added to impart strength, and is also an element that improves the rivet formability. If the Zn content is less than 0.05%, the effect is insufficient, and if it exceeds 1.5%, the rivet formability deteriorates.
Mnの含有量は0.05〜0.5%とする。Mnは強度を付与
し、集合組織(耳)の安定化に寄与する。Mn含有量が0.
05%未満では効果が不十分であり、0.5%を越えると成
形性が劣化する。The Mn content is 0.05 to 0.5%. Mn imparts strength and contributes to stabilizing the texture (ear). Mn content is 0.
If it is less than 05%, the effect is insufficient, and if it exceeds 0.5%, the formability deteriorates.
Cr及びZrの含有量はともに0.05〜0.3%とする。Cr及
びZrは結晶粒を微細化し、成形性を向上させる。Cr及び
Zrの含有量がそれぞれ0.05%未満では効果が不十分であ
り、それぞれ0.3%を越えると成形性が劣化する。The contents of Cr and Zr are both 0.05 to 0.3%. Cr and Zr make the crystal grains finer and improve the formability. Cr and
If the content of Zr is less than 0.05%, the effect is insufficient, and if it exceeds 0.3%, the formability deteriorates.
本発明のアルミニウム合金材において、上記の組成の
他に含有される不純物としてのFe、Siは、それぞれ0.5
%未満であれば特に問題がないが、リベット成形性の改
善のためには0.2%未満にする方が好ましい。また、鋳
塊組織の微細化剤として通常添加されるTi、Bは各々0.
05%未満、0.01%未満の範囲内で添加するのが好まし
い。In the aluminum alloy material of the present invention, Fe and Si as impurities contained in addition to the above composition are each 0.5
If it is less than 0.1%, there is no particular problem, but it is preferably less than 0.2% in order to improve the rivet moldability. Further, Ti and B, which are usually added as a refiner of the ingot structure, are each 0.
It is preferably added within the range of less than 05% and less than 0.01%.
次に本発明のキャンエンド用アルミニウム合金材の製
造方法について説明する。Next, a method for manufacturing the aluminum alloy material for can ends of the present invention will be described.
まず前述のような成分を含有するアルミニウム合金溶
湯を常法に従って鋳造する。この鋳造法としては半連続
鋳造法が一般的であるが、省エネルギーや機械的性質の
向上等から薄板連続鋳造を行ってもよい。得られた鋳塊
は均熱処理(均質化処理)を行う。この均熱処理条件
は、中間焼鈍時の結晶粒を微細化させるために、均熱温
度を450〜600℃、均熱保持時間を48時間以内とすること
が好ましい。均熱温度が450℃未満では中間焼鈍の結晶
粒微細化が困難であり、電気化学的粗面化を均一、かつ
微細に行うことが困難となる。また、均熱温度が600℃
を越えたり、均熱保持時間が48時間を越える条件では、
これら効果が飽和してしまい。エネルギーコストの増大
を招くだけである。First, a molten aluminum alloy containing the components described above is cast by a conventional method. As this casting method, a semi-continuous casting method is generally used, but thin plate continuous casting may be performed in order to save energy and improve mechanical properties. The obtained ingot is subjected to soaking (homogenization treatment). It is preferable that the soaking conditions are such that the soaking temperature is 450 to 600 ° C. and the soaking holding time is within 48 hours in order to make the crystal grains fine during the intermediate annealing. If the soaking temperature is lower than 450 ° C., it is difficult to refine the crystal grains in the intermediate annealing, and it becomes difficult to perform electrochemical graining uniformly and finely. The soaking temperature is 600 ℃
In the condition that the temperature exceeds 50 hours or the soaking time exceeds 48 hours,
These effects are saturated. It only increases energy costs.
均熱処理後は熱間圧延を行うが、この熱間圧延に関し
ては特に厳密に管理する必要はなく、常法に従って400
〜550℃で加熱して熱間圧延を行えばよい。Although hot rolling is performed after soaking, it is not necessary to strictly control this hot rolling.
Hot rolling may be performed by heating at ~ 550 ° C.
熱間圧延終了後は、1次冷間圧延を施した後、中間焼
鈍を施し、さらに最終冷間圧延を行うのが通常である
が、場合によっては中間焼鈍を2回以上挟んで冷間圧延
を行ってもよい。After the hot rolling is completed, it is usual to perform the primary cold rolling, then the intermediate annealing, and then the final cold rolling. However, in some cases, the intermediate annealing is sandwiched twice or more to perform the cold rolling. You may go.
