JPH11140576A - Aluminum alloy sheet for can body minimal in dispersion of flange length and its production - Google Patents
Aluminum alloy sheet for can body minimal in dispersion of flange length and its productionInfo
- Publication number
- JPH11140576A JPH11140576A JP30553297A JP30553297A JPH11140576A JP H11140576 A JPH11140576 A JP H11140576A JP 30553297 A JP30553297 A JP 30553297A JP 30553297 A JP30553297 A JP 30553297A JP H11140576 A JPH11140576 A JP H11140576A
- Authority
- JP
- Japan
- Prior art keywords
- rolling
- annealing
- hot
- aluminum alloy
- rate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Metal Rolling (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、フランジ長さのば
らつきの小さい缶胴体用アルミニウム合金板およびその
製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy sheet for a can body having a small variation in flange length and a method for producing the same.
【0002】[0002]
【従来の技術】飲料缶などの缶胴体用アルミニウム合金
板は、通常、JIS−3004合金鋳塊に、均質化焼
鈍、熱間圧延、冷間圧延、焼鈍、冷間圧延を順に施して
製造される。必要に応じてさらに仕上焼鈍、脱脂洗浄、
カッピング用潤滑油塗布などが施される。ところで、前
記合金板には耳率(圧延円板をカップ状に絞ったときの
周縁部に生じる凸部と凹部の高さの差(耳)のカップ高
さに対する比率)の問題がある。すなわち、耳率が大き
いと、 (1)カップ成形時に耳先端から剥離するチップに
よりピンホールやティアーオフが発生する、 (2)フラン
ジ成形後の缶の寸法精度が低下する、 (3)缶胴体成形後
のトリミング量を増やす必要がある、 (4)トリミングし
ても缶周縁部の凹部を完全に除去できないなどの問題が
ある。そして、この耳率については、最近の缶の縮径化
に伴い、ネッキング後にも耳が生じ、この耳によりその
後のフランジ加工でフランジ長さがばらついて缶蓋の巻
き締めが良好に行えないという新たな問題が生じてい
る。このようなことから、ネッキング後にも耳率の小さ
い合金板、すなわちフランジ長さのばらつきの小さい合
金板が要求されるようになってきている。2. Description of the Related Art Aluminum alloy sheets for can bodies such as beverage cans are usually manufactured by sequentially performing homogenized annealing, hot rolling, cold rolling, annealing, and cold rolling on a JIS-3004 alloy ingot. You. Finish annealing, degreasing and washing as needed
Coating lubricating oil is applied. Incidentally, the alloy plate has a problem of ear ratio (ratio of height difference (ear) between the height of the convex portion and the concave portion generated at the peripheral portion when the rolled disk is squeezed into a cup shape to the cup height). That is, if the ear ratio is large, (1) pinholes or tear-off occur due to chips peeling from the tip of the ear at the time of forming the cup, (2) dimensional accuracy of the can after flange forming is reduced, (3) can body There is a problem that it is necessary to increase the amount of trimming after molding, and (4) it is not possible to completely remove the concave portion at the periphery of the can even by trimming. With regard to this ear ratio, ears are generated even after necking due to recent reduction in diameter of cans, and the flange length varies due to the ears in subsequent flange processing, so that the can lid can not be properly tightened. A new problem has arisen. For this reason, an alloy sheet having a small ear ratio even after necking, that is, an alloy sheet having a small variation in flange length has been required.
【0003】ところで、合金板の耳率の大きさは、その
結晶学的異方性に影響され、熱間圧延終了後或いは焼鈍
中に形成される再結晶集合組織成分(立方体方位の再結
晶粒:主に0°−90°耳)と、冷間圧延により形成さ
れる圧延集合組織成分(R方位の再結晶粒:45°耳)
とが、一方に片寄ると大きくなり、バランスすると小さ
くなる。なお、前記再結晶粒には亜結晶粒も含まれる。Incidentally, the magnitude of the ear ratio of an alloy sheet is affected by its crystallographic anisotropy, and the recrystallized texture component (recrystallized grains having a cubic orientation) formed after completion of hot rolling or during annealing. : Mainly 0 ° -90 ° ears) and a rolled texture component formed by cold rolling (R-oriented recrystallized grains: 45 ° ears)
Becomes larger when it is shifted to one side, and becomes smaller when it is balanced. The recrystallized grains include subcrystal grains.
【0004】近年は、缶胴体の薄肉化に対応して冷間加
工率を大きくして缶強度を高めるようにしているため、
圧延集合組織成分が増加する傾向にある。このため熱間
圧延条件を厳密に規定して、立方体方位再結晶粒を優先
的に成長させる方法が提案されている(特開平4−22
8551号、特開平6−158244号)。しかし、最
近の缶の縮径化に伴いユーザーからのフランジ長さのば
らつき低減が厳しく要求されるようになり、熱間圧延条
件だけを規定したのでは、フランジ長さのばらつきを小
さくするのが困難になってきている。[0004] In recent years, in order to increase the strength of the can by increasing the cold working rate in response to the thinning of the can body,
The rolling texture component tends to increase. For this reason, there has been proposed a method in which hot rolling conditions are strictly defined and cubic orientation recrystallized grains are preferentially grown (Japanese Patent Laid-Open No. 4-22).
No. 8551, JP-A-6-158244). However, with the recent reduction in the diameter of cans, it has become strictly required for users to reduce the variation in flange length, and if only hot rolling conditions were specified, it would be necessary to reduce the variation in flange length. It's getting harder.
【0005】[0005]
【発明が解決しようとする課題】このようなことから、
本発明者等は、立方体方位再結晶粒を増加させる方法を
検討し、その中で、熱間圧延後のコイルの自己発熱或い
は焼鈍加熱により析出物を起点としてR方位の再結晶粒
が成長し、これが立方体方位の再結晶粒の成長を阻害し
ていることを知見し、さらに析出物が析出し難い、鋳塊
の均質化焼鈍条件、熱間圧延条件、中間焼鈍条件などを
究明して本発明を完成させるに至った。本発明は、フラ
ンジ長さのばらつきの小さい缶胴体用アルミニウム合金
板およびその製造方法の提供を目的とする。SUMMARY OF THE INVENTION
The present inventors have studied methods for increasing the cubic orientation recrystallized grains, and among them, the self-heating or annealing heating of the coil after hot rolling causes the recrystallized grains of the R orientation to grow from the precipitate as a starting point. It was found that this hindered the growth of recrystallized grains in the cubic orientation, and furthermore, the precipitates were difficult to precipitate, and the homogenizing annealing conditions, hot rolling conditions, intermediate annealing conditions, etc. The invention has been completed. An object of the present invention is to provide an aluminum alloy plate for a can body having a small variation in flange length and a method for producing the same.
【0006】[0006]
【課題を解決するための手段】請求項1記載の発明は、
Si0.25〜0.35wt%、Fe0.30〜0.50
wt%、Cu0.1〜0.25wt%、Mn0.9〜1.2
wt%、Mg0.9〜1.4wt%、さらにTi0.005
〜0.05wt%を単独で或いはB0.0001〜0.0
1wt%とともに含有し、残部がAlと不可避的不純物か
らなり、導電率が38〜46%IACS、ネッキング後
の耳が45°耳で耳率が0.05%以下であることを特
徴とするフランジ長さのばらつきの小さい缶胴体用アル
ミニウム合金板である。According to the first aspect of the present invention,
Si 0.25 to 0.35 wt%, Fe 0.30 to 0.50
wt%, Cu 0.1 to 0.25 wt%, Mn 0.9 to 1.2
wt%, Mg 0.9 to 1.4 wt%, and further Ti0.005
-0.05wt% alone or B0.0001-0.0
1% by weight, the balance being Al and inevitable impurities, a conductivity of 38 to 46% IACS, a 45 ° ear after necking, and an ear rate of 0.05% or less. This is an aluminum alloy plate for a can body having a small variation in length.
【0007】請求項2記載の発明は、Si0.25〜
0.35wt%、Fe0.30〜0.50wt%、Cu0.
