JP3605662B2 - Aluminum foil for containers - Google Patents

Aluminum foil for containers Download PDF

Info

Publication number
JP3605662B2
JP3605662B2 JP10645496A JP10645496A JP3605662B2 JP 3605662 B2 JP3605662 B2 JP 3605662B2 JP 10645496 A JP10645496 A JP 10645496A JP 10645496 A JP10645496 A JP 10645496A JP 3605662 B2 JP3605662 B2 JP 3605662B2
Authority
JP
Japan
Prior art keywords
foil
thickness
recrystallized grains
present
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10645496A
Other languages
Japanese (ja)
Other versions
JPH09272938A (en
Inventor
泰久 西川
孝彦 渡井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Light Metal Co Ltd
Original Assignee
Nippon Light Metal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Light Metal Co Ltd filed Critical Nippon Light Metal Co Ltd
Priority to JP10645496A priority Critical patent/JP3605662B2/en
Publication of JPH09272938A publication Critical patent/JPH09272938A/en
Application granted granted Critical
Publication of JP3605662B2 publication Critical patent/JP3605662B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、容器用等に使用されるアルミニウム箔に関して、強度が高く伸びのある絞り成形性の良好なアルミニウム箔を提供しようとするものである。
【0002】
【従来の技術】
再結晶組織またはサブグレイン組織あるいはサブグレイン組織中に再結晶粒が一様に混在している混在組織である1000系、3000系、5000系等のアルミニウム乃至アルミニウム合金は強度もあり、伸びもあることから包装等のアルミニウム箔として使用され、また絞り成形性が良好なことから各種の容器に使用されている。例えば、食品を入れる皺有り容器の場合は、箔厚50〜200μmの箔を用いて、ダイスとポンチで絞り加工し、フランジ部、容器壁共に皺を寄せて製造している。
【0003】
なお上述のような厚さ50〜200μmの箔は、DC鋳造して厚さ400〜550mmの鋳塊を得、この鋳塊を均質化熱処理、熱間圧延、冷間圧延、焼鈍処理、冷間加工して所定の厚さ(1〜3mm)の薄板とし、調質焼鈍して所定の硬さとした後、箔圧延して所定の厚さの箔を製造している。
【0004】
【発明が解決しようとする課題】
上記したような1000系のアルミニウム合金などは加工がし易く多用されているが、コスト低減から薄箔化が求められ、薄箔化によって強度の低下する分製箔工程で加工度を増し硬化させ強度の向上を図っているが、硬化させると伸びが低下すると共に特に絞り成形性の低下する問題点がある。また、DC鋳造による箔の製造は、鋳塊の厚さが厚く従ってその後の圧延に多くの工程を要する不利がある。
【0005】
【課題を解決するための手段】
