JP4591986B2 - Aluminum alloy sheet for transportation-related structures with excellent paintability and press formability - Google Patents

Aluminum alloy sheet for transportation-related structures with excellent paintability and press formability Download PDF

Info

Publication number
JP4591986B2
JP4591986B2 JP2001153176A JP2001153176A JP4591986B2 JP 4591986 B2 JP4591986 B2 JP 4591986B2 JP 2001153176 A JP2001153176 A JP 2001153176A JP 2001153176 A JP2001153176 A JP 2001153176A JP 4591986 B2 JP4591986 B2 JP 4591986B2
Authority
JP
Japan
Prior art keywords
mass
aluminum alloy
press formability
crystal grain
grain size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001153176A
Other languages
Japanese (ja)
Other versions
JP2002348629A (en
Inventor
克己 小山
昭男 新倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP2001153176A priority Critical patent/JP4591986B2/en
Publication of JP2002348629A publication Critical patent/JP2002348629A/en
Application granted granted Critical
Publication of JP4591986B2 publication Critical patent/JP4591986B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、所要の強度を有し、かつ塗装性およびプレス成形性に優れた輸送関連構造体用アルミニウム合金板材に関する。
【0002】
【従来の技術】
これまで、自動車などの構造体には、スチールが多用されてきたが、近年、自動車の環境に対する負荷が問題視され、それに応じて、所要強度が得られ、かつ軽量で燃費節減に有利なアルミニウム合金板材が注目されるようになった。
前記アルミニウム合金板材には、加工硬化型の5000系(Al−Mg系)合金、塗装焼き付け時の熱で析出硬化する6000系(Al−Mg−Si系)合金、5000系合金のMg量を増やしCrなどを微量添加した新合金(特開平7−310136号公報)などが提案された。
【0003】
【発明が解決しようとする課題】
しかし、輸送関連構造体は、一般に塗装して用いられるが、前記従来の合金板材は、いずれも曲げ加工部の塗膜が剥離し易く塗装性に劣り、プレス成形時には割れが生じ易いという問題があった。
【0004】
このようなことから、本発明者等は、前記従来の合金板材が塗装性およびプレス成形性に劣る原因を調べ、従来の合金板材は結晶粒が粗大で結晶粒の方位差に起因して曲げ加工部に凹凸が顕著に現れるのが原因であることを突き止め、前記凹凸(以下、肌荒れと称す)は表層部の結晶粒径を適度に微細化することで改善し得ること、また前記プレス成形性はアルミニウム合金板材の結晶粒径を表層部より中央部で大きくすることで改善し得ることを見いだし、さらに検討を進めて本発明を完成させるに至った。 本発明の目的は、所要の強度を有し、かつ塗装性およびプレス成形性に優れた輸送関連構造体用アルミニウム合金板材を提供するにある。