1〜0.25wt%、Mn0.9〜1.2wt%、Mg0.
9〜1.4wt%、さらにTi0.005〜0.05wt%
を単独で或いはB0.0001〜0.01wt%とともに
含有し、残部がAlと不可避的不純物からなるアルミニ
ウム合金鋳塊に、均質化焼鈍、熱間粗圧延、熱間
仕上圧延、中間焼鈍、冷間圧延、仕上焼鈍の各工
程を、前記、、、の各工程を必須工程、、
の各工程を選択工程として、順に施すアルミニウム合金
板の製造方法であって、均質化焼鈍を、580〜61
5℃で4時間以上保持したのち、550℃から400℃
までの温度範囲を20℃/時間以上の速度で冷却して施
し、熱間粗圧延を、均質化焼鈍後そのままの温度で或
いは一旦冷却後30℃/時間以上の速度で再加熱して開
始し、終了温度を400〜480℃として施し、熱間
仕上圧延を、熱間粗圧延終了後5分以内に開始し、スタ
ンド数3以上のタンデム式圧延機を用い、総圧延率を8
0%以上、終了板厚を1.8〜3.0mm、終了温度を
310〜350℃として施し、中間焼鈍を、連続焼鈍
炉を用いて100℃/分以上の速度で加熱して400〜
460℃に0〜120秒間保持したのち、100℃/分
以上の速度で70℃以下に冷却して施し、冷間圧延を
圧延率80〜90%で施し、仕上焼鈍を100〜15
0℃に保持して施すことを特徴とする請求項1記載のフ
ランジ長さのばらつきの小さい缶胴体用アルミニウム合
金板の製造方法である。The invention according to claim 2 is characterized in that Si 0.25
0.35 wt%, Fe 0.30 to 0.50 wt%, Cu0.
1 to 0.25 wt%, Mn 0.9 to 1.2 wt%, Mg0.
9 to 1.4 wt%, and 0.005 to 0.05 wt% Ti
Annealing, Hot rough rolling, Hot finishing rolling, Intermediate annealing, Cold annealing Rolling, finish annealing each process, the above, each process is an essential process,
A method of manufacturing an aluminum alloy plate to be sequentially performed by selecting each step as a selection step, wherein homogenizing annealing is performed at 580 to 61
After holding at 5 ° C for 4 hours or more, 550 ° C to 400 ° C
The temperature range up to 20 ° C./hour is cooled and applied, and hot rough rolling is started by reheating at the same temperature after homogenizing annealing or once at 30 ° C./hour after cooling. The hot finish rolling is started within 5 minutes after the completion of the hot rough rolling, and the total rolling ratio is set to 8 using a tandem type rolling mill having 3 or more stands.
0% or more, the finished plate thickness is 1.8 to 3.0 mm, the finished temperature is 310 to 350 ° C., and the intermediate annealing is heated at a rate of 100 ° C./min or more using a continuous annealing furnace to 400 to 300 ° C./min.
After holding at 460 ° C. for 0 to 120 seconds, it is cooled to 70 ° C. or less at a rate of 100 ° C./min or more, cold-rolled at a rolling reduction of 80 to 90%, and finish-annealed to 100 to 15%.
The method for producing an aluminum alloy plate for a can body having a small variation in flange length according to claim 1, wherein the method is performed while maintaining the temperature at 0 ° C.
【0008】[0008]
【発明の実施の形態】本発明は、再結晶集合組織成分
(主に0°−90°耳)の成長を阻害する析出物の析出
を抑えてネッキング後の耳率を小さくし、以て、フラン
ジング後のフランジ長さのばらつきを低減したアルミニ
ウム合金板で、析出物の数密度(単位体積当たりの析出
物の数)は、析出物の数密度と比例関係にある導電率を
指標にして調整する。本発明において、アルミニウム合
金板の導電率を38〜46%IACSに限定する理由
は、導電率が46%IACSを超えるほどに析出物の数
密度が高くなると、つまりSiやCuなどの合金元素の
固溶量が少なくなると、これら析出物が焼鈍時に立方体
方位再結晶粒の成長を阻害し、ネッキング後の耳率およ
びフランジング後のフランジ長さのばらつきが大きくな
るためである。また導電率が38%IACS未満になる
ほどに析出物の数密度が低くなると、つまりSiやCu
などの合金元素の固溶量が多くなると、これら固溶元素
が後の塗装焼付け工程で多量に析出してフランジ成形性
が低下するためである。また、ネッキング後の耳率を
0.05%以下に限定する理由は、0.05%を超える
と缶蓋の巻き締めが良好に行えなくなるためである。BEST MODE FOR CARRYING OUT THE INVENTION The present invention suppresses the precipitation of precipitates that inhibit the growth of recrystallized texture components (mainly 0 ° -90 ° ears), thereby reducing the ear ratio after necking. In an aluminum alloy plate in which the variation in flange length after flanging is reduced, the number density of precipitates (the number of precipitates per unit volume) is adjusted by using the conductivity having an index proportional to the number density of precipitates as an index. In the present invention, the reason why the conductivity of the aluminum alloy plate is limited to 38 to 46% IACS is that the conductivity increases beyond 46% IACS, the number density of the precipitate increases, that is, the solid solution of alloy elements such as Si and Cu. If the amount is small, these precipitates hinder the growth of cubic recrystallized grains at the time of annealing, and the variation in the ear ratio after necking and the flange length after flanging increase. When the number density of precipitates becomes lower as the conductivity becomes lower than 38% IACS, that is, when Si or Cu
If the amount of alloying elements such as alloying elements increases, the solid-solving elements precipitate in a large amount in the subsequent baking step, and the flange formability deteriorates. The reason why the ear ratio after necking is limited to 0.05% or less is that if the ear ratio exceeds 0.05%, the can lid cannot be properly tightened.
【0009】次に本発明のアルミニウム合金板の合金成
分について説明する。SiはAl−Mn−Fe系晶出物
に相変態を起こさせ、Al−Mn−Fe−Si系析出物
を形成してその硬度を高め、しごき加工性の向上に寄与
する。Siの含有量を0.25〜0.35wt%に限定す
る理由は、0.25wt%未満ではその効果が十分に得ら
れず、0.35wt%を超えると晶出物が巨大化して、逆
にしごき加工性が低下するためである。Next, the alloy components of the aluminum alloy sheet of the present invention will be described. Si causes a phase transformation in the Al-Mn-Fe-based crystallized product, forms an Al-Mn-Fe-Si-based precipitate, increases its hardness, and contributes to improvement in ironing workability. The reason for limiting the Si content to 0.25 to 0.35 wt% is that if the content is less than 0.25 wt%, the effect cannot be sufficiently obtained. This is because ironing workability is reduced.
【0010】FeはMnの晶出を促進するとともにその
分布状態を均一化してDI成形性を向上させる。Feの
含有量を0.30〜0.50wt%に限定する理由は、
0.30wt%未満ではその効果が十分に得られず、0.
50wt%を超えると前述のAl−Mn−Fe系の巨大初
晶化合物が発生し易くなるためである。Feの望ましい
含有量は0.35〜0.45wt%である。[0010] Fe promotes crystallization of Mn and uniforms its distribution to improve DI formability. The reason for limiting the content of Fe to 0.30 to 0.50 wt% is as follows.
If it is less than 0.30 wt%, the effect cannot be sufficiently obtained.
If the content exceeds 50% by weight, the above-mentioned giant primary crystal compound of the Al-Mn-Fe system is likely to be generated. The desirable content of Fe is 0.35 to 0.45 wt%.
【0011】Cuは缶底部の強度向上に寄与する。Cu
の含有量を0.1〜0.25wt%に限定する理由は、
0.1wt%未満では強度が不十分で、DI成形で十分な
耐圧強度が得られず、0.25wt%を超えると加工硬化
が大きくなってしごき加工性が低下するためである。Cu contributes to improving the strength of the bottom of the can. Cu
The reason why the content of is limited to 0.1 to 0.25 wt% is as follows.
