JP3498942B2 - Aluminum alloy plate with excellent ridging mark resistance and method for evaluating the occurrence of ridging mark - Google Patents

Aluminum alloy plate with excellent ridging mark resistance and method for evaluating the occurrence of ridging mark

Info

Publication number
JP3498942B2
JP3498942B2 JP27009398A JP27009398A JP3498942B2 JP 3498942 B2 JP3498942 B2 JP 3498942B2 JP 27009398 A JP27009398 A JP 27009398A JP 27009398 A JP27009398 A JP 27009398A JP 3498942 B2 JP3498942 B2 JP 3498942B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
alloy plate
ridging
plate
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP27009398A
Other languages
Japanese (ja)
Other versions
JP2000096175A (en
Inventor
学 中井
武比古 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP27009398A priority Critical patent/JP3498942B2/en
Publication of JP2000096175A publication Critical patent/JP2000096175A/en
Application granted granted Critical
Publication of JP3498942B2 publication Critical patent/JP3498942B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、耐リジングマーク
性に優れ、自動車、鉄道車両及び航空機等の輸送機用パ
ネルとしての用途に適するAl−Mg−Si系アルミニ
ウム合金板に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an Al-Mg-Si based aluminum alloy plate which has excellent resistance to ridging marks and is suitable for use as a panel for transportation machines such as automobiles, railway vehicles and aircraft.

【0002】[0002]

【従来の技術】6000系(Al−Mg−Si系)アル
ミニウム合金板材は、耐食性及び常温での成形加工性が
比較的優れ、人工時効処理により高強度が得られること
から、成形性あるいは軽量化、薄肉化が要求される用途
に適している。Al−Mg−Si系合金板材は、通常、
均質化処理後、熱間圧延し、続いて必要に応じて中間焼
鈍した後、冷間圧延を施して所定厚の板材とし、これに
溶体化及び焼入れ処理を施し、さらにその後必要に応じ
てスキンパス、ストレッチ等を施して製造される。
2. Description of the Related Art A 6000 series (Al-Mg-Si series) aluminum alloy sheet is relatively excellent in corrosion resistance and formability at room temperature, and high strength can be obtained by artificial aging treatment. Suitable for applications that require thinning. Al-Mg-Si alloy plate material is usually
After homogenization treatment, hot rolling, then intermediate annealing if necessary, then cold rolling to a plate material of a predetermined thickness, solution heat treatment and quenching treatment, and then skin pass if necessary. Manufactured by stretching, etc.

【0003】ところが、Al−Mg−Si系合金板材に
対し成形加工を行ったとき、特開平7−228956号
公報又は特開平8−232052号公報に記載されてい
るように、板表面にリジングマークと呼ばれる表面荒れ
が発生することが問題となっている。このリジングマー
クが発生すると、表面が極めて美麗であることが要求さ
れる自動車用外板パネル、さらには旅客機胴体外板パネ
ル等の用途には外観不良として使用できず、また、リジ
ングマークは塗装を行った場合特に目立つようになるた
め、成形加工後気付かれないまま塗装工程に進み、塗装
後に初めて認識されることもある。つまり製品になって
初めて現れることがあるという困った特性を持ってい
る。
However, when an Al--Mg--Si alloy plate material is molded, a ridging mark is formed on the surface of the plate as described in JP-A-7-228956 or JP-A-8-232052. There is a problem that the surface roughness called ". When this ridging mark occurs, it cannot be used as a poor appearance for applications such as automobile outer panel, which requires an extremely beautiful surface, and passenger aircraft fuselage outer panel. When it is performed, it becomes particularly conspicuous. Therefore, the process may proceed to the coating process without being noticed after the molding process, and may be recognized for the first time after coating. In other words, it has the troublesome characteristic that it may appear only after it is made into a product.

【0004】前記特開平7−228956号公報及び特
開平8−232052号公報は、Al−Mg−Si系合
金板材についてリジングマークの発生を防止する方法に
関し、前者が、均質化処理後350〜450℃の温度ま
で冷却して熱間圧延を開始し、200〜300℃の温度
で熱間圧延を終了し、必要に応じて中間焼鈍を行った
後、冷間圧延、溶体化及び焼入れ処理を施すというも
の、後者が、均質化処理後450℃以下の温度まで冷却
して熱間圧延を開始し、200〜350℃の温度で熱間
圧延を終了し、必要に応じて350〜420℃の中間焼
鈍を行った後、冷間圧延、溶体化焼入れ、さらに最終加
熱処理を施すというものであり、いずれも熱間圧延温度
を低めに設定し、同時にその他の各工程の処理条件も厳
密に制御し、それによってリジングマークの発生を防止
しようというものである。
The above-mentioned JP-A-7-228956 and JP-A-8-232052 relate to a method for preventing the occurrence of ridging marks in an Al-Mg-Si alloy plate material, the former being 350 to 450 after homogenization treatment. After cooling to a temperature of ℃, hot rolling is started, hot rolling is finished at a temperature of 200 to 300 ° C., intermediate annealing is performed if necessary, and then cold rolling, solution treatment and quenching treatment are performed. That is, the latter starts the hot rolling after cooling to a temperature of 450 ° C. or lower after the homogenization treatment, finishes the hot rolling at a temperature of 200 to 350 ° C., and if necessary, an intermediate temperature of 350 to 420 ° C. After annealing, cold rolling, solution hardening, and final heat treatment are performed.In each case, the hot rolling temperature is set low, and at the same time, the processing conditions of other steps are strictly controlled. , By that It is that you try to prevent the occurrence of ridging marks Te.

【0005】[0005]

【発明が解決しようとする課題】一方、本発明者らは、
先に特願平9−287906号、特願平9−36772
3号において、Si:0.2〜1.8%、Mg:0.2
〜1.6%を含有する成形加工用Al−Mg−Si系ア
ルミニウム合金板のマクロ組織のサイズ又はキューブ方
位の集積度を所定の範囲に規制することにより、リジン
グマークの発生を防止できることを見いだした。しかし
ながら、マクロ組織の形態又はキューブ方位の集積度を
統計処理し、それより製品全体(例えばコイル全長)の
特性のバラツキを推定することは時間的にもコスト的に
も実製造ラインにおいては、現実的ではない。
On the other hand, the present inventors have
First, Japanese Patent Application No. 9-287906 and Japanese Patent Application No. 9-36772.
In No. 3, Si: 0.2 to 1.8%, Mg: 0.2
It was found that the occurrence of ridging marks can be prevented by limiting the size of the macrostructure or the degree of integration of the cube orientation of the Al-Mg-Si-based aluminum alloy plate for forming containing 1 to 1.6% to a predetermined range. It was However, statistically processing the macrostructure morphology or the degree of cube orientation integration and estimating the variation in the characteristics of the entire product (for example, the total coil length) from that is not practical in terms of time and cost in the actual manufacturing line. Not at all.

【0006】その点、もしアルミニウム合金板における
多数のサンプルの特性を短時間で測定することで、高い
信頼度で評価できれば、例えばリジングマークが発生し
やすい製品板と判定された場合には、工場からの出荷を
停止することができる。また、そのような製品板は、成
形加工時に大きな引張変形を受けない部材に転用して出
荷することも可能となり、品質及び歩留りの向上を図る
ことができる。そして、先願のマクロ組織のサイズ又は
キューブ方位の集積度の規定は、リジングマークの発生
を防止するための必要条件ではあるが、上記の規定を満
たしているものでも、成形加工及び電着塗装後まれにリ
ジングマークが発見される場合があり、必ずしも十分条
件ではない可能性があった。従って、リジングマークの
発生の有無を評価できるさらに確実性の高い指標が望ま
れている。すなわち、本発明は、アルミニウム合金板に
おいてリジングマークが発生するかどうかを、短時間
で、確実に評価できるようにすることを目的とする。
In that respect, if the characteristics of a large number of samples on an aluminum alloy plate can be measured in a short time and evaluated with high reliability, for example, if it is determined that the product plate is likely to cause ridging marks, the factory Shipments from can be suspended. Further, such a product plate can be diverted to a member which is not subjected to a large tensile deformation at the time of forming and shipped, and the quality and the yield can be improved. And the regulation of the size of the macrostructure or the degree of integration of the cube orientation of the prior application is a necessary condition for preventing the occurrence of ridging marks, but even those satisfying the above regulation can be used for molding and electrodeposition coating. Ridging marks may be found in rare cases later, which may not have been a sufficient condition. Therefore, there is a demand for a more reliable index that can evaluate the occurrence of ridging marks. That is, an object of the present invention is to make it possible to surely evaluate whether or not a ridging mark is generated in an aluminum alloy plate in a short time.

【0007】[0007]

【課題を解決するための手段】本発明者らは、Al−M
g−Si系アルミニウム合金を特定の温度及び歪速度条
件下で熱間圧延し、かつ熱間圧延後のミクロ組織を等軸
状再結晶粒としておけば、中間焼鈍を行い又は行うこと
なく、必要に応じて冷間圧延を行い、その後溶体化処理
及び焼入れを行い、ミクロ組織が等軸状再結晶粒である
製品板としたとき、製品板にリジングマークが発生する
のを防止できることを見いだし、先に特許出願した。な
お、この等軸状再結晶粒とは、板面に平行な面及び圧延
方向に垂直な面の両方において、観察される再結晶粒の
平均アスペクト比が1〜3の範囲内にあることを意味す
る。具体的にいえば、次の条件を満たす。 1≦dL/dLT≦3 1≦dL/dST≦3 dL ;板の長さ方向に測定した粒径 dLT;板の幅方向に測定した粒径 dST;板厚方向に測定した粒径
The present inventors have found that Al-M
If a g-Si-based aluminum alloy is hot-rolled under specific temperature and strain rate conditions and the microstructure after hot-rolling is set as equiaxed recrystallized grains, it is necessary without or without intermediate annealing. According to the above, cold rolling is performed, and then solution treatment and quenching are performed, and when a microstructure is a product plate having equiaxed recrystallized grains, it is found that ridging marks can be prevented from occurring on the product plate. I applied for a patent earlier. The equiaxed recrystallized grains mean that the average aspect ratio of the recrystallized grains observed is in the range of 1 to 3 in both the plane parallel to the plate surface and the plane perpendicular to the rolling direction. means. Specifically, the following conditions are satisfied. 1 ≦ dL / dLT ≦ 3 1 ≦ dL / dST ≦ 3 dL; particle size measured in the length direction of the plate dLT; particle size measured in the width direction of the plate dST; particle size measured in the plate thickness direction

【0008】その後、熱延及び続いて必要に応じて中間
焼鈍を行った後冷延し、その後溶体化及び焼入れ処理し
ミクロ組織を等軸状再結晶粒としたAl−Mg−Si系
アルミニウム合金製品板について、その特性を種々検討
した結果、リジングマークの発生の有無とこの製品板を
カップ状に成形加工したとき発生する耳高さの間に、あ
る特定の関係があることが見いだされた。本発明はこの
知見に基づいてなされたもので、Si:0.2〜1.8
%、Mg:0.2〜1.6%を含有し、熱延及び続いて
必要に応じて中間焼鈍した後冷延し、その後溶体化及び
焼入れ処理されたAl−Mg−Si系アルミニウム合金
板であり、ミクロ組織が等軸状の再結晶粒からなり、さ
らに「直径40mmのポンチ(肩部半径3mm)及びポ
ンチとダイスの隙間とAl合金板厚の比が1.3〜1.
4の範囲のダイスを用い、しわ押え力150kgf、成
形速度60mm/分、使用潤滑油#700」の条件でカ
ップ状に成形加工したとき、カップ耳率が−4%以上で
あることを特徴とする。なお、等軸状の意味は先に示し
たものと同じである。
After that, hot rolling and, if necessary, intermediate annealing are carried out, followed by cold rolling, and then solution treatment and quenching treatment, and an Al-Mg-Si system aluminum alloy having a microstructure as equiaxed recrystallized grains. As a result of various studies on the characteristics of the product plate, it was found that there is a certain relationship between the presence or absence of ridging marks and the ear height generated when this product plate is formed into a cup shape. . The present invention was made based on this finding, and Si: 0.2 to 1.8.
%, Mg: 0.2 to 1.6%, Al-Mg-Si-based aluminum alloy sheet hot-rolled and subsequently annealed if necessary, cold-rolled, and then solution-quenched The microstructure is composed of equiaxed recrystallized grains, and the ratio of the punch having a diameter of 40 mm (shoulder radius 3 mm) and the gap between the punch and the die to the Al alloy plate thickness is 1.3 to 1.
When using a die in the range of 4 to form a cup shape under the conditions of a wrinkle pressing force of 150 kgf, a forming speed of 60 mm / min, and a lubricating oil # 700 used, the cup ear ratio is -4% or more. To do. The equiaxed meaning is the same as that shown above.

【0009】[0009]

【発明の実施の形態】Al−Mg−Si系アルミニウム
合金板をカップ状に成形加工したとき発生する耳は、マ
イナス耳と称される圧延方向に対し0゜、90゜、18
0゜、270゜方向に発生する耳と、プラス耳と称され
る圧延方向に対し45゜、135゜、225゜、315
゜方向に発生する耳に大別される。そして、耳率(%)
は下記の通り一般に定義される。 耳率(%)={(プラス耳の高さの平均値)−(マイナ
ス耳の高さの平均値)}×100/(平均耳高さ)
BEST MODE FOR CARRYING OUT THE INVENTION The ears generated when an Al-Mg-Si based aluminum alloy plate is formed into a cup shape are 0 °, 90 ° and 18 ° relative to the rolling direction, which is called a minus ear.
The ears that occur in the 0 ° and 270 ° directions and the ears that are called the positive ears are 45 °, 135 °, 225 ° and 315 with respect to the rolling direction.
It is roughly divided into ears that occur in the ° direction. And ear rate (%)
Is generally defined as follows. Ear ratio (%) = {(average value of plus ear height)-(average value of minus ear height)} x 100 / (average ear height)

【0010】先の出願に示したように、熱延及び続いて
必要に応じて中間焼鈍を行った後冷延し、その後溶体化
及び焼入れ処理されたAl−Mg−Si系アルミニウム
合金板におけるリジングマーク発生の有無はキューブ方
位の集積度に関係している。キューブ方位の集積度が高
いと、成形時にキューブ方位の集積領域と非集積領域で
変形の異方性及び変形程度に差が生じ、これがリジング
マークの発生の原因となるのであるから、成形加工時に
起こる変形の異方性をより直接的に表わす耳率を用いる
ことにより、リジングマーク発生の有無をより正確に評
価できるようなる可能性がある。その観点から、本発明
者らが熱延及び続いて中間焼鈍を行った後冷延し、その
後溶体化及び焼入れ処理しミクロ組織を等軸状再結晶粒
としたAl−Mg−Si系アルミニウム合金板につい
て、一定の加工条件(前記「」内)でカップ状に成形加
工して検討したところ、上記に定義された耳率が−4%
以上の板において、リジングマークの発生が確実に防止
されることが分かった。なお、カップ状に成形加工した
ときの耳率は加工条件により変動するので、加工条件は
一定でなくてはならない。
As shown in the above-mentioned application, ridging in an Al-Mg-Si-based aluminum alloy sheet which has been hot rolled and subsequently subjected to intermediate annealing if necessary, cold rolled, and then solution heat treated and quenched. The presence or absence of the mark is related to the degree of integration of the cube orientation. If the degree of integration of the cube orientation is high, the anisotropy of deformation and the degree of deformation will differ between the accumulation area and the non-integration area of the cube orientation during molding, which will cause ridging marks. By using the ear rate that more directly represents the anisotropy of the deformation that occurs, it may be possible to more accurately evaluate the presence or absence of ridging marks. From this point of view, the present inventors hot-rolled and subsequently subjected to intermediate annealing, followed by cold-rolling, and then solutionizing and quenching the Al-Mg-Si-based aluminum alloy in which the microstructure was equiaxed recrystallized grains. When the plate was formed into a cup shape under a constant processing condition (in the above “”) and examined, the ear rate defined above was −4%.
It was found that ridging marks were reliably prevented from occurring in the above plates. In addition, since the ear rate when forming into a cup shape varies depending on the processing conditions, the processing conditions must be constant.

【0011】熱延及び続いて必要に応じて中間焼鈍を行
った後冷延後、溶体化及び焼入れ処理しミクロ組織を等
軸状再結晶粒としたAl−Mg−Si系アルミニウム合
金板を上記の条件でカップ状に成形加工し、そのときの
耳率が上記の範囲内のとき、製品板の耐リジングマーク
性が保証される。しかし、耳率が上記の範囲外のとき、
耐リジングマーク性は完全には保証されない。従って、
この場合は、製品板をリジングマークが発生しないレベ
ルの成形加工用途又はリジングマークが発生しても構わ
ない用途に回すなどの対処を行う。いずれにしても耳高
さの測定は簡便で短時間に行えるので、迅速な対処が可
能である。なお、カップ状に成形加工する条件について
は、必ずしも前記「」と同一である必要はない。しか
し、その条件で成形加工したときの耳率とリジングマー
ク発生の関係が明らかにされている必要がある。
An Al-Mg-Si-based aluminum alloy sheet having a microstructure with equiaxed recrystallized grains after solution rolling and quenching after hot rolling and subsequent intermediate annealing if necessary and cold rolling is prepared as described above. When processed into a cup shape under the conditions described above and the ear rate at that time is within the above range, the ridging mark resistance of the product plate is guaranteed. However, when the ear rate is outside the above range,
Ridging mark resistance is not completely guaranteed. Therefore,
In this case, measures such as turning the product plate to a molding processing application at a level where ridging marks are not generated or an application where ridging marks may be generated are taken. In any case, ear height measurement is simple and can be performed in a short time, so that prompt measures can be taken. Note that the conditions for forming into a cup shape do not necessarily have to be the same as the above "". However, it is necessary to clarify the relationship between the ear rate and the occurrence of ridging marks when molding is performed under the conditions.

【0012】上記Al−Mg−Si系アルミニウム合金
板は、均質化熱処理後熱間圧延し、必要に応じて中間焼
鈍を行い、続いて冷間圧延、溶体化処理及び焼入れが行
われるが、それぞれの好ましい条件は以下の通りであ
る。熱間圧延は、熱間圧延終了温度を再結晶温度以上と
し、かつ熱間圧延の最終パス時の歪速度を7000〜2
0000%/secとし、熱延終了後直ちに巻き上げて
ミクロ組織が等軸状の再結晶粒となった熱延板を得る。
ここで、歪速度は、 歪速度=最終ロールによる圧延率(%)÷最終ロールを
板が通過する時間(秒) で定義される。より具体的には、圧延開始温度を450
℃以上、均質化処理温度(例えば470〜540℃)以
下とし、熱間圧延終了温度を再結晶温度以上、例えば3
00〜450℃と設定する。仕上げ熱間圧延を複数段の
連続式で行う場合、連続した熱間圧延の最低歪速度を最
終パス時歪み速度の2%以上とし、仕上げ熱間圧延の
間、再結晶が繰り返し起こるようにすれば、再結晶粒が
微細化し、かつ製品板のリジングマーク防止に一層効果
的である。この段階での再結晶粒の好ましい粒径は45
μm以下である。さらに、仕上げ熱間圧延で再結晶を起
こさせるために、各パスの圧延率を40%以上とするこ
とが望ましい。
The above Al-Mg-Si system aluminum alloy sheet is subjected to homogenizing heat treatment, hot rolling, intermediate annealing if necessary, and then cold rolling, solution treatment and quenching. The preferable conditions of are as follows. In the hot rolling, the hot rolling finish temperature is set to the recrystallization temperature or higher, and the strain rate in the final pass of the hot rolling is 7,000 to 2
0000% / sec, and immediately after the hot rolling is finished, it is rolled up to obtain a hot rolled sheet having a microstructure of equiaxed recrystallized grains.
Here, the strain rate is defined as: strain rate = rolling ratio (%) by the final roll / time (second) that the plate passes through the final roll. More specifically, the rolling start temperature is set to 450
C. or higher and the homogenization treatment temperature (eg, 470 to 540.degree. C.) or lower, and the hot rolling end temperature is the recrystallization temperature or higher, eg, 3
The temperature is set to 00 to 450 ° C. When finishing hot rolling is performed in multiple stages, the minimum strain rate of continuous hot rolling should be 2% or more of the strain rate during the final pass, and recrystallization should be repeated during finishing hot rolling. In this case, the recrystallized grains become finer, and it is more effective for preventing ridging marks on the product plate. The preferred recrystallized grain size at this stage is 45
μm or less. Further, in order to cause recrystallization in the finish hot rolling, it is desirable that the rolling rate of each pass is 40% or more.

【0013】中間焼鈍条件は、加熱速度:400℃まで
を30℃/分〜500℃/秒、400〜500℃を10
〜100℃/分、保持条件:500〜580℃×10秒
〜10分、冷却速度:保持温度から50℃までを30℃
/分以上とする。なお、中間焼鈍を行う場合は、熱間圧
延の圧延終了温度を先の熱間圧延において記載した温度
範囲より、例えば150〜300℃と低くすることがで
きる。また、熱間圧延の最終パス時の歪み速度を例えば
5000〜20000%/秒と低く設定することができ
る。冷間圧延率は、溶体化処理後のアルミニウム合金板
の等軸状再結晶粒の粒径を45μm以下に微細化するた
め、好ましくは冷間圧延率は50%以上とする。これに
より、成形時のオレンジピールの発生が防止される。な
お、上記の中間焼鈍を行った場合は、固溶度が高く冷間
圧延での加工硬化度が高くなり、溶体化処理での再結晶
粒は微細化されやすい。従って、冷延率は30%以上で
十分である。好ましい溶体化処理条件は、400℃まで
の加熱速度は30℃/分以上、400〜530℃を10
℃/分以上、530〜580℃で10秒〜10分であ
る。加熱には、加熱速度を大きくするため、硝石炉、連
続焼鈍炉、誘導加熱炉等を用いてもよい。焼入れは、保
持温度から70〜140℃の温度又はそれ以下まで30
℃/分以上の冷却速度で行うか、保持温度から70〜1
40℃の温度に30℃/分以上の冷却速度で行い、その
まま70〜140℃の温度で0.5〜48時間の間保持
してもよい。
The intermediate annealing conditions are as follows: heating rate: up to 400 ° C .: 30 ° C./min to 500 ° C./sec, 400 to 500 ° C .: 10
~ 100 ° C / min, holding condition: 500 to 580 ° C x 10 seconds to 10 minutes, cooling rate: 30 ° C from holding temperature to 50 ° C
/ Min or more When performing the intermediate annealing, the rolling end temperature of the hot rolling can be set lower than the temperature range described in the previous hot rolling, for example, 150 to 300 ° C. Further, the strain rate at the final pass of hot rolling can be set as low as 5000 to 20000% / sec. The cold rolling rate is preferably 50% or more in order to reduce the grain size of equiaxed recrystallized grains of the aluminum alloy plate after the solution treatment to 45 μm or less. This prevents the occurrence of orange peel during molding. When the above-described intermediate annealing is performed, the solid solubility is high, the work hardening degree in cold rolling is high, and the recrystallized grains in the solution treatment are likely to be refined. Therefore, a cold rolling rate of 30% or more is sufficient. The preferable solution treatment conditions are that the heating rate up to 400 ° C. is 30 ° C./min or more, and 400 to 530 ° C. is 10
C./minute or more, 530 to 580.degree. C., 10 seconds to 10 minutes. For heating, in order to increase the heating rate, it is possible to use a glass nitrate furnace, a continuous annealing furnace, an induction heating furnace, or the like. Quenching is performed from the holding temperature to a temperature of 70 to 140 ° C. or lower for 30
℃ / min or more cooling rate or from the holding temperature 70 ~ 1
It may be carried out at a temperature of 40 ° C. at a cooling rate of 30 ° C./min or more, and may be kept as it is at a temperature of 70 to 140 ° C. for 0.5 to 48 hours.

【0014】 成分組成の面でいえば、本発明は、S
i:0.2〜1.8%、Mg:0.2〜1.6%を含有
し、残部Alと不可避不純物からなるアルミニウム合金
のほか、必要に応じて、さらに(1)Zn:0.005
〜1.0%、Cu:0.005〜1.0%、Ti:0.
001〜0.1%のいずれか1種又は2種以上、(2)
B:1〜300ppm、Be:0.1〜100ppmの
1種又は2種、(3)Mn:1.0%以下、Cr:0.
3%以下、Zr:0.15%以下、V:0.15%以下
のうちから1種又は2種以上を合計で0.01〜1.5
%、以上(1)〜(3)のいずれか又はこれらを組み合
わせて含有するアルミニウム合金など、Si:0.2〜
1.8%、Mg:0.2〜1.6%を含有するAl−M
g−Si系アルミニウム合金全てに適用し得る。Al−
Mg−Si系合金の組成を上記のように規定した理由は
下記のとおりである。
In terms of component composition, the present invention provides S
i: 0.2 to 1.8%, Mg: 0.2 to 1.6%, an aluminum alloy containing the balance Al and unavoidable impurities, and (1) Zn: 0. 005
.About.1.0%, Cu: 0.005 to 1.0%, Ti: 0.
Any one kind or two kinds or more of 001 to 0.1%, (2)
B: 1 to 300 ppm, Be: 0.1 to 100 ppm, one or two, (3) Mn: 1.0% or less, Cr: 0.
0.01% to 1.5% in total of 3% or less, Zr: 0.15% or less, V: 0.15% or less, or one or more types.
%, The aluminum alloy containing any of the above (1) to (3) or a combination thereof, Si: 0.2 to
Al-M containing 1.8% and Mg: 0.2 to 1.6%
It can be applied to all g-Si based aluminum alloys. Al-
The reason for defining the composition of the Mg-Si alloy as described above is as follows.

【0015】Mg:MgはSiとともに強度を付与する
元素であるが、0.2%未満では人工時効で十分な強度
が得られず、一方、1.6%を越えると成形性が低下す
る。従って、Mg含有量は0.2〜1.6%の範囲とす
る。 Si:SiはMgとともに強度を付与する元素である
が、0.2%未満では人工時効で十分な強度が得られ
ず、一方、1.8%を越えると伸びが低くなり、成形性
が低下する。従って、Si含有量は0.2〜1.8%の
範囲とする。なお、人工時効で高い強度を得るには、M
gとSiとの含有量の割合を、Si/Mg≧0.65と
することが望ましい。
Mg: Mg is an element that imparts strength together with Si, but if it is less than 0.2%, sufficient strength cannot be obtained by artificial aging, while if it exceeds 1.6%, the formability deteriorates. Therefore, the Mg content is in the range of 0.2 to 1.6%. Si: Si is an element that gives strength together with Mg, but if it is less than 0.2%, sufficient strength cannot be obtained by artificial aging, while if it exceeds 1.8%, the elongation becomes low and the formability deteriorates. To do. Therefore, the Si content is set to the range of 0.2 to 1.8%. In order to obtain high strength by artificial aging, M
It is desirable that the content ratio of g and Si be Si / Mg ≧ 0.65.

【0016】Zn:Znは人工時効時においてMgZn
を微細かつ高密度に析出させ高い強度を実現させる。
ただし、0.005%未満では十分な強度が得られず、
一方1.0%を越えると耐食性が顕著に低下するため、
含有量は0.005〜1.0%の範囲とする。 Cu:Cuは人工時効時にMgSiを微細にかつ高密
度に析出させ、高い強度を実現させる。ただし、0.0
05%未満では効果がなく、一方、1.0%を越えると
耐食性及び溶接性が顕著に低下するため、含有量は0.
005〜1.0%の範囲とする。 Ti:Tiは鋳塊の結晶粒を微細化し、成形性を向上さ
せるために添加する元素であるが、0.001%未満で
は効果がなく、一方、0.1%を越えて添加されると粗
大な晶出物を形成し、成形性を低下させる。このため、
Ti含有量は0.001〜0.1%の範囲とする。
Zn: Zn is MgZn during artificial aging
2 is finely and densely deposited to realize high strength.
However, if less than 0.005%, sufficient strength cannot be obtained,
On the other hand, if it exceeds 1.0%, the corrosion resistance is significantly reduced.
The content is in the range of 0.005 to 1.0%. Cu: Cu precipitates Mg 2 Si finely and at high density during artificial aging, and realizes high strength. However, 0.0
If it is less than 05%, it has no effect, while if it exceeds 1.0%, the corrosion resistance and weldability are remarkably reduced, so the content is less than 0.1%.
The range is 005 to 1.0%. Ti: Ti is an element added for refining the crystal grains of the ingot and improving the formability, but if it is less than 0.001%, it has no effect, while if it exceeds 0.1%, it is added. Coarse crystallized products are formed and the formability is reduced. For this reason,
The Ti content is in the range of 0.001 to 0.1%.

【0017】B:BはTiと同様に鋳塊の結晶粒を微細
化し、成形性を向上させるために添加する合金である
が、1ppm未満の添加では効果がなく、300ppm
を越えて含有されると粗大な晶出物を形成し、成形性を
低下させる。このため、B含有量は1〜300ppmの
範囲とする。 Be:Beは空気中におけるアルミニウム溶湯の再酸化
を防止するため、必要があれば0.1ppm以上含有さ
せる。しかし、100ppmを越えると材料硬度が増大
し成形性が低下するため、Be含有量は0.1〜100
ppmの範囲とする。
B: B is an alloy added in order to refine the crystal grains of the ingot and improve the formability like Ti, but if it is added in an amount of less than 1 ppm, B has no effect, and 300 ppm is added.
If it is contained in an amount exceeding the above range, a coarse crystallized substance is formed and the formability is deteriorated. Therefore, the B content is in the range of 1 to 300 ppm. Be: Be is contained in an amount of 0.1 ppm or more, if necessary, in order to prevent reoxidation of the molten aluminum in the air. However, when the content exceeds 100 ppm, the material hardness increases and the formability decreases, so the Be content is 0.1 to 100.
The range is ppm.

【0018】Mn、Cr、Zr、V:これらの成分は均
質化熱処理時及びその後の熱間圧延時にAl20Cu
Mn、Al12MgCr、AlZr、AlMg
Zn等の分散粒子を生成する。これらの分散粒子は
再結晶後の粒界移動を妨げる効果があるため、微細な結
晶粒を得ることができる。しかし、過剰な添加は溶解鋳
造時に粗大な不溶性金属間化合物を生成しやすく、成形
加工時の破壊の起点となり、成形性を低下させる原因と
なる。また、Zrの過剰添加はミクロ組織を針長状にし
やすく、特定方向の破壊靭性及び疲労特性さらには成形
性を劣化させる。このため、Mn、Cr、Zr、Vそれ
ぞれの添加量は、1.0%、0.30%、0.15%、
0.15%以下、合計では1.5%以下とする。
Mn, Cr, Zr, V: These components are Al 20 Cu 2 during homogenizing heat treatment and subsequent hot rolling.
Mn 3 , Al 12 Mg 2 Cr, Al 3 Zr, Al 2 Mg
3 Dispersed particles such as Zn 3 are generated. Since these dispersed particles have an effect of preventing grain boundary movement after recrystallization, fine crystal grains can be obtained. However, excessive addition easily forms a coarse insoluble intermetallic compound during melting and casting, which becomes a starting point of fracture during molding and causes deterioration of moldability. Further, excessive addition of Zr tends to make the microstructure needle-like, and deteriorates fracture toughness and fatigue characteristics in a specific direction, and further formability. Therefore, the addition amounts of Mn, Cr, Zr, and V are 1.0%, 0.30%, 0.15%,
0.15% or less, and 1.5% or less in total.

【0019】Fe:不純物として含まれるFeは、Al
CuFe、Al12(Fe,Mn)Cu、(F
e,Mn)Al等の晶出物を生成する。これらの晶出
物は破壊靭性、疲労特性及び成形加工性に対して有害で
あり、Fe含有量が0.5%を越えると顕著に破壊靭
性、疲労特性及び成形性が低下するため、Fe含有量は
0.5%以下とする。なお、晶出物としては、Fe系以
外のAlCuMg、AlCu、MgSi等の
可溶のものがあり、これらは溶体化処理及び焼入れで十
分にAlマトリックス中に再固溶させることが望まし
い。 その他の不純物:Niは0.05%以下に制限する。
Fe: Fe contained as an impurity is Al
7 Cu 2 Fe, Al 12 (Fe, Mn) 3 Cu 2 , (F
e, Mn) Al 6 and other crystallized products are formed. These crystallized substances are harmful to the fracture toughness, fatigue properties and forming workability, and when the Fe content exceeds 0.5%, the fracture toughness, fatigue properties and formability are markedly reduced. The amount is 0.5% or less. Note that, as the crystallized substance, there are soluble substances such as Al 2 Cu 2 Mg, Al 2 Cu 2 , and Mg 2 Si other than Fe-based substances, and these are sufficiently re-formed in the Al matrix by solution treatment and quenching. It is desirable to form a solid solution. Other impurities: Ni is limited to 0.05% or less.

【0020】[0020]

【実施例】以下、本発明の実施例を説明する。 (実施例1)Mg:0.5%、Si:1.2%、Mn:
0.05%、Fe:0.15%、Cr:0.01%、N
i:0.001%、Zn:0.03%、Cu:0.03
%、Ti:0.06%、Bi:10ppm、Be:30
ppmを含み、残部Al及び不純物からなるアルミニウ
ム合金を溶解鋳造し、480mm厚の鋳塊とし、次に5
40℃×8hrの均質化熱処理を行った後、粗熱間圧延
(リバース)及び仕上げ連続熱延(4タンデム)で、
3.5mm厚の板としてコイルに巻き上げ、中間焼鈍を
行い又は行わず、冷間圧延で1.2mm厚の板とした
後、溶体化処理及び焼入れを行った。溶体化処理及び焼
入れは、連続焼鈍で400℃まで平均昇温速度300℃
/分で加熱後、550℃まで約1分間でさらに加熱した
後、強制空冷で30℃まで平均冷却速度40℃/分で冷
却した。各工程の処理条件は表1に示す。
EXAMPLES Examples of the present invention will be described below. (Example 1) Mg: 0.5%, Si: 1.2%, Mn:
0.05%, Fe: 0.15%, Cr: 0.01%, N
i: 0.001%, Zn: 0.03%, Cu: 0.03
%, Ti: 0.06%, Bi: 10 ppm, Be: 30
An aluminum alloy containing ppm and the balance Al and impurities is melt cast to form a 480 mm thick ingot, and then 5
After performing homogenizing heat treatment at 40 ° C. × 8 hr, rough hot rolling (reverse) and finish continuous hot rolling (4 tandem)
A 3.5 mm-thick plate was wound around a coil, and with or without intermediate annealing, a 1.2 mm-thick plate was cold-rolled, followed by solution treatment and quenching. Solution annealing and quenching are continuous annealing up to 400 ° C with an average heating rate of 300 ° C
After heating at 550 ° C./minute, it was further heated to 550 ° C. for about 1 minute, and then cooled to 30 ° C. by forced air cooling at an average cooling rate of 40 ° C./minute. The processing conditions of each step are shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】この板からサンプリングを行い、各材料特
性を下記要領で測定した。 ミクロ結晶粒;再結晶の粒径は、サンプリングした板材
について、L方向の結晶粒径(dL)及びLT方向の結
晶粒径(dLT)はL−LT面(表層部位を0.1mm研
磨)を、ST方向の結晶粒径(dST)はL−ST面を機
械研磨した後、電解エッチング(テトラフルオロほう
酸:水=15:400、電圧30V、溶液温度20〜3
0℃、エッチング時間60〜90秒)し、光学顕微鏡
(偏光板使用、倍率50倍)を用いて、ラインインター
セプト法(JISH0501準拠)にて評価した。 引張特性;焼入れ後の板を室温で3カ月時効後、JIS
−Z2241に準拠し、常温大気中でJIS5号試験片
を用いて、LT方向(圧延方向に対して90゜方向)に
引張速度5mm/分にて行った。
Samples were sampled from this plate, and the characteristics of each material were measured as follows. Micro-crystal grains; recrystallized grain size is the sampled plate material, L-direction crystal grain size (dL) and LT-direction crystal grain size (dLT) are on the L-LT surface (surface layer portion is polished by 0.1 mm). , The crystal grain size (dST) in the ST direction was mechanically polished on the L-ST surface and then electrolytically etched (tetrafluoroboric acid: water = 15: 400, voltage 30V, solution temperature 20 to 3).
The etching was performed at 0 ° C. for 60 to 90 seconds, and evaluated by a line intercept method (according to JIS H0501) using an optical microscope (using a polarizing plate, magnification 50 times). Tensile properties: JIS aged after quenching the quenched plate at room temperature for 3 months
In accordance with -Z2241, a JIS No. 5 test piece was used in a room temperature atmosphere at a tensile speed of 5 mm / min in the LT direction (90 ° direction with respect to the rolling direction).

【0023】リジングマークの評価;製品板よりJIS
5号試験片(長手方向が圧延方向と直角、平行部の長さ
60mm)を作製後、平行部位をバフ研磨で鏡面状態と
した。これを15%の引張変形(ケージ長さ50mm、
変形速度5mm/分)した後、平行部位の板表面の凹凸
の程度を目視観察し、リジングマークが発生した場合を
×、リジングマークの判別困難な場合を○と評価した。
Evaluation of ridging mark: JIS from product plate
A No. 5 test piece (longitudinal direction was perpendicular to the rolling direction, parallel part length 60 mm) was prepared, and the parallel part was buffed to a mirror surface. 15% tensile deformation (cage length 50mm,
After the deformation speed was 5 mm / min), the degree of unevenness on the plate surface at the parallel portion was visually observed, and when the ridging mark was generated, it was evaluated as x, and when the ridging mark was difficult to determine, it was evaluated as ◯.

【0024】表1から分かるように、サンプルの耳率が
−4%以上であったNo.1〜3及び6にはリジングマ
ークの発生がなかった。さらに再結晶粒のサイズが45
μm以下であったNo.1〜3にはオレンジピールの発
生もなかった。一方、耳率が−4%未満であったNo.
4、5にはリジングマークが発生した。
As can be seen from Table 1, the sample No. with the ear rate of -4% or more was obtained. No ridging marks were generated in 1 to 3 and 6. Furthermore, the size of recrystallized grains is 45
No. No orange peel was generated in 1 to 3. On the other hand, in the case of No.
Ridging marks were generated in Nos. 4 and 5.

【0025】[0025]

【発明の効果】本発明によれば、熱延及び続いて必要に
応じて中間焼鈍を行った後冷延し、その後溶体化及び焼
入れ処理し、ミクロ組織を等軸状再結晶粒としたAl−
Mg−Si系アルミニウム合金板をカップ状に成形加工
したときに発生する耳率を規定することで、その製品板
における耐リジングマーク性を保証することができる。
また、製品板におけるリジングマーク発生の有無を短時
間で確実に評価できるので、その評価結果を製造工程に
直ちに反映させ、耐リジングマーク性に劣るアルミニウ
ム合金板が大量に製造される事態を防止することが可能
となる。
EFFECTS OF THE INVENTION According to the present invention, Al is hot rolled and subsequently subjected to intermediate annealing if necessary, cold rolled, and then solution heat treated and quenched to obtain Al having an equiaxed recrystallized microstructure. −
By defining the ear rate that occurs when the Mg-Si-based aluminum alloy plate is formed into a cup shape, the ridging mark resistance of the product plate can be guaranteed.
Further, since it is possible to reliably evaluate the presence or absence of ridging marks on the product plate in a short time, the evaluation result is immediately reflected in the manufacturing process, and a situation in which a large amount of aluminum alloy plates with poor ridging mark resistance are manufactured is prevented. It becomes possible.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−9674(JP,A) 特開 昭56−105461(JP,A) 特開 昭63−109146(JP,A) 特表2003−518192(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 21/00 - 21/18 C22F 1/04 - 1/057 ─────────────────────────────────────────────────── --Continued front page (56) References JP-A-5-9674 (JP, A) JP-A-56-105461 (JP, A) JP-A-63-109146 (JP, A) JP 2003-518192 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 21/00-21/18 C22F 1/04-1/057

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Si:0.2〜1.8%(mass%、
以下同じ)、Mg:0.2〜1.6%を含有し、熱延及
び続いて必要に応じて中間焼鈍を行った後冷延し、その
後溶体化及び焼入れ処理されたAl−Mg−Si系アル
ミニウム合金板であり、ミクロ組織が等軸状の再結晶粒
からなり、さらに「直径40mmのポンチ(肩部半径3
mm)及びポンチとダイスの隙間とAl合金板厚の比が
1.3〜1.4の範囲のダイスを用い、しわ押え力15
0kgf、成形速度60mm/分、使用潤滑油#70
0」の条件でカップ状に成形加工したとき、カップ耳率
が−4%以上であることを特徴とする耐リジングマーク
性に優れたアルミニウム合金板。
1. Si: 0.2 to 1.8% (mass%,
The same shall apply hereinafter), Mg: 0.2-1.6%, Al-Mg-Si hot-rolled and subsequently subjected to intermediate annealing if necessary, then cold-rolled, and then solution-treated and quenched. -Based aluminum alloy plate with a microstructure consisting of equiaxed recrystallized grains, and a punch with a diameter of 40 mm (shoulder radius 3
mm) and the ratio of the gap between the punch and the die to the thickness of the Al alloy plate is 1.3 to 1.4, and the wrinkle holding force is 15
0 kgf, molding speed 60 mm / min, lubricating oil # 70 used
An aluminum alloy plate having excellent ridging mark resistance, which has a cup selvage of -4% or more when formed into a cup shape under the condition of "0".
【請求項2】 等軸状の再結晶粒の粒径が45μm以下
であることを特徴とする請求項1に記載された耐リジン
グマーク性に優れたアルミニウム合金板。
2. The grain size of equiaxed recrystallized grains is 45 μm or less.
The aluminum alloy plate having excellent resistance to ridging marks according to claim 1, wherein
【請求項3】 Al−Mg−Si系アルミニウム合金
が、さらに(1)Zn:0.005〜1.0%、Cu:
0.005〜1.0%、Ti:0.001〜0.1%の
1種又は2種以上、(2)B:1〜300ppm、B
e:0.1〜100ppmの1種又は2種、(3)
n:1.0%以下、Cr:0.3%以下、Zr:0.1
5%以下、V:0.15%以下のうちより1種又は2種
以上を合計で0.01〜1.5%、以上(1)〜(3)
のいずれか又はこれらを組み合わせて含有することを特
徴とする、請求項1又は2に記載された耐リジングマー
ク性に優れた成形加工用板材が得られるアルミニウム合
金板。
3. An Al-Mg-Si based aluminum alloy further comprises (1) Zn: 0.005-1.0%, Cu:
0.005 to 1.0%, Ti: 0.001 to 0.1%, one or more, (2) B: 1 to 300 ppm, B
e: 0.1 to 100 ppm, one or two, (3) M
n: 1.0% or less, Cr: 0.3% or less, Zr: 0.1
5% or less, V: 0.15% or less, and a total of 0.01 to 1.5% or more (1) to (3).
Any of the above or a combination thereof is contained, and an aluminum alloy plate from which a plate material for forming having excellent ridging mark resistance according to claim 1 is obtained.
【請求項4】 自動車パネル用であることを特徴とする
請求項1〜3のいずれかに記載された耐リジングマーク
性に優れた成形加工用板材が得られるアルミニウム合金
板。
4. An aluminum alloy plate for use in automobile panels, which is capable of obtaining a plate material for forming having excellent resistance to ridging marks according to any one of claims 1 to 3.
【請求項5】 Si:0.2〜1.8%、Mg:0.2
〜1.6%を含有し、熱延及び続いて必要に応じて中間
焼鈍を行った後冷延し、その後溶体化及び焼入れ処理さ
れたAl−Mg−Si系アルミニウム合金板について、
所定の加工条件でカップ状に絞り成形したときの耳率と
リジングマーク発生の有無の関係を予め明らかにしてお
き、前記Al−Mg−Si系アルミニウム合金板を前記
加工条件でカップ状に絞り成形してその耳率を測定し、
前記関係に基づいて当該Al−Mg−Si系アルミニウ
ム合金板についてリジングマーク発生の有無を評価する
ことを特徴とする、Al−Mg−Si系アルミニウム合
金板のリジングマーク発生の有無の評価方法。
5. Si: 0.2 to 1.8%, Mg: 0.2
Al-Mg-Si-based aluminum alloy plate containing ~ 1.6%, hot-rolled and subsequently subjected to intermediate annealing if necessary, cold-rolled, and then solution-treated and quenched.
Ear ratio when drawn into a cup shape under specified processing conditions
Clarify in advance the relationship between the occurrence of ridging marks and
The Al-Mg-Si based aluminum alloy plate
Under processing conditions, draw forming into a cup shape and measure its ear rate,
The Al-Mg-Si-based aluminum based on the above relationship
Evaluate the occurrence of ridging marks for aluminum alloy plates
Al-Mg-Si-based aluminum alloy
Evaluation method for the occurrence of ridging marks on the gold plate .
JP27009398A 1998-09-24 1998-09-24 Aluminum alloy plate with excellent ridging mark resistance and method for evaluating the occurrence of ridging mark Expired - Lifetime JP3498942B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27009398A JP3498942B2 (en) 1998-09-24 1998-09-24 Aluminum alloy plate with excellent ridging mark resistance and method for evaluating the occurrence of ridging mark

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27009398A JP3498942B2 (en) 1998-09-24 1998-09-24 Aluminum alloy plate with excellent ridging mark resistance and method for evaluating the occurrence of ridging mark

Publications (2)

Publication Number Publication Date
JP2000096175A JP2000096175A (en) 2000-04-04
JP3498942B2 true JP3498942B2 (en) 2004-02-23

Family

ID=17481443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27009398A Expired - Lifetime JP3498942B2 (en) 1998-09-24 1998-09-24 Aluminum alloy plate with excellent ridging mark resistance and method for evaluating the occurrence of ridging mark

Country Status (1)

Country Link
JP (1) JP3498942B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002018696A (en) * 2000-06-14 2002-01-22 Alcoa Inc Method for smoothing surface of aluminum or aluminum alloy used as aircraft part and such aircraft part
KR100527974B1 (en) * 2003-08-21 2005-11-09 현대자동차주식회사 A method for restraining ridging of Al-Mg-Si aluminum alloy sheet
KR100569454B1 (en) 2004-10-12 2006-04-07 현대자동차주식회사 Method of manufacturing al-mg-si alloy sheet
JP4515363B2 (en) * 2005-09-15 2010-07-28 株式会社神戸製鋼所 Aluminum alloy plate excellent in formability and method for producing the same
JP4899507B2 (en) * 2006-02-02 2012-03-21 日産自動車株式会社 Mold production method
KR100857681B1 (en) * 2006-12-28 2008-09-08 주식회사 포스코 method of manufacturing a ferritic stainless steel with improved ridging property
WO2009123011A1 (en) 2008-03-31 2009-10-08 株式会社神戸製鋼所 Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
JP5882380B2 (en) * 2013-04-09 2016-03-09 株式会社神戸製鋼所 Manufacturing method of aluminum alloy sheet for press forming
CN104789830B (en) * 2014-05-30 2018-01-23 安徽鑫发铝业有限公司 A kind of anti-acid aluminium alloy extrusions
JP6688828B2 (en) * 2018-03-30 2020-04-28 株式会社神戸製鋼所 Aluminum alloy plate for automobile structural member, automobile structural member and method for manufacturing aluminum alloy plate for automobile structural member

Also Published As

Publication number Publication date
JP2000096175A (en) 2000-04-04

Similar Documents

Publication Publication Date Title
JP6785772B2 (en) Highly moldable aluminum sheet for automobiles with reduced or no surface roping and its manufacturing method
EP1967599B1 (en) Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
EP0961841B1 (en) Process for producing aluminium alloy sheet
KR101974624B1 (en) Method for producing almgsi aluminum strip
KR20080014744A (en) Aluminum alloy sheet and method for manufacturing the same
EP0480402B1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
EP2239347A1 (en) Aluminum alloy sheet for motor vehicle and process for producing the same
CA2588046C (en) Aluminum alloy sheet and method for manufacturing the same
WO2015155911A1 (en) High-strength aluminum alloy plate having exceptional bendability and shape fixability, and method for manufacturing same
JP3498942B2 (en) Aluminum alloy plate with excellent ridging mark resistance and method for evaluating the occurrence of ridging mark
JP3919315B2 (en) Al-Mg-Si-based aluminum alloy sheet for forming with excellent surface properties
EP0990058B1 (en) Process of producing heat-treatable aluminum alloy sheet
JP4865174B2 (en) Manufacturing method of aluminum alloy sheet with excellent bending workability and drawability
JP3491819B2 (en) Method for producing aluminum alloy sheet having excellent surface properties after forming
JP4186240B2 (en) Al-Mg-Si aluminum alloy sheet for forming
JP2003171726A (en) Aluminum alloy sheet having excellent bending workability and corrosion resistance, and production method therefor
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JP3226259B2 (en) Aluminum alloy plate excellent in formability, bake hardenability and corrosion resistance and method for producing the same
JP3498943B2 (en) Al-Mg-Si-based aluminum alloy sheet for forming with excellent surface properties
JPH10259464A (en) Production of aluminum alloy sheet for forming
JPH07166285A (en) Hardened al alloy sheet by baking and production thereof
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JP2003328095A (en) Production method for aluminum alloy plate for forming
JPH09111429A (en) Production of heat treated type aluminum alloy free from generation of stretcher strain mark at the time of final forming
JPH10310835A (en) Aluminum alloy sheet excellent in strength, stretcher strain mark resistance and bendability and its production

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

EXPY Cancellation because of completion of term