【0005】
【課題を解決するための手段】
請求項1記載の発明は、Siを0.07〜0.18mass%、Mgを4.35〜4.75mass%、Cuを0.05〜0.15mass%、Feを0.07〜0.35mass%、Mnを0.25〜0.45mass%、Crを0.02〜0.05mass%、Tiを0.001〜0.1mass%含有し、Naを0.0005mass%以下、Caを0.0010mass%以下に規制し、残部がAlおよび不可避不純物からなるアルミニウム合金板材であって、その板厚方向に計測した平均結晶粒径が表層部で10μm以下、中央部で表層部の1.2倍以上であることを特徴とする塗装性およびプレス成形性に優れた輸送関連構造体用アルミニウム合金板材である。
【0006】
請求項2記載の発明は、アルミニウム合金板材の厚さが0.5〜5.5mmであることを特徴とする請求項1記載の塗装性およびプレス成形性に優れた輸送関連構造体用アルミニウム合金板材である。
【0007】
【発明の実施の形態】
以下に、本発明のアルミニウム合金板材(以下、適宜、板材と略記する。)の合金組成について説明する。
Mgは、主にアルミニウムマトリックスに固溶して、板材の強度およびプレス成形性を向上させる。
その含有量が4.35mass%未満では前記効果が十分に得られず、4.75mass%を超えると圧延加工性が低下する。
【0008】
Siは鋳造時にFeやMnなどと晶出物を生成し、この晶出物が再結晶核となって板材の結晶粒径を適度(10μm以下)に微細化し、曲げ加工部の肌荒れを防止し、以て塗装性を改善する。
その含有量が0.07mass%未満では前記結晶粒径を適度に微細化させる効果が十分に得られず、0.18mass%を超えるとSiは固溶Mgと反応して固溶Mgを著しく減少させるため十分な強度およびプレス成形性が得られなくなる。
【0009】
Cuは固溶および析出して強度向上に寄与する。
その含有量が0.05mass%未満では前記効果が十分に得られず、0.15mass%を超えるとプレス成形性が低下する。
【0010】
Feは前述のようにSiやMnなどと晶出物を生成して結晶粒径を適度に微細化する。
その含有量が0.07mass%未満では前記効果が十分に得られず、0.35mass%を超えると巨大な不溶性化合物が生成し、これが成形加工時に割れの起点となるためプレス成形性が低下する。
【0011】
Mnも前述のようにSiやFeなどと晶出物を生成して結晶粒径を適度に微細化し、また一部は固溶して強度向上に寄与する。
その含有量が0.25mass%未満では前記効果が十分に得られず、0.45mass%を超えるとFeの場合と同じ理由でプレス成形性が低下する。
【0012】
Crは析出して結晶粒径を適度に微細化する効果を有する。
その含有量が0.02mass%未満では前記効果が十分に得られず、0.05mass%を超えると前記FeやMnの場合と同じ理由でプレス成形性が低下する。
【0013】
Tiは鋳塊の凝固セルを微細化して圧延加工性を改善する。
その含有量が0.001mass%未満では前記効果が十分に得られず、0.1mass%を超えると前記Feなどの場合と同じ理由でプレス成形性が低下する。
【0014】
NaおよびCaは結晶粒界に偏析して熱間圧延割れの原因になる。そのためNaは0.0005mass%以下に、Caは0.001mass%以下にそれぞれ規制する。
【0015】
本発明において、板材の厚さ方向に計測した平均結晶粒径を表層部で10μm以下に規定する理由は、表層部の平均結晶粒径が10μmを超えると曲げ加工部が肌荒れして、その部分の塗装性が低下するためである。
また板材中央部の平均結晶粒径を前記表層部の1.2倍以上に規定する理由は、前記表層部と中央部の結晶粒径の差によりプレス成形時の表層部と中央部の負荷応力差が緩和されてプレス成形性が改善されるためである。
なお、本発明において、表層部とは、図1に示すように、板材の厚さをtとしたとき、表面から0.1tまでの部分を言い、中央部とは表面から0.4〜0.6tの部分を言う。