If the content is less than 0.1 wt%, the strength is insufficient, and sufficient pressure resistance cannot be obtained by DI molding. If the content exceeds 0.25 wt%, work hardening becomes large and ironing workability is reduced.
【0012】Mnは強度とDI成形性の向上に寄与す
る。MnがDI成形性を向上させる理由は、Mnが固体
潤滑作用を有するAl−Mn系、Al−Mn−Fe系、
Al−Mn−Fe−Si系などの晶出物を形成するため
である。DI成形には、通常エマルジョン型の潤滑剤が
使用されるがこれだけでは潤滑が不十分であり、合金型
と金型との凝着によるビルトアップが発生してゴーリン
グ又はスコアリングと呼ばれる擦り傷や焼付けが発生す
ることがある。Mnを適量含有させると、前記ビルトア
ップが発生しなくなる。Mnの含有量を0.9〜1.2
wt%に限定する理由は、0.9wt%未満ではDI成形性
が十分向上しない上、強度も不足し、1.2wt%を超え
るとDI成形性および強度向上効果が飽和する上、前述
のように溶解鋳造時にFeと結合して、時として径が数
mm程度の巨大なAl−Mn−Fe系初晶化合物が発生
し易くなり、これが圧延後も残存してDI成形時に割れ
やピンホールを発生させるためである。Mnの望ましい
含有量は1.0〜1.2wt%である。Mn contributes to improvement of strength and DI formability. The reason that Mn improves DI formability is that Mn has an Al-Mn-based, Al-Mn-Fe-based,
This is for forming a crystallized substance such as an Al-Mn-Fe-Si system. Emulsion-type lubricants are usually used for DI molding, but this alone is insufficient for lubrication, and build-up due to adhesion between the alloy mold and the mold occurs, causing abrasion or baking called galling or scoring. May occur. When an appropriate amount of Mn is contained, the build-up does not occur. Mn content of 0.9 to 1.2
The reason for limiting to wt% is that if it is less than 0.9 wt%, the DI moldability is not sufficiently improved and the strength is insufficient, and if it exceeds 1.2 wt%, the DI moldability and strength improvement effects are saturated, and as described above. At the time of melting and casting, a large Al-Mn-Fe primary crystal compound having a diameter of about several mm is sometimes easily generated, which remains even after rolling and causes cracks and pinholes during DI molding. In order to generate it. The desirable content of Mn is 1.0 to 1.2 wt%.
【0013】Mgは強度向上に寄与し、特に缶底部の強
度向上に有効である。Mgの含有量を0.9〜1.4wt
%に限定する理由は、0.9wt%未満ではその効果が十
分に得られず、1.4wt%を超えると加工硬化し易くな
り、DI成形時のしごき加工で割れの発生頻度が高くな
るためである。強度とDI成形性が良好にバランスする
Mgの最適含有量は、他元素の添加量や製造条件により
やや変化するが1.0〜1.35wt%、特には1.1〜
1.3wt%である。Mg contributes to strength improvement, and is particularly effective for improving the strength of the bottom of the can. The content of Mg is 0.9 to 1.4 wt.
The reason is that the effect is not sufficiently obtained if the content is less than 0.9% by weight, and if the content exceeds 1.4% by weight, work hardening is apt to occur, and the frequency of cracking during ironing during DI molding becomes high. It is. The optimum content of Mg, which provides a good balance between strength and DI formability, varies slightly depending on the amount of other elements added and manufacturing conditions, but is 1.0 to 1.35 wt%, particularly 1.1 to 1.0 wt%.
1.3 wt%.
【0014】Ti、またはTiおよびBは、鋳塊の結晶
粒を均一微細化して加工性や成形性を向上させる。Ti
の含有量を0.005〜0.05wt%に限定する理由
は、0.005wt%未満では鋳塊結晶粒が十分に均一微
細化せず、0.05wt%を超えると溶解鋳造時にAl−
Ti系の巨大双晶化合物が発生し易くなるためである。
この巨大双晶化合物は圧延後も残存してDI成形時に割
れやピンホールの発生原因になる。BはTiの効果を助
長する。Bが0.0001wt%未満ではその効果が十分
に得られず、0.01wt%を超えるとTi−B系の巨大
双晶化合物が溶解鋳造時に発生し易くなり、前述の巨大
双晶化合物による弊害が生じる。不純物は、Znは0.
3wt%以下、Crは0.3wt%以下、Zrは0.1wt%
以下、Vは0.1wt%以下であれば、本発明合金板の特
性が損なわれることがなく含有されていても問題ない。[0014] Ti, or Ti and B, uniformly refine the crystal grains of the ingot to improve workability and formability. Ti
The reason for limiting the content to 0.005 to 0.05 wt% is that if the content is less than 0.005 wt%, the ingot crystal grains are not sufficiently refined uniformly, and if the content exceeds 0.05 wt%, Al-
This is because a large Ti-based twin compound is likely to be generated.
This giant twin compound remains even after rolling and causes cracks and pinholes during DI molding. B promotes the effect of Ti. If B is less than 0.0001% by weight, the effect cannot be sufficiently obtained. If B exceeds 0.01% by weight, a Ti-B-based giant twin compound is liable to be generated at the time of melting and casting, and the harmful effect of the giant twin compound described above. Occurs. The impurity is Zn.
3 wt% or less, Cr is 0.3 wt% or less, Zr is 0.1 wt%
Hereinafter, if V is 0.1 wt% or less, there is no problem even if V is contained without impairing the properties of the alloy sheet of the present invention.
【0015】請求項2の発明は請求項1の発明合金板の
製造方法であって、立法体方位の再結晶粒の成長を阻害
する析出物の数密度を、均質化焼鈍条件、熱間圧延条
件、中間焼鈍条件などを選定することにより低下させて
フランジ長さのばらつきを小さくした合金板が製造でき
る。前記析出物の数密度は導電率を指標として調整され
る。A second aspect of the present invention is the method for producing an alloy sheet according to the first aspect of the present invention, wherein the number density of precipitates that inhibit the growth of recrystallized grains in cubic orientation is determined by homogenizing annealing conditions, hot rolling conditions, By selecting intermediate annealing conditions and the like, it is possible to manufacture an alloy sheet in which the variation in the flange length is reduced by reducing it. The number density of the precipitate is adjusted using conductivity as an index.
【0016】本発明では、所定組成のアルミニウム合金
を、例えばDC鋳造法(半連続鋳造法)により鋳塊と
し、この鋳塊に均質化焼鈍を施して合金元素の分布を均
質化する。前記均質化焼鈍で580〜615℃で4時間
以上保持する理由は、580℃未満でも、4時間未満で
も均質化が十分に行えず、615℃を超えると鋳塊表面
に膨れが生じたりするためである。生産性を配慮した最
も望ましい保持条件は590〜610℃で6〜12時間
である。前記条件で保持したのちの冷却において、55
0℃から400℃の合金元素が析出し易い温度範囲を2
0℃/時間以上の速度で急速冷却して、Al−Mn−F
e−Si系化合物(析出物)などの析出を抑えるためで
ある。冷却速度が20℃/時間以上では合金元素の析出
を十分に抑えることができない。In the present invention, an aluminum alloy having a predetermined composition is formed into an ingot by, for example, a DC casting method (semi-continuous casting method), and the ingot is subjected to homogenization annealing to homogenize the distribution of alloy elements. The reason for holding at 580 to 615 ° C for 4 hours or more in the homogenization annealing is that the homogenization cannot be performed sufficiently even at less than 580 ° C or less than 4 hours, and when the temperature exceeds 615 ° C, the ingot surface may swell. It is. The most desirable holding condition in consideration of productivity is 590 to 610 ° C. for 6 to 12 hours. After cooling under the above conditions, 55
The temperature range in which alloying elements at 0 ° C to 400 ° C are likely to precipitate is 2
Al-Mn-F is rapidly cooled at a rate of 0 ° C / hour or more.
This is for suppressing the precipitation of e-Si-based compounds (precipitates) and the like. If the cooling rate is 20 ° C./hour or more, precipitation of alloy elements cannot be sufficiently suppressed.