本発明者らは上記したような従来技術における課題を解消することについて鋭意研究したた結果、箔厚中心部にのみ再結晶粒が存在するサブグレイン組織である箔は強度が高くて伸びもあり、しかも絞り成形性に良好であることを見出して本発明を完成したものであって、強度が高く伸びがあって、絞り成形性の良好な容器用アルミニウム箔を提供することに成功したものであって、以下の如くである。
【0006】
(1)箔厚中心部に存在する再結晶粒の割合が圧延方向に沿った断面における面積率で1〜30%であり、箔厚中心に存在する再結晶粒の大きさが5〜50μmであり、再結晶粒が存在する箔厚中心部の層厚範囲が全箔厚の1/4〜3/4であり、厚表面層は再結晶が存在しないサブグレイン組織であることを特徴とする容器用アルミニウム箔。
【0007】
(2)前記容器が絞り成形容器であることを特徴とする前記(1)項に記載の容器用アルミニウム箔。
【0008】
【発明の実施の形態】
箔厚中心部にのみ再結晶粒が存在するサブグレイン組織であるアルミニウム箔は、所謂複合組織の箔であって、箔全体が一様なサブグレイン組織あるいは再結晶組織のものに比較して強度および伸びがバランスされ、絞り成形性も優れる。即ち絞り成形性について述べれば、絞り成形時において従来技術のように板全体が一様なサブグレイン組織であると、サブグレイン組織は伸びが良好なことからポンチ肩部に変形が集中して割れ欠陥を呈し易く、また再結晶粒が箔表面にも混在しているような金属組織は、再結晶組織はサブグレイン組織に比べて加工硬化し易いので、変形歪みを拡散する効果は有するものの再結晶組織の所で肌荒れを生じやすくまた割れ発生の起点となって割れ欠陥を呈し易い。
【0009】
これに対し、本発明による上記のような複合組織であるとポンチ肩部で変形歪みが集中することを阻止し良好な絞り加工が可能となる。然して本発明の複合組織の箔は、箔厚中心部に存在する再結晶の割合は、断面面積率で1〜30%であることが好ましく、このようにすることにより絞り成形時ポンチ肩部における箔表面における変形集中の進行を的確に阻止する。即ち、1%未満ではポンチ肩部での割れを防止し難く、また30%を超えると絞り成形時に加工硬化が大きくなる結果、変形時の割れの起点となる虞れがある。
【0010】
また上記のような本発明複合組織箔で箔中心部における再結晶粒の大きさを5〜50μmとすることによって絞り加工時においてポンチ肩部における変形歪みの集中を適切に阻止する。即ち、この再結晶粒の大きさが5μm未満または箔厚中心部における再結晶粒の存在割合が1%未満のような場合、ポンチ肩部での割れ発生を防止しきれない虞れがあり、また50μmを超える再結晶粒割合が30%を超えるような場合には絞り成形時に割れの起点となる虞れがある。
【0011】
本発明による複合組織箔は図1に示す如く箔厚中心部において再結晶粒2の存在する層の厚さを、同じく図1のように箔厚の1/4〜3/4の範囲とし、箔厚表面層は再結晶粒の存在しないサブグレイン組織1による層とすることにより絞り加工時におけるポンチ肩部での変形歪みの集中を効果的に阻止する。すなわち、1/4未満のような薄い層または箔厚中心部に存在する再結晶粒の割合が断面面積率で1%未満のような場合に表面変形の内部への進行を阻止しきれない虞れがあり、また3/4を超える厚い層では再結晶粒の割合が断面面積率で30%を超えるような場合に組成加工による硬化でポンチ肩部で割れの起点となる虞れがある。
【0012】
本発明による複合組織のアルミニウム箔は、その組成がwt%で、Fe:0.10〜0.8%、Ti:0.001%以上0.02%未満、残部不純物からなり、不可避的不純物としてのSiが0.15%未満とすることにより、強度を向上でき、好ましい絞り成形容器用箔を得しめる。Fe含有量が0.10%未満であると、例えば容器として成形後の強度が低くて箔として適用し難く、またFeが0.8wt%超えとなると延性が不足して絞り成形時に割れが発生する虞がある。Ti含有量が0.001wt%未満では鋳造時の結晶微細化が不足して鋳造割れが生じる虞れがあり、また0.02wt%を超えても鋳造割れ防止効果は飽和している。
【0013】
なお、成形性および耐蝕性を低下させないように、代表的な不純物としてSiを0.15wt%未満とする。またSi以外の不純物についてもCuは0.15wt%未満、Mn0.03wt%未満、Cr、VおよびZrそれぞれ0.015wt%未満とすることが好ましい。
【0014】