この中間焼鈍における焼鈍温度は300〜600℃が適当で
ある。300℃未満では完全に再結晶せず、600℃を越える
と表面の酸化が激しくなり表面の色が変色し、好ましく
ない。またこの中間焼鈍は、通常のバッチ焼鈍(平均加
熱速度20〜50℃/hr)でも、連続焼鈍(平均加熱速度数
℃〜数十℃/sec)でもよいが、ベーキング後強度をさら
に向上させ、しかも最終冷間圧延以前の平均再結晶粒径
を微細、均一にするためには、バッチ焼鈍よりも連続焼
鈍を適用することが好ましい。なお連続焼鈍の場合は中
間焼鈍温度を480℃以上にすることがCuなどの固溶促進
の点でさらに望ましい。The annealing temperature in this intermediate annealing is suitably 300 to 600 ° C. If the temperature is lower than 300 ° C, recrystallization does not occur completely, and if the temperature exceeds 600 ° C, the surface is heavily oxidized and the surface is discolored, which is not preferable. In addition, this intermediate annealing may be either normal batch annealing (average heating rate 20 to 50 ° C / hr) or continuous annealing (average heating rate several ° C to several tens ° C / sec), but further improves the strength after baking, Moreover, in order to make the average recrystallized grain size before the final cold rolling fine and uniform, it is preferable to apply continuous annealing rather than batch annealing. In the case of continuous annealing, it is more desirable to set the intermediate annealing temperature to 480 ° C or higher in order to promote solid solution of Cu and the like.
続く最終冷間圧延は薄肉キャンエンド材として必要な
強度を得るために、中間焼鈍を施した後に行うが、その
圧延率は30〜90%の範囲でよい。また最終冷間圧延を終
了した後に、所望の強度、延性を得るための調質焼鈍
(200〜300℃、1〜10時間、H2n処理)、強度の経時変
化を防止するための安定化焼鈍(100℃〜200℃、1〜10
時間、H3n)を施してもよい。The subsequent final cold rolling is performed after the intermediate annealing in order to obtain the strength required for the thin can end material, and the rolling rate may be in the range of 30 to 90%. Further, after the final cold rolling is finished, temper annealing (200 to 300 ° C., 1 to 10 hours, H2n treatment) for obtaining desired strength and ductility, and stabilizing annealing (in order to prevent changes in strength over time ( 100 ℃ ~ 200 ℃, 1 ~ 10
Time, H3n) may be given.
このようにして得られた本発明のアルミニウム合金材
は脱脂等の処理をうけたのち、200℃程度の温度で数分
間の塗装、焼付け(ベーキング)してからキャンエンド
として成形、加工される。The aluminum alloy material of the present invention thus obtained is subjected to a treatment such as degreasing, and then coated and baked (baked) at a temperature of about 200 ° C. for several minutes, and then molded and processed as a can end.
(実施例) 次に本発明を実施例に基づきさらに詳細に説明する。(Example) Next, the present invention will be described in more detail based on examples.
実施例 第1表に示す組成を有するアルミニウム合金(No.1〜
No.15)を溶解し、半連続鋳造法により厚さ500mmの鋳塊
とした。これを面削した後500℃、5時間の均熱処理
後、厚さ3mmまで熱間圧延した。続いて冷間圧延した
後、連続焼鈍炉により520℃、10秒間の中間焼鈍を施し
てから最終冷間圧延により、それぞれ0.30、0.28、0.2
6、0.24、0.22、0.20mmの6種の板厚の板に仕上げた。
このとき最終冷間圧延率がいずれも60%となるように前
述の条件の中間焼鈍を施す位置を設定した。得られたそ
れぞれの最終冷間圧延板を脱脂後、200℃、20分間のベ
ーキングを施してから外径60mmのキャンエンドに成形
し、リベット成形性を評価した。リベット成形は3段階
張出し加工により外径3mmのリベットを成形した後、タ
ブを接合し、このときのリベット割れ発生の有無を観察
した。この試験おけるリベット割れ発生状況の評価は各
1000缶成形したうち、割りの発生が皆無であったものを
○(リベット成形性良好)、1〜5缶の割れが発生した
ものを△(やや良)、6缶以上の割れが発生したものを
×(不良)で示した。結果を第2表に示す。Examples Aluminum alloys having the compositions shown in Table 1 (No. 1 to
No. 15) was melted and made into a 500 mm thick ingot by a semi-continuous casting method. This was face-shaved, soaked at 500 ° C. for 5 hours, and then hot-rolled to a thickness of 3 mm. Then, after cold rolling, 520 ℃ in a continuous annealing furnace, subjected to intermediate annealing for 10 seconds, then by final cold rolling, 0.30, 0.28, 0.2 respectively.
Plates with 6 kinds of thickness of 6, 0.24, 0.22 and 0.20 mm were finished.
At this time, the position where the intermediate annealing was performed under the above-mentioned conditions was set so that the final cold rolling rate would be 60% in all cases. After degreasing each of the obtained final cold-rolled sheets, baking was performed at 200 ° C. for 20 minutes, and then the can ends having an outer diameter of 60 mm were formed, and the rivet formability was evaluated. In the rivet forming, a rivet having an outer diameter of 3 mm was formed by a three-step overhanging process, tabs were joined, and the presence or absence of rivet cracking was observed. The evaluation of the rivet crack occurrence status in this test is
Out of 1,000 cans molded, no cracks were found at all (good rivet formability), 1-5 cans were cracked at △ (somewhat good), and 6 or more cans were cracked. Is indicated by x (bad). The results are shown in Table 2.
第2表の結果から明らかなように、本発明のキャンエ
ンド用アルミニウム合金材(No.1〜No.7)は、いずれも
0.20mmまで薄肉化してもリベット割れが発生せずリベッ
ト成形性が極めて良好である。これに対して比較例はリ
ベット成形性が劣り、0.24〜0.26mm以下の薄肉化が困難
である。 As is clear from the results of Table 2, the aluminum alloy materials for can ends (No. 1 to No. 7) of the present invention are all
Even if the wall thickness is reduced to 0.20 mm, rivet cracking does not occur and rivet formability is extremely good. On the other hand, in the comparative example, the rivet formability is poor, and it is difficult to reduce the thickness to 0.24 to 0.26 mm or less.
(発明の効果) このように、本発明によればリベット成形性の優れた
キャンエンド用アルミニウム合金材が提供される。した
がって本発明によれば、キャンエンド材の一層の薄肉化
が可能(板厚0.20mm)であり、アルミニウム缶の軽量
化、コストダウンに顕著な効果を奏する。(Effect of the Invention) As described above, according to the present invention, an aluminum alloy material for can ends having excellent rivet formability is provided. Therefore, according to the present invention, the thickness of the can end material can be further reduced (the plate thickness is 0.20 mm), and the weight reduction of the aluminum can and the cost reduction can be achieved remarkably.
Claims (5)
元素0.005〜1%を含有し、残部がAlと不可避不純物
(以上重量%)からなることを特徴とするキャンエンド
用アルミニウム合金材。1. Aluminum for can ends, characterized in that it contains Mg 2 to 6% (excluding 2%), rare earth elements 0.005 to 1%, and the balance is Al and inevitable impurities (above weight%). Alloy material.
元素0.005〜1%を含有し、さらにCu0.05〜1%を含有
し、残部がAlと不可避不純物(以上重量%)からなるこ
とを特徴とするキャンエンド用アルミニウム合金材。2. Mg 2 to 6% (excluding 2%), rare earth element 0.005 to 1%, Cu 0.05 to 1%, balance Al and unavoidable impurities (above weight%) An aluminum alloy material for can ends, which is made of
元素0.005〜1%を含有し、さらにZn0.05〜1.5%を含有
し、残部がAlと不可避不純物(以上重量%)からなるこ
とを特徴とするキャンエンド用アルミニウム合金材。3. Mg2 to 6% (excluding 2%), rare earth element 0.005 to 1%, Zn0.05 to 1.5%, balance Al and unavoidable impurities (above weight%) An aluminum alloy material for can ends, which is made of
元素0.005〜1%を含有し、さらにMn0.05〜0.5%を含有
し、残部がAlと不可避不純物(以上重量%)からなるこ
とを特徴とするキャンエンド用アルミニウム合金材。4. Mg 2 to 6% (excluding 2%), rare earth element 0.005 to 1%, Mn 0.05 to 0.5%, and balance Al and unavoidable impurities (above wt%). An aluminum alloy material for can ends, which is made of
元素0.005〜1%を含有し、さらにCr0.05〜0.3%又はZr
0.05〜0.3%のうち1種以上を含有し、残部がAlと不可
避不純物(以上重量%)からなることを特徴とするキャ
ンエンド用アルミニウム合金材。5. Mg2-6% (excluding 2%), rare earth element 0.005-1%, Cr0.05-0.3% or Zr
An aluminum alloy material for can ends, characterized by containing at least one of 0.05 to 0.3%, and the balance being Al and unavoidable impurities (above weight%).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62273573A JP2525017B2 (en) | 1987-10-30 | 1987-10-30 | Aluminum alloy material for can ends |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62273573A JP2525017B2 (en) | 1987-10-30 | 1987-10-30 | Aluminum alloy material for can ends |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01119637A JPH01119637A (en) | 1989-05-11 |
JP2525017B2 true JP2525017B2 (en) | 1996-08-14 |
Family
ID=17529687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62273573A Expired - Lifetime JP2525017B2 (en) | 1987-10-30 | 1987-10-30 | Aluminum alloy material for can ends |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2525017B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03114389U (en) * | 1990-03-08 | 1991-11-25 | ||
JPH05230583A (en) * | 1992-02-25 | 1993-09-07 | Mitsubishi Alum Co Ltd | High strength al alloy sheet excellent in formability |
JP2007023340A (en) * | 2005-07-15 | 2007-02-01 | Sumitomo Light Metal Ind Ltd | Aluminum alloy sheet for positive-pressure can top, and method for producing the same |
CN102828075B (en) * | 2012-08-17 | 2014-02-26 | 南昌大学 | Al-Cu-Sm rare earth cast aluminium alloy and preparation method thereof |
CN106957977A (en) * | 2017-05-24 | 2017-07-18 | 中国科学院金属研究所 | A kind of nonheat-treatable Antibacterial aluminum alloy and its preparation technology |
CN116949321A (en) * | 2022-04-19 | 2023-10-27 | 宝山钢铁股份有限公司 | Aluminum alloy plate for tank body and manufacturing method thereof |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6050141A (en) * | 1983-08-27 | 1985-03-19 | Kobe Steel Ltd | Hard aluminum alloy sheet for can end and its production |
JPS6244549A (en) * | 1985-08-22 | 1987-02-26 | Showa Alum Corp | Structural aluminum alloy having superior cold workability |
JPS6254054A (en) * | 1985-09-02 | 1987-03-09 | Showa Alum Corp | Aluminum alloy excellent in cold workability |
-
1987
- 1987-10-30 JP JP62273573A patent/JP2525017B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH01119637A (en) | 1989-05-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2011202283A (en) | Aluminum alloy, aluminum alloy foil, container and method of preparing aluminum alloy foil | |
JP2525017B2 (en) | Aluminum alloy material for can ends | |
JPH0931616A (en) | Aluminum-magnesium-silicon alloy sheet excellent in formability and its production | |
JP3726893B2 (en) | Method for producing an aluminum alloy plate used for a lid for a positive pressure can excellent in rivet formability, score workability and blow-up resistance | |
JPH08325664A (en) | High-strength heat treatment type aluminum alloy sheet for drawing and its production | |
JP2595836B2 (en) | Aluminum alloy sheet for press forming excellent in curability by low-temperature baking and method for producing the same | |
JPH09268341A (en) | Baking-coated al alloy sheet for can lid material, excellent in stress corrosion cracking resistance in score part, and its production | |
JP3867569B2 (en) | Aluminum foil for containers and manufacturing method thereof | |
JP2862198B2 (en) | Aluminum alloy plate for DI can body | |
JP2856936B2 (en) | Aluminum alloy sheet for press forming excellent in strength-ductility balance and bake hardenability, and method for producing the same | |
JP3278130B2 (en) | Method for producing high-strength heat-treated aluminum alloy sheet for drawing | |
JP2626859B2 (en) | Method for producing aluminum alloy sheet for high strength forming with low anisotropy | |
JP2773874B2 (en) | Manufacturing method of aluminum alloy plate | |
JP2001262261A (en) | Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method | |
JP2599450B2 (en) | Manufacturing method of aluminum alloy plate for can end | |
JPH04214834A (en) | Aluminum alloy sheet excellent in corrosion resistance and press formability and its manufacture | |
JPH09279281A (en) | Aluminum alloy baking finished sheet for can top material excellent in corrosion resistance and its production | |
JP2891620B2 (en) | High strength aluminum alloy hard plate excellent in stress corrosion cracking resistance and method of manufacturing the same | |
JP2895510B2 (en) | Manufacturing method of aluminum alloy material for forming | |
JP3411840B2 (en) | Aluminum alloy plate for can end | |
JP3733566B2 (en) | Manufacturing method of aluminum alloy coated tab material with excellent bending workability | |
JPH0320458B2 (en) | ||
JPH0543778B2 (en) | ||
JP3069003B2 (en) | Aluminum alloy DI can body | |
JP2599450C (en) |