【0017】本発明では、均質化焼鈍後の熱間粗圧延と
熱間仕上圧延により、マトリックス中に再結晶核となる
歪みが集中した部分すなわち遷移帯(trasition band)
が形成されると同時に再結晶粒成長の駆動力となる歪み
を多く蓄積させる。こうすることにより立方体方位再結
晶粒が優先した組織が得られる。In the present invention, a portion where strain serving as a recrystallization nucleus is concentrated in a matrix, that is, a transition band, by hot rough rolling and hot finish rolling after homogenizing annealing.
Is formed, and at the same time, a large amount of strain serving as a driving force for recrystallized grain growth is accumulated. By doing so, a structure in which cubic orientation recrystallized grains have priority is obtained.
【0018】本発明において、熱間粗圧延は、均質化焼
鈍後の鋳塊の自己発熱を利用して行うと、析出物の数密
度が低下し、また時間と加熱費が節減できて望ましい。
一旦冷却し再加熱して行う場合は30℃/時間以上の速
度で急速加熱する。前記速度未満で再加熱したのでは合
金元素の析出物の数密度が高くなりフランジ長さのばら
つきが大きくなる。熱間粗圧延は400〜550℃の温
度で行うのが望ましい。400℃未満では析出物の数密
度が急激に増加して立方体方位再結晶粒の成長が抑制さ
れ、また550℃を超えると熱間圧延板の表面が酸化し
たり、再結晶粒が粗大化して成形性が低下する場合があ
る。In the present invention, hot rough rolling is desirably performed by utilizing the self-heating of the ingot after homogenizing annealing, because the number density of precipitates is reduced, and time and heating costs can be reduced.
In the case of cooling and reheating once, rapid heating is performed at a rate of 30 ° C./hour or more. If the reheating is performed at a speed lower than the above-mentioned rate, the number density of the precipitates of the alloy element increases and the variation in the flange length increases. The hot rough rolling is desirably performed at a temperature of 400 to 550 ° C. If the temperature is lower than 400 ° C., the number density of precipitates increases sharply and the growth of cubic recrystallized grains is suppressed. If the temperature exceeds 550 ° C., the surface of the hot-rolled sheet is oxidized or the recrystallized grains are coarsened to formability. May decrease.
【0019】本発明において、熱間粗圧延終了温度を4
00〜480℃に限定する理由は、400℃未満では、
析出物の数密度が急激に増加して立方体方位再結晶粒の
成長が抑制され、また次の熱間仕上圧延で圧延温度が低
くなってエッジ割れが生じ、480℃を超えると、次の
熱間仕上圧延で立方体方位再結晶粒の駆動力となる歪み
が十分蓄積されなくなるためである。また熱間粗圧延か
ら熱間仕上圧延開始までの時間を5分以内に限定する理
由は、5分を超えると熱間粗圧延で蓄積された歪みが回
復してしまうためである。特に望ましい熱間粗圧延終了
温度は400〜450℃、熱間粗圧延終了後、熱間仕上
圧延開始までの時間は3分以内である。In the present invention, the hot rough rolling end temperature is 4
The reason for limiting the temperature to 00 to 480 ° C is that if the temperature is lower than 400 ° C,
When the number density of precipitates increases rapidly, the growth of cubic orientation recrystallized grains is suppressed, and the rolling temperature is lowered in the next hot finish rolling to cause edge cracking. When the temperature exceeds 480 ° C, the next hot finishing is performed. This is because, during rolling, the strain which is the driving force for the cubic orientation recrystallized grains is not sufficiently accumulated. The reason why the time from the hot rough rolling to the start of the hot finish rolling is limited to 5 minutes or less is that if it exceeds 5 minutes, the strain accumulated in the hot rough rolling is recovered. A particularly desirable hot rough rolling end temperature is 400 to 450 ° C., and a time from the end of the hot rough rolling to the start of the hot finish rolling is within 3 minutes.
【0020】本発明において、熱間仕上圧延では合金板
を所定寸法に仕上げるとともに、熱間仕上圧延終了後の
組織をその自己発熱により再結晶組織とする。この熱間
仕上圧延工程で、スタンド数3以上のタンデム式熱間圧
延機を用いる理由は、スタンド数が3未満では、1スタ
ンドあたりの圧延率が大きくなり、熱延板の表面性状を
保ちつつ歪みを蓄積するのが困難なためである。熱間仕
上圧延での総圧延率を80%以上にする理由は、80%
未満では歪みの蓄積が不十分であり、熱間仕上圧延後の
コイルアップ時或いは焼鈍時に立方体方位再結晶粒を得
るための駆動力が不足し耳率が増加するためである。ま
た終了板厚を1.8〜3.0mmに限定する理由は、
1.8mm未満では熱延板の表面性状(焼付き、肌荒れ
など)や板厚プロフィールが悪化し、3.0mmを超え
ると、最終板厚(0.28〜0.35mm)までの冷間
圧延率が高くなり、R方位の再結晶粒が増加しフランジ
長さのばらつきが大きくなるためである。また熱間仕上
圧延での圧延終了温度を310〜350℃に限定する理
由は、310℃未満では室温まで冷却したあとの再結晶
率が不十分となり立法体方位の再結晶粒が不足し、35
0℃を超えると焼付きや肌荒れが生じて熱延板の表面性
状が悪化するためである。前記再結晶率は、本発明者等
の実験によると85%以上が望ましい。再結晶率が85
%未満では、その後焼鈍を行って完全再結晶にしても、
焼鈍時にR方位再結晶粒も成長するため立方体方位再結
晶粒だけを増加させることは困難である。In the present invention, in the hot finish rolling, the alloy plate is finished to a predetermined size, and the structure after the hot finish rolling is made into a recrystallized structure by self-heating. The reason for using a tandem hot rolling mill having three or more stands in this hot finish rolling step is that if the number of stands is less than three, the rolling ratio per stand increases, and the surface properties of the hot rolled sheet are maintained. This is because it is difficult to accumulate distortion. The reason why the total rolling reduction in hot finish rolling is 80% or more is 80%
If it is less than 3, the accumulation of strain is insufficient, and the driving force for obtaining cubic orientation recrystallized grains during coil-up or annealing after hot finish rolling is insufficient, and the ear ratio increases. The reason for limiting the end plate thickness to 1.8 to 3.0 mm is as follows.
If the thickness is less than 1.8 mm, the surface properties (such as seizure and rough surface) and the thickness profile of the hot-rolled sheet are deteriorated. If the thickness exceeds 3.0 mm, cold rolling to the final thickness (0.28 to 0.35 mm) is performed. This is because the ratio increases, the recrystallized grains in the R direction increase, and the variation in the flange length increases. Further, the reason why the rolling end temperature in the hot finish rolling is limited to 310 to 350 ° C. is that if the temperature is less than 310 ° C., the recrystallization rate after cooling to room temperature becomes insufficient, and the recrystallized grains in the cubic orientation become insufficient, and 35%.
If the temperature exceeds 0 ° C., seizure or surface roughness occurs, and the surface properties of the hot-rolled sheet deteriorate. According to experiments by the present inventors, the recrystallization rate is desirably 85% or more. Recrystallization rate of 85
%, The material is annealed and then completely recrystallized.
It is difficult to increase only the cubic orientation recrystallized grains because the R orientation recrystallized grains also grow during annealing.
【0021】前記熱間仕上圧延後に、必要に応じて中間
焼鈍を施す。この中間焼鈍を400〜460℃の温度範
囲に0〜120秒保持して行う理由は、400℃未満で
は完全再結晶組織が得られず、その後の冷間圧延で強度
が上がりすぎてDI成形性が低下し、460℃を超えま
たは120秒を超えるとCu、Siなどの析出物が多量
に再固溶し、これが塗装焼付け時に析出してフランジ成
形性が低下するためである。保持時間0秒とは目標温度
に到達後直ちに冷却することである。加熱速度、冷却速
度をともに100℃/分以上に限定する理由は、いずれ
の場合も、100℃/分未満では固溶したCuおよびS
iが析出して、次の冷間圧延工程で十分な強度が得られ
なくなるためである。特に冷却の場合は析出し易いので
より急速な冷却が望ましい。After the hot finish rolling, intermediate annealing is performed as necessary. The reason for performing the intermediate annealing while maintaining the temperature range of 400 to 460 ° C. for 0 to 120 seconds is that a complete recrystallized structure cannot be obtained at a temperature lower than 400 ° C. If the temperature exceeds 460 ° C. or exceeds 120 seconds, a large amount of precipitates such as Cu and Si re-dissolve in a solid solution, which precipitates at the time of baking for coating to lower the flange formability. The holding time of 0 second means cooling immediately after reaching the target temperature. The reason for limiting both the heating rate and the cooling rate to 100 ° C./min or more is that in any case, Cu and S
This is because i precipitates and sufficient strength cannot be obtained in the next cold rolling step. Particularly in the case of cooling, more rapid cooling is desirable because precipitation is easy.
【0022】本発明において、冷間圧延では、缶胴体と
して必要な強度が付与される。この冷間圧延での圧延率
を80〜90%に限定する理由は、80%未満では得ら
れる合金板の耐圧強度が不足し、90%を超えるとDI
成形時の45°耳率が大きくなり、また強度が高くなり
すぎて、DI成形性時にカッピング割れや缶底割れが高
頻度に発生するためである。冷間圧延での終了板厚は、
通常、0.28〜0.35mmである。In the present invention, cold rolling provides the necessary strength as a can body. The reason why the rolling reduction in the cold rolling is limited to 80 to 90% is that if it is less than 80%, the pressure resistance of the obtained alloy sheet is insufficient, and if it exceeds 90%, the DI is too high.
This is because the 45 ° ear ratio at the time of molding becomes large and the strength becomes too high, so that cupping cracks and can bottom cracks frequently occur during DI moldability. Finished thickness in cold rolling is
Usually, it is 0.28 to 0.35 mm.
【0023】本発明では、冷間圧延後、必要に応じて仕
上焼鈍を施す。この仕上焼鈍により加工組織が回復し、
DI成形性や缶底成形性が向上する。仕上焼鈍温度を1
00〜150℃に限定する理由は、100℃未満ではそ
の回復効果が十分に得られず、150℃を超えると固溶
元素が析出し過ぎて(導電率が46%を超えて)DI成
形性やフランジ成形性が低下するためである。特に望ま
しい仕上焼鈍温度は115〜150℃である。仕上焼鈍
時間は、4時間以下が望ましく、4時間を超えると固溶
元素が析出してDI成形性が低下する。特には1〜3時
間が望ましい。In the present invention, after cold rolling, finish annealing is performed as necessary. The work structure is recovered by this finish annealing,
DI moldability and can bottom moldability are improved. Finish annealing temperature 1
The reason for limiting the temperature to 00 to 150 ° C. is that if the temperature is lower than 100 ° C., the recovery effect cannot be sufficiently obtained, and if the temperature exceeds 150 ° C., solid solution elements are excessively precipitated (the electrical conductivity exceeds 46%). And the flange formability is reduced. A particularly desirable finish annealing temperature is 115 to 150 ° C. The finish annealing time is desirably 4 hours or less, and if it exceeds 4 hours, solid solution elements are precipitated and DI formability decreases. In particular, 1 to 3 hours is desirable.
【0024】[0024]
【実施例】以下に本発明を実施例により詳細に説明す
る。 (実施例1)表1に示す本発明例組成のアルミニウム合
金を常法により溶解鋳造して厚さ500mmのスラブ
(鋳塊)とし、このスラブを490mm厚さに面削した
のち、600℃で6時間均質化焼鈍し、次いでこれを冷
却速度80℃/時間で室温まで放冷し、次いで昇温速度
50℃/時間で530℃まで再加熱して、30mm厚さ
まで熱間粗圧延した。熱間粗圧延終了温度は420℃
で、その3分後(このときの再結晶率は5%)にスタン
ド数4の圧延機を用いてを熱間仕上圧延開始し、厚さ
2.2mm(仕上圧延での総圧延率:92.7%)の熱
延材を得た。熱間仕上圧延の終了温度は320℃で熱間
圧延材の再結晶率は100%であった。熱間圧延終了
後、連続焼鈍炉により400℃で0秒(400℃に到達
後直ちに空冷)焼鈍した。このときの加熱速度は850
℃/分、冷却速度は1000℃/分であった。次いで常
法により板厚0.3mmまで冷間圧延(冷間圧延率:8
7.5%)し、続いて115℃で2時間の仕上焼鈍を施
して缶胴体用アルミニウム合金板を製造した。この合金
板の導電率を測定したところ、いずれも41〜46%I
ACSの範囲内であった。なお、前記再結晶率は、熱延
板断面における再結晶粒の占める断面積比率である。The present invention will be described below in detail with reference to examples. (Example 1) An aluminum alloy having the composition of the present invention shown in Table 1 was melted and cast by a conventional method to form a slab (ingot) having a thickness of 500 mm. This was homogenized for 6 hours, then allowed to cool to room temperature at a cooling rate of 80 ° C./hour, then reheated to 530 ° C. at a temperature increasing rate of 50 ° C./hour, and hot-rolled to a thickness of 30 mm. Hot rough rolling end temperature is 420 ° C
Three minutes later (the recrystallization rate at this time was 5%), hot finish rolling was started using a rolling machine with four stands, and the thickness was 2.2 mm (total rolling reduction in finish rolling: 92). .7%). The finishing temperature of the hot finish rolling was 320 ° C., and the recrystallization rate of the hot-rolled material was 100%. After the completion of the hot rolling, the steel sheet was annealed at 400 ° C. for 0 second (air cooling immediately after reaching 400 ° C.) in a continuous annealing furnace. The heating rate at this time is 850
° C / min and the cooling rate was 1000 ° C / min. Next, cold rolling is performed to a sheet thickness of 0.3 mm by a conventional method (cold rolling ratio: 8).
7.5%), followed by finish annealing at 115 ° C. for 2 hours to produce an aluminum alloy plate for a can body. When the conductivity of this alloy plate was measured, all were 41-46% I.
It was within the range of ACS. The recrystallization rate is a cross-sectional area ratio occupied by recrystallized grains in a cross section of the hot-rolled sheet.
【0025】(比較例1)表1に示す比較例組成のアル
ミニウム合金を用いた他は、実施例1と同じ方法により
缶胴体用アルミニウム合金板を製造した。Comparative Example 1 An aluminum alloy plate for a can body was manufactured in the same manner as in Example 1 except that an aluminum alloy having the composition shown in Table 1 was used.
【0026】このようにして得られた合金板について、
引張強度、DI成形性、ネッキング後の耳率、フランジ
成形性を調査した。引張強度は、前記合金板を200℃
で20分間加熱し(塗装焼付け条件)、加熱前後の引張
強さ(TS)と0.2%耐力(YS)を測定した。DI
成形性は炭酸飲料用の缶胴体(内径66mmφ、側壁板
厚103μm、側壁先端部板厚165μm)にDI成形
して調査した。ネッキング耳率は前記のDI缶胴を、ト
リミングと洗浄を施した後、200℃で20分加熱し、
次いでネッキング加工を施して開口部の耳率を測定し
た。フランジ成形性は、角度90°の円錐状の治具をフ
ランジ割れが発生するまで押し込み、割れが発生した時
の開口部の径D(mm)を測定し、これを下式に代入
し、開口部の径の限界増加率Pを求めて評価した。 P=[(D−d)/d]×100%。 (式中dはネッキング加工後の開口部の内径、mm)。
結果を表2に示す。評価基準は、ネッキング後の耳率
0.05%以内、加熱熱処理(200℃×20分)後の
耐力250MPa以上、フランジ成形での口径の限界増
加率15%以上を良好とした。ネッキング後の耳が45
°耳で耳率が0.05%以下のものはフランジ長さのば
らつきが小さく缶蓋の巻き締めが問題なく行える。With respect to the alloy plate thus obtained,
The tensile strength, DI moldability, ear ratio after necking, and flange moldability were investigated. The tensile strength is set at 200 ° C for the alloy plate.
For 20 minutes (under the conditions of baking paint), and the tensile strength (TS) and 0.2% proof stress (YS) before and after heating were measured. DI
The moldability was investigated by DI molding into a can body for a carbonated drink (inner diameter 66 mmφ, side wall thickness 103 μm, side wall tip thickness 165 μm). The necking ear ratio was measured at 200 ° C for 20 minutes after trimming and washing the DI can body,
Next, necking was performed, and the ear ratio of the opening was measured. The flange formability is determined by pushing a conical jig at an angle of 90 ° until a flange crack occurs, measuring the diameter D (mm) of the opening when the crack occurs, and substituting this into the following formula. The critical increase rate P of the diameter of the part was obtained and evaluated. P = [(D−d) / d] × 100%. (Where d is the inner diameter of the opening after necking, mm).
Table 2 shows the results. The evaluation criteria were as follows: the ear ratio after necking was 0.05% or less, the proof stress after heat treatment (200 ° C. × 20 minutes) was 250 MPa or more, and the marginal increase rate of the diameter in flange forming was 15% or more. 45 ears after necking
° For ears with an ear ratio of 0.05% or less, the variation in flange length is small and the can lid can be tightened without any problem.
【0027】[0027]
【表1】 [Table 1]
【0028】[0028]
【表2】 [Table 2]
【0029】表2から明らかなように、本発明例(No.A
〜D) は、ネッキング後の耳が45°耳で耳率が0.0
5%以下と低く、またフランジ成形での口径の限界増加
率Pも15%以上と大きく、フランジ成形性が良好であ
った。200℃で20分加熱(塗装焼付け条件)後の耐
力(YS)は250MPa以上であり缶底部の耐圧強度
も問題なく、DI成形性も良好であった。これに対し、
比較例の No.E、Fは、いずれもMgまたはMnの量が
多いため200℃で20分の焼付加熱により引張強さが
高くなっており、DI成形において破胴(しごき割れ)
が発生した。No.GはSiとCuの固溶量が多くなり、
これが塗装焼付け時に析出してフランジ成形性が劣っ
た。No.HはMg添加量が少ないため強度が低下した。N
o.IはMnの添加量が少ないためDI成形で焼付けが生
じた。No.JはCuとSiの添加量が少ないため強度が
低下した。As is clear from Table 2, the present invention examples (No.
-D) are 45 ° ears after necking and an ear rate of 0.0
It was as low as 5% or less, and the marginal increase rate P of the diameter in flange forming was as large as 15% or more, and the flange formability was good. The proof stress (YS) after heating at 200 ° C. for 20 minutes (paint baking conditions) was 250 MPa or more, the pressure resistance at the bottom of the can was satisfactory, and the DI moldability was good. In contrast,
In Comparative Examples Nos. E and F, both of which had a large amount of Mg or Mn, the tensile strength was increased by baking heat at 200 ° C. for 20 minutes.
There has occurred. No. G has a large solid solution amount of Si and Cu,
This was precipitated at the time of paint baking, resulting in poor flange formability. In No. H, the strength was reduced because the amount of added Mg was small. N
In the case of o.I, baking occurred in DI molding because the amount of Mn added was small. In No. J, the strength was reduced because the added amounts of Cu and Si were small.
【0030】(実施例2)表1に示した No.Aのアルミ
ニウム合金を常法により溶解鋳造して厚さ500mmの
鋳塊(スラブ)とし、このスラブを490mm厚さに面
削し、次いでこれに均質化焼鈍、冷却、加熱処理、熱間
粗圧延、仕上圧延を順に施して熱延コイルを得た。この
熱延コイルを室温まで冷却し、その後、中間焼鈍を施
し、或いは中間焼鈍を施さないで、常法にて冷間圧延し
てアルミニウム合金板を製造した。均質化焼鈍、熱間圧
延、焼鈍、冷間圧延などの製造条件は、表3に示すよう
に本発明の請求項2で限定した範囲内で種々に変化させ
た。(Example 2) No. A aluminum alloy shown in Table 1 was melt-cast by a conventional method to form an ingot (slab) having a thickness of 500 mm, and the slab was face-cut to a thickness of 490 mm. This was subjected to homogenization annealing, cooling, heat treatment, hot rough rolling and finish rolling in this order to obtain a hot rolled coil. The hot-rolled coil was cooled to room temperature, and then subjected to intermediate annealing or cold-rolled by an ordinary method without intermediate annealing to produce an aluminum alloy sheet. Manufacturing conditions such as homogenization annealing, hot rolling, annealing, and cold rolling were variously changed within the range defined in claim 2 of the present invention as shown in Table 3.
【0031】(比較例2)製造条件を、表4に示す本発
明の請求項2に限定した範囲外とした他は、実施例2と
同じ方法によりアルミニウム合金板を製造した。Comparative Example 2 An aluminum alloy plate was manufactured in the same manner as in Example 2 except that the manufacturing conditions were out of the range defined in claim 2 of the present invention shown in Table 4.
【0032】このようにして得られた各々の合金板につ
いて、実施例1と同じ方法により、引張強度、DI成形
性、ネッキング後の耳率、フランジ成形性を調査した。
結果を表5、6に示す。評価基準は、実施例1の場合と
同じにした。For each of the alloy sheets thus obtained, the tensile strength, DI formability, ear ratio after necking, and flange formability were examined in the same manner as in Example 1.
The results are shown in Tables 5 and 6. The evaluation criteria were the same as in Example 1.
【0033】[0033]
【表3】 [Table 3]
【0034】[0034]
【表4】 [Table 4]
【0035】[0035]
【表5】 [Table 5]
【0036】[0036]
【表6】 [Table 6]
【0037】表5、6から明らかなように、本発明例
(No.1〜10) は、いずれもネッキング後の耳率も0.0
5%以内と低く、フランジ成形性も良好であった。また
焼付けに相当する加熱処理後の強度(耐力)も250M
Pa以上で、缶底部の強度も問題のない水準にあり、さ
らにDI成形性も良好であった。これに対し、比較例の
No.11は均質化焼鈍温度が高いため鋳塊表面に膨れが生
じ、仕上圧延終了後の表面性状が悪化している。 No.12
は均質化焼鈍温度が低いため、 No.13は均質化焼鈍保持
時間が短いためいずれも均質化が不十分で微細な析出物
が多数発生し、ネッキング後の耳率が高くなった。No.1
4,15は本発明の均質化焼鈍後の冷却、昇温条件から外れ
ており、冷却速度、昇温速度が遅かったため析出物の数
密度が増加し、ネッキング後の耳率は基準値を上回っ
た。No.16は粗圧延終了温度が低かったため、析出物の
数密度が急激に増加し、しかも仕上圧延開始温度が低く
なるため仕上圧延時にエッジ割れが起きた。No.17,18は
粗圧延終了温度が高く、粗圧延終了から仕上圧延開始ま
での時間が長かったため粗圧延で蓄積した歪みが(再結
晶駆動力)が回復してしまい、仕上圧延終了後に立方体
方位再結晶粒が優先成長せず、ネッキング後の耳率が基
準値を上回った。No.19 は仕上圧延での総圧延率が小さ
く、歪みの蓄積が不十分でネッキング後の耳率が基準値
を上回った。No.20は終了板厚が薄く仕上圧延後に焼付
きが生じ、缶に成形したときに缶表面にキズが発生し
た。No.21は終了板厚が厚かったため冷間圧延率が高く
なりDI成形で絞り割れが発生し、ネッキング後の耳率
も基準値を上回った。No.22は仕上圧延終了温度が低す
ぎたため仕上圧延終了後のコイルアップ時に再結晶があ
まり進まず、その後焼鈍を施しても立方体方位の成長が
少なくネッキング後の耳率が基準値を上回った。No.23
は仕上圧延終了温度が高かったため焼付きが生じた。N
o.24は中間焼鈍温度が高かったため200℃で20分の
焼付けによる熱軟化が起きずフランジ成形性が劣った。
No.25は冷間圧延率が高かったためDI成形で絞り割れ
が発生し、ネッキング後の耳率も基準値を上回った。N
o.26は最終焼鈍条件が高かったため析出により強度(焼
付け前の耐力)が高くなりしごき割れが発生した。As is clear from Tables 5 and 6, in each of the inventive examples (Nos. 1 to 10), the ear ratio after necking was 0.0%.
It was as low as 5% or less, and the flange formability was good. In addition, the strength (proof stress) after heat treatment equivalent to baking is 250 M
At a pressure of Pa or more, the strength of the bottom of the can was at a level without any problem, and the DI moldability was also good. In contrast, the comparative example
In No. 11, since the homogenization annealing temperature was high, swelling occurred on the surface of the ingot, and the surface properties after finish rolling were deteriorated. No.12
No. 13 had a low homogenizing annealing temperature, and No. 13 had a short homogenizing annealing holding time, so that homogenization was insufficient in each case, many fine precipitates were generated, and the ear ratio after necking was high. No.1
Nos. 4, 15 deviated from the cooling and heating conditions after the homogenization annealing of the present invention, and the cooling rate and the heating rate were slow, so that the number density of the precipitates increased, and the ear ratio after necking exceeded the reference value. In No. 16, the rough rolling end temperature was low, so that the number density of precipitates increased sharply, and the finish rolling start temperature was low, so that edge cracking occurred during finish rolling. In Nos. 17 and 18, the rough rolling end temperature was high and the time from the end of rough rolling to the start of finish rolling was long, so the strain accumulated in rough rolling recovered (recrystallization driving force), and the cube after finishing rolling was finished. The orientation recrystallized grains did not grow preferentially, and the ear ratio after necking exceeded the reference value. In No. 19, the total rolling reduction in finish rolling was small, the accumulation of strain was insufficient, and the ear ratio after necking exceeded the reference value. In No. 20, the finished plate thickness was small, seizure occurred after finish rolling, and the surface of the can was scratched when formed into a can. In No. 21, the finished plate thickness was large, so that the cold rolling reduction was high, drawing cracks were generated by DI molding, and the ear ratio after necking exceeded the reference value. In No.22, the finish rolling end temperature was too low, so recrystallization did not progress much during coil-up after finish rolling, and the growth of cubic orientation was small even after annealing, and the ear rate after necking exceeded the reference value. . No.23
Since the finish rolling end temperature was high, seizure occurred. N
In the case of o.24, the intermediate annealing temperature was high, so that heat softening by baking at 200 ° C. for 20 minutes did not occur and the flange formability was poor.
In No. 25, since the cold rolling reduction was high, draw cracking occurred in DI molding, and the ear ratio after necking also exceeded the reference value. N
In o.26, the strength (proof strength before baking) was increased due to precipitation due to high final annealing conditions, and iron cracks occurred.
【0038】[0038]
【発明の効果】以上に述べたように、本発明の缶胴体用
アルミニウム合金板は、フランジ長さのばらつきが小さ
く缶蓋の巻き締めが良好に行え、かつ引張強度、DI成
形性、フランジ成形性など缶胴体用としての特性を具備
するものである。また本発明の缶胴体用アルミニウム合
金板は、均質化焼鈍条件などを限定することにより常法
にて容易に製造することができる。依って、工業上顕著
な効果を奏する。As described above, the aluminum alloy sheet for a can body according to the present invention has a small variation in flange length, can perform good winding of a can lid, and has tensile strength, DI formability, and flange forming. It has characteristics such as properties for a can body. Further, the aluminum alloy sheet for a can body of the present invention can be easily manufactured by a conventional method by limiting the homogenizing annealing conditions and the like. Therefore, an industrially remarkable effect is achieved.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C22F 1/00 661 C22F 1/00 661A 673 673 682 682 683 683 684 684A 685 685Z 686 686A 691 691A 691B 691C 692 692A 692B 694 694A 694B ────────────────────────────────────────────────── 6 Continuation of the front page (51) Int.Cl.
Claims (2)
30〜0.50wt%、Cu0.1〜0.25wt%、Mn
0.9〜1.2wt%、Mg0.9〜1.4wt%、さらに
Ti0.005〜0.05wt%を単独で或いはB0.0
001〜0.01wt%とともに含有し、残部がAlと不
可避的不純物からなり、導電率が38〜46%IAC
S、ネッキング後の耳が45°耳で耳率が0.05%以
下であることを特徴とするフランジ長さのばらつきの小
さい缶胴体用アルミニウム合金板。1. The method according to claim 1, wherein the content of Si is 0.25 to 0.35 wt%,
30 to 0.50 wt%, Cu 0.1 to 0.25 wt%, Mn
0.9 to 1.2 wt%, Mg 0.9 to 1.4 wt%, and Ti 0.005 to 0.05 wt% alone or B0.0
001-0.01 wt%, the balance being Al and unavoidable impurities, having a conductivity of 38-46% IAC.
S, an aluminum alloy plate for a can body having a small variation in flange length, wherein the ear after necking has a 45 ° ear and an ear ratio of 0.05% or less.
30〜0.50wt%、Cu0.1〜0.25wt%、Mn
0.9〜1.2wt%、Mg0.9〜1.4wt%、さらに
Ti0.005〜0.05wt%を単独で或いはB0.0
001〜0.01wt%とともに含有し、残部がAlと不
可避的不純物からなるアルミニウム合金鋳塊に、均質
化焼鈍、熱間粗圧延、熱間仕上圧延、中間焼鈍、
冷間圧延、仕上焼鈍の各工程を、前記、、、
の各工程を必須工程、、の各工程を選択工程とし
て、順に施すアルミニウム合金板の製造方法であって、 均質化焼鈍を、580〜615℃で4時間以上保持し
たのち、550℃から400℃までの温度範囲を20℃
/時間以上の速度で冷却して施し、 熱間粗圧延を、均質化焼鈍後そのままの温度で或いは
一旦冷却後30℃/時間以上の速度で再加熱して開始
し、終了温度を400〜480℃として施し、 熱間仕上圧延を、熱間粗圧延終了後5分以内に開始
し、スタンド数3以上のタンデム式圧延機を用い、総圧
延率を80%以上、終了板厚を1.8〜3.0mm、終
了温度を310〜350℃として施し、 中間焼鈍を、連続焼鈍炉を用いて100℃/分以上の
速度で加熱して400〜460℃に0〜120秒間保持
したのち、100℃/分以上の速度で70℃以下に冷却
して施し、 冷間圧延を圧延率80〜90%で施し、 仕上焼鈍を100〜150℃に保持して施すことを特
徴とする請求項1記載のフランジ長さのばらつきの小さ
い缶胴体用アルミニウム合金板の製造方法。2. 0.25 to 0.35 wt% of Si, Fe.
30 to 0.50 wt%, Cu 0.1 to 0.25 wt%, Mn
0.9 to 1.2 wt%, Mg 0.9 to 1.4 wt%, and Ti 0.005 to 0.05 wt% alone or B0.0
001 to 0.01 wt%, the balance being aluminum alloy ingot consisting of Al and inevitable impurities, homogenized annealing, hot rough rolling, hot finishing rolling, intermediate annealing,
Each step of cold rolling, finish annealing, said,
A method for manufacturing an aluminum alloy sheet, in which each step is an essential step, and each step is an optional step, wherein the homogenizing annealing is maintained at 580 to 615 ° C for 4 hours or more, and then from 550 ° C to 400 ° C. Up to 20 ° C
The hot rough rolling is started at the same temperature after homogenizing annealing or by reheating at a rate of 30 ° C./hour or more after cooling, and the end temperature is 400 to 480. C., hot finish rolling is started within 5 minutes after the completion of the hot rough rolling, a tandem type rolling mill having 3 or more stands is used, the total rolling ratio is 80% or more, and the finished sheet thickness is 1.8. 33.0 mm, the end temperature is 31010〜350 ° C., and the intermediate annealing is heated at a rate of 100 ° C./min or more using a continuous annealing furnace and is maintained at 400〜460 ° C. for 0120120 seconds. 2. The method according to claim 1, wherein the cooling is performed at a rate of not less than 70 [deg.] C. at a rate of not less than 70 [deg.] C./min, cold rolling is performed at a rolling reduction of 80 to 90%, and finish annealing is performed at 100 to 150 [deg.] C. Aluminum for can body with small variation in flange length Manufacturing method of the non-alloy plate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30553297A JPH11140576A (en) | 1997-11-07 | 1997-11-07 | Aluminum alloy sheet for can body minimal in dispersion of flange length and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP30553297A JPH11140576A (en) | 1997-11-07 | 1997-11-07 | Aluminum alloy sheet for can body minimal in dispersion of flange length and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH11140576A true JPH11140576A (en) | 1999-05-25 |
Family
ID=17946295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP30553297A Pending JPH11140576A (en) | 1997-11-07 | 1997-11-07 | Aluminum alloy sheet for can body minimal in dispersion of flange length and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH11140576A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002079533A1 (en) * | 2001-03-28 | 2002-10-10 | Sumitomo Light Metal Industries, Ltd. | Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof |
WO2004057047A1 (en) * | 2002-12-19 | 2004-07-08 | Nippon Light Metal Company, Ltd. | Aluminum alloy plate for rectangular cross section battery case |
JP2006077310A (en) * | 2004-09-13 | 2006-03-23 | Furukawa Sky Kk | Aluminum alloy sheet superior in formability for bottle type can, and manufacturing method therefor |
WO2006103887A1 (en) * | 2005-03-25 | 2006-10-05 | Kabushiki Kaisha Kobe Seiko Sho | Aluminum alloy sheet with excellent high-temperature property for bottle can |
JP2007051307A (en) * | 2005-08-15 | 2007-03-01 | Furukawa Sky Kk | Aluminum alloy sheet for can body having excellent bottom wrinkle property, and its manufacturing method |
KR100688764B1 (en) | 2004-03-31 | 2007-03-02 | 가부시키가이샤 고베 세이코쇼 | Aluminum alloy plate, process for producing the same, and battery case made of aluminum alloy |
JP2007254874A (en) * | 2006-03-24 | 2007-10-04 | Kobe Steel Ltd | Aluminum alloy sheet for packaging container and method of manufacturing the same |
JP2014015643A (en) * | 2012-07-06 | 2014-01-30 | Uacj Corp | Aluminum alloy sheet for can body and method for producing the same |
TWI601836B (en) * | 2016-06-02 | 2017-10-11 | 中國鋼鐵股份有限公司 | Method for manufacturing aluminum sheet |
CN109338131A (en) * | 2018-12-11 | 2019-02-15 | 江苏鼎胜新能源材料股份有限公司 | A kind of preparation method of new energy resource power battery tab aluminium strip material |
-
1997
- 1997-11-07 JP JP30553297A patent/JPH11140576A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002079533A1 (en) * | 2001-03-28 | 2002-10-10 | Sumitomo Light Metal Industries, Ltd. | Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof |
WO2004057047A1 (en) * | 2002-12-19 | 2004-07-08 | Nippon Light Metal Company, Ltd. | Aluminum alloy plate for rectangular cross section battery case |
KR100688764B1 (en) | 2004-03-31 | 2007-03-02 | 가부시키가이샤 고베 세이코쇼 | Aluminum alloy plate, process for producing the same, and battery case made of aluminum alloy |
JP2006077310A (en) * | 2004-09-13 | 2006-03-23 | Furukawa Sky Kk | Aluminum alloy sheet superior in formability for bottle type can, and manufacturing method therefor |
EP2281911A1 (en) * | 2005-03-25 | 2011-02-09 | Kabushiki Kaisha Kobe Seiko Sho | Aluminium alloy sheet for bottle cans superior in high-temperature properties |
EP1870481A1 (en) * | 2005-03-25 | 2007-12-26 | Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) | Aluminum alloy sheet with excellent high-temperature property for bottle can |
EP1870481A4 (en) * | 2005-03-25 | 2008-05-28 | Kobe Steel Ltd | Aluminum alloy sheet with excellent high-temperature property for bottle can |
WO2006103887A1 (en) * | 2005-03-25 | 2006-10-05 | Kabushiki Kaisha Kobe Seiko Sho | Aluminum alloy sheet with excellent high-temperature property for bottle can |
EP2281910A1 (en) * | 2005-03-25 | 2011-02-09 | Kabushiki Kaisha Kobe Seiko Sho | Aluminium alloy sheet for bottle cans superior in high-temperature properties |
JP2007051307A (en) * | 2005-08-15 | 2007-03-01 | Furukawa Sky Kk | Aluminum alloy sheet for can body having excellent bottom wrinkle property, and its manufacturing method |
JP2007254874A (en) * | 2006-03-24 | 2007-10-04 | Kobe Steel Ltd | Aluminum alloy sheet for packaging container and method of manufacturing the same |
JP2014015643A (en) * | 2012-07-06 | 2014-01-30 | Uacj Corp | Aluminum alloy sheet for can body and method for producing the same |
TWI601836B (en) * | 2016-06-02 | 2017-10-11 | 中國鋼鐵股份有限公司 | Method for manufacturing aluminum sheet |
CN109338131A (en) * | 2018-12-11 | 2019-02-15 | 江苏鼎胜新能源材料股份有限公司 | A kind of preparation method of new energy resource power battery tab aluminium strip material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5568031B2 (en) | Aluminum alloy cold rolled sheet for bottle cans | |
JP3657738B2 (en) | Method for producing aluminum alloy plate for can body with low ear rate | |
JPH11140576A (en) | Aluminum alloy sheet for can body minimal in dispersion of flange length and its production | |
JP2004244701A (en) | Aluminum alloy cold rolled sheet for can barrel, and aluminum alloy hot rolled sheet to be used as the stock therefor | |
JP3600022B2 (en) | Manufacturing method of aluminum base alloy sheet for deep drawing | |
JP4257135B2 (en) | Aluminum alloy hard plate for can body | |
JP3550259B2 (en) | Aluminum alloy plate for DI can body excellent in high-speed ironing formability and method for producing the same | |
JP3871462B2 (en) | Method for producing aluminum alloy plate for can body | |
JP3644818B2 (en) | Method for producing aluminum alloy plate for can body | |
JP3566448B2 (en) | Manufacturing method of aluminum alloy plate for can body with low ear ratio | |
JP3871473B2 (en) | Method for producing aluminum alloy plate for can body | |
JP2003293105A (en) | Method for producing aluminum alloy sheet for bottle type drink can | |
JP4467443B2 (en) | Method for producing aluminum alloy plate | |
JP3867569B2 (en) | Aluminum foil for containers and manufacturing method thereof | |
JP3644819B2 (en) | Method for producing aluminum alloy plate for can body | |
JPH10330897A (en) | Production of aluminum base alloy sheet for deep drawing | |
JP4591986B2 (en) | Aluminum alloy sheet for transportation-related structures with excellent paintability and press formability | |
JP3713614B2 (en) | Method for producing aluminum alloy plate for can body | |
JP4250030B2 (en) | Aluminum alloy plate for glittering wheel rim and manufacturing method thereof | |
JP4078254B2 (en) | Method for producing aluminum alloy plate for glittering wheel rim | |
JPH11279724A (en) | Production of aluminum alloy sheet for deep drawing | |
JP4126251B2 (en) | Method for producing aluminum alloy plate for glittering wheel rim | |
JPH10195608A (en) | Production of aluminum alloy sheet for can body low in earing ratio | |
JP4212966B2 (en) | Method for producing aluminum alloy plate for glittering wheel rim | |
JP3600021B2 (en) | Manufacturing method of aluminum base alloy sheet for deep drawing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Effective date: 20040202 Free format text: JAPANESE INTERMEDIATE CODE: A712 |
|
A977 | Report on retrieval |
Effective date: 20050125 Free format text: JAPANESE INTERMEDIATE CODE: A971007 |
|
A131 | Notification of reasons for refusal |
Effective date: 20050308 Free format text: JAPANESE INTERMEDIATE CODE: A131 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20050705 |