本発明の複合組織箔は連続鋳造技術による鋳片の圧延板であることにより、合金元素の固溶量が多くなり、強度を有効に付与できるので好ましい。
【0015】
本発明による複合組織箔の製造については以下に説明する方法に限定されるものではないが、好ましい製造方法の要件としては成分組成、連続鋳造圧延条件、および調質焼鈍があり、成分組成から説明すると以下の如くである。
【0016】
Fe:0.10〜0.8wt%。
Feは、連続鋳造圧延で十分に固溶させて強度と絞り成形性を付与し、爾後の調質焼鈍で析出させて箔厚中心部に再結晶粒を存在せしめ、箔表面層に再結晶粒が存在しないサブグレイン組織とするために含有させるものであって、Fe含有量が0.10wt%未満では好ましい強度付与ができず、また0.8wt%超えでは粗大な金属間化合物を生じて成形性を低下させると共に、爾後の調質焼鈍で箔厚中心部に再結晶粒が存在し、板表面層に再結晶粒が存在しないサブグレイン組織とすることができない。このようなFe含有量のより好ましい範囲は0.7wt%以下である。
【0017】
Ti:0.001wt%〜0.02wt%。
Tiは連続鋳造時の結晶粒を微細化して鋳造割れを防止するために含有させるものである。このTiの含有量が0.001wt%未満であると上述の効果が低下し、0.02wt%超えとなると、鋳造割れ防止効果が飽和すると共に、箔全体が微細なサブグレイン組織となってしまい、爾後の調質焼鈍で板厚中心部のみに再結晶粒が存在し、板表面層に再結晶粒が存在しないサブグレイン組織とすることができない。Ti含有量の好ましい上限は0.015wt%未満である。Tiの添加はAl−Ti母合金またはAl−Ti−B母合金を用いると好ましい。なおAl−Ti母合金を使用した場合はBが含有されるが、その量が0.002wt%以下であれば本発明のアルミニウム箔の効果を阻害しない。
【0018】
不可避的不純物不純物としては、成形性および耐蝕性を低下させないように、代表的なものとしてSiを0.15wt%未満とするが、その他の不純物としてもCuを0.15wt%未満、Mnは0.03wt%未満、Cr、VおよびZrそれぞれ0.015wt%未満とすることが好ましい。
【0019】
連続鋳造圧延条件。
連続鋳造圧延箔は、連続的に鋳造して得られたスラブを中間で焼鈍することなく圧下率で95%以上の冷間圧延を施して所望の厚さの箔とするものである。この連続鋳造圧延は、急冷凝固してスラブを鋳造し、連続して圧延できる方法であればそれ以上に限定するものではない。例えば、対設した一対の内部冷却回転ロールの間にアルミニウム溶湯を注入し、鋳造されたスラブを焼鈍することなく圧延する水冷ロール法があり、その他の方法としても、他側を冷却した一対の回転板の間にアルミニウム溶湯を注入し、鋳造されたスラブを焼鈍することなく圧延する方法などがある。なお鋳造の条件は、たとえば、溶湯の温度は680〜730℃で、スラブの厚さは70mm以下、好ましくは50mm以下、さらに好ましくは30mm以下である。6mm以下では本発明の主旨とする複合組織を実現し難くする。スラブの引き出し速度は50〜150cm/分である。
【0020】
調質焼鈍。
上記のように圧下率95%以上の冷間圧延を施した後、250〜300℃の温度で4時間〜10時間の調質焼鈍処理を行う。この処理は、アルミニウム箔に高強度を付与するための調質焼鈍処理であって、FeおよびTiを適度に析出させ、箔厚中心部における箔厚の1/4〜3/4に再結晶粒が断面面積率で1〜30%の割合で存在し、他の箔表面層においてはサブグレイン組織であって、これら再結晶粒とサブグレイン組織の複合組織とするためのものである。圧下率が95%未満であり、また調質焼鈍温度が250℃未満で、かつ4時間未満では上記したような再結晶粒を得ることができない。また調質焼鈍温度が300℃を超えると再結晶粒の面積割合が増え過ぎたり、再結晶粒が大きくなり過ぎては本発明の目的とする好ましい複合金属組織を得難くする。この調質焼鈍が10時間以上となることは経済的でない。
【0021】
【実施例】
次の表1に示すような本発明合金、比較合金および従来合金の組成(wt%)を有するアルミニウム合金溶湯を、水冷ロール法により厚さ7mmのスラブに鋳造し、冷間圧延して厚さ0.100mmの薄板とした。
【0022】
【表1】