【0016】
本発明の板材は、Si、Fe、Mn、Crなどの元素が適量含有されているため、板材の厚さ方向の平均結晶粒径が適度(10μm以下)に微細化される。
本発明では、前記板材中央部の平均結晶粒径を表層部より大きくするが、その方法は、例えば、表面の摩擦力が適度に調整された圧延ロールを用いて板厚方向に応力分布を生じさせつつ圧延する方法が挙げられる。
この場合、圧延ロール表面の摩擦力が大き過ぎると板材表面の品質が低下することがあるので注意を要する。
【0017】
前記圧延ロール表面の摩擦力は、ロール表面粗度、クーラントの種類、圧延温度などにより制御する。
前記板材表層部と中央部で結晶粒径に差をつける方法は、板材の厚さが0.5〜5.5mmにおいて最も良好に行える。
【0018】
本発明では、Si、Mg、Cu、Fe、Mn、Cr、Tiを適量含有しているため、肌荒れが生じず、プレス成形性に優れ、所要強度が得られる。さらにNaおよびCaの量を低く規制するので圧延加工などの製造加工性に優れる。
【0019】
本発明の板材の調質状態は、プレス成形性を重視する場合は熱間圧延板材または低転位密度の焼鈍板材が良く、強度を重視する場合は圧延率30%以下の冷間圧延板材が良い。
【0020】
本発明において、板材表面の酸化膜が厚すぎると、塗装の際に塗膜が剥離し易くなるので、酸化膜厚さは0.1μm以下が望ましい。特に本発明のように表層の結晶粒径が適度に微細な場合は、塗膜との界面に結晶配列が乱れた粒界が多く含まれるため剥離し易い。酸化膜を薄くする方法としては、酸またはアルカリ液でエッチングする方法が簡便で推奨される。但し、酸化膜が5nmよりも薄くなるとプレス成形時に金型に凝着が生じたり、ハンドリング時に傷が付き易くなるので酸化膜の厚さは5nm以上が良い。
【0021】
本発明の板材は、途中工程または最終工程で、テンションレベラーやロールレベラーによる矯正、或いは軽圧下圧延(スキンパス)などを行って平坦度を高めておくと、後のプレス成形などが良好に行えて望ましい。
【0022】
【実施例】
以下に本発明を実施例により詳細に説明する。
(実施例1)
表1に示す本発明規定組成のアルミニウム合金を半連続鋳造法により鋳造し、製出鋳塊に面削および均質化処理を施し、次いでリバース式熱間粗圧延機により熱間圧延して厚さ30mmの熱延板とし、この熱延板を4スタンドのタンデム型熱間仕上圧延機により圧延して厚さ2mmの板材の熱延コイルを製造した。
熱間仕上圧延機の最終スタンドで、圧下量、圧延温度、圧延速度、クーラント吐出量を調整して、前記板材(再結晶組織)の結晶粒径およびその分布を本発明で規定する範囲内で種々に変化させた。
【0023】
(比較例1)
表1に示す本発明規定外組成のアルミニウム合金を用いた他は、実施例1と同じ方法により熱延コイルを製造した。
【0024】
(比較例2)
表1に示した本発明規定組成のNo.1の合金を用い、ロール表面の摩擦力および圧延温度を実施例1とは異なる条件で圧延して結晶粒径およびその分布を本発明規定外とした。その他は実施例1と同じ方法により熱延コイルを製造した。
【0025】
実施例1および比較例1、2で製造した各々の熱延コイルから試験片をサンプリングして、平均結晶粒径、引張特性、絞り成形性(プレス成形性)、曲げ加工性を調べた。
結晶粒径は、板材を縦に切断し、切断面を研磨し、エッチングして、板材の一方の表層部から他方の表層部にかけて疑似ラインを引き、前記疑似ラインを横切る結晶粒界数を光学顕微鏡で測定し、その平均結晶粒径を表層部(表面から0.2mmまでの外側部分)と中央部(表面から0.8〜1.2mmの中央部分)について求めた。
引張特性は、JIS5号引張試験片を作製し、これをJIS Z 2241に準じて引張試験して調べた。絞り成形性は直径40mmの平頭パンチを用いた深絞り試験により調べた。曲げ加工性は、曲げ半径0tで180度曲げ加工し、曲げ加工部の表面を観察し肌荒れの有無で評価した。結果を表2に示す。
【0026】
【表1】

