JP3498943B2 - Al-Mg-Si-based aluminum alloy sheet for forming with excellent surface properties - Google Patents

Al-Mg-Si-based aluminum alloy sheet for forming with excellent surface properties

Info

Publication number
JP3498943B2
JP3498943B2 JP02817199A JP2817199A JP3498943B2 JP 3498943 B2 JP3498943 B2 JP 3498943B2 JP 02817199 A JP02817199 A JP 02817199A JP 2817199 A JP2817199 A JP 2817199A JP 3498943 B2 JP3498943 B2 JP 3498943B2
Authority
JP
Japan
Prior art keywords
aluminum alloy
rolling
macrostructure
plate
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP02817199A
Other languages
Japanese (ja)
Other versions
JP2000226629A (en
Inventor
学 中井
武比古 江藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP02817199A priority Critical patent/JP3498943B2/en
Publication of JP2000226629A publication Critical patent/JP2000226629A/en
Application granted granted Critical
Publication of JP3498943B2 publication Critical patent/JP3498943B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、屋根、インテリ
ア、カーテンウオール等の建材、器物、電気部品、光学
機器、自動車、鉄道車両及び航空機等の輸送機器、一般
機械部品等の用途に適する、成形加工後の表面性状に優
れる成形加工用Al−Mg−Si系アルミニウム合金板
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is suitable for use in building materials such as roofs, interiors and curtain walls, articles, electrical parts, optical devices, transportation equipment such as automobiles, railway vehicles and aircraft, and general mechanical parts. The present invention relates to an Al-Mg-Si based aluminum alloy plate for forming, which has excellent surface properties after processing.

【0002】[0002]

【従来の技術】6000系(Al−Mg−Si系)アル
ミニウム合金板は、耐食性及び常温での成形加工性が比
較的優れ、人工時効処理により高強度が得られることか
ら、成形性あるいは軽量化、薄肉化が要求される用途に
適している。Al−Mg−Si系合金板は、通常、均質
化処理後、熱間圧延し、続いて必要に応じて中間焼鈍し
た後、冷間圧延を施して所定厚の板材とし、これに溶体
化焼入れを施し、さらにその後必要に応じてスキンパ
ス、ストレッチ等を施して製造される。
2. Description of the Related Art A 6000 series (Al-Mg-Si series) aluminum alloy plate has relatively excellent corrosion resistance and formability at room temperature, and high strength can be obtained by artificial aging treatment. Suitable for applications that require thinning. An Al-Mg-Si alloy sheet is usually homogenized, hot-rolled, then annealed if necessary, and then cold-rolled to a plate having a predetermined thickness, which is solution-quenched. And then, if necessary, skin pass, stretch and the like.

【0003】Al−Mg−Si系合金板に対し成形加工
を行ったとき、特開平7−228956号公報又は特開
平8−232052号公報に記載されているように、板
表面にリジングマークと呼ばれる表面荒れが発生するこ
とが問題となっている。リジングマークとは成形加工し
たとき板表面に新たに生じる圧延方向に対して平行な筋
状の凹凸であり、特に圧延方向に対して90゜方向への
加工度が大きいとき、例えば引張加工、絞り加工、しご
き加工を行った場合、顕著に生じる。このリジングマー
クが発生すると、表面が極めて美麗であることが要求さ
れるインテリア、カメラケース、自動車用外板パネル等
の用途には外観不良として使用できず、また、リジング
マークは塗装を行った場合特に目立つようになるため、
成形加工後気付かれないまま塗装工程に進み、塗装後に
初めて認識されることもある。つまり製品になって初め
て現れることがあるという困った特性を持っている。
When an Al-Mg-Si alloy plate is formed, it is called a ridging mark on the surface of the plate as described in JP-A-7-228956 or JP-A-8-232052. The occurrence of surface roughness is a problem. The ridging mark is a stripe-shaped unevenness that is newly formed on the plate surface when it is formed, and is parallel to the rolling direction. Especially, when the degree of working in the 90 ° direction is large with respect to the rolling direction, for example, tensioning or drawing. When processing or ironing is performed, it occurs remarkably. When this ridging mark occurs, it cannot be used as a poor appearance for applications such as interiors, camera cases, and outer panel panels for automobiles where the surface is required to be extremely beautiful. Because it becomes particularly noticeable,
Sometimes it goes to the painting process without being noticed after the molding process, and it may be recognized only after painting. In other words, it has the troublesome characteristic that it may appear only after it is made into a product.

【0004】前記特開平7−228956号公報及び特
開平8−232052号公報は、Al−Mg−Si系合
金板材についてリジングマークの発生を防止する方法に
関し、前者が、均質化処理後350〜450℃の温度ま
で冷却して熱間圧延を開始し、200〜300℃の温度
で熱間圧延を終了し、必要に応じて中間焼鈍を行った
後、冷間圧延、溶体化焼入れを施すというもの、後者
が、均質化処理後450℃以下の温度まで冷却して熱間
圧延を開始し、200〜350℃の温度で熱間圧延を終
了し、必要に応じて350〜420℃の中間焼鈍を行っ
た後、冷間圧延、溶体化焼入れ、さらに最終加熱処理を
施すというものであり、いずれも熱間圧延温度を低めに
設定し、同時にその他の各工程の処理条件も厳密に制御
し、微細かつ結晶学的方位がランダムな結晶粒を生じさ
せることにより、リジングマークの発生を防止しようと
いうものである。
The above-mentioned JP-A-7-228956 and JP-A-8-232052 relate to a method for preventing the occurrence of ridging marks in an Al-Mg-Si alloy plate material, the former being 350 to 450 after homogenization treatment. Cooling to a temperature of ℃, starting hot rolling, ending hot rolling at a temperature of 200 to 300 ° C., performing intermediate annealing as necessary, and then cold rolling and solution hardening. , The latter is cooled to a temperature of 450 ° C. or lower after the homogenization treatment, starts hot rolling, finishes hot rolling at a temperature of 200 to 350 ° C., and performs intermediate annealing of 350 to 420 ° C. as necessary. After that, cold rolling, solution quenching, and final heat treatment are performed.In each case, the hot rolling temperature is set low, and at the same time, the processing conditions of the other steps are strictly controlled, and And crystallographic -Position by generating a random crystal grains, is that you try to prevent the occurrence of ridging marks.

【0005】しかし、特開平7−228956号公報で
はリジングマークが発生しなかったとされるプレス加工
の変形量の開示がなく、特開平8−232052号公報
ではプレス加工のシミュレーションとして高々2%の引
張変形が行われたに過ぎない(つまり、高々2%の引張
変形に相当する成形加工により発生するリジングマーク
を防止することが意図されているに過ぎない)。しか
も、これらの先行技術はリジングマークが発生しない板
材自体の構成を解明したものではないため、当該方法に
従って製造した板材が確かにリジングマークが発生しな
いかどうかは、実際にこの板材をプレス成形するまで
(あるいはさらに塗装して製品にするまで)分からない
という問題が残っている。
However, Japanese Unexamined Patent Publication No. 7-228956 does not disclose the amount of deformation of press working which is said to have caused no ridging marks, and Japanese Unexamined Patent Publication No. 8-232052 discloses a tension of 2% at most as a simulation of press working. Deformation has only taken place (ie, it is only intended to prevent ridging marks caused by the forming process corresponding to a tensile deformation of at most 2%). Moreover, since these prior arts do not elucidate the constitution of the plate material itself in which the ridging mark does not occur, the plate material manufactured according to the method is actually press-molded to see if the ridging mark does not occur. There is still the problem of not knowing until (or until further painting into a product).

【0006】[0006]

【発明が解決しようとする課題】一方、地球環境問題の
高まりの中で、Al−Mg−Si系アルミニウム合金に
おいても製造工程簡略化による省エネルギー化が検討さ
れている。具体的には荒鈍と呼ばれる熱間圧延後の中間
焼鈍の省略であるが、中間焼鈍を省略することでリジン
グマークが発生しやすく、成形後の板表面性状が劣化す
るという問題があった。本発明者らは、Al−Mg−S
i系アルミニウム合金の中間焼鈍省略材について、リジ
ングマークの発生を防止する方法を検討する過程で、熱
間圧延終了温度を比較的高温度に設定したとき、リジン
グマークを防止できることを見いだした。また、そのよ
うにして製造されたリジングマークが発生しない板材が
特定の内部組織状態を示すことを見いだし、さらに、A
l−Mg−Si系アルミニウム合金がこの組織状態を示
すとき、上記の中間焼鈍省略材に限らず、中間焼鈍材
(中間焼鈍を省略しなかったもの)、熱間圧延材(熱間
圧延まま材)、焼鈍材(O材)、時効処理材(T5、T
6材)等でもリジングマークの発生を防止できることを
見いだし、本発明を完成した。
On the other hand, energy saving by simplifying the manufacturing process has been studied for Al-Mg-Si based aluminum alloys as the global environmental problems increase. Specifically, it is an omission of intermediate annealing after hot rolling called roughening, but there is a problem that ridging marks are easily generated by omitting the intermediate annealing and the sheet surface property after forming is deteriorated. We have found that Al-Mg-S
In the process of studying the method of preventing the occurrence of ridging marks in the i-type aluminum alloy intermediate annealing omitted material, it was found that the ridging marks can be prevented when the hot rolling end temperature is set to a relatively high temperature. It was also found that the plate material thus produced, which does not generate ridging marks, exhibits a specific internal structure state.
When the 1-Mg-Si-based aluminum alloy exhibits this microstructure state, it is not limited to the above-mentioned intermediate annealing omitted material, but also an intermediate annealed material (one in which intermediate annealing is not omitted), a hot-rolled material (as-hot-rolled material). ), Annealed material (O material), aging treated material (T5, T
The present invention has been completed by discovering that ridging marks can be prevented even with 6 materials).

【0007】[0007]

【課題を解決するための手段】本発明に係る表面性状に
優れる成形加工用Al−Mg−Si系アルミニウム合金
板は、Si:0.2〜1.8%、Mg:0.2〜1.6
%を含有し、圧延方向に伸張したマクロ組織を有するA
l−Mg−Si系アルミニウム合金板において、板厚1
/4部位で測定したマクロ組織のサイズが、長さ(圧延
方向)3mm未満、幅(圧延直角方向)0.6mm未満
であり、マクロ組織同士の間隔(圧延直角方向)が0.
6mm以上であり、該マクロ組織が等軸状の再結晶粒で
構成されていることを特徴とする。この発明において、
マクロ組織のサイズが板中心部より板表面部で小さく、
間隔が板中心部より板表面部で大きくなっていることが
望ましい。また、板厚1/4部位で測定した値を用いる
代わりに、板厚表面部位又は板中心部位で測定した値を
用いることもできる。この場合、板表面部位で長さ2m
m未満、幅0.2mm未満、間隔1.0mm以上、板中
心部位で長さ10mm未満、幅1mm未満、間隔0.4
mm以上である。特に板表面部位、板厚1/4部位及び
板中心部位の全てにおいて上記のサイズ及び間隔を満足
するマクロ組織であることが望ましい。
The Al-Mg-Si-based aluminum alloy plate for forming having excellent surface properties according to the present invention has Si: 0.2 to 1.8% and Mg: 0.2 to 1. 6
%, And has a macrostructure elongated in the rolling direction A
1-Mg-Si based aluminum alloy plate, plate thickness 1
The size of the macrostructure measured at the / 4 position is less than 3 mm in length (rolling direction) and less than 0.6 mm in width (direction perpendicular to rolling), and the interval between macrostructures (direction perpendicular to rolling) is 0.
It is 6 mm or more, and the macrostructure is constituted by equiaxed recrystallized grains. In this invention,
The size of the macrostructure is smaller on the plate surface than in the plate center,
It is desirable that the distance is larger on the plate surface than in the plate center. Further, instead of using the value measured at the plate thickness 1/4 portion, the value measured at the plate thickness surface portion or the plate center portion can be used. In this case, the length of the plate surface is 2m
less than m, width less than 0.2 mm, spacing 1.0 mm or more, plate central portion less than length 10 mm, width less than 1 mm, spacing 0.4
mm or more. In particular, it is desirable that the macrostructure satisfy the above size and spacing in all of the plate surface part, the plate thickness 1/4 part and the plate center part.

【0008】ここで、マクロ組織とは、表面を研磨した
後、電気化学的あるいは化学的にエッチングすることに
より、通常、肉眼又は10倍以下程度の拡大で容易に観
察できる組織である。各マクロ組織は互いに方位差が小
さい等軸状の再結晶粒(ミクロ粒)の集団からなり、特
に本発明で課題とするリジングマークに関する場合に
は、これら等軸状の再結晶粒はキューブ方位あるいはキ
ューブ方位に近い方位を有する。各マクロ組織は、熱間
圧延及び/又は冷間圧延後は、さらには溶体化処理後に
おいて圧延方向に伸長した形状を有する。また、本発明
で等軸状の再結晶粒とは、板面に平行な面及び圧延方向
に垂直な面の両方において、観察される再結晶粒の平均
アスペクト比が1〜3の範囲内にあることを意味する。
具体的にいえば、次のようになる。 1≦dL/dLT≦3 1≦dL/dST≦3 dL ;板の長さ方向に測定した粒径 dLT;板の幅方向に測定した粒径 dST;板厚方向に測定した粒径
Here, the macrostructure is a structure that can be easily observed with the naked eye or with a magnification of about 10 times or less by polishing the surface and then electrochemically or chemically etching. Each macrostructure is composed of a group of equiaxed recrystallized grains (micrograins) having a small misorientation with each other, and particularly in the case of the ridging mark which is a subject of the present invention, these equiaxed recrystallized grains have a cube orientation. Alternatively, it has an orientation close to the cube orientation. Each macrostructure has a shape elongated in the rolling direction after hot rolling and / or cold rolling and further after solution treatment. Further, in the present invention, the equiaxed recrystallized grains, in both the plane parallel to the plate surface and the plane perpendicular to the rolling direction, the average aspect ratio of the recrystallized grains observed is within the range of 1 to 3. Means there is.
Specifically, it is as follows. 1 ≦ dL / dLT ≦ 3 1 ≦ dL / dST ≦ 3 dL; particle size measured in the length direction of the plate dLT; particle size measured in the width direction of the plate dST; particle size measured in the plate thickness direction

【0009】[0009]

【発明の実施の形態】本発明に係るAl−Mg−Si系
合金板は、例えば、均質化処理後、熱間圧延し、続いて
必要に応じて中間焼鈍を施した後、冷間圧延して所定厚
の板材とした後、これに溶体化焼入れを施して製造され
るが、特に中間焼鈍を省略する場合には、熱間圧延終了
温度を高めに設定し、再結晶させる必要がある。この場
合、再結晶粒形状は、等軸状とすることが望ましい。熱
延方向に伸長した熱間ファイバーあるいは伸長状の再結
晶粒が残存すると、これらの組織は溶体化処理及び焼入
れ後、あるいは冷間圧延、溶体化処理及び焼入れ後にお
いて、圧延方向に伸長したマクロ組織となる。しかし、
等軸状の再結晶粒が得られる状態で熱間圧延を終了させ
ることにより溶体化処理及び焼入れ後、あるいは冷間圧
延、溶体化処理及び焼入れ後において、板表層部位から
中心部位でのマクロ組織の形状は、長さ(圧延方向)及
び幅(圧延直角方向)が小さくなり、かつ間隔(圧延直
角方向)が広くなり、板厚1/4部位において、長さ3
mm未満、幅0.6mm未満、間隔0.6mm以上とな
り、製品板成形時に発生するリジングマークを防止する
ことができるようになる。板厚1/4部位を選択したの
は、その板の平均的なマクロ組織サイズ及び間隔が得ら
れると考えたためであるが、板表面部位又は板中心部位
で測定した値を用いても、ほぼ同等の結果を得ることが
できる。
BEST MODE FOR CARRYING OUT THE INVENTION The Al-Mg-Si alloy sheet according to the present invention is, for example, hot-rolled after homogenization treatment, subsequently subjected to intermediate annealing if necessary, and then cold-rolled. It is manufactured by subjecting it to a plate material having a predetermined thickness and then subjecting it to solution quenching. Especially when intermediate annealing is omitted, it is necessary to set the hot rolling end temperature to a higher temperature and recrystallize it. In this case, the recrystallized grain shape is preferably equiaxial. If hot fibers stretched in the hot rolling direction or stretched recrystallized grains remain, these structures will be macro-stretched in the rolling direction after solution heat treatment and quenching, or after cold rolling, solution heat treatment and quenching. Become an organization. But,
After solution heat treatment and quenching by terminating hot rolling in a state where equiaxed recrystallized grains are obtained, or after cold rolling, solution treatment and quenching, the macrostructure from the plate surface layer portion to the central portion The shape has a smaller length (rolling direction) and a width (rolling right-angle direction) and a wider interval (rolling right-angle direction), and has a length of 3 mm at the plate thickness 1/4 part.
Since the width is less than mm, the width is less than 0.6 mm, and the interval is 0.6 mm or more, it is possible to prevent a ridging mark generated during molding of a product plate. The reason for selecting the plate thickness 1/4 region is that it was thought that the average macrostructure size and spacing of the plate could be obtained, but even if the values measured at the plate surface region or plate center region were used, Equivalent results can be obtained.

【0010】このマクロ組織は、圧延方向に対しほぼ平
行に伸長した島状模様又は筋模様として観察される(観
察の具体的方法は後述)。図1のNo.4は後述する表
1のNo.4のマクロ組織(板厚1/4部位)を示す金
属組織写真であり、マクロ組織は伸長した島状模様とし
て観察され(暗く写っている部分、写真の横及び下の線
分はマクロ組織の長さ及び幅を示す)、マクロ組織の内
外にミクロ結晶粒が観察される。また、図1のNo.5
は後述する表1のNo.5のマクロ組織(板厚1/4部
位)を示す金属組織写真であり、マクロ組織は長さが大
きいため筋模様として観察され(写真の横の線分はマク
ロ組織の幅を示す)、マクロ組織の内外にミクロ組織が
観察される。圧延方向に伸張したマクロ組織を有するア
ルミニウム合金板が、特に圧延直角方向に大きい変形を
受けると、各マクロ組織はあたかも単結晶粒のごとく変
形し、周囲の組織に比べて大きな滑り変形を生じる。こ
のため、成形加工後の板表面にはリジングマークと称さ
れる圧延方向に凹凸状の段差が生じるものと考えられ
る。従って、マクロ組織が小さければ滑り変形は小さく
なり、かつ間隔が広くなるため、リジングマークの発生
を防止することができる。
This macrostructure is observed as an island pattern or a streak pattern that extends substantially parallel to the rolling direction (a specific method of observation will be described later). No. 1 in FIG. No. 4 of Table 1 described later. 4 is a metallographic photograph showing a macrostructure of 4 (1/4 plate thickness portion), and the macrostructure is observed as an elongated island pattern (dark areas, horizontal and bottom line segments in the photograph indicate macrostructures). Micrograins are observed inside and outside the macrostructure). In addition, No. 1 in FIG. 5
No. in Table 1 described later. 5 is a metallographic photograph showing the macrostructure of 5 (sheet thickness 1/4 site), and the macrostructure is observed as a streak pattern because of its large length (the horizontal line segment in the photo indicates the width of the macrostructure). Microstructure is observed inside and outside the tissue. When an aluminum alloy plate having a macrostructure elongated in the rolling direction is greatly deformed especially in the direction perpendicular to the rolling direction, each macrostructure is deformed as if it were a single crystal grain, and a large slip deformation is generated as compared with the surrounding structure. Therefore, it is considered that an uneven step called a ridging mark is formed in the rolling direction on the surface of the plate after forming. Therefore, if the macrostructure is small, the sliding deformation becomes small and the interval becomes wide, so that the occurrence of ridging marks can be prevented.

【0011】一方、板材を高い温度で熱間圧延した場
合、冷間圧延率が低い場合、溶体化温度が高すぎる場合
等で再結晶粒は粗大化する傾向にある。粗大な再結晶粒
ができると成形加工により板材表面にオレンジピールが
生じやすいため、再結晶粒の粒径は板表面部において4
5μm以下になるようにするのが望ましい。そのために
は、例えば冷間圧延の冷延率を高めに設定し、続く溶体
化処理時の加熱速度を速くして微細な再結晶粒が得られ
るようにするのがよい。以上により、成形加工時にリジ
ングマークさらにはオレンジピール等が改善さらには防
止でき、表面性状に優れる成形加工用板材を提供するこ
とができる。
On the other hand, when the plate material is hot-rolled at a high temperature, the cold-rolling ratio is low, the solution temperature is too high, etc., the recrystallized grains tend to become coarse. If coarse recrystallized grains are formed, orange peel is likely to occur on the surface of the plate material due to the forming process.
It is desirable that the thickness be 5 μm or less. For that purpose, for example, the cold rolling rate of cold rolling is set to a high value, and the heating rate in the subsequent solution treatment is increased so that fine recrystallized grains can be obtained. As described above, it is possible to improve and prevent ridging marks, orange peels, and the like during molding, and to provide a plate material for molding having excellent surface properties.

【0012】次に、上記の金属学的組織を得るための好
ましい製造条件について説明する。 熱間圧延:粗熱間圧延及び仕上げ熱間圧延を通じて、圧
延開始温度を均熱温度以下(例えば470〜540
℃)、圧延終了温度を350〜450℃と高めに設定
し、ロール通板速度は大きい方がよい。これにより、熱
間圧延終了時に熱延方向に伸長した熱間ファイバーある
いは伸長状の再結晶粒ではなく、等軸状の再結晶粒が得
られ、最終製品板において、当該材の板表面部位〜板中
心部位のマクロ組織を前記の形態(サイズ及び間隔)に
することが可能となる。熱間圧延終了温度は高い方が望
ましい。熱間圧延終了温度が350℃よりも低いと、熱
間圧延終了時に熱延方向に伸長した熱間ファイバーある
いは伸長状の再結晶粒が残存するため、最終製品板での
マクロ組織は大きくなりかつ間隔が狭くなるため、上記
のマクロ組織の形態を得ることができなくなる。また、
熱間圧延終了温度が450℃を超えると、粗大な再結晶
粒が熱間圧延終了時に生じてしまい、最終製品でのオレ
ンジピールの原因となる。なお、熱間圧延後に中間焼鈍
を最終溶体化処理前に行う場合には、最終製品で十分に
微細な再結晶粒が得られるため、熱間圧延終了温度は4
50℃を超えても問題はない。
Next, preferable manufacturing conditions for obtaining the above metallurgical structure will be described. Hot rolling: Through rough hot rolling and finish hot rolling, the rolling start temperature is equal to or lower than the soaking temperature (for example, 470 to 540).
It is preferable that the rolling end temperature is set to a high value such as 350 to 450 ° C. and the rolling speed is high. Thereby, instead of the hot fibers or elongated recrystallized grains elongated in the hot rolling direction at the end of hot rolling, equiaxed recrystallized grains are obtained, and in the final product plate, the plate surface portion of the material ~ It becomes possible to make the macrostructure of the plate central portion into the above-mentioned form (size and interval). A higher hot rolling finish temperature is desirable. If the hot rolling end temperature is lower than 350 ° C., the hot fibers stretched in the hot rolling direction or elongated recrystallized grains remain at the end of the hot rolling, so that the macrostructure in the final product sheet becomes large and Since the interval becomes narrow, it becomes impossible to obtain the morphology of the above macro structure. Also,
When the hot rolling finish temperature exceeds 450 ° C., coarse recrystallized grains are generated at the end of hot rolling, which causes orange peel in the final product. When the intermediate annealing is performed after the hot rolling and before the final solution treatment, sufficiently fine recrystallized grains can be obtained in the final product, so that the hot rolling end temperature is 4
There is no problem even if it exceeds 50 ° C.

【0013】中間焼鈍:上記の形態のマクロ組織を安定
的に得るために、熱間圧延終了後に中間焼鈍を行っても
よい。代表的な中間焼鈍条件は、保持条件:500〜5
80℃で10秒〜10分、加熱速度:30℃/分〜10
00℃/秒、冷却速度:50℃まで10℃/分以上であ
る。加熱には、バッチ炉の他に加熱速度を大きくするた
め、硝石炉、連続焼鈍炉、誘導加熱炉等を用いてもよ
い。 冷間圧延:最終製品板(最終溶体化処理及び焼入れ後)
の再結晶粒の粒径を45μm以下とするため、冷間圧延
率は50%以上が望ましい。なお、上記の中間焼鈍を行
った場合には、固溶度が高く、また室温時効が進み、冷
間圧延での加工硬化度が高くなるため、冷延率は30%
以上で十分である。 溶体化処理及び焼入れ:好ましい溶体化処理条件は、4
00℃までの加熱速度は30℃/分以上、400〜53
0℃を10℃/分以上、保持条件:500〜580℃×
10秒〜10分である。ミクロ組織は微細な等軸状の再
結晶粒となる。また個々のマクロ組織も細かくなる。加
熱には加熱速度を大きくするため、硝石炉、連続焼鈍
炉、誘導加熱炉等を用いてもよい。焼入れは保持温度か
ら30℃までを30℃/分以上の冷却速度で行うか、保
持温度から70〜140℃の温度に30℃/分以上の冷
却速度で行い、そのまま70〜140℃の温度で0.5
〜48時間の間保持してもよい。
Intermediate Annealing: In order to stably obtain the above-described macrostructure, intermediate annealing may be performed after the hot rolling is completed. Typical intermediate annealing conditions are holding conditions: 500 to 5
10 seconds to 10 minutes at 80 ° C, heating rate: 30 ° C / minute to 10 minutes
00 ° C / sec, cooling rate: 10 ° C / min or more up to 50 ° C. For heating, in addition to a batch furnace, in order to increase the heating rate, a glass stone furnace, a continuous annealing furnace, an induction heating furnace or the like may be used. Cold rolling: Final product plate (after final solution heat treatment and quenching)
Since the grain size of the recrystallized grains is set to 45 μm or less, the cold rolling rate is preferably 50% or more. When the above-mentioned intermediate annealing is performed, the solid solubility is high, the room temperature aging is advanced, and the work hardening degree in the cold rolling is high. Therefore, the cold rolling rate is 30%.
The above is sufficient. Solution heat treatment and quenching: Preferred solution heat treatment conditions are 4
Heating rate up to 00 ° C is 30 ° C / min or more, 400 to 53
0 ° C at 10 ° C / min or more, holding condition: 500 to 580 ° C x
10 seconds to 10 minutes. The microstructure becomes fine equiaxed recrystallized grains. Also, the individual macro organization becomes finer. For heating, in order to increase the heating rate, a glass stone furnace, a continuous annealing furnace, an induction heating furnace or the like may be used. Quenching is performed from the holding temperature to 30 ° C. at a cooling rate of 30 ° C./min or more, or from the holding temperature to a temperature of 70 to 140 ° C. at a cooling rate of 30 ° C./min or more, and at the temperature of 70 to 140 ° C. as it is. 0.5
It may be held for up to 48 hours.

【0014】一方、成分組成の面でいえば、本発明は、
Si:0.2〜1.8%、Mg:0.2〜1.6%を含
有し、残部Alと不可避不純物からなるアルミニウム合
金のほか、必要に応じて、さらにZn:0.005〜
1.0%、Cu:0.005〜1.0%、Ti:0.0
01〜0.1%、B:1〜300ppm、Be:0.
1〜100ppm、Mn:1.0%以下、Cr:0.
3%以下、Zr:0.15%以下、V:0.15%以下
のうちから1種又は2種以上を合計で0.01〜1.5
%、のいずれか又はこれらを組み合わせて含有するアル
ミニウム合金など、Si:0.2〜1.8%、Mg:
0.2〜1.6%を含有するAl−Mg−Si系アルミ
ニウム合金全てに適用し得る。Al−Mg−Si系合金
の組成を上記のように規定した理由は下記のとおりであ
る。
On the other hand, in terms of composition, the present invention is
In addition to an aluminum alloy containing Si: 0.2 to 1.8%, Mg: 0.2 to 1.6% and the balance Al and unavoidable impurities, Zn: 0.005 to 0.005 as necessary.
1.0%, Cu: 0.005-1.0%, Ti: 0.0
01 to 0.1%, B: 1 to 300 ppm, Be: 0.
1 to 100 ppm, Mn: 1.0% or less, Cr: 0.
0.01% to 1.5% in total of 3% or less, Zr: 0.15% or less, V: 0.15% or less, or one or more types.
%, Or an aluminum alloy containing a combination thereof, Si: 0.2 to 1.8%, Mg:
It can be applied to all Al-Mg-Si based aluminum alloys containing 0.2 to 1.6%. The reason for defining the composition of the Al-Mg-Si alloy as described above is as follows.

【0015】Mg:MgはSiとともに強度を付与する
元素であるが、0.2%未満では人工時効で十分な強度
が得られず、一方、1.6%を越えると成形性が低下す
る。従って、Mg含有量は0.2〜1.6%の範囲とす
る。 Si:SiはMgとともに強度を付与する元素である
が、0.2%未満では人工時効で十分な強度が得られ
ず、一方、1.8%を越えると伸びが低くなり、成形性
が低下する。従って、Si含有量は0.2〜1.8%の
範囲とする。なお、人工時効で高い強度を得るには、M
gとSiとの含有量の割合を、Si/Mg≧0.65と
することが望ましい。
Mg: Mg is an element that imparts strength together with Si, but if it is less than 0.2%, sufficient strength cannot be obtained by artificial aging, while if it exceeds 1.6%, the formability deteriorates. Therefore, the Mg content is in the range of 0.2 to 1.6%. Si: Si is an element that gives strength together with Mg, but if it is less than 0.2%, sufficient strength cannot be obtained by artificial aging, while if it exceeds 1.8%, the elongation becomes low and the formability deteriorates. To do. Therefore, the Si content is set to the range of 0.2 to 1.8%. In order to obtain high strength by artificial aging, M
It is desirable that the content ratio of g and Si be Si / Mg ≧ 0.65.

【0016】Zn:Znは人工時効時においてMgZn
を微細かつ高密度に析出させ高い強度を実現させる。
ただし、0.005%未満では十分な強度が得られず、
一方1.0%を越えると耐食性が顕著に低下するため、
含有量は0.005〜1.0%の範囲とする。 Cu:Cuは人工時効時にMgSiを微細にかつ高密
度に析出させ、高い強度を実現させる。ただし、0.0
05%未満では効果がなく、一方、1.0%を越えると
耐食性及び溶接性が顕著に低下するため、含有量は0.
005〜1.0%の範囲とする。 Ti:Tiは鋳塊の結晶粒を微細化し、成形性を向上さ
せるために添加する元素であるが、0.001%未満で
は効果がなく、一方、0.1%を越えて添加されると粗
大な晶出物を形成し、成形性を低下させる。このため、
Ti含有量は0.001〜0.1%の範囲とする。
Zn: Zn is MgZn during artificial aging
2 is finely and densely deposited to realize high strength.
However, if less than 0.005%, sufficient strength cannot be obtained,
On the other hand, if it exceeds 1.0%, the corrosion resistance is significantly reduced.
The content is in the range of 0.005 to 1.0%. Cu: Cu precipitates Mg 2 Si finely and at high density during artificial aging, and realizes high strength. However, 0.0
If it is less than 05%, it has no effect, while if it exceeds 1.0%, the corrosion resistance and weldability are remarkably reduced, so the content is less than 0.1%.
The range is 005 to 1.0%. Ti: Ti is an element added for refining the crystal grains of the ingot and improving the formability, but if it is less than 0.001%, it has no effect, while if it exceeds 0.1%, it is added. Coarse crystallized products are formed and the formability is reduced. For this reason,
The Ti content is in the range of 0.001 to 0.1%.

【0017】B:BはTiと同様に鋳塊の結晶粒を微細
化し、成形性を向上させるために添加する合金である
が、1ppm未満の添加では効果がなく、300ppm
を越えて含有されると粗大な晶出物を形成し、成形性を
低下させる。このため、B含有量は1〜300ppmの
範囲とする。 Be:Beは空気中におけるアルミニウム溶湯の再酸化
を防止するため、必要があれば0.1ppm以上含有さ
せる。しかし、100ppmを越えると材料硬度が増大
し成形性が低下するため、Be含有量は0.1〜100
ppmの範囲とする。
B: B is an alloy added in order to refine the crystal grains of the ingot and improve the formability like Ti, but if it is added in an amount of less than 1 ppm, B has no effect, and 300 ppm is added.
If it is contained in an amount exceeding the above range, a coarse crystallized substance is formed and the formability is deteriorated. Therefore, the B content is in the range of 1 to 300 ppm. Be: Be is contained in an amount of 0.1 ppm or more, if necessary, in order to prevent reoxidation of the molten aluminum in the air. However, when the content exceeds 100 ppm, the material hardness increases and the formability decreases, so the Be content is 0.1 to 100.
The range is ppm.

【0018】Mn、Cr、Zr、V:これらの成分は均
質化熱処理時及びその後の熱間圧延時にAl20Cu
Mn、Al12MgCr、AlZr、AlMg
Zn等の分散粒子を生成する。これらの分散粒子は
再結晶後の粒界移動を妨げる効果があるため、微細な結
晶粒を得ることができる。しかし、過剰な添加は溶解鋳
造時に粗大な不溶性金属間化合物を生成しやすく、成形
加工時の破壊の起点となり、成形性を低下させる原因と
なる。また、Zrの過剰添加はミクロ組織を針長状にし
やすく、特定方向の破壊靭性及び疲労特性さらには成形
性を劣化させる。このため、Mn、Cr、Zr、Vそれ
ぞれの添加量は、1.0%、0.30%、0.15%、
0.15%以下とする。
Mn, Cr, Zr, V: These components are Al 20 Cu 2 during homogenizing heat treatment and subsequent hot rolling.
Mn 3 , Al 12 Mg 2 Cr, Al 3 Zr, Al 2 Mg
3 Dispersed particles such as Zn 3 are generated. Since these dispersed particles have an effect of preventing grain boundary movement after recrystallization, fine crystal grains can be obtained. However, excessive addition easily forms a coarse insoluble intermetallic compound during melting and casting, which becomes a starting point of fracture during molding and causes deterioration of moldability. Further, excessive addition of Zr tends to make the microstructure needle-like, and deteriorates fracture toughness and fatigue characteristics in a specific direction, and further formability. Therefore, the addition amounts of Mn, Cr, Zr, and V are 1.0%, 0.30%, 0.15%,
0.15% or less.

【0019】Fe:不純物として含まれるFeは、Al
CuFe、Al12(Fe,Mn)Cu、(F
e,Mn)Al等の晶出物を生成する。これらの晶出
物は破壊靭性及び疲労特性に対して有害であり、Fe含
有量が0.5%を越えると顕著に破壊靭性、疲労特性及
び成形性が低下するため、Fe含有量は0.5%以下と
する。なお、晶出物としては、Fe系以外のAlCu
Mg、AlCu、MgSi等の可溶のものがあ
り、これらは溶体化処理及び焼入れで十分にAlマトリ
ックス中に再固溶させることが望ましい。 その他の不純物:Niは0.05%以下に制限する。
Fe: Fe contained as an impurity is Al
7 Cu 2 Fe, Al 12 (Fe, Mn) 3 Cu 2 , (F
e, Mn) Al 6 and other crystallized products are formed. These crystallized substances are harmful to the fracture toughness and fatigue characteristics, and when the Fe content exceeds 0.5%, the fracture toughness, the fatigue characteristics and the formability are remarkably reduced. 5% or less. The crystallized substance is Al 2 Cu other than Fe-based.
2 Mg, Al 2 Cu 2 , Mg 2 Si, and the like are soluble, and it is desirable that these be sufficiently re-dissolved in the Al matrix by solution treatment and quenching. Other impurities: Ni is limited to 0.05% or less.

【0020】[0020]

【実施例】以下、本発明の実施例を説明する。 Mg:0.55%、Si:1.2%、Mn:0.07
%、Fe:0.12%、Cr:0.05%、Ni:0.
002%、Zn:0.05%、Cu:0.01%、T
i:0.02%、B:10ppm、Be:30ppmを
含み、残部不純物とアルミニウムからなるアルミニウム
合金を溶解鋳造し、500mm厚の鋳塊とし、次に54
0℃×12hrの均熱処理を行った後、表1に示す種々
の条件で熱間圧延し、2.5mm厚の板とした。続い
て、中間焼鈍することなく冷間圧延し、1mm厚の板と
した。この板を550℃の溶体化温度に加熱して20秒
間保持した後、水焼き入れした(50℃までの冷却速度
は約250℃/s)。その後、室温で3ヶ月間放置した
後、板幅の中央部からサンプリングを行い、材料特性を
評価した。結果を表1に併せて示す。
EXAMPLES Examples of the present invention will be described below. Mg: 0.55%, Si: 1.2%, Mn: 0.07
%, Fe: 0.12%, Cr: 0.05%, Ni: 0.
002%, Zn: 0.05%, Cu: 0.01%, T
i: 0.02%, B: 10 ppm, Be: 30 ppm, an aluminum alloy containing the balance impurities and aluminum was melt-cast to form a 500 mm thick ingot, and then 54
After soaking at 0 ° C. for 12 hours, it was hot-rolled under various conditions shown in Table 1 to obtain a plate having a thickness of 2.5 mm. Subsequently, it was cold-rolled without intermediate annealing to obtain a plate having a thickness of 1 mm. The plate was heated to a solution temperature of 550 ° C., held for 20 seconds, and then water-quenched (cooling rate up to 50 ° C. was about 250 ° C./s). Then, after leaving it at room temperature for 3 months, sampling was carried out from the central portion of the plate width to evaluate the material properties. The results are also shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】なお、表1の各材料特性は次のようにして
測定した。 マクロ組織の形態・・・・マクロ組織の評価部位は、板表面
部(板初期表面から0.1mmまでの深さ)、板厚1/
4部位及び板中心部位の3カ所である。機械研磨した
後、電解エッチング(テトラフルオロほう酸:水=1
5:400、電圧30V、溶液温度20〜30℃、エッ
チング時間60〜90秒)し、光学顕微鏡(偏光板使
用、倍率50倍)を用いて観察した。
The material properties shown in Table 1 were measured as follows. Morphology of macro structure ・ ・ ・ ・ Evaluation site of macro structure is plate surface (depth from initial plate surface to 0.1 mm), plate thickness 1 /
There are 3 parts, 4 parts and the plate center part. After mechanical polishing, electrolytic etching (tetrafluoroboric acid: water = 1
5: 400, voltage 30 V, solution temperature 20 to 30 ° C., etching time 60 to 90 seconds), and observation was performed using an optical microscope (using a polarizing plate, magnification 50 times).

【0023】再結晶粒(ミクロ結晶粒)の粒径・・・・板表
面部位においてマクロ組織の観察と同時に行った。粒径
は圧延方向でラインインターセプト法にてL−L面を測
定した。1測定ライン長は500μmであり、1視野当
り各5本で計5視野観察した。なお、アスペクト比の測
定については、板面に平行な面(結晶粒径の測定と同じ
部位)及び、圧延方向に垂直な面において行ったが、本
実施例の場合、全て前記等軸粒の範囲内にあった。 耐力、伸び・・・・JIS−Z2241に準拠し、常温大気
中で、JIS5号試験片を用いLT方向(圧延方向に対
して90゜方向)に引張速度5mm/分にて引張試験を
行って求めた。 リジングマークの有無・・・・製品板よりJIS5号試験片
(長手方向が圧延方向と直角、平行部の長さ60mm)
を作製後、電解研磨により表面を鏡面(Ra<0.1μ
m)とし、これをプレス加工のシミュレーションとして
15%の引張変形(ゲージ長さ:50mm)を行い、表
面の凹凸の程度を肉眼で観察し、圧延方向に対して平行
な筋模様(筋状の凹凸)が顕著に観察される場合を×、
リジングマークと判別できない場合は○と評価した。 オレンジピールの有無・・・・上記のサンプル板材(20%
引っ張り変形後)について、表面に梨地模様が顕著に観
察される場合を×、梨地模様が判別困難な場合を○と評
価した。
Grain size of recrystallized grains (microcrystalline grains) ... Simultaneously with the observation of the macrostructure at the plate surface portion. The grain size was measured on the LL plane by the line intercept method in the rolling direction. One measurement line length was 500 μm, and five lines were observed per one visual field for a total of five visual fields. The aspect ratio was measured on a plane parallel to the plate surface (the same portion as the measurement of the crystal grain size) and on a plane perpendicular to the rolling direction, but in the case of this example, all of the equiaxed grains were measured. Was in range. Proof strength, elongation ... In conformity with JIS-Z2241, a tensile test was performed at a pulling speed of 5 mm / min in the LT direction (90 ° to the rolling direction) using a JIS No. 5 test piece in a normal temperature atmosphere. I asked. Presence / absence of ridging mark: JIS No. 5 test piece from product plate (longitudinal direction is perpendicular to rolling direction, parallel part length is 60 mm)
After producing, the surface was mirror-polished (Ra <0.1μ
m), 15% tensile deformation (gauge length: 50 mm) was performed as a simulation of press working, the degree of surface irregularities was observed with the naked eye, and a streak pattern (streak pattern) parallel to the rolling direction was observed. When unevenness is noticeably observed ×,
When it could not be distinguished from the ridging mark, it was evaluated as ◯. Presence / absence of orange peel ... Sample plate above (20%
After the tensile deformation), a case where a satin-finished pattern was clearly observed on the surface was evaluated as x, and a case where the satin-finished pattern was difficult to determine was evaluated as o.

【0024】表1に示すように、マクロ組織の形態が本
発明の規定を満たし、ミクロ結晶粒が等軸状のNo.1
〜4、6は、リジングマークの発生がなかった。しか
し、ミクロ結晶粒の粒径が本発明の規定を満たさないN
o.6は、オレンジピールが発生した。一方、No.
5、7はいずれもマクロ組織の形態が本発明の規定を満
たさず、リジングマークが発生した。
As shown in Table 1, No. 1 having a macroscopic structure satisfying the requirements of the present invention and having microcrystalline grains having an equiaxed shape. 1
In Nos. 4 and 6, no ridging mark was generated. However, the grain size of the micro-grains does not satisfy the requirements of the present invention N
o. In No. 6, orange peel occurred. On the other hand, No.
In Nos. 5 and 7, the morphology of the macrostructure did not satisfy the requirements of the present invention, and ridging marks were generated.

【0025】[0025]

【発明の効果】本発明によれば、リジングマークの発生
しないAl−Mg−Si系アルミニウム合金板を得るこ
とができる。また、マクロ組織の形態により、成形前又
は塗装前の板材の状態で、その板材にリジングマークが
発生するかどうかの判定や、発生の程度の判定ができる
利点がある。
According to the present invention, it is possible to obtain an Al-Mg-Si system aluminum alloy plate in which ridging marks are not generated. Further, depending on the form of the macrostructure, there is an advantage that it is possible to determine whether or not a ridging mark is generated on the plate material before molding or before painting, and to determine the degree of occurrence.

【図面の簡単な説明】[Brief description of drawings]

【図1】 板材の板厚1/4部位に観察された島状模様
及び筋状模様のマクロ組織を示す金属組織写真である。
FIG. 1 is a metallographic photograph showing a macrostructure of an island pattern and a streak pattern observed in a plate thickness 1/4 part of a plate material.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平5−9674(JP,A) 特開 昭56−105461(JP,A) 特開 昭63−109146(JP,A) 特表2003−518192(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 21/00 - 21/18 C22F 1/04 - 1/057 ─────────────────────────────────────────────────── --Continued front page (56) References JP-A-5-9674 (JP, A) JP-A-56-105461 (JP, A) JP-A-63-109146 (JP, A) JP 2003-518192 (JP, A) (58) Fields investigated (Int.Cl. 7 , DB name) C22C 21/00-21/18 C22F 1/04-1/057

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 Si:0.2〜1.8%(重量%、以下
同じ)、Mg:0.2〜1.6%を含有し、圧延方向に
伸張したマクロ組織を有するAl−Mg−Si系アルミ
ニウム合金板において、板厚1/4部位で測定したマク
ロ組織のサイズが長さ(圧延方向)3mm未満、幅(圧
延直角方向)0.6mm未満であり、マクロ組織同士の
間隔(圧延直角方向)が0.6mm以上であり、該マク
ロ組織がキューブ方位あるいはキューブ方位に近い方位
を有する等軸状の再結晶粒で構成されていることを特徴
とする表面性状に優れる成形加工用Al−Mg−Si系
アルミニウム合金板。
1. An Al-Mg-containing Si: 0.2 to 1.8% (weight%, the same applies hereinafter) and Mg: 0.2 to 1.6% and having a macrostructure elongated in the rolling direction. In the Si-based aluminum alloy plate, the size of the macrostructure measured at the plate thickness 1/4 part is less than 3 mm in length (rolling direction) and less than 0.6 mm in width (direction orthogonal to rolling), and the gap between macrostructures (rolling) Perpendicular direction) is 0.6 mm or more, and the macrostructure has a cube orientation or an orientation close to the cube orientation.
An Al-Mg-Si-based aluminum alloy plate for forming, which has excellent surface properties and is composed of equiaxed recrystallized grains.
【請求項2】 Si:0.2〜1.8%、Mg:0.2
〜1.6%を含有し、圧延方向に伸張したマクロ組織を
有するAl−Mg−Si系アルミニウム合金板におい
て、板表面部位で測定したマクロ組織のサイズが長さ
(圧延方向)2mm未満、幅(圧延直角方向)0.2m
m未満、マクロ組織同士の間隔(圧延直角方向)が1.
0mm以上であり、該マクロ組織がキューブ方位あるい
はキューブ方位に近い方位を有する等軸状の再結晶粒で
構成されていることを特徴とする表面性状に優れる成形
加工用Al−Mg−Si系アルミニウム合金板。
2. Si: 0.2 to 1.8%, Mg: 0.2
In an Al-Mg-Si-based aluminum alloy plate having a macrostructure containing 1.6% by weight and extending in the rolling direction, the size of the macrostructure measured at the plate surface portion is less than 2 mm in length (rolling direction) and width. (Rolling right angle direction) 0.2m
less than m, the interval between the macrostructures (direction perpendicular to the rolling direction) is 1.
0 mm or more and the macrostructure has a cube orientation
Is an Al-Mg-Si-based aluminum alloy plate for forming having excellent surface properties, characterized by being composed of equiaxed recrystallized grains having an orientation close to the cube orientation .
【請求項3】 Si:0.2〜1.8%、Mg:0.2
〜1.6%を含有し、圧延方向に伸張したマクロ組織を
有するAl−Mg−Si系アルミニウム合金板におい
て、板中心部位で測定したマクロ組織のサイズが長さ
(圧延方向)10mm未満、幅(圧延直角方向)1mm
未満、マクロ組織同士の間隔(圧延直角方向)が0.4
mm以上であり、該マクロ組織がキューブ方位あるいは
キューブ方位に近い方位を有する等軸状の再結晶粒で構
成されていることを特徴とする表面性状に優れる成形加
工用Al−Mg−Si系アルミニウム合金板。
3. Si: 0.2 to 1.8%, Mg: 0.2
In an Al-Mg-Si-based aluminum alloy plate containing ~ 1.6% and having a macrostructure elongated in the rolling direction, the size of the macrostructure measured at the plate central portion has a length (rolling direction) of less than 10 mm and a width. (Rolling right angle direction) 1mm
Less than 0.4, the spacing between macrostructures (direction perpendicular to the rolling direction) is 0.4
Der mm or more is, the macrostructure is cube orientation or
Structured by equiaxed recrystallized grains with an orientation close to the cube orientation.
Molding for Al-Mg-Si based aluminum alloy sheet having excellent surface properties, characterized by being made.
【請求項4】 Al−Mg−Si系アルミニウム合金
が、さらにZn:0.005〜1.0%、Cu:0.0
05〜1.0%、Ti:0.001〜0.1%、を含有
することを特徴とする請求項1〜3のいずれかに記載さ
れた表面性状に優れる成形加工用Al−Mg−Si系ア
ルミニウム合金板。
4. An Al-Mg-Si based aluminum alloy further comprising Zn: 0.005 to 1.0% and Cu: 0.0
05-1.0%, Ti: 0.001-0.1%, Al-Mg-Si for molding according to any one of claims 1 to 3, which has excellent surface properties. Series aluminum alloy plate.
【請求項5】 Al−Mg−Si系アルミニウム合金
が、さらにB:1〜300ppm、Be:0.1〜10
0ppmを含有することを特徴とする請求項1〜4のい
ずれかに記載された表面性状に優れる成形加工用Al−
Mg−Si系アルミニウム合金板。
5. An Al-Mg-Si based aluminum alloy further comprising B: 1 to 300 ppm and Be: 0.1 to 10.
Al-for molding, which has excellent surface properties according to any one of claims 1 to 4, characterized in that it contains 0 ppm.
Mg-Si based aluminum alloy plate.
【請求項6】 Al−Mg−Si系アルミニウム合金
が、さらにMn:1.0%以下、Cr:0.3%以下、
Zr:0.15%以下、V:0.15%以下のうち1種
又は2種以上合計で0.01〜1.5%含有することを
特徴とする請求項1〜5のいずれかに記載された表面性
状に優れる成形加工用Al−Mg−Si系アルミニウム
合金板。
6. An Al-Mg-Si based aluminum alloy further comprising Mn: 1.0% or less, Cr: 0.3% or less,
Zr: 0.15% or less, V: 0.15% or less, 1 type or 2 types or more 0.01-1.5% in total, It is characterized by containing in any one of Claims 1-5. Al-Mg-Si based aluminum alloy plate for forming, which has excellent surface properties.
【請求項7】 マクロ組織のサイズが、板中心部より板
表面部で小さくなっていることを特徴とする請求項1〜
6のいずれかに記載された表面性状に優れる成形加工用
Al−Mg−Si系アルミニウム合金板。
7. The size of the macrostructure is smaller in the plate surface portion than in the plate central portion.
An Al-Mg-Si-based aluminum alloy plate for forming, which is excellent in surface properties as described in any of 6 above.
【請求項8】 熱間圧延後、必要に応じて中間焼鈍した
後、冷間圧延及び溶体化焼入れを受けたAl−Mg−S
i系アルミニウム合金板であることを特徴とする請求項
1〜7のいずれかに記載された表面性状に優れる成形加
工用アルミニウム合金板。
8. An Al—Mg—S that has been subjected to cold rolling and solution hardening after intermediate rolling, if necessary, after hot rolling.
An aluminum alloy plate for forming according to any one of claims 1 to 7, which is an i-based aluminum alloy plate and has excellent surface properties.
【請求項9】 等軸状再結晶粒の粒径が45μm以下で
あることを特徴とする請求項1〜8のいずれかに記載さ
れた表面性状に優れる成形加工用アルミニウム合金板
材。
9. The aluminum alloy plate material for forming according to claim 1, wherein the grain size of the equiaxed recrystallized grains is 45 μm or less.
JP02817199A 1999-02-05 1999-02-05 Al-Mg-Si-based aluminum alloy sheet for forming with excellent surface properties Expired - Lifetime JP3498943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02817199A JP3498943B2 (en) 1999-02-05 1999-02-05 Al-Mg-Si-based aluminum alloy sheet for forming with excellent surface properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02817199A JP3498943B2 (en) 1999-02-05 1999-02-05 Al-Mg-Si-based aluminum alloy sheet for forming with excellent surface properties

Publications (2)

Publication Number Publication Date
JP2000226629A JP2000226629A (en) 2000-08-15
JP3498943B2 true JP3498943B2 (en) 2004-02-23

Family

ID=12241301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02817199A Expired - Lifetime JP3498943B2 (en) 1999-02-05 1999-02-05 Al-Mg-Si-based aluminum alloy sheet for forming with excellent surface properties

Country Status (1)

Country Link
JP (1) JP3498943B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100415917C (en) * 2001-03-28 2008-09-03 住友轻金属工业株式会社 Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
EP1967599B1 (en) * 2001-03-28 2011-01-26 Sumitomo Light Metal Industries, Inc. Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
CN106687609B (en) * 2014-09-12 2020-01-07 阿莱利斯铝业迪弗尔私人有限公司 Method for annealing aluminum alloy sheet material
JP6810508B2 (en) * 2015-05-28 2021-01-06 株式会社神戸製鋼所 High-strength aluminum alloy plate
CN114318545B (en) * 2021-12-31 2022-11-04 武汉理工大学 Preparation method of wrought aluminum alloy single crystal

Also Published As

Publication number Publication date
JP2000226629A (en) 2000-08-15

Similar Documents

Publication Publication Date Title
JP4901757B2 (en) Aluminum alloy plate and manufacturing method thereof
EP1967598B2 (en) Aluminum alloy sheet with excellent formability and paint bake hardenability and method for production thereof
KR102498463B1 (en) Manufacturing method of 6XXX aluminum sheet
JP6176393B2 (en) High-strength aluminum alloy plate with excellent bending workability and shape freezing property
JP2007247000A (en) Method for manufacturing aluminum alloy sheet having superior ridging-mark resistance in forming step
EP0480402A1 (en) Process for manufacturing aluminium alloy material with excellent formability, shape fixability and bake hardenability
JP3590685B2 (en) Manufacturing method of aluminum alloy sheet for automobile outer panel
JP3919315B2 (en) Al-Mg-Si-based aluminum alloy sheet for forming with excellent surface properties
JP3498942B2 (en) Aluminum alloy plate with excellent ridging mark resistance and method for evaluating the occurrence of ridging mark
CN100415917C (en) Aluminum alloy sheet excellent in formability and hardenability during baking of coating and method for production thereof
JP3498943B2 (en) Al-Mg-Si-based aluminum alloy sheet for forming with excellent surface properties
JP4186240B2 (en) Al-Mg-Si aluminum alloy sheet for forming
JP6581347B2 (en) Method for producing aluminum alloy plate
JP4248796B2 (en) Aluminum alloy plate excellent in bending workability and corrosion resistance and method for producing the same
JP6768568B2 (en) Aluminum alloy plate with excellent press formability, rigging mark property, and BH property
JP2004124213A (en) Aluminum alloy sheet for panel forming, and its manufacturing method
JP3491819B2 (en) Method for producing aluminum alloy sheet having excellent surface properties after forming
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JP3226259B2 (en) Aluminum alloy plate excellent in formability, bake hardenability and corrosion resistance and method for producing the same
JP2003328095A (en) Production method for aluminum alloy plate for forming
JPH09111429A (en) Production of heat treated type aluminum alloy free from generation of stretcher strain mark at the time of final forming
CN101260491B (en) Aluminum alloy sheet with excellent formability and paint bake hardenability, and method for production thereof
JPH10310835A (en) Aluminum alloy sheet excellent in strength, stretcher strain mark resistance and bendability and its production
JP2001279406A (en) Al-Mg-Si ALUMINUM ALLOY SHEET EXCELLENT IN STRENGTH AND FORMABILITY AND ITS PRODUCING METHOD
BR112017010907B1 (en) ALUMINUM ALLOY, ENGINE VEHICLE BODY PART AND METHOD FOR PRODUCING AN ALUMINUM SHEET

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091205

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101205

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 10

EXPY Cancellation because of completion of term