Figure 0003605662
【0023】
上記のようにして得られた各箔は引続き次の表2に示すような焼鈍条件で調質焼鈍を行い、またこのようにして得られたアルミニウム箔に対しては次いでそれぞれ絞りを形成して成形性を評価した結果はこの表2における後段に併せて示す如くである。なおその他の特性値としてFe固溶量、再結晶粒の存在する範囲の板厚、再結晶粒の占める割合、機械的性質限界絞り比(LDR)を測定したが、それらの結果も表2において併せて示す如くである。
【0024】
【表2】
Figure 0003605662
【0025】
前記した表2における評価および測定条件について説明すると以下の如くである。
*絞り成形性(LDR)の測定ポンチ径33Φ、肩部R3のものを使用。一定ポンチを使い、ブランク径を替えて、カップに絞れる径のものについて、L.D.Rとして評価した。しわ押えは無しで、潤滑はワックスを使用した。
【0026】
また前記表1および表2の比較合金箔および従来合金箔のものは表1に示したような組成の合金をDC鋳造して得られたスラブ厚さ580mmの鋳塊を630℃で1時間均質化処理し、熱間圧延で厚さ7mmとし、冷間圧延で0.100mmの箔としたものである。またこの箔を引続き調質焼鈍を施したが、調質焼鈍条件は表2に示す如くで、このようにして得られたアルミニウム箔を絞り形成して成形性を評価したが、その評価方法は前記した実施例の場合と同じであり、その評価結果は表2に併せて示した如くである。
【0027】
然して上記したような表3の結果によれば、本発明によるものが何れにしても強度、伸びが共にバランスして高く、限界絞り比も高いことが明かである。これに対しDC鋳造法によって得られた従来合金箔は同一強度で伸びが低く、また同一限界絞り比において強度の低いことが明かである。
【0028】
【発明の効果】
以上説明したような本発明によるものは、強度および伸びが共にバランスして高く、限界絞り比も高いので、比較的薄い箔を箔シートとして各種包装などに使用することができ、該箔シートにより容器などを容易且つ的確に絞り成形することができて低コストに好ましい容器を提供し得るなどの効果を有し、工業的にその効果の大きい発明である。
【図面の簡単な説明】
【図1】本発明によるアルミニウム箔の断面構成を略解的に示した説明図である。
【符号の説明】
1 サブグレイン
2 再結晶粒[0001]
TECHNICAL FIELD OF THE INVENTION
An object of the present invention is to provide an aluminum foil having high strength, good elongation and good drawability with respect to an aluminum foil used for containers and the like.
[0002]
[Prior art]
Aluminum or aluminum alloy of 1000 series, 3000 series, 5000 series, etc., which is a recrystallized structure, a subgrain structure, or a mixed structure in which recrystallized grains are uniformly mixed in a subgrain structure, has both strength and elongation. Therefore, it is used as an aluminum foil for packaging and the like, and is used for various containers because of its good drawability. For example, in the case of a wrinkled container for storing food, a foil having a foil thickness of 50 to 200 μm is drawn by a die and a punch, and the flange portion and the container wall are manufactured by wrinkling.
[0003]
The foil having a thickness of 50 to 200 μm as described above is subjected to DC casting to obtain an ingot having a thickness of 400 to 550 mm, and the ingot is subjected to homogenization heat treatment, hot rolling, cold rolling, annealing, and cold working. It is processed into a thin plate having a predetermined thickness (1 to 3 mm), temper-annealed to a predetermined hardness, and then rolled to produce a foil having a predetermined thickness.
[0004]
[Problems to be solved by the invention]
The above-mentioned 1000 series aluminum alloys and the like are easy to process and are often used. However, thinning is required for cost reduction, and the strength is reduced by thinning. Although the strength is improved, there is a problem that when cured, the elongation is reduced and the drawability is particularly reduced. In addition, the production of foil by DC casting has the disadvantage that the thickness of the ingot is large and therefore many steps are required for subsequent rolling.
[0005]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on solving the problems in the prior art as described above, and as a result, the foil having a sub-grain structure in which recrystallized grains are present only in the center of the foil thickness has high strength and elongation. Further, the present invention has been completed by finding that the drawability is good, and has succeeded in providing an aluminum foil for containers having high strength and elongation, and having good drawability. Then, it is as follows.
[0006]
(1) The ratio of the recrystallized grains existing in the center of the foil thickness is 1 to 30% in terms of the area ratio in the cross section along the rolling direction, and the size of the recrystallized grains existing in the center of the foil thickness is 5 to 50 μm. The thickness range of the center portion of the foil thickness where recrystallized grains are present is 1/4 to 3/4 of the total foil thickness, and the thick surface layer has a sub-grain structure in which recrystallization does not exist. Aluminum foil for containers.
[0007]
(2) The aluminum foil for a container according to the above (1), wherein the container is a drawn container.
[0008]
BEST MODE FOR CARRYING OUT THE INVENTION
The aluminum foil, which is a sub-grain structure in which recrystallized grains are present only in the center portion of the foil thickness, is a so-called composite structure foil. And the elongation is balanced and the drawability is excellent. In other words, regarding the draw formability, if the entire plate has a uniform sub-grain structure as in the prior art at the time of draw forming, the sub-grain structure has good elongation, and deformation is concentrated on the shoulder portion of the punch, resulting in cracking. A metal structure in which defects are liable to be present and recrystallized grains are also present on the foil surface is easier to work-harden than a sub-grain structure. The surface of the crystal tends to be rough at the crystal structure, and the crack tends to be a starting point of crack generation.
[0009]
On the other hand, with the composite structure according to the present invention as described above, concentration of deformation distortion at the shoulder of the punch is prevented, and good drawing can be performed. However, in the composite structure foil of the present invention, the ratio of recrystallization present in the center portion of the foil thickness is preferably 1 to 30% in terms of cross-sectional area ratio. Prevents the progress of concentration of deformation on the foil surface. That is, if it is less than 1%, it is difficult to prevent cracks at the shoulder of the punch, and if it exceeds 30%, the work hardening becomes large at the time of drawing, which may be a starting point of cracks during deformation.