Figure 0004591986
【0027】
【表2】
Figure 0004591986
【0028】
表2から明らかなように、本発明例のNo.1〜4はいずれも引張特性および絞り成形性が優れた。
これに対し、比較例のNo.5はMgが少ないため、No.7はCuが少ないためいずれも強度が低く、No.9はSiおよびFeが少ないため表層の平均結晶粒径が大きくなり、曲げ加工部に肌荒れが生じた。No.5は絞り成形性も劣った。No.11はMnが多いため、絞り成形性が低下した。No.6、8、10はそれぞれMg、Cu、Mnが多いため、圧延加工で割れが多発した。No.12、13は表層部の結晶粒径が大きいため曲げ加工部に肌荒れが生じて塗装性が劣った。さらにNo.13は表層部と中央部の結晶粒径が同等なため、絞り成形性が劣った。No.14は表層部の結晶粒径が小さいため肌荒れは生じなかったが、表層部と中央部の結晶粒径が同じため、絞り成形性が劣った。
【0029】
前記実施例1の本発明例の板材は、熱間圧延時に割れが生じたりせず、いずれも製造加工性に優れた。また塩水噴霧試験を行ったが、いずれも良好な耐食性を示した。
【0030】
【発明の効果】
本発明のアルミニウム合金板材は、Si、Mg、Cu、Fe、Mn、Cr、Tiを適量含有し、NaおよびCaの量を低く抑えたので、構造体に必要な強度を有し、製造加工時に割れなどが生じず、また表層部の結晶粒径が適度に微細化されるため曲げ加工部に肌荒れが生じずに塗装性に優れ、さらに中央部の結晶粒径が表層部より大きいので表層部と中央部の負荷応力差が緩和されてプレス成形性にも優れる。従って、自動車などの輸送関連構造体に用いて有用であり工業上顕著な効果を奏する。
【図面の簡単な説明】
【図1】本発明のアルミニウム合金板材における表層部と中央部の説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an aluminum alloy sheet material for transportation-related structures having a required strength and excellent paintability and press formability.
[0002]
[Prior art]
Up to now, steel has been used extensively in automobiles and other structures, but in recent years the burden on the environment of automobiles has been regarded as a problem, and accordingly, the required strength can be obtained, and it is lightweight and advantageous for fuel economy. Alloy plate materials have been attracting attention.
The aluminum alloy plate material includes a work hardening type 5000 (Al-Mg) alloy, a 6000 (Al-Mg-Si) alloy that precipitates and hardens with heat during paint baking, and an increased amount of Mg in the 5000 alloy. A new alloy (Japanese Patent Laid-Open No. 7-310136) to which a small amount of Cr or the like is added has been proposed.
[0003]
[Problems to be solved by the invention]
However, the transport-related structures are generally used after being painted, but all of the conventional alloy sheet materials have a problem that the coating film of the bent portion is easy to peel off and the paintability is inferior, and cracks are likely to occur during press molding. there were.
[0004]
For this reason, the present inventors investigated the cause of the above-described conventional alloy plate material being inferior in paintability and press formability, and the conventional alloy plate material has coarse crystal grains and is bent due to the difference in crystal grain orientation. Ascertaining that unevenness appears in the processed part is the cause, the unevenness (hereinafter referred to as rough skin) can be improved by appropriately miniaturizing the crystal grain size of the surface layer part, and the press molding It has been found that the crystallinity of the aluminum alloy plate can be improved by increasing the crystal grain size of the aluminum alloy sheet at the center portion rather than the surface layer portion, and further studies have been made to complete the present invention. An object of the present invention is to provide an aluminum alloy sheet for a transport-related structure having a required strength and excellent paintability and press formability.
[0005]
[Means for Solving the Problems]
The invention described in claim 1 is that Si is 0.07 to 0.18 mass%, Mg is 4.35 to 4.75 mass%, Cu is 0.05 to 0.15 mass%, and Fe is 0.07 to 0.35 mass%. %, Mn 0.25 to 0.45 mass%, Cr 0.02 to 0.05 mass%, Ti 0.001 to 0.1 mass%, Na 0.0005 mass% or less, Ca 0.0010 mass %, And the balance is an aluminum alloy plate made of Al and inevitable impurities, and the average crystal grain size measured in the thickness direction is 10 μm or less at the surface layer portion, and 1.2 times or more of the surface layer portion at the center portion It is an aluminum alloy sheet material for transport-related structures excellent in paintability and press formability.
[0006]
The invention according to claim 2 is characterized in that the aluminum alloy sheet has a thickness of 0.5 to 5.5 mm. The aluminum alloy for transport-related structures having excellent paintability and press formability according to claim 1 It is a board material.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Below, the alloy composition of the aluminum alloy sheet material of the present invention (hereinafter, abbreviated as a sheet material as appropriate) will be described.
Mg is mainly dissolved in the aluminum matrix to improve the strength and press formability of the plate material.
If the content is less than 4.35 mass%, the above effect cannot be obtained sufficiently, and if it exceeds 4.75 mass%, the rolling processability is lowered.
[0008]
Si produces crystallized substances such as Fe and Mn at the time of casting, and these crystallized substances become recrystallization nuclei to refine the crystal grain size of the plate material to an appropriate level (less than 10 μm), thereby preventing roughening of the bent part. Thus, paintability is improved.
If the content is less than 0.07 mass%, the effect of appropriately refining the crystal grain size cannot be obtained sufficiently, and if it exceeds 0.18 mass%, Si reacts with solid solution Mg to significantly reduce solid solution Mg. Therefore, sufficient strength and press formability cannot be obtained.
[0009]
Cu dissolves and precipitates and contributes to strength improvement.
If the content is less than 0.05 mass%, the above effect cannot be obtained sufficiently, and if it exceeds 0.15 mass%, the press formability decreases.
[0010]
As described above, Fe forms a crystallized product such as Si and Mn to appropriately refine the crystal grain size.
If the content is less than 0.07 mass%, the above effect cannot be obtained sufficiently, and if it exceeds 0.35 mass%, a huge insoluble compound is formed, which becomes a starting point of cracking during molding processing, so that press formability is lowered. .
[0011]
As described above, Mn also forms crystallized substances such as Si and Fe to appropriately refine the crystal grain size, and partly dissolves and contributes to strength improvement.
If the content is less than 0.25 mass%, the above effect cannot be obtained sufficiently, and if it exceeds 0.45 mass%, the press formability deteriorates for the same reason as in the case of Fe.
[0012]
Cr has the effect of precipitating and appropriately reducing the crystal grain size.
If the content is less than 0.02 mass%, the above effect cannot be obtained sufficiently, and if it exceeds 0.05 mass%, the press formability deteriorates for the same reason as in the case of Fe or Mn.
[0013]
Ti refines the ingot solidification cell to improve rolling processability.
If the content is less than 0.001 mass%, the above effect cannot be obtained sufficiently, and if it exceeds 0.1 mass%, the press formability deteriorates for the same reason as in the case of Fe or the like.
[0014]
Na and Ca segregate at the grain boundaries and cause hot rolling cracks. Therefore, Na is regulated to 0.0005 mass% or less, and Ca is regulated to 0.001 mass% or less.
[0015]
In the present invention, the reason why the average crystal grain size measured in the thickness direction of the plate material is defined as 10 μm or less in the surface layer part is that when the average crystal grain size of the surface layer part exceeds 10 μm, the bent part becomes rough, and the part This is because the paintability of the resin deteriorates.
The reason why the average crystal grain size in the central part of the plate material is specified to be 1.2 times or more that of the surface layer part is that the load stress in the surface layer part and the central part during press molding is due to the difference in crystal grain size between the surface layer part and the central part This is because the difference is relaxed and the press formability is improved.
In the present invention, as shown in FIG. 1, the surface layer portion means a portion from the surface to 0.1 t when the thickness of the plate material is t, and the central portion is 0.4 to 0 from the surface. .6t part.
[0016]
Since the plate material of the present invention contains an appropriate amount of elements such as Si, Fe, Mn, and Cr, the average crystal grain size in the thickness direction of the plate material is appropriately refined (10 μm or less).
In the present invention, the average crystal grain size of the central portion of the plate material is made larger than that of the surface layer portion, but the method produces stress distribution in the plate thickness direction using, for example, a rolling roll whose surface frictional force is appropriately adjusted. And rolling while rolling.
In this case, if the frictional force on the surface of the rolling roll is too large, the quality of the plate material surface may be deteriorated, so care must be taken.
[0017]
The frictional force on the surface of the rolling roll is controlled by roll surface roughness, coolant type, rolling temperature, and the like.
The method of making a difference in crystal grain size between the surface layer portion and the central portion of the plate material can be best performed when the thickness of the plate material is 0.5 to 5.5 mm.
[0018]
In the present invention, since appropriate amounts of Si, Mg, Cu, Fe, Mn, Cr, and Ti are contained, rough skin does not occur, the press formability is excellent, and the required strength is obtained. Furthermore, since the amount of Na and Ca is regulated to be low, it is excellent in manufacturing processability such as rolling.
[0019]
The tempered state of the plate material of the present invention is preferably a hot rolled plate material or a low dislocation density annealed plate material when emphasizing press formability, and a cold rolled sheet material with a rolling rate of 30% or less when emphasizing strength. .
[0020]
In the present invention, if the oxide film on the surface of the plate material is too thick, the coating film is easily peeled off during coating, so the oxide film thickness is preferably 0.1 μm or less. In particular, when the crystal grain size of the surface layer is moderately fine as in the present invention, it is easy to peel off because there are many grain boundaries with disordered crystal arrangement at the interface with the coating film. As a method of thinning the oxide film, a method of etching with an acid or alkali solution is simple and recommended. However, if the oxide film is thinner than 5 nm, adhesion to the mold is likely to occur during press molding or scratches are likely to occur during handling, so the thickness of the oxide film is preferably 5 nm or more.
[0021]
If the flatness of the plate material of the present invention is improved by performing tension leveler or roll leveler correction, or light rolling (skin pass) in the middle or final step, the subsequent press molding can be performed satisfactorily. desirable.
[0022]
【Example】
Hereinafter, the present invention will be described in detail with reference to examples.
Example 1
The aluminum alloy having the composition defined in the present invention shown in Table 1 is cast by a semi-continuous casting method, the produced ingot is subjected to chamfering and homogenizing treatment, and then hot rolled by a reverse hot roughing mill to obtain a thickness A 30 mm hot-rolled sheet was used, and the hot-rolled sheet was rolled by a 4-stand tandem hot finish rolling mill to produce a hot-rolled coil having a thickness of 2 mm.
In the final stand of the hot finishing mill, the reduction amount, rolling temperature, rolling speed, coolant discharge amount are adjusted, and the crystal grain size and distribution of the plate material (recrystallized structure) are within the range specified in the present invention. Various changes were made.
[0023]
(Comparative Example 1)
A hot rolled coil was manufactured by the same method as in Example 1 except that an aluminum alloy having a composition outside the scope of the present invention shown in Table 1 was used.
[0024]
(Comparative Example 2)
No. of the composition prescribed in the present invention shown in Table 1. Using the alloy No. 1, the roll surface friction force and rolling temperature were rolled under conditions different from those in Example 1, and the crystal grain size and its distribution were out of the scope of the present invention. Other than that, a hot-rolled coil was manufactured in the same manner as in Example 1.
[0025]
Samples were sampled from the hot rolled coils produced in Example 1 and Comparative Examples 1 and 2, and the average crystal grain size, tensile properties, drawability (press formability), and bending workability were examined.
The crystal grain size is obtained by cutting a plate material vertically, polishing the cut surface, etching, drawing a pseudo line from one surface layer portion of the plate material to the other surface layer portion, and optically measuring the number of crystal grain boundaries crossing the pseudo line. It measured with the microscope and the average crystal grain diameter was calculated | required about the surface layer part (outer part from the surface to 0.2 mm) and the center part (center part of 0.8-1.2 mm from the surface).
The tensile properties were examined by preparing a JIS No. 5 tensile test piece and performing a tensile test according to JIS Z 2241. The drawability was examined by a deep drawing test using a flat head punch having a diameter of 40 mm. The bending workability was evaluated by the presence or absence of rough skin by bending 180 degrees with a bending radius of 0 t, observing the surface of the bent portion. The results are shown in Table 2.
[0026]
[Table 1]
Figure 0004591986
[0027]
[Table 2]
Figure 0004591986
[0028]
As is apparent from Table 2, the No. of the present invention example. 1-4 were excellent in tensile properties and drawability.
In contrast, No. of the comparative example. No. 5 has less Mg, so No. 7 is low in strength because there is little Cu. In No. 9, since the amount of Si and Fe was small, the average crystal grain size of the surface layer was large, and roughening occurred in the bent portion. No. No. 5 was also inferior in drawability. No. Since No. 11 had a large amount of Mn, the drawability decreased. No. Since 6, 8, and 10 each had a large amount of Mg, Cu, and Mn, cracks frequently occurred during rolling. No. In Nos. 12 and 13, since the crystal grain size of the surface layer portion was large, the bent portion was rough and the paintability was inferior. Furthermore, no. No. 13 was inferior in drawability because the crystal grain size of the surface layer portion and the central portion were equal. No. In No. 14, the crystal grain size of the surface layer portion was small, so no roughening occurred.
[0029]
The plate material of the inventive example of Example 1 was not cracked during hot rolling, and all were excellent in manufacturing processability. In addition, a salt spray test was performed, and all showed good corrosion resistance.
[0030]
【The invention's effect】
The aluminum alloy plate material of the present invention contains appropriate amounts of Si, Mg, Cu, Fe, Mn, Cr, and Ti, and has low strength of Na and Ca. No cracking, etc., and the crystal grain size of the surface layer portion is appropriately refined, so that the surface of the bent portion is excellent in paintability without rough skin, and the crystal grain size in the central portion is larger than the surface layer portion. And the load stress difference in the central part is alleviated and the press formability is excellent. Therefore, it is useful for transportation-related structures such as automobiles and has an industrially significant effect.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a surface layer portion and a central portion in an aluminum alloy sheet material of the present invention.

Claims (2)

Siを0.07〜0.18mass%、Mgを4.35〜4.75mass%、Cuを0.05〜0.15mass%、Feを0.07〜0.35mass%、Mnを0.25〜0.45mass%、Crを0.02〜0.05mass%、Tiを0.001〜0.1mass%含有し、Naを0.0005mass%以下、Caを0.0010mass%以下に規制し、残部がAlおよび不可避不純物からなるアルミニウム合金板材であって、その板厚方向に計測した平均結晶粒径が表層部で10μm以下、中央部で表層部の1.2倍以上であることを特徴とする塗装性およびプレス成形性に優れた輸送関連構造体用アルミニウム合金板材。0.07 to 0.18 mass% for Si, 4.35 to 4.75 mass% for Mg, 0.05 to 0.15 mass% for Cu, 0.07 to 0.35 mass% for Fe, and 0.25 to Mn 0.45 mass%, Cr is contained in 0.02 to 0.05 mass%, Ti is contained in 0.001 to 0.1 mass%, Na is regulated to 0.0005 mass% or less, Ca is regulated to 0.0010 mass% or less, and the balance is An aluminum alloy plate made of Al and inevitable impurities, the average crystal grain size measured in the thickness direction of the surface layer portion being 10 μm or less, and the center portion being 1.2 times or more of the surface layer portion Aluminum alloy sheet for transport-related structures that excels in pressability and press formability. アルミニウム合金板材の厚さが0.5〜5.5mmであることを特徴とする請求項1記載の塗装性およびプレス成形性に優れた輸送関連構造体用アルミニウム合金板材。The aluminum alloy sheet for transport-related structures excellent in paintability and press formability according to claim 1, wherein the thickness of the aluminum alloy sheet is 0.5 to 5.5 mm.
JP2001153176A 2001-05-22 2001-05-22 Aluminum alloy sheet for transportation-related structures with excellent paintability and press formability Expired - Fee Related JP4591986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001153176A JP4591986B2 (en) 2001-05-22 2001-05-22 Aluminum alloy sheet for transportation-related structures with excellent paintability and press formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001153176A JP4591986B2 (en) 2001-05-22 2001-05-22 Aluminum alloy sheet for transportation-related structures with excellent paintability and press formability

Publications (2)

Publication Number Publication Date
JP2002348629A JP2002348629A (en) 2002-12-04
JP4591986B2 true JP4591986B2 (en) 2010-12-01

Family

ID=18997728

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001153176A Expired - Fee Related JP4591986B2 (en) 2001-05-22 2001-05-22 Aluminum alloy sheet for transportation-related structures with excellent paintability and press formability

Country Status (1)

Country Link
JP (1) JP4591986B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008190021A (en) * 2007-02-07 2008-08-21 Kobe Steel Ltd Al-Mg BASED ALLOY HOT ROLLED SHEET, AND METHOD FOR PRODUCING THE SAME
JP2011103283A (en) * 2009-10-16 2011-05-26 Sumitomo Light Metal Ind Ltd Heat radiating member for led bulb
JP5411924B2 (en) * 2011-12-27 2014-02-12 株式会社神戸製鋼所 Method for producing hot rolled sheet of Al-Mg alloy
CN104014589B (en) * 2014-04-30 2017-02-15 燕山大学 Three-layer titanium/aluminum/magnesium composite board and manufacturing method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165639A (en) * 1995-12-15 1997-06-24 Nippon Steel Corp Aluminum alloy sheet for fuel tank and its production
JPH09256097A (en) * 1996-03-22 1997-09-30 Furukawa Electric Co Ltd:The Baking-finished aluminium alloy sheet for can end and its production
JPH09268341A (en) * 1996-04-01 1997-10-14 Furukawa Electric Co Ltd:The Baking-coated al alloy sheet for can lid material, excellent in stress corrosion cracking resistance in score part, and its production
JPH1112676A (en) * 1997-06-23 1999-01-19 Furukawa Electric Co Ltd:The Hard aluminum alloy sheet for forming, can lid using the hard sheet, and production of the hard sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09165639A (en) * 1995-12-15 1997-06-24 Nippon Steel Corp Aluminum alloy sheet for fuel tank and its production
JPH09256097A (en) * 1996-03-22 1997-09-30 Furukawa Electric Co Ltd:The Baking-finished aluminium alloy sheet for can end and its production
JPH09268341A (en) * 1996-04-01 1997-10-14 Furukawa Electric Co Ltd:The Baking-coated al alloy sheet for can lid material, excellent in stress corrosion cracking resistance in score part, and its production
JPH1112676A (en) * 1997-06-23 1999-01-19 Furukawa Electric Co Ltd:The Hard aluminum alloy sheet for forming, can lid using the hard sheet, and production of the hard sheet

Also Published As

Publication number Publication date
JP2002348629A (en) 2002-12-04

Similar Documents

Publication Publication Date Title
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP6336434B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
CA2588046C (en) Aluminum alloy sheet and method for manufacturing the same
CA2706198A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
JP2000119782A (en) Aluminum alloy sheet and its manufacture
JP3657738B2 (en) Method for producing aluminum alloy plate for can body with low ear rate
JP2004250738A (en) Al-Mg BASED ALLOY SHEET
JP3498942B2 (en) Aluminum alloy plate with excellent ridging mark resistance and method for evaluating the occurrence of ridging mark
JP4591986B2 (en) Aluminum alloy sheet for transportation-related structures with excellent paintability and press formability
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP4257135B2 (en) Aluminum alloy hard plate for can body
JPH11140576A (en) Aluminum alloy sheet for can body minimal in dispersion of flange length and its production
JP2000054046A (en) Aluminum foil base for thin foil and its production
JP2001020027A (en) Al-Mg-Si-Cu ALLOY SHEET EXCELLENT IN CORROSION RESISTANCE AND FORMABILITY, AND ITS MANUFACTURE
JP3867569B2 (en) Aluminum foil for containers and manufacturing method thereof
JP3765986B2 (en) Aluminum alloy plate for deep drawing and manufacturing method thereof
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP2004315878A (en) Method for manufacturing aluminum alloy sheet to be formed superior in hem bendability and surface quality
JP4202894B2 (en) Mg-containing Al alloy
JP4250030B2 (en) Aluminum alloy plate for glittering wheel rim and manufacturing method thereof
JP4034904B2 (en) Hot rolled plate for aluminum can body and can body plate using the same
JP4212966B2 (en) Method for producing aluminum alloy plate for glittering wheel rim
JPH03294445A (en) High strength aluminum alloy having good formability and its manufacture
JP4078254B2 (en) Method for producing aluminum alloy plate for glittering wheel rim

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100907

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130924

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4591986

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees