JPH09165639A - Aluminum alloy sheet for fuel tank and its production - Google Patents
Aluminum alloy sheet for fuel tank and its productionInfo
- Publication number
- JPH09165639A JPH09165639A JP32711395A JP32711395A JPH09165639A JP H09165639 A JPH09165639 A JP H09165639A JP 32711395 A JP32711395 A JP 32711395A JP 32711395 A JP32711395 A JP 32711395A JP H09165639 A JPH09165639 A JP H09165639A
- Authority
- JP
- Japan
- Prior art keywords
- aluminum alloy
- fuel tank
- plate
- thickness
- less
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、燃料タンク用材
料、特にガソリンを主体とする燃料を収容する容器とし
て最適な耐食性、成形性および溶接性に優れたアルミニ
ウム合金板およびその製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an aluminum alloy sheet having excellent corrosion resistance, formability, and weldability, which is optimum as a container for containing a fuel tank material, particularly a fuel mainly containing gasoline, and a method for producing the same. is there.
【0002】[0002]
【従来の技術】従来自動車用燃料タンクには、鋼板にP
b−Sn合金をめっきしたいわゆるターンシートが使用
され、耐食性、加工性、経済性等の点で良好な結果が得
られている。しかしながら、最近、環境問題から鉛に対
する使用規制が厳しくなり、Pbフリー燃料タンク用材
料が求められている。一方、自動車の軽量化の目的か
ら、自動車へのアルミニウム合金の適用が検討され、い
くつかの部材に使用されている。このように、自動車用
燃料タンク用材料として、Pbを含有せず、かつ軽量
で、耐食性、加工性および溶接性に優れた材料が求めら
れている。2. Description of the Related Art Conventional fuel tanks for automobiles have P
A so-called turn sheet plated with a b-Sn alloy is used, and favorable results have been obtained in terms of corrosion resistance, workability, economical efficiency and the like. However, recently, due to environmental problems, use restrictions on lead have become stricter, and Pb-free fuel tank materials have been demanded. On the other hand, for the purpose of reducing the weight of automobiles, application of aluminum alloys to automobiles has been studied and used for some members. Thus, as a material for a fuel tank for automobiles, a material that does not contain Pb, is lightweight, and has excellent corrosion resistance, workability, and weldability is required.
【0003】[0003]
【発明が解決しようとする課題】本発明は以上の事情を
背景としてなされたもので、良好な耐食性、プレス成形
性および溶接性を有する燃料タンク用アルミニウム合金
板とその製造方法を提供することを目的としたものであ
る。The present invention has been made under the circumstances described above, and it is an object of the present invention to provide an aluminum alloy plate for a fuel tank having good corrosion resistance, press formability and weldability, and a method for producing the same. It is intended.
【0004】[0004]
【課題を解決するための手段】本発明者は、アルミニウ
ム合金の耐食性、プレス成形性および溶接性に及ぼす合
金成分の影響について種々検討した結果、本系合金の成
分組成を適切に選択するとともに、板表面の酸化膜の厚
さを特定することによって上記目的を達成できることを
見い出し、本発明をなすに至ったものである。すなわ
ち、本発明は、(1)重量%で、 Mg:2.2〜6.0% Cu:0.03〜0.15% Mn:0.03〜0.50% Cr:0.03〜0.35% Fe:0.30%以下 Si:0.20%以下 を含有し、残部はAlおよび不可避的不純物よりなり、
板表面の酸化皮膜の厚さが500nm以下であることを
特徴とする燃料タンク用アルミニウム合金板。Means for Solving the Problems As a result of various studies on the effects of alloy components on the corrosion resistance, press formability and weldability of aluminum alloys, the present inventor appropriately selected the component composition of this alloy, The inventors have found that the above object can be achieved by specifying the thickness of the oxide film on the plate surface, and have completed the present invention. That is, the present invention is (1) wt%, Mg: 2.2-6.0% Cu: 0.03-0.15% Mn: 0.03-0.50% Cr: 0.03-0 .35% Fe: 0.30% or less Si: 0.20% or less, the balance consisting of Al and unavoidable impurities,
An aluminum alloy plate for a fuel tank, wherein the oxide film on the plate surface has a thickness of 500 nm or less.
【0005】(2)前記(1)記載のアルミニウム合金
が、さらに、 Zn:0.03〜1.5% Zr:0.03〜0.4% V :0.03〜0.4% Ti:0.005〜0.2% のうち1種または2種以上を含有する燃料タンク用アル
ミニウム合金板。(2) The aluminum alloy according to the above (1) further comprises: Zn: 0.03 to 1.5% Zr: 0.03 to 0.4% V: 0.03 to 0.4% Ti: An aluminum alloy plate for a fuel tank containing one or more of 0.005 to 0.2%.
【0006】(3)前記(1)または(2)記載のアル
ミニウム合金を鋳造、熱間および冷間圧延して所定の板
厚とし、焼鈍後、硫酸、硝酸もしくは燐酸の1種以上を
合計で5〜15%の濃度で含み、50〜90℃の温度に
設定された酸洗液中に2〜60秒浸漬して酸洗すること
を特徴とする燃料タンク用アルミニウム合金板の製造方
法、(4)前記(1)または(2)記載のアルミニウム
合金を鋳造、熱間および冷間圧延して所定の板厚とし、
焼鈍後、板の両面を機械的に1〜100μmずつ研削す
ることを特徴とする燃料タンク用アルミニウム合金板の
製造方法である。(3) The aluminum alloy described in (1) or (2) above is cast, hot-rolled and cold-rolled to a predetermined plate thickness, and after annealing, one or more of sulfuric acid, nitric acid or phosphoric acid is added in total. A method for producing an aluminum alloy plate for a fuel tank, which comprises dipping in a pickling solution set at a temperature of 50 to 90 ° C. for 2 to 60 seconds and containing at a concentration of 5 to 15%, ( 4) The aluminum alloy according to (1) or (2) above is cast, hot-rolled and cold-rolled to a predetermined plate thickness,
A method for producing an aluminum alloy plate for a fuel tank, which comprises mechanically grinding 1 to 100 μm each on both sides after annealing.
【0007】[0007]
【発明の実施の形態】以下に本発明を詳細に説明する。
まず、成分組成の限定理由を述べる。 Mg:Mgは本発明で対象としている系の合金で基本と
なる合金元素であり、強度およびプレス成形性の向上に
寄与する。Mg量が2.2%未満では、強度、成形性と
もに十分な性能が得られず、一方、6.0%を越えれば
耐応力腐食割れ性を低下させるばかりでなく、溶解時の
酸化、熱間加工性の低下等製造性が著しく低下する。し
たがって、Mg量は2.2〜6.0%の範囲内とした。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail.
First, the reasons for limiting the component composition will be described. Mg: Mg is an alloying element that is a basic element of the alloy of the system of the present invention, and contributes to the improvement of strength and press formability. When the amount of Mg is less than 2.2%, sufficient strength and formability cannot be obtained. On the other hand, when the amount of Mg exceeds 6.0%, not only the stress corrosion cracking resistance is lowered, but also oxidation and heat during melting are caused. The manufacturability is remarkably deteriorated such as the deterioration of the inter-workability. Therefore, the amount of Mg is set within the range of 2.2 to 6.0%.
【0008】Cu:Cuは合金板の強度を高めるのに有
効な元素であるが、0.03%未満では、その効果は十
分でなく、0.15%を越えると耐食性が低下する。よ
って、Cuの含有量は0.03〜0.15%とした。 Mn:Mnは強度の向上や結晶粒の微細化に有効である
ばかりでなく、耐応力腐食割れ性を向上させる元素であ
るが0.03%未満では、その効果は十分でなく、0.
50%を越えると上記の効果は飽和する上に、粗大な金
属間化合物を形成して、成形性を低下させるため、その
含有量は0.03〜0.50%とした。Cu: Cu is an element effective for increasing the strength of the alloy plate, but if it is less than 0.03%, its effect is not sufficient, and if it exceeds 0.15%, the corrosion resistance decreases. Therefore, the content of Cu is set to 0.03 to 0.15%. Mn: Mn is an element that not only is effective in improving strength and refining crystal grains, but is also an element that improves resistance to stress corrosion cracking, but if it is less than 0.03%, its effect is not sufficient, and
If it exceeds 50%, the above effect is saturated, and a coarse intermetallic compound is formed to reduce the formability, so the content is made 0.03 to 0.50%.
【0009】Cr:CrもMnと同様に強度の向上、結
晶粒の微細化、耐応力腐食割れ性の改善に有効な元素と
して添加される。0.03%未満ではその効果は十分で
はなく、0.35%を越えるとMnの場合と同じく、上
記の効果は飽和する上に、成形性を低下させるため、そ
の含有量は0.03〜0.35%とした。 Fe,Si:FeおよびSiは本来不可避不純物として
アルミニウム合金中に存在するものであるが、含有量が
Feは0.30%,Si0.2%を越えると、いずれも
成形性を著しく低下させる。そのため、FeおよびSi
の含有量はそれぞれ0.30%以下、0.20%以下と
した。Cr: Cr, like Mn, is also added as an element effective for improving strength, refining crystal grains, and improving stress corrosion cracking resistance. If it is less than 0.03%, the effect is not sufficient, and if it exceeds 0.35%, the above-mentioned effect is saturated as well as in the case of Mn, and the formability is lowered. It was set to 0.35%. Fe, Si: Fe and Si are originally present in the aluminum alloy as unavoidable impurities, but when the content of Fe exceeds 0.30% and Si 0.2%, the formability is significantly deteriorated. Therefore, Fe and Si
Content of 0.30% or less and 0.20% or less, respectively.
【0010】上記の基本組成以外に、Zn,Zr,V,
Tiの中から1種以上を含有させることも有効である。
これらのうち、Znは合金の強度の向上に寄与する元素
であり、その含有量が0.03%未満では上記の効果が
不十分であり、一方、1.5%を越えると成形性および
耐食性が低下するため、Znを添加する場合の含有量は
0.03〜1.5%の範囲内とした。In addition to the above basic composition, Zn, Zr, V,
It is also effective to contain one or more of Ti.
Of these, Zn is an element that contributes to the improvement of the strength of the alloy. If the content of Zn is less than 0.03%, the above effects are insufficient, while if it exceeds 1.5%, the formability and corrosion resistance are improved. Therefore, when Zn is added, the content is made 0.03 to 1.5%.
【0011】さらに、Zr,Vは強度の向上と結晶粒の
微細化に有効な元素であるが、いずれも含有量が0.0
3%未満では上記の効果が十分に得られず、0.4%を
越えると上記効果は飽和するばかりでなく、巨大金属間
化合物が生成されて成形性および耐食性に悪影響を及ぼ
す恐れがある。従って、ZrおよびVの含有量はいずれ
も0.03〜0.4%範囲内とした。また、Tiは一般
に鋳塊の結晶粒微細化のため、単独あるいは微量のBと
組み合わせて添加する。この場合、Tiの含有量が0.
005%未満では上記の効果は得られず、0.2%を越
えるとその効果は飽和する。従って、Tiの含有量は
0.005〜0.2%の範囲内とする。Bの添加量は
0.0005〜0.03%が有利である。Further, Zr and V are effective elements for improving strength and refining crystal grains, but their contents are both 0.0.
If it is less than 3%, the above effect is not sufficiently obtained, and if it exceeds 0.4%, the above effect is not only saturated, but also a huge intermetallic compound is formed, which may adversely affect the formability and corrosion resistance. Therefore, the contents of Zr and V are both within the range of 0.03 to 0.4%. Further, Ti is generally added alone or in combination with a slight amount of B in order to refine the crystal grains of the ingot. In this case, the Ti content is 0.
If it is less than 005%, the above effect cannot be obtained, and if it exceeds 0.2%, the effect is saturated. Therefore, the Ti content is set within the range of 0.005 to 0.2%. The amount of B added is preferably 0.0005 to 0.03%.
【0012】つぎに、本発明における板表面の酸化皮膜
厚について説明する。燃料タンクの製造には一般に、抵
抗溶接あるいはアーク溶接等が用いられる。抵抗溶接で
は、板表面に高融点で絶縁抵抗の高い酸化皮膜が存在す
ると、電極損耗が激しく、電極寿命が短かくなるばかり
でなく、継手強度のバラツキが大きくなり、連続打点性
が低下するという問題が生じる。本発明者らは、アルミ
ニウム合金の抵抗溶接性に及ぼす表面酸化膜厚の影響を
調査し、酸化膜厚が500nm以下になると、電極寿命
が著しく向上し、継手強度のバラツキも小さくなること
を見いだした。また、アーク溶接においては、アルミニ
ウム合金表面の酸化皮膜はブローホールの原因である水
素の供給源となるばかりでなく、介在物として溶着金属
部内に残存して継手特性を低下させる。このため、表面
酸化膜厚はできるだけ薄い方が望ましいが、500nm
以下の膜厚では上記の欠陥はほとんど現れない。したが
って、表面酸化膜の厚さは500nm以下とした。Next, the thickness of the oxide film on the plate surface in the present invention will be described. Generally, resistance welding, arc welding, or the like is used for manufacturing the fuel tank. In resistance welding, if an oxide film with a high melting point and high insulation resistance is present on the plate surface, not only will electrode wear be severe and the electrode life will be shortened, but also the joint strength will vary greatly and continuous spotting performance will decrease. The problem arises. The present inventors investigated the effect of the surface oxide film thickness on the resistance weldability of aluminum alloys, and found that when the oxide film thickness was 500 nm or less, the electrode life was significantly improved and the variation in joint strength was reduced. It was Further, in arc welding, the oxide film on the surface of the aluminum alloy not only serves as a hydrogen supply source that causes blowholes, but also remains as inclusions in the weld metal to deteriorate the joint characteristics. Therefore, it is desirable that the surface oxide film thickness be as thin as possible, but 500 nm
At the film thicknesses below, the above defects hardly appear. Therefore, the thickness of the surface oxide film is set to 500 nm or less.
【0013】つぎに、本発明における製造方法について
説明する。板材は従来の一般的な方法で製造すればよ
い。たとえば、DC鋳造法等でビレットを作成した後、
熱間圧延および冷間圧延によって所定の板厚とする。次
に、焼鈍後は、酸洗あるいは機械的な研削を実施する。
酸洗液は経済性や環境問題等から硫酸溶液が望ましい
が、酸化皮膜を短時間に除去可能な無機酸であれば硫酸
溶液に限られるものではなく、例えば硫酸以外に硝酸や
燐酸、あるいはこれらの混酸等を用いることができる。
また、このような無機酸の濃度は合計で5〜15%が適
当である。酸洗液の温度は、50℃未満では酸化皮膜の
除去に要する時間が長く、逆に、90℃以上では反応が
速すぎて溶削量のコントロールが難しい。したがって、
酸洗液の温度は50〜90℃とした。また、浸漬時間
は、2秒未満では酸化皮膜の除去は不十分であり、60
秒以上では生産性を低下させる。よって酸洗液への浸漬
時間は2〜60秒とした。Next, the manufacturing method of the present invention will be described. The plate material may be manufactured by a conventional general method. For example, after making a billet by DC casting etc.,
A predetermined plate thickness is obtained by hot rolling and cold rolling. Next, after annealing, pickling or mechanical grinding is performed.
A sulfuric acid solution is preferable as the pickling solution from the viewpoint of economy and environmental problems, but it is not limited to the sulfuric acid solution as long as it is an inorganic acid capable of removing the oxide film in a short time. The mixed acid and the like can be used.
Further, the total concentration of such inorganic acids is suitably 5 to 15%. If the temperature of the pickling solution is less than 50 ° C., the time required for removing the oxide film is long, and conversely, if the temperature is 90 ° C. or more, the reaction is too fast to control the amount of fusing. Therefore,
The temperature of the pickling solution was 50 to 90 ° C. If the immersion time is less than 2 seconds, the oxide film is not sufficiently removed.
If it is more than a second, productivity will be reduced. Therefore, the immersion time in the pickling solution was set to 2 to 60 seconds.
【0014】機械的な研削は一般的に行われている方法
を用いれば良い。板の両面に対して、研削深さが0.1
μm以上あれば酸化皮膜は完全に除去できるが、1μm
未満では研削の精度不十分であり、100μmを越える
と板の歩留まりが低下して経済的でない。よって、研削
深さは板の両面について1〜100μmとした。これら
の処理によって、酸化皮膜の厚さを500nm以下とす
ることができる。なお、酸洗浄および機械的研削はコイ
ルで連続的に行ってもよいし、切り板で行ってもよい。Mechanical grinding may be performed by using a commonly used method. Grinding depth of 0.1 on both sides of plate
If the thickness is at least μm, the oxide film can be completely removed, but 1 μm
If it is less than 100 μm, the grinding accuracy is insufficient, and if it exceeds 100 μm, the yield of the plate is reduced, which is not economical. Therefore, the grinding depth was set to 1 to 100 μm on both sides of the plate. By these treatments, the thickness of the oxide film can be reduced to 500 nm or less. The acid cleaning and mechanical grinding may be performed continuously with a coil or may be performed with a cut plate.
【0015】また、酸洗あるいは機械的研削後の処理に
ついては特に限定されるものではないが、通常は酸洗あ
るいは機械研削後に表面に残留した酸洗液あるいは切削
油等水洗によって除去してから乾燥させ、さらに表面の
傷入り防止および防錆のために潤滑油や防錆油を塗布す
るのが通常である。以上のように、本発明では合金の成
分組成を適切に調整するとともに、板表面の酸化膜の厚
さを規定することによって、燃料タンク用として、優れ
た耐食性、プレス成形性および溶接性を確保することが
可能である。The treatment after pickling or mechanical grinding is not particularly limited, but it is usually after removing by pickling solution or cutting oil or the like remaining on the surface after pickling or mechanical grinding. It is usual to dry and then apply a lubricating oil or rust preventive oil to prevent scratches on the surface and prevent rust. As described above, in the present invention, by appropriately adjusting the component composition of the alloy and by prescribing the thickness of the oxide film on the plate surface, excellent corrosion resistance, press formability and weldability are secured for a fuel tank. It is possible to
【0016】[0016]
【実施例】次に、本発明を実施例で説明する。 実施例1 表1に示す化学成分を有する各合金を常法により、溶
解、鋳造し、面削、均質化処理後、熱間圧延、冷間圧延
および焼鈍を施すことによって板厚1.5mmの冷延焼
鈍板を作製した。得られた合金板を50〜90℃の硫酸
水溶液(硫酸濃度:10wt%,pH<1)に2〜60
秒浸漬して酸洗浄した。酸洗浄後、純水で洗浄して乾燥
させた。乾燥後の板表面層についてGDS分析を行って
深さ方向のMg,Al,Oの濃度分布から酸化膜の厚さ
を求めた。得られた酸洗板について機械的性質、耐食
性、プレス加工性および溶接性を評価した。EXAMPLES Next, the present invention will be described with reference to Examples. Example 1 Each alloy having the chemical composition shown in Table 1 was melted, cast, chamfered, homogenized, and then hot-rolled, cold-rolled and annealed by a conventional method to obtain a sheet having a thickness of 1.5 mm. A cold rolled annealed plate was produced. The obtained alloy plate was immersed in an aqueous solution of sulfuric acid at 50 to 90 ° C (sulfuric acid concentration: 10 wt%, pH <1) for 2 to 60
It was soaked in the second for acid cleaning. After acid cleaning, it was washed with pure water and dried. GDS analysis was performed on the dried plate surface layer to determine the thickness of the oxide film from the concentration distribution of Mg, Al, and O in the depth direction. The obtained pickled plate was evaluated for mechanical properties, corrosion resistance, press workability and weldability.
【0017】[0017]
【表1】 [Table 1]
【0018】耐食性は燃料タンク外面耐食性を塩水噴霧
試験(500時間噴霧後の錆発生状況から〇:錆無し、
△:錆小、×:錆大の三段階に評価した)で、内面耐食
性をSAE法(メタノール混合燃料中の26週間浸漬後
の腐食状況から〇:腐食無し、△:腐食小、×:腐食大
の三段階に評価した)で評価した。プレス成形性は円筒
深絞り試験による限界絞り比(LDR)とエリクセン値
で評価した。抵抗溶接性はスポット溶接による連続打点
数(溶接部の引張せん断強さがJIS Z 3140に
照らし、母材の引張強さの60%以下に低下した打点回
数)で1500点以上を〇、1500点以下を×の二段
階で評価した。また、アーク溶接性は、A5356電極
ワイヤを用いて自動ミグ溶接を行い、溶接部断面のブロ
ーホールおよび割れの有無で〇(良好)および×(不
良)の二段階評価をした。For the corrosion resistance, the corrosion resistance on the outer surface of the fuel tank was tested by salt spray test (from the rust generation state after spraying for 500 hours, ◯: no rust,
△: small rust, ×: evaluated in three stages of large rust), and the inner surface corrosion resistance was evaluated by the SAE method (corrosion condition after 26 weeks immersion in methanol mixed fuel ◯: no corrosion, Δ: small corrosion, ×: corrosion It was evaluated in three levels). The press formability was evaluated by the limit drawing ratio (LDR) and the Erichsen value in the cylindrical deep drawing test. Resistance weldability is 1,500 points or more in continuous welding points by spot welding (the number of welding points in which the tensile shear strength of the welded part has decreased to 60% or less of the tensile strength of the base metal in light of JIS Z 3140). The following was evaluated in two stages of x. In addition, the arc weldability was evaluated by performing two-stage evaluation of ◯ (good) and × (poor) based on the presence or absence of blowholes and cracks in the cross section of the welded portion by performing automatic MIG welding using an A5356 electrode wire.
【0019】酸化膜の厚さはいずれの合金においても5
00nm以下となり、本発明で規定する厚さ以下であっ
た。機械的性質、成形性、耐食性および溶接性の評価結
果を表2に示す。合金No.1から20までの合金は本
発明の成分範囲内にあるため、成形性、耐食性および溶
接性のいずれにも優れた特性を示している。これに対し
て、白金No.21はMg量が本発明の成分範囲以下の
ために強度が低く、逆に、No.22はMg量が本発明
の成分範囲以上であるために強度、成形性ともに優れて
いるが、耐食性および溶接性に劣る。The thickness of the oxide film is 5 in any alloy.
The thickness was less than 00 nm, which was less than the thickness specified in the present invention. Table 2 shows the evaluation results of mechanical properties, formability, corrosion resistance and weldability. Alloy No. Since the alloys 1 to 20 are within the composition range of the present invention, they show excellent properties in terms of formability, corrosion resistance and weldability. On the other hand, platinum No. No. 21 has a low strength because the amount of Mg is less than the component range of the present invention. No. 22 is excellent in strength and formability because the amount of Mg is more than the component range of the present invention, but inferior in corrosion resistance and weldability.
【0020】No.23,24,26,27,29,3
0および31はそれぞれ、Si,Fe,Mn,Cr,Z
r,Vが本発明の成分範囲外にあるため、溶接性は良好
であるが、耐食性にはやや劣り、成形性に著しく劣る。
また、No.25はCu量が本発明の成分範囲以上に添
加されているために耐食性および溶接性に劣り、No.
28および32はZn量が同じく本発明の成分範囲以上
であるために耐食性に劣っている。No.32では、Z
r,V,Tiの含有量も本発明の成分範囲以上であるた
めに成形性にも劣る。以上のように、本発明で規定され
た成分範囲内の合金は、酸洗によって酸化膜の厚さを5
00nm以下にすることによって、成形性、耐食性およ
び溶接性のいずれの特性にも優れており、燃料タンク用
に適した材料と言える。No. 23, 24, 26, 27, 29, 3
0 and 31 are Si, Fe, Mn, Cr and Z, respectively.
Since r and V are out of the component range of the present invention, the weldability is good, but the corrosion resistance is slightly inferior and the formability is remarkably inferior.
In addition, No. No. 25 is inferior in corrosion resistance and weldability because the amount of Cu is added in the component range of the present invention or more.
Nos. 28 and 32 are inferior in corrosion resistance because the Zn amount is also above the range of the components of the present invention. No. 32, Z
Since the contents of r, V and Ti are also above the range of the components of the present invention, the moldability is also poor. As described above, the alloys within the composition range defined in the present invention have the oxide film thickness of 5 by pickling.
When the thickness is not more than 00 nm, it is excellent in all of the characteristics of formability, corrosion resistance and weldability, and can be said to be a material suitable for a fuel tank.
【0021】[0021]
【表2】 [Table 2]
【0022】実施例2 表1に示す合金のうち合金No.3を常法により、溶
解、鋳造し、面削、均質化処理後、熱間圧延、冷間圧延
を施すことによって板厚1.5mmの冷延板を作製し
た。得られた冷延板の一部は大気中で一部は不活性ガス
中でそれぞれ520℃×1分の焼鈍を行い、冷延焼鈍板
を得た。大気中で焼鈍された板については、一部を70
℃の硫酸水溶液(硫酸濃度:10wt%,pH<1)に
1秒および30秒浸漬して酸洗浄した。酸洗浄後、純水
で洗浄して乾燥させた。また、一部については板両面を
10μmずつ機械研削した。このようにして得られた合
金板の表面層についてGDS分析を行って深さ方向のM
g,Al,Oの濃度分布から酸化膜の厚さを求めた。そ
の後、各合金板について、成形性、耐食性および溶接性
の評価を行った。Example 2 Among the alloys shown in Table 1, alloy No. 3 was melted, cast, chamfered and homogenized by a conventional method, and then hot-rolled and cold-rolled to produce a cold-rolled sheet having a sheet thickness of 1.5 mm. Part of the obtained cold-rolled sheet was annealed in the atmosphere and partly in an inert gas at 520 ° C. for 1 minute to obtain a cold-rolled annealed sheet. Some of the sheets annealed in the atmosphere are 70
Acid cleaning was carried out by immersing in a sulfuric acid aqueous solution (sulfuric acid concentration: 10 wt%, pH <1) at 1 ° C. for 1 second and 30 seconds. After acid cleaning, it was washed with pure water and dried. Further, with respect to a part, both sides of the plate were mechanically ground by 10 μm. The surface layer of the alloy plate thus obtained was subjected to GDS analysis to obtain M in the depth direction.
The thickness of the oxide film was determined from the concentration distribution of g, Al and O. Thereafter, each alloy plate was evaluated for formability, corrosion resistance and weldability.
【0023】耐食性は燃料タンク外面耐食性を塩水噴霧
試験(500時間噴霧後の錆発生状況から〇:錆無し、
△:錆小、×:錆大の三段階に評価した)で、内面耐食
性をSAE法(メタノール混合燃料中の26週間浸漬後
の腐食状況から〇:腐食無し、△:腐食小、×:腐食大
の三段階に評価した)で評価した。プレス成形性は円筒
深絞り試験による限界絞り比(LDR)とエリクセン値
で評価した。抵抗溶接性はスポット溶接による連続打点
数(溶接部の引張せん断強さがJIS Z 3140に
照らし、母材の引張強さの60%以下に低下した打点回
数)で1500点以上を〇、1500点以下を×の二段
階で評価した。また、アーク溶接性は、A5356電極
ワイヤを用いて自動ミグ溶接を行い、溶接部断面のブロ
ーホールおよび割れの有無で〇(良好)および×(不
良)の二段階評価をした。評価結果を表3に示す。Corrosion resistance was determined by salt spray test (corresponding to rust generation after spraying for 500 hours, ◯: no rust,
△: small rust, ×: evaluated in three stages of large rust), and the inner surface corrosion resistance was evaluated by the SAE method (corrosion condition after 26 weeks immersion in methanol mixed fuel ◯: no corrosion, Δ: small corrosion, ×: corrosion It was evaluated in three levels). The press formability was evaluated by the limit drawing ratio (LDR) and the Erichsen value in the cylindrical deep drawing test. Resistance weldability is 1,500 points or more in continuous welding points by spot welding (the number of welding points in which the tensile shear strength of the welded part has decreased to 60% or less of the tensile strength of the base metal in light of JIS Z 3140). The following was evaluated in two stages of x. In addition, the arc weldability was evaluated by performing two-stage evaluation of ◯ (good) and × (poor) based on the presence or absence of blowholes and cracks in the cross section of the welded portion by performing automatic MIG welding using an A5356 electrode wire. Table 3 shows the evaluation results.
【0024】[0024]
【表3】 [Table 3]
【0025】大気中焼鈍後、70℃で30秒の酸洗ある
いは機械的研削によって酸化皮膜除去したものおよび不
活性ガス中で焼鈍したものはいずれも表面酸化膜の厚さ
が本発明で規定する厚さ以下であるため、成形性、耐食
性および溶接性のいずれの特性においても優れており、
燃料タンク用に適した合金板であることがわかる。これ
に対して、大気中焼鈍ままのものあるいは酸洗時間が1
秒のものは表面酸化皮膜の厚さが本発明で規定する50
0nmを越えるため、成形性は満足するが、溶接性に著
しく劣る上に、耐食性にもやや劣っている。The thickness of the surface oxide film is defined in the present invention both in the case where the oxide film is removed by pickling or mechanical grinding at 70 ° C. for 30 seconds after annealing in air and the case where annealing is performed in an inert gas. Since it is less than the thickness, it is excellent in all characteristics such as formability, corrosion resistance and weldability,
It can be seen that the alloy plate is suitable for a fuel tank. In contrast, as-annealed in air or pickling time is 1
In the case of the second, the thickness of the surface oxide film is 50 specified by the present invention.
Since it exceeds 0 nm, the formability is satisfactory, but the weldability is remarkably inferior and the corrosion resistance is somewhat inferior.
【0026】[0026]
【発明の効果】以上の説明で明らかなように、本発明に
よるとアルミニウム合金板表面の酸化皮膜厚さを500
nm以下とすることにより、機械的性質、成形性、耐食
性および溶接性のいずれにおいても優れた特性が得ら
れ、燃料タンク用に適したアルミニウム合金板を得るこ
とができる。As is apparent from the above description, according to the present invention, the thickness of the oxide film on the surface of the aluminum alloy plate is 500.
When the thickness is not more than nm, excellent properties can be obtained in any of mechanical properties, formability, corrosion resistance, and weldability, and an aluminum alloy plate suitable for a fuel tank can be obtained.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 浮穴 俊康 東京都千代田区大手町二丁目6番3号 新 日本製鐵株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyasu Ukiana 2-6-3 Otemachi, Chiyoda-ku, Tokyo Inside Nippon Steel Corporation
Claims (4)
板表面の酸化皮膜の厚さが500nm以下であることを
特徴とする燃料タンク用アルミニウム合金板。1. By weight%, Mg: 2.2-6.0% Cu: 0.03-0.15% Mn: 0.03-0.50% Cr: 0.03-0.35% Fe : 0.30% or less Si: 0.20% or less, with the balance being Al and inevitable impurities,
An aluminum alloy plate for a fuel tank, wherein the oxide film on the plate surface has a thickness of 500 nm or less.
らに、 Zn:0.03〜1.5% Zr:0.03〜0.4% V :0.03〜0.4% Ti:0.005〜0.2% のうち1種または2種以上を含有する燃料タンク用アル
ミニウム合金板。2. The aluminum alloy according to claim 1, further comprising: Zn: 0.03 to 1.5% Zr: 0.03 to 0.4% V: 0.03 to 0.4% Ti: 0. An aluminum alloy plate for a fuel tank containing one or more of 005 to 0.2%.
金を鋳造、熱間および冷間圧延して所定の板厚とし、焼
鈍後、硫酸、硝酸もしくは燐酸の1種以上を合計で5〜
15%の濃度で含み、50〜90℃の温度に設定された
酸洗液中に2〜60秒浸漬して酸洗することを特徴とす
る燃料タンク用アルミニウム合金板の製造方法。3. The aluminum alloy according to claim 1 or 2 is cast, hot-rolled and cold-rolled to a predetermined plate thickness, and after annealing, one or more of sulfuric acid, nitric acid or phosphoric acid is added in a total amount of 5 to 5.
A method for producing an aluminum alloy plate for a fuel tank, comprising dipping for 2 to 60 seconds in a pickling solution which is contained at a concentration of 15% and is set to a temperature of 50 to 90 ° C.
金を鋳造、熱間および冷間圧延して所定の板厚とし、焼
鈍後、板の両面を機械的に1〜100μmずつ研削する
ことを特徴とする燃料タンク用アルミニウム合金板の製
造方法。4. The aluminum alloy according to claim 1 or 2 is cast, hot-rolled and cold-rolled to a predetermined plate thickness, and after annealing, both sides of the plate are mechanically ground by 1 to 100 μm. And a method for manufacturing an aluminum alloy plate for a fuel tank.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32711395A JPH09165639A (en) | 1995-12-15 | 1995-12-15 | Aluminum alloy sheet for fuel tank and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32711395A JPH09165639A (en) | 1995-12-15 | 1995-12-15 | Aluminum alloy sheet for fuel tank and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH09165639A true JPH09165639A (en) | 1997-06-24 |
Family
ID=18195449
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32711395A Withdrawn JPH09165639A (en) | 1995-12-15 | 1995-12-15 | Aluminum alloy sheet for fuel tank and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH09165639A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002348629A (en) * | 2001-05-22 | 2002-12-04 | Furukawa Electric Co Ltd:The | Aluminum alloy sheet material for transportation- related structure superior in coating property and press formability |
FR2828499A1 (en) * | 2001-08-13 | 2003-02-14 | Corus Aluminium Nv | Rolled or extruded aluminum and magnesium alloy product in the form of sheets, plates or extrusions for welded structures and panels has a specified composition |
AU2002331383B2 (en) * | 2001-08-10 | 2007-12-13 | Corus Aluminium Nv | Wrought aluminium-magnesium alloy product |
JP2013091813A (en) * | 2011-10-24 | 2013-05-16 | Sumitomo Chemical Co Ltd | Aluminum material having excellent alcohol corrosion resistance |
CN106756671A (en) * | 2016-11-28 | 2017-05-31 | 广西南南铝加工有限公司 | Tank body aluminum alloy coiled materials preparation method |
CN111690856A (en) * | 2020-07-08 | 2020-09-22 | 甘肃东兴铝业有限公司 | Method for preparing 5052 aluminum alloy strip |
CN114807694A (en) * | 2021-07-08 | 2022-07-29 | 泉州市天成铝业科技有限公司 | High-fracture-toughness aluminum alloy for doors and windows and manufacturing method thereof |
-
1995
- 1995-12-15 JP JP32711395A patent/JPH09165639A/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002348629A (en) * | 2001-05-22 | 2002-12-04 | Furukawa Electric Co Ltd:The | Aluminum alloy sheet material for transportation- related structure superior in coating property and press formability |
JP4591986B2 (en) * | 2001-05-22 | 2010-12-01 | 古河スカイ株式会社 | Aluminum alloy sheet for transportation-related structures with excellent paintability and press formability |
AU2002331383B2 (en) * | 2001-08-10 | 2007-12-13 | Corus Aluminium Nv | Wrought aluminium-magnesium alloy product |
US7727346B2 (en) | 2001-08-10 | 2010-06-01 | Corus Aluminum Nv | Wrought aluminium-magnesium alloy product |
FR2828499A1 (en) * | 2001-08-13 | 2003-02-14 | Corus Aluminium Nv | Rolled or extruded aluminum and magnesium alloy product in the form of sheets, plates or extrusions for welded structures and panels has a specified composition |
WO2003016580A1 (en) * | 2001-08-13 | 2003-02-27 | Corus Aluminium Nv | Aluminium-magnesium alloy product |
AU2002327921B2 (en) * | 2001-08-13 | 2007-07-05 | Corus Aluminium Nv | Aluminium-magnesium alloy product |
JP2013091813A (en) * | 2011-10-24 | 2013-05-16 | Sumitomo Chemical Co Ltd | Aluminum material having excellent alcohol corrosion resistance |
CN106756671A (en) * | 2016-11-28 | 2017-05-31 | 广西南南铝加工有限公司 | Tank body aluminum alloy coiled materials preparation method |
CN111690856A (en) * | 2020-07-08 | 2020-09-22 | 甘肃东兴铝业有限公司 | Method for preparing 5052 aluminum alloy strip |
CN114807694A (en) * | 2021-07-08 | 2022-07-29 | 泉州市天成铝业科技有限公司 | High-fracture-toughness aluminum alloy for doors and windows and manufacturing method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2430185C2 (en) | High-strength sheet steel with coating obtained with hot dipping, which has high impact strength at low temperatures, for being used in forming, and manufacturing method thereof | |
KR101858863B1 (en) | Hot dip aluminum alloy plated steel material having excellent corrosion resistance and workability | |
EP1041167A1 (en) | High strength thin steel sheet, high strength alloyed hot-dip zinc-coated steel sheet, and method for producing them | |
JPH0674480B2 (en) | Forming and welding alloy sheet excellent in weldability, rust resistance, formability and bake hardenability, and method for producing the same | |
JP5516057B2 (en) | High-strength hot-dip galvanized steel sheet and manufacturing method thereof | |
JPH09165639A (en) | Aluminum alloy sheet for fuel tank and its production | |
JP4344074B2 (en) | Anti-rust steel sheet for fuel tank with excellent secondary workability and press workability, and its manufacturing method | |
JPH08283891A (en) | Clad material of al alloy for brazing | |
JP2938402B2 (en) | Rust-proof steel plate for fuel tanks with excellent press moldability and corrosion resistance after molding | |
JP4469030B2 (en) | Aluminum plated steel plate for automobile fuel tank with excellent corrosion resistance | |
JP7506350B2 (en) | Steel welded parts | |
WO2022154081A1 (en) | Hot stamp member | |
JPH09302433A (en) | Aluminum alloy clad material excellent in brazability and its production | |
JP2938406B2 (en) | Rust-proof steel plate for automotive fuel tanks with excellent weld tightness and press workability | |
JP3295900B2 (en) | High strength alloyed hot-dip galvanized steel sheet for deep drawing with excellent secondary work brittleness resistance | |
JPH06158221A (en) | Multi-ply cold rolled steel sheet for automotive fuel tank excellent in weldability, deep drawability, fatigue property and corrosion resistance | |
JP3185530B2 (en) | Surface-treated steel sheet for deep drawing excellent in corrosion resistance and method for producing the same | |
WO2023132237A1 (en) | Plated steel sheet | |
WO2023132244A1 (en) | Welded joint | |
JP2711957B2 (en) | Aluminum alloy material for upset butt welding | |
WO2023132241A1 (en) | Welded joint | |
JPH0665700A (en) | Hot-dip galvanizing steel sheet with high strength and high ductility | |
JPH03180444A (en) | High strength cold rolled steel sheet excellent in butt weldability and chemical convertibility and its manufacture | |
JPH10168581A (en) | Aluminum plated steel sheet or aluminum plated steel sheet for fuel tank | |
JP3333423B2 (en) | Seam welding method for fuel tank made of resin-coated aluminum-based steel sheet |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20030304 |