JP2895510B2 - Manufacturing method of aluminum alloy material for forming - Google Patents

Manufacturing method of aluminum alloy material for forming

Info

Publication number
JP2895510B2
JP2895510B2 JP13735589A JP13735589A JP2895510B2 JP 2895510 B2 JP2895510 B2 JP 2895510B2 JP 13735589 A JP13735589 A JP 13735589A JP 13735589 A JP13735589 A JP 13735589A JP 2895510 B2 JP2895510 B2 JP 2895510B2
Authority
JP
Japan
Prior art keywords
strength
aluminum alloy
cold rolling
alloy material
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13735589A
Other languages
Japanese (ja)
Other versions
JPH036356A (en
Inventor
正一 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP13735589A priority Critical patent/JP2895510B2/en
Publication of JPH036356A publication Critical patent/JPH036356A/en
Application granted granted Critical
Publication of JP2895510B2 publication Critical patent/JP2895510B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Metal Rolling (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は成形用アルミニウム合金材の製造方法に関
し、さらに詳しくは、飲料缶、食缶などの金属缶用胴及
びキャップとして使用されるのに好適な高強度かつ成形
性に優れた成形用アルミニウム合金材の製造方法に関す
るものである。
Description: FIELD OF THE INVENTION The present invention relates to a method for producing an aluminum alloy material for molding, and more particularly to a method for producing a metal can body and a cap for beverage cans, food cans and the like. The present invention relates to a method for producing a suitable aluminum alloy material for molding having high strength and excellent moldability.

(従来の技術) 一般に深絞り加工により製造された飲料缶、食缶容器
又はPPキャップ等の材料としては、JIS3105合金、3004
合金、5052合金等の硬質、半硬質材等が用いられている
が、缶、キャップのコストをより一層低減するとともに
軽量化を図るため、従来よりもさらに薄いアルミニウム
合金材が強く望まれており、この素材として従来使用さ
れているものよりも高強度であるアルミニウム合金材が
要望されている。
(Prior art) In general, materials for beverage cans, food cans or PP caps manufactured by deep drawing are JIS3105 alloy, 3004
Hard and semi-hard materials such as alloys and 5052 alloys are used, but in order to further reduce the cost and weight of cans and caps, thinner aluminum alloy materials than before are strongly desired. There is a demand for an aluminum alloy material having higher strength than that conventionally used as this material.

(発明が解決しようとする課題) しかしながら、従来のアルミニウム合金について単に
冷間圧延率を上昇させたり、主合金含有元素であるMgを
多く含有させたりすることにより高強度にしようとする
と、絞り加工時の耳率の増加、深絞り性の低下をもたら
すばかりでなく、塗装焼付け加熱時の強度低下が大きく
なり、薄肉化に必要な強度が得られないという問題が生
じた。
(Problems to be Solved by the Invention) However, in order to increase the strength by simply increasing the cold rolling ratio or increasing the content of the main alloy-containing element, Mg, in conventional aluminum alloys, it is difficult to draw. In addition to an increase in ear ratio and a decrease in deep drawability at the time, a decrease in strength at the time of baking for painting is increased, and a problem arises in that strength required for thinning cannot be obtained.

さらに上記のように、従来材を高強度とするために単
に冷間圧延率、Mg含有量を上昇させた場合、冷間圧延時
およびその後の深絞り時の縮みフランジ加工時にせん断
帯が発生しやすくなるという問題が生じた。せん断帯は
冷間圧延時の圧延板の圧延方向に平行な板厚断面からみ
て、板面に対して約30〜40゜の傾斜角度で交差した線状
模様として表われ、特にMg量が高い場合あるいは冷間圧
延率が高い場合は板厚全体にせん断帯が成長するために
圧延加工時あるいはその後のプレス加工時に、その部分
から破断しそれ以上の加工が不可能となる。
Furthermore, as described above, if the cold rolling ratio and Mg content are simply increased in order to increase the strength of the conventional material, a shear band is generated during cold rolling and subsequent shrinkage flange processing during deep drawing. There was a problem that it became easier. The shear band appears as a linear pattern that intersects the plate surface at an inclination angle of about 30 to 40 ° when viewed from the plate thickness section parallel to the rolling direction of the rolled plate during cold rolling, and particularly has a high Mg content. In the case where the cold rolling rate is high or when the cold rolling rate is high, a shear band grows over the entire thickness of the sheet, so that it breaks from that portion during rolling or subsequent pressing, and further processing is not possible.

また、深絞り時に容器側壁部に垂直方向に対し、約30
〜40゜の傾斜角度で交差した曲線群となって現われるせ
ん断帯すなわちカゴメ模様は容器の外観を損ない、商品
価値を低下させると共に、絞り比が高い場合には、せん
断帯に沿って割れが発生し、深絞り成形性を著しく劣化
させる。また食缶あるいはキャップのように塗膜を施し
た後に絞り加工する場合には、塗膜剥離を生じ耐食性を
劣化させる恐れがある。
Also, at the time of deep drawing, about 30
The shear band or kagome pattern that appears as a group of curves intersecting at an inclination angle of ~ 40 ° impairs the appearance of the container, lowers the commercial value, and when the drawing ratio is high, cracks occur along the shear band However, the deep drawability is significantly deteriorated. Also, when drawing is performed after applying a coating film like a food can or a cap, the coating film may be peeled off and the corrosion resistance may be deteriorated.

本発明は上記従来の問題を解決し、強度及び成形性に
優れ、深絞り成形時のカゴメ模様の発生がない成形用ア
ルミニウム合金材の製造方法を提供することを目的とす
る。
An object of the present invention is to solve the above-mentioned conventional problems, and to provide a method for producing an aluminum alloy material for molding which is excellent in strength and formability and does not generate a kagome pattern during deep drawing.

(課題を解決するための手段) 本発明者らは上記従来技術の現状に鑑み、鋭意研究を
行った結果、従来のAl−Mn−Mg系などの3000系、Al−
Mg系などの5000系の非熱処理型アルミニウム合金の代り
に熱処理型アルミニウム合金、特に時効処理あるいはベ
ーキング処理を施すことによりMg−Si系金属間化合物の
析出効果を起こすAl−Mg−Si系合金を用いることによ
り、缶用又はキャップ用アルミニウム合金板として十分
な強度及び良好な成形性が得られること、またせん断
帯は3000系、5000系等の非熱処理型合金の場合、合金中
の固溶Mg原子と冷間圧延等により導入された可動転位
が、動的歪み時効を起こして生じたものであり、これが
冷間圧延中あるいはその後のプレス加工時に板厚方向に
発達し、破断を至ること、6000系合金等の熱処理型合
金においても時効初期に生じる微細かつマトリックスと
整合又は半整合な析出相が、冷間圧延等により導入され
た可動転位に交切されることによりせん断帯が発生する
こと、しかし、冷間圧延前に析出処理を行い、析出物
をある程度粗大化させることにより、せん断帯の形成が
防止でき、最終板の成形性を向上せしめることを見出
し、この知見に基づき本発明をなすに至った。
(Means for Solving the Problems) In view of the above-mentioned state of the art, the present inventors have conducted intensive studies and as a result, have found that the conventional Al-Mn-Mg and other 3000-series and Al-
Instead of 5000-based non-heat-treated aluminum alloys such as Mg-based, heat-treated aluminum alloys, especially Al-Mg-Si-based alloys that cause the precipitation effect of Mg-Si-based intermetallic compounds by aging or baking, By using, sufficient strength and good formability can be obtained as an aluminum alloy plate for cans or caps, and the shear band is 3000 series, 5000 series, etc. Atoms and mobile dislocations introduced by cold rolling etc. are caused by dynamic strain aging, and this develops in the thickness direction during cold rolling or subsequent pressing, leading to fracture, Even in heat-treated alloys such as 6000 series alloys, fine and matrix-coherent or semi-coherent precipitates that occur in the early stages of aging are crossed by mobile dislocations introduced by cold rolling etc. Breaking occurs, however, by performing a precipitation treatment before cold rolling, and by coarsening the precipitate to some extent, the formation of a shear band can be prevented, and it has been found that the formability of the final sheet is improved, The present invention has been accomplished based on the findings.

すなわち本発明は、(1)Mg0.5〜3.5重量%(以下、
金属組成物の%は重量%を示す)、Si0.1%以上0.4%未
満、Mn0.05〜1.5%及びCu0.05〜0.2%を含有し、さらに
Fe0.1〜0.6%、Cr0.05〜0.3%のなかから選ばれた少な
くとも1種以上を含有し、残部としてAl及び不可避的不
純物を有するアルミニウム合金鋳塊に、均質化処理と熱
間圧延を施して得られた合金板に450〜580℃の温度で溶
体化処理を施し、引き続き130℃以上250℃未満の温度で
0.1分以上の析出処理を行った後に、中間焼鈍を行わな
いで圧下率30%以上の冷間圧延を施すことを特徴とする
成形用アルミニウム合金材の製造方法(第1発明とい
う)、 (2)冷間圧延の後に、100〜250℃の温度で仕上焼鈍を
施す前記(1)記載の成形用アルミニウム合金材の製造
方法(第2発明という)を提供するものである。
That is, the present invention relates to (1) Mg 0.5 to 3.5% by weight (hereinafter, referred to as
% Of the metal composition indicates% by weight), 0.1% or more and less than 0.4% of Si, 0.05 to 1.5% of Mn, and 0.05 to 0.2% of Cu.
A homogenization treatment and hot rolling are performed on an aluminum alloy ingot containing at least one selected from Fe 0.1 to 0.6% and Cr 0.05 to 0.3% and having Al and unavoidable impurities as a balance. The solution obtained is subjected to solution treatment at a temperature of 450 to 580 ° C, and subsequently at a temperature of 130 ° C or more and less than 250 ° C.
(1) A method for producing an aluminum alloy material for forming, characterized by performing cold rolling at a rolling reduction of 30% or more without performing intermediate annealing after performing precipitation treatment for 0.1 minutes or more (referred to as a first invention). The present invention provides a method (hereinafter referred to as a second invention) for producing a forming aluminum alloy material according to the above (1), wherein finish annealing is performed at a temperature of 100 to 250 ° C. after cold rolling.

本発明に係るアルミニウム合金材について、各含有成
分の作用とその含有量を限定した理由を以下に述べる。
The action of each component and the reason for limiting the content of the aluminum alloy material according to the present invention will be described below.

Mgは0.5〜3.5%とする。Mgはマトリックス中に固溶
し、素板の強度を高めると共にMg−Si系化合物を析出さ
せて強化する効果がある。Mgの含有量が0.5%未満ではM
g−Si系化合物を析出させて強化するには量的に不十分
であり、3.5%を越えると靱性が劣化し成形性が損なわ
れる。
Mg is 0.5-3.5%. Mg forms a solid solution in the matrix and has the effect of increasing the strength of the base plate and precipitating and strengthening the Mg-Si compound. If the content of Mg is less than 0.5%, M
It is insufficient in quantity to precipitate and strengthen the g-Si compound, and if it exceeds 3.5%, toughness is deteriorated and formability is impaired.

Siは0.1%以上0.4%未満とする。SiはMgと共にMg−Si
系化合物を析出させて強化する効果を有する。Siの含有
量が0.1%未満では時効処理やベーキングによりAl−Mg
−Si系化合物を析出させて強化するには量的に不十分で
あり、含有量が0.4%以上で0.6%を越えると、焼入感受
性が高くなり溶体化処理後の冷却過程において粗大なMg
−Si系合金が粒界に析出して靱性が劣化し成形性が低下
する。さらに時効処理やベーキングでのAl−Mg−Si系化
合物の析出量が不足し十分な強度が得られなくなる。
Si is set to 0.1% or more and less than 0.4%. Si is Mg-Si with Mg
It has the effect of precipitating and strengthening the system compound. If the content of Si is less than 0.1%, Al-Mg
-Insufficient quantity to precipitate and strengthen Si-based compounds. If the content is more than 0.4% and more than 0.6%, quenching sensitivity increases and coarse Mg in the cooling process after solution treatment is performed.
-Si-based alloys precipitate at grain boundaries, toughness is deteriorated, and formability is reduced. Further, the amount of Al-Mg-Si-based compound deposited during aging treatment or baking is insufficient, and sufficient strength cannot be obtained.

Mnは0.05〜1.5%とする。Mnは結晶粒を微細化して成
形性を改善すると共に強度を向上させる効果を有する。
含有量が0.05%未満では上記効果が少なく逆に1.5%を
越えると粗大な金属間化合物を形成して絞り成形性を劣
化させる。
Mn is set to 0.05 to 1.5%. Mn has the effect of improving the formability by refining the crystal grains and improving the strength.
If the content is less than 0.05%, the above effect is small, and if it exceeds 1.5%, a coarse intermetallic compound is formed to deteriorate draw formability.

Cuは0.05〜0.2%とする。Cuはベーキング加熱時に微
細析出物を生じ強度を向上させる効果を有する。その含
有量が0.05%未満では上記効果が少なく逆に0.2%を越
えると結晶粒が粗大化し、深絞り時に肌荒れを生じると
共に耐食性が劣化する。
Cu is 0.05-0.2%. Cu has the effect of forming fine precipitates during baking and improving the strength. If the content is less than 0.05%, the above effect is small, and if it exceeds 0.2%, on the other hand, the crystal grains are coarsened, roughening occurs at the time of deep drawing, and the corrosion resistance is deteriorated.

Fe0.1〜0.6%、Cr0.05〜0.3%は、この中から選ばれ
た少なくとも1種以上を上記範囲内で含有する。Fe、Cr
は結晶粒を微細化して成形性を改善し、集合組織を安定
化させてカップ耳率を低減させ、さらに強度を向上させ
る効果を有する。含有量が各々0.1%、0.05%未満では
上記効果が少なく、逆に各々0.6%、0.3%を越えて含有
されると粗大な金属間化合物を形成して絞り成形性を劣
化させる。
Fe 0.1 to 0.6% and Cr 0.05 to 0.3% contain at least one or more selected from the above within the above range. Fe, Cr
Has the effect of improving the formability by refining the crystal grains, stabilizing the texture, reducing the cup ear ratio, and further improving the strength. If the content is less than 0.1% and 0.05%, respectively, the above effect is small, and if the content exceeds 0.6% and 0.3%, respectively, a coarse intermetallic compound is formed and the drawability is deteriorated.

また、鋳塊組織の微細化剤として通常添加されるTi、
Bは、それぞれ0.1%、0.02%以下の範囲で添加するの
が好ましい。
Further, Ti which is usually added as a refiner of the ingot structure,
B is preferably added in the range of 0.1% or less and 0.02% or less, respectively.

その他の不純物は0.1%以下であれば特に問題はな
い。
There is no particular problem if other impurities are 0.1% or less.

次に本発明合金材の製造方法について説明する。 Next, a method for producing the alloy material of the present invention will be described.

まず上記のような成分を含有するアルミニウム合金溶
湯を常法に従って鋳造する。この鋳造法としては半連続
鋳造法が一般的であるが、省エネルギーや機械的性質の
向上等から薄板連続鋳造を行ってもよい。得られた鋳塊
は均熱処理(均質化処理)を行う。この均熱処理条件
は、溶体化処理の結晶粒を微細化させるために、均熱温
度を450〜600℃、均熱保持時間を48時間以内とすること
が好ましい。
First, an aluminum alloy melt containing the above-described components is cast according to a conventional method. As this casting method, a semi-continuous casting method is generally used. However, continuous casting of a thin plate may be performed in order to save energy and improve mechanical properties. The obtained ingot is subjected to soaking (homogenization). It is preferable that the soaking conditions include a soaking temperature of 450 to 600 ° C. and a soaking time of 48 hours or less in order to refine crystal grains in the solution treatment.

均熱処理後は熱間圧延を行うが、この熱間圧延に関し
ては特に厳密に管理する必要はなく、常法に従って400
〜500℃で熱間圧延を行えばよい。
After soaking, hot rolling is performed, but there is no particular need to strictly control this hot rolling, and 400
The hot rolling may be performed at ~ 500 ° C.

次に溶体化処理を行うが、その前に冷間圧延を施して
もよい。冷間圧延を行うことにより、溶体化処理での結
晶粒をさらに微細化することができる。
Next, solution treatment is performed, but cold rolling may be performed before that. By performing cold rolling, crystal grains in the solution treatment can be further refined.

溶体化処理は合金中へのMg、Siの固溶促進のため、加
熱温度を450〜580℃の範囲とする。すなわち溶体化温度
が450℃未満ではMg、Siの固溶が十分に行われず、また5
80℃を越える温度ではバーニングによるMgの局部的な溶
解が起こるため好ましくない。溶体化処理方法は通常の
バッチ焼鈍後急速冷却する方法でも急速加熱、急速冷却
する連続焼鈍でもよいが、連続焼鈍法が耳率制御、結晶
粒微細化による成形性の向上、および生産性の向上の点
から望ましい。また溶体化加熱後の冷却過程での析出物
生成を防ぎ最終板の強度を確保する見地から冷却温度は
5℃/sec以上とすることが望ましい。
In the solution treatment, the heating temperature is set in the range of 450 to 580 ° C. to promote solid solution of Mg and Si in the alloy. That is, if the solution temperature is lower than 450 ° C., the solid solution of Mg and Si is not sufficiently performed.
Temperatures exceeding 80 ° C. are not preferred because local melting of Mg occurs due to burning. The solution treatment method may be rapid cooling after ordinary batch annealing or rapid annealing or continuous annealing with rapid cooling. However, continuous annealing method controls ear ratio, improves formability by refining crystal grains, and improves productivity. It is desirable from the point of view. Further, the cooling temperature is desirably 5 ° C./sec or more from the viewpoint of preventing the formation of precipitates in the cooling process after the solution heating and securing the strength of the final plate.

次に析出処理を行うが、この析出処理を130℃以上250
℃未満で行うのは析出硬化による最終板の強度向上を図
ると共に、析出相を粗大化させ、冷間圧延時およびその
後のプレス加工時のせん断帯の発生、成長を抑制するた
めであり、析出処理温度が130℃未満では、微細な析出
相を多数生じ、強度は向上されるものの、せん断帯が発
生し易くなるため好ましくなく、250℃以上の温度では
せん断帯は形成されないものの、強度が低下するため好
ましくない。また時効保持時間を0.1分以上とするのは
保持時間が0.1分未満では、上記の効果が不十分である
ためである。
Next, a precipitation treatment is performed.
Performing at a temperature lower than ℃ is intended to improve the strength of the final sheet by precipitation hardening, to coarsen the precipitation phase, to suppress the generation and growth of shear bands during cold rolling and subsequent pressing. When the treatment temperature is lower than 130 ° C, a large number of fine precipitate phases are generated and the strength is improved, but the shear band is easily generated, which is not preferable.At a temperature of 250 ° C or higher, the shear band is not formed, but the strength is reduced. Is not preferred. The reason why the aging holding time is set to 0.1 minute or more is that if the holding time is less than 0.1 minute, the above effect is insufficient.

次に冷間圧延を行うが、冷間圧延を圧下率30%以上で
行うのは、加工硬化により素板の強度を向上させるため
であり、圧下率30%未満では素板の薄肉化に対応した十
分な強度が得られないため好ましくない。
Next, cold rolling is performed. The reason why cold rolling is performed at a rolling reduction of 30% or more is to improve the strength of the raw material by work hardening, and if the rolling reduction is less than 30%, it corresponds to thinning of the raw material. This is not preferable because sufficient strength cannot be obtained.

次に第2発明では、冷間圧延後に仕上焼鈍を行う。こ
れは加工組織を回復させて、成形性(絞り、張出し加工
性)の向上を図るためであり、焼鈍温度が100℃未満で
は所望の成形性を確保することができず、一方250℃を
越えると、回復が進行しすぎるため、十分な強度が得ら
れず好ましくない。
Next, in the second invention, finish annealing is performed after cold rolling. This is for recovering the work structure and improving the formability (drawing and stretching workability). If the annealing temperature is lower than 100 ° C., the desired formability cannot be secured, while the temperature exceeds 250 ° C. , The recovery proceeds too much, so that sufficient strength cannot be obtained, which is not preferable.

このようにして得られた本発明合金材は、脱脂等の処
理を受けた後絞り成形前に200℃程度の温度で数分間の
塗装焼付け(ベーキング)されるか、たとえ塗装焼付け
されても強度の低下が少ないか又はむしろ強度がベーキ
ング前よりも向上するため、缶、キャップなどの成形用
アルミニウム合金材として好適なものである。
The alloy material of the present invention obtained in this manner is subjected to paint baking (baking) at a temperature of about 200 ° C. for several minutes before being subjected to a degreasing treatment or the like before drawing, or even if the paint bake is performed, This is suitable as an aluminum alloy material for forming cans, caps and the like, since the decrease in the amount is smaller or the strength is improved more than before baking.

(実施例) 次に本発明を実施例に基づいてさらに詳細に説明す
る。
(Examples) Next, the present invention will be described in more detail based on examples.

第1表に示す組成のAl合金を通常の方法により溶解、
造塊し面削後、これを均質化処理してから熱間圧延によ
り厚さ3mmの板に圧延した。次いでこの熱間圧延板に冷
間圧延を施し、厚さ0.4〜1.5mmの板に圧延した後に、同
じく第1表に示される条件で溶体化処理、析出処理、最
終冷間圧延および仕上焼鈍をそれぞれ施すことによって
本発明方法1及び2、比較方法4〜14を実施し、本発明
方法によるAl合金板1及び2、比較方法による比較Al合
金板4〜14を作製した。これらのAl合金板(最終板厚0.
25mm)に200℃で10分間のベーキング処理を施した後、
直径33mm、肩部の曲率半径4.5mmのダイスを用いる深絞
り成形により絞りカップを作製し、限界絞り比(L.D.
R.)を測定すると共に、カップ側壁部のカゴメ模様の有
無を測定した。またベーキング前後の板の0.2%耐力を
引張試験により測定した。これらの結果を第2表に示
す。
The Al alloy having the composition shown in Table 1 was melted by a usual method,
After agglomeration and surface grinding, this was homogenized and then rolled into a 3 mm thick plate by hot rolling. Next, the hot-rolled plate is subjected to cold rolling, and after rolling to a plate having a thickness of 0.4 to 1.5 mm, solution treatment, precipitation treatment, final cold rolling and finish annealing are also performed under the conditions shown in Table 1. The methods 1 and 2 of the present invention and the comparative methods 4 to 14 were carried out by performing the respective methods, thereby producing Al alloy plates 1 and 2 by the method of the present invention and comparative Al alloy plates 4 to 14 by the comparative method. These Al alloy plates (final thickness
25mm) after baking at 200 ℃ for 10 minutes,
A draw cup was made by deep drawing using a die with a diameter of 33 mm and a shoulder radius of curvature of 4.5 mm, and the limit drawing ratio (LD
R.) and the presence or absence of a kagome pattern on the side wall of the cup. The 0.2% proof stress of the plate before and after baking was measured by a tensile test. Table 2 shows the results.

第2表の結果から明白なように、本発明方法1〜3に
よって製造された本発明Al合金板1及び2はいずれも従
来のJIS5052(No.15)、JIS3004(No.16)及びJIS3105
(No.17)合金板に比べ、高強度でかつ成形性に優れ、
カゴメ模様の発生も見られない。
As is evident from the results in Table 2, the Al alloy plates 1 and 2 of the present invention produced by the methods 1 to 3 of the present invention were all conventional JIS 5052 (No. 15), JIS 3004 (No. 16) and JIS 3105.
(No.17) Higher strength and better formability than alloy plate
No kagome pattern was observed.

また比較方法(No.4〜14)で製造された比較Al合金板
No.4〜14は、これらの特性のうち少なくとも、いずれか
の性質が劣ったものになっている。
Comparative Al alloy plate manufactured by the comparison method (No. 4 to 14)
Nos. 4 to 14 are inferior in at least one of these properties.

すなわち、Mg含有量が下限未満の合金板(No.4)、Cu
含有量が下限未満の合金板(No.8)は成形性は良好であ
るものの強度が不足している。またMg含有量が上限以上
の合金板(No.5)及びSi含有量が上限を越えて添加され
た合金板(No.7)は、いずれもベーキング加熱による強
度低下が大きく強度が不足する。またMn含有量が上限以
上の合金板(No.8)は成形性が劣化している。さらに溶
体化温度が下限未満である合金板(No.10)は強度が不
足するとともにカゴメ模様が発生しやすく、冷間圧延率
が下限未満である合金板(No.11)は、強度が不足す
る。
That is, an alloy plate having an Mg content less than the lower limit (No. 4), Cu
The alloy plate (No. 8) whose content is less than the lower limit has good formability but lacks strength. In addition, the alloy plate (No. 5) having an Mg content equal to or higher than the upper limit and the alloy plate (No. 7) having a Si content exceeding the upper limit have a large decrease in strength due to baking heating, resulting in insufficient strength. In addition, the formability of the alloy plate (No. 8) in which the Mn content is equal to or more than the upper limit is deteriorated. Furthermore, the alloy sheet (No. 10) with a solution heat temperature lower than the lower limit has insufficient strength and a kagome pattern is likely to occur, and the alloy sheet (No. 11) with a cold rolling reduction below the lower limit has insufficient strength. I do.

また、さらに析出処理温度あるいは時間が下限未満で
ある合金板No.12、13は、強度は十分であるがカゴメ模
様が多発し、成形性が劣化している。また析出処理時間
が上限を越える合金板(No.14)は強度が不足するとと
もに成形性が劣化している。
Further, alloy sheets Nos. 12 and 13 in which the precipitation treatment temperature or time is less than the lower limit have sufficient strength, but a kagome pattern occurs frequently and the formability is deteriorated. Further, the alloy plate (No. 14) in which the precipitation treatment time exceeds the upper limit has insufficient strength and deteriorates formability.

(発明の効果) このように本発明方法によれば強度及び成形性に優
れ、また深絞り成形時にカゴメ模様の発生しない成形用
アルミニウム合金材が得られ、この合金材は、缶、キャ
ップなどの包装容器用として好適に用いることができ
る。
(Effect of the Invention) As described above, according to the method of the present invention, an aluminum alloy material for molding which is excellent in strength and formability and does not generate a kagome pattern during deep drawing can be obtained. It can be suitably used for packaging containers.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 685 C22F 1/00 685Z 686 686B 691 691B 691C 694 694A ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 6 Identification code FI C22F 1/00 685 C22F 1/00 685Z 686 686B 691 691B 691C 694 694A

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】Mg0.5〜3.5%、Si0.1%以上0.4%未満、Mn
0.05〜1.5%及びCu0.05〜0.2%を含有し、さらにFe0.1
〜0.6%、Cr0.05〜0.3%(以上、%は重量%を示す)の
なかから選ばれた少なくとも1種以上を含有し、残部と
してAl及び不可避的不純物を有するアルミニウム合金鋳
塊に、均質化処理と熱間圧延を施して得られた合金材に
450〜580℃の温度で溶体化処理を施し、引き続き130℃
以上250℃未満の温度0.1分以上の析出処理を行った後
に、中間焼鈍を行わないで圧下率30%以上の冷間圧延を
施すことを特徴とする成形用アルミニウム合金材の製造
方法。
(1) Mg 0.5-3.5%, Si 0.1% or more and less than 0.4%, Mn
0.05 to 1.5% and Cu 0.05 to 0.2%
-0.6%, Cr-0.05-0.3% (more than% indicates% by weight), and a homogeneous aluminum alloy ingot containing Al and unavoidable impurities as the balance Alloy material obtained by subjecting to hot rolling and hot rolling
Solution treatment at a temperature of 450 to 580 ° C, followed by 130 ° C
A method for producing an aluminum alloy material for forming, comprising: performing a precipitation treatment at a temperature of at least 250 ° C. for at least 0.1 minute, and then performing cold rolling at a rolling reduction of 30% or more without performing intermediate annealing.
【請求項2】冷間圧延の後に、100〜250℃の温度で仕上
焼鈍を施す請求項(1)記載の成形用アルミニウム合金
材の製造方法。
2. The method according to claim 1, wherein the finish annealing is performed at a temperature of 100 to 250 ° C. after the cold rolling.
JP13735589A 1989-06-01 1989-06-01 Manufacturing method of aluminum alloy material for forming Expired - Lifetime JP2895510B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13735589A JP2895510B2 (en) 1989-06-01 1989-06-01 Manufacturing method of aluminum alloy material for forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13735589A JP2895510B2 (en) 1989-06-01 1989-06-01 Manufacturing method of aluminum alloy material for forming

Publications (2)

Publication Number Publication Date
JPH036356A JPH036356A (en) 1991-01-11
JP2895510B2 true JP2895510B2 (en) 1999-05-24

Family

ID=15196721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13735589A Expired - Lifetime JP2895510B2 (en) 1989-06-01 1989-06-01 Manufacturing method of aluminum alloy material for forming

Country Status (1)

Country Link
JP (1) JP2895510B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794699B2 (en) * 1991-03-29 1995-10-11 住友軽金属工業株式会社 Manufacturing method of aluminum alloy hard plate for forming having excellent softening resistance
JP4260510B2 (en) * 2002-03-07 2009-04-30 ユニバーサル製缶株式会社 Cap and screw type sealed bottle

Also Published As

Publication number Publication date
JPH036356A (en) 1991-01-11

Similar Documents

Publication Publication Date Title
JPH0127146B2 (en)
US4838958A (en) Aluminum-alloy rolled sheet and production method therefor
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JPH07197219A (en) Production of aluminum alloy sheet for forming
JPH076022B2 (en) Aluminum alloy for glitter disk wheels
JP3791337B2 (en) Highly formable aluminum alloy plate and method for producing the same
JPH11508643A (en) Method for producing aluminum alloy can material
JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
JP2895510B2 (en) Manufacturing method of aluminum alloy material for forming
JP3605662B2 (en) Aluminum foil for containers
JPH10121177A (en) Aluminum alloy sheet excellent in high speed ironing formability for di can drum and manufacture therefor
JP3867569B2 (en) Aluminum foil for containers and manufacturing method thereof
CN113474479B (en) Method for producing sheet or strip from aluminium alloy and sheet, strip or shaped part produced therefrom
JP2525017B2 (en) Aluminum alloy material for can ends
JP2521330B2 (en) Manufacturing method of high formability aluminum alloy hard plate
JPH0447019B2 (en)
JP2773874B2 (en) Manufacturing method of aluminum alloy plate
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JPH01127642A (en) Heat treatment type high strength aluminum alloy plate for drawing and its manufacture
JP2745254B2 (en) Aluminum alloy hard plate excellent in local overhang property and method of manufacturing the same
JPH0480979B2 (en)
JPH10259441A (en) Aluminum alloy sheet excellent in high speed superplastic formability and small number of cavity after forming and its production
JP7473423B2 (en) Al-Mg-Si aluminum alloy plate with excellent formability
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
KR960007633B1 (en) Al-mg alloy & the preparation