[0010]
In the composite structure foil of the present invention as described above, by setting the size of the recrystallized grains at the center of the foil to 5 to 50 μm, the concentration of deformation strain at the punch shoulder during drawing is appropriately prevented. That is, when the size of the recrystallized grains is less than 5 μm or the proportion of the recrystallized grains at the center of the foil thickness is less than 1%, it may not be possible to completely prevent the generation of cracks at the punch shoulder. Further, when the recrystallized grain ratio exceeding 50 μm exceeds 30%, there is a possibility that it becomes a starting point of a crack during drawing.
[0011]
In the composite structure foil according to the present invention, as shown in FIG. 1, the thickness of the layer where the recrystallized grains 2 are present at the center of the foil thickness is set to a range of 1 / to / of the foil thickness as in FIG. By making the foil thick surface layer a layer of the sub-grain structure 1 in which recrystallized grains do not exist, concentration of deformation strain at the punch shoulder during drawing is effectively prevented. That is, when the ratio of the recrystallized grains existing in the thin layer or the central portion of the foil thickness such as less than 1/4 is less than 1% in the sectional area ratio, the progress of the surface deformation cannot be completely prevented. In the case of a thick layer exceeding 3/4, when the proportion of recrystallized grains exceeds 30% in cross-sectional area ratio, there is a possibility that cracking may occur at the punch shoulder by hardening due to composition processing.
[0012]
The aluminum foil having a composite structure according to the present invention has a composition of wt%, Fe: 0.10 to 0.8%, Ti: 0.001% or more and less than 0.02%, and the balance of impurities. When the Si content is less than 0.15%, the strength can be improved, and a preferable draw-formed container foil can be obtained. If the Fe content is less than 0.10%, for example, the strength after molding as a container is low and it is difficult to apply as a foil. If the Fe content exceeds 0.8 wt%, ductility is insufficient and cracks occur during draw molding. There is a risk of doing so. If the Ti content is less than 0.001 wt%, the crystal cracking during casting may be insufficient to cause casting cracks, and if it exceeds 0.02 wt%, the effect of preventing casting cracks is saturated.
[0013]
Note that, as a typical impurity, Si is less than 0.15 wt% so as not to deteriorate the formability and corrosion resistance. Further, as for impurities other than Si, it is preferable that Cu is less than 0.15 wt%, Mn is less than 0.03 wt%, and Cr, V and Zr are each less than 0.015 wt%.
[0014]
The composite structure foil of the present invention is preferably a slab rolled plate by a continuous casting technique, since the amount of alloying elements in the solid solution increases and strength can be effectively imparted.
[0015]
The production of the composite structure foil according to the present invention is not limited to the method described below, but the requirements of the preferred production method include a component composition, a continuous casting and rolling condition, and a temper annealing. Then, it is as follows.
[0016]
Fe: 0.10 to 0.8 wt%.
Fe is sufficiently solid-dissolved by continuous casting and rolling to impart strength and draw formability, and is precipitated by subsequent tempering annealing to cause recrystallized grains to exist in the center of the foil thickness, and recrystallized grains are formed on the foil surface layer. When Fe content is less than 0.10 wt%, favorable strength cannot be imparted, and when Fe content is more than 0.8 wt%, a coarse intermetallic compound is generated to form a sub-grain structure. In addition to lowering the refractory properties, a sub-grain structure in which recrystallized grains are present at the center of the foil thickness in the subsequent tempering annealing and no recrystallized grains are present in the sheet surface layer cannot be obtained. A more preferable range of such Fe content is 0.7 wt% or less.
[0017]
Ti: 0.001 wt% to 0.02 wt%.
Ti is contained in order to refine the crystal grains during continuous casting to prevent casting cracks. If the content of Ti is less than 0.001 wt%, the above-described effect is reduced. If the content of Ti is more than 0.02 wt%, the effect of preventing casting cracks is saturated, and the entire foil has a fine subgrain structure. In the subsequent tempering annealing, recrystallized grains are present only in the central portion of the sheet thickness, and a sub-grain structure in which no recrystallized grains exist in the sheet surface layer cannot be obtained. The preferable upper limit of the Ti content is less than 0.015 wt%. The addition of Ti is preferably performed using an Al-Ti master alloy or an Al-Ti-B master alloy. When an Al-Ti mother alloy is used, B is contained. However, if the amount is 0.002 wt% or less, the effect of the aluminum foil of the present invention is not impaired.
[0018]
As inevitable impurities, Si is less than 0.15 wt% as a typical one so as not to lower the formability and corrosion resistance, but Cu is less than 0.15 wt% and Mn is 0 as other impurities. It is preferable that the content is less than 0.03 wt% and each of Cr, V and Zr is less than 0.015 wt%.
[0019]
Continuous casting and rolling conditions.
The continuous cast rolled foil is obtained by subjecting a slab obtained by continuous casting to cold rolling at a reduction ratio of 95% or more without intermediate annealing to obtain a foil having a desired thickness. This continuous casting and rolling is not limited to any method as long as it can rapidly solidify and cast a slab and continuously roll it. For example, there is a water-cooled roll method in which molten aluminum is poured between a pair of opposed internal cooling rotary rolls and the cast slab is rolled without annealing, and as another method, a pair of cooled other sides is used. There is a method of injecting molten aluminum between the rotating plates and rolling the cast slab without annealing. The casting conditions are, for example, the temperature of the molten metal is 680 to 730 ° C., and the thickness of the slab is 70 mm or less, preferably 50 mm or less, more preferably 30 mm or less. If it is less than 6 mm, it is difficult to realize a composite structure which is the gist of the invention. The withdrawal speed of the slab is 50 to 150 cm / min.
[0020]
Temper annealing.
After performing cold rolling with a reduction of 95% or more as described above, a temper annealing treatment is performed at a temperature of 250 to 300 ° C. for 4 hours to 10 hours. This treatment is a temper annealing treatment for imparting high strength to the aluminum foil, in which Fe and Ti are appropriately precipitated, and the recrystallized grains are reduced to 1 / to / of the foil thickness at the center of the foil thickness. Is present in a cross-sectional area ratio of 1 to 30%, and the other foil surface layer has a sub-grain structure, which is for forming a composite structure of these recrystallized grains and the sub-grain structure. If the rolling reduction is less than 95% and the tempering annealing temperature is less than 250 ° C and less than 4 hours, the above-mentioned recrystallized grains cannot be obtained. On the other hand, if the tempering annealing temperature exceeds 300 ° C., the area ratio of the recrystallized grains becomes too large, and if the recrystallized grains become too large, it is difficult to obtain the desired composite metal structure aimed at by the present invention. It is not economical that the tempering annealing is performed for 10 hours or more.
[0021]
【Example】
An aluminum alloy melt having the composition (wt%) of the alloy of the present invention, the comparative alloy and the conventional alloy as shown in the following Table 1 is cast into a slab having a thickness of 7 mm by a water-cooled roll method, and is cold-rolled. It was a thin plate of 0.100 mm.
[0022]
[Table 1]
Figure 0003605662
[0023]
Each of the foils obtained as described above was subsequently subjected to temper annealing under the annealing conditions as shown in Table 2 below, and the aluminum foil thus obtained was then formed by drawing. The results of evaluation of the moldability are also shown in the latter part of Table 2. As other characteristic values, the Fe solid solution amount, the plate thickness in the range where the recrystallized grains exist, the ratio of the recrystallized grains, and the mechanical property limit drawing ratio (LDR) were measured. It is as shown together.
[0024]
[Table 2]
Figure 0003605662
[0025]
The evaluation and measurement conditions in Table 2 described above are as follows.
* Measurement of drawing formability (LDR) Punch diameter 33Φ, shoulder R3 used. Using a fixed punch, changing the blank diameter and squeezing the cup, D. It was evaluated as R. There was no wrinkle holder, and wax was used for lubrication.
[0026]
For the comparative alloy foils and the conventional alloy foils in Tables 1 and 2, the ingot having a slab thickness of 580 mm obtained by DC casting an alloy having the composition shown in Table 1 was homogenized at 630 ° C. for 1 hour. And hot-rolled to a thickness of 7 mm, and cold-rolled to a 0.100 mm foil. This foil was further subjected to temper annealing. The temper annealing conditions were as shown in Table 2, and the aluminum foil thus obtained was formed by drawing to evaluate the formability. This is the same as the case of the above-described embodiment, and the evaluation results are as shown in Table 2.
[0027]
However, according to the results shown in Table 3 described above, it is clear that the strength and elongation are both balanced and high, and the limit drawing ratio is high in any case according to the present invention. On the other hand, it is clear that the conventional alloy foil obtained by the DC casting method has the same strength and low elongation, and has low strength at the same limit drawing ratio.
[0028]
【The invention's effect】
According to the present invention as described above, the strength and elongation are both balanced and high, and the limit drawing ratio is high, so that a relatively thin foil can be used as a foil sheet for various kinds of packaging and the like. The present invention has an effect that a container and the like can be drawn easily and accurately and a preferable container can be provided at low cost, and is an industrially significant invention.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram schematically showing a cross-sectional configuration of an aluminum foil according to the present invention.
[Explanation of symbols]
1 Subgrain 2 Recrystallized grain

Claims (2)

箔厚中心部に存在する再結晶粒の割合が圧延方向に沿った断面における面積率で1〜30%であり、箔厚中心部に存在する再結晶粒の大きさが5〜50μmであり、再結晶粒が存在する箔厚中心部の層厚範囲が全箔厚の1/4〜3/4であり、箔厚表面層は再結晶が存在しないサブグレイン組織であることを特徴とする容器用アルミニウム箔。The ratio of the recrystallized grains present at the center of the foil thickness is 1 to 30% as the area ratio in the cross section along the rolling direction, and the size of the recrystallized grains present at the center of the foil thickness is 5 to 50 μm; A container characterized in that the layer thickness range at the center of the foil thickness where recrystallized grains are present is 〜 to / of the total foil thickness, and the foil thickness surface layer has a sub-grain structure without recrystallization. For aluminum foil. 前記容器が絞り成形容器であることを特徴とする請求項1に記載の容器用アルミニウム箔。The aluminum foil for a container according to claim 1, wherein the container is a drawn container.
JP10645496A 1996-04-04 1996-04-04 Aluminum foil for containers Expired - Fee Related JP3605662B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10645496A JP3605662B2 (en) 1996-04-04 1996-04-04 Aluminum foil for containers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10645496A JP3605662B2 (en) 1996-04-04 1996-04-04 Aluminum foil for containers

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001387120A Division JP3867569B2 (en) 2001-12-20 2001-12-20 Aluminum foil for containers and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH09272938A JPH09272938A (en) 1997-10-21
JP3605662B2 true JP3605662B2 (en) 2004-12-22

Family

ID=14434050

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10645496A Expired - Fee Related JP3605662B2 (en) 1996-04-04 1996-04-04 Aluminum foil for containers

Country Status (1)

Country Link
JP (1) JP3605662B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE279545T1 (en) * 2000-07-06 2004-10-15 Alcan Int Ltd METHOD FOR PRODUCING ALUMINUM FOIL FOR RIBS
JP2008223075A (en) * 2007-03-12 2008-09-25 Kobe Steel Ltd Hot rolling omission type aluminum alloy sheet and its manufacturing method
JP5405410B2 (en) * 2010-08-05 2014-02-05 株式会社神戸製鋼所 Aluminum alloy hard foil for battery current collector
JP2012224927A (en) * 2011-04-21 2012-11-15 Mitsubishi Alum Co Ltd Aluminum alloy foil for positive electrode current collector of lithium ion battery, and method for manufacturing the same
JP5667681B2 (en) * 2013-10-30 2015-02-12 株式会社神戸製鋼所 Method for producing aluminum alloy hard foil for battery current collector
JPWO2018043117A1 (en) * 2016-08-29 2019-06-24 三菱アルミニウム株式会社 Aluminum alloy hard thin foil for secondary battery positive electrode current collector, secondary battery positive current collector and method for producing aluminum alloy hard thin foil
CN110983126B (en) * 2020-01-10 2021-06-04 广西百矿润泰铝业有限公司 Preparation method of 5754 alloy aluminum plate for automobile

Also Published As

Publication number Publication date
JPH09272938A (en) 1997-10-21

Similar Documents

Publication Publication Date Title
JP2009221567A (en) Aluminum alloy sheet for positive pressure coated can lid, and method for producing the same
US20210292878A1 (en) Aluminum alloy sheet for can body, and process for producing the same
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
WO2009098732A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
WO2014129385A1 (en) Aluminum alloy plate for can body and production method therefor
KR20150047246A (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
JP3605662B2 (en) Aluminum foil for containers
JP3867569B2 (en) Aluminum foil for containers and manufacturing method thereof
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP3838504B2 (en) Aluminum alloy plate for panel forming and manufacturing method thereof
JP3791337B2 (en) Highly formable aluminum alloy plate and method for producing the same
JP3550259B2 (en) Aluminum alloy plate for DI can body excellent in high-speed ironing formability and method for producing the same
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP6581347B2 (en) Method for producing aluminum alloy plate
JP2008223054A (en) Aluminum alloy sheet for forming-work having excellent deep drawability and burning/softening resistance, and producing method therefor
JPH11140576A (en) Aluminum alloy sheet for can body minimal in dispersion of flange length and its production
JP2004076155A (en) Aluminum alloy sheet having excellent seizure softening resistance
KR101757733B1 (en) Method for manufacturing of Al-Zn-Mg-Cu alloy sheet with refined crystal grains
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP3566448B2 (en) Manufacturing method of aluminum alloy plate for can body with low ear ratio
JP2007077485A (en) Aluminum alloy sheet for forming
JP2001262265A (en) Hot rolling stock of high formability aluminum alloy sheet
JPH06256916A (en) Production of aluminum alloy sheet
JP2021095619A (en) Aluminum alloy sheet for cap material and method for producing the same
JP3983454B2 (en) Method for producing high-strength, high-formability aluminum alloy plate and aluminum alloy plate obtained by the production method

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040324

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040519

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040914

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081015

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091015

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees