JP2007247000A - Method for manufacturing aluminum alloy sheet having superior ridging-mark resistance in forming step - Google Patents

Method for manufacturing aluminum alloy sheet having superior ridging-mark resistance in forming step Download PDF

Info

Publication number
JP2007247000A
JP2007247000A JP2006073014A JP2006073014A JP2007247000A JP 2007247000 A JP2007247000 A JP 2007247000A JP 2006073014 A JP2006073014 A JP 2006073014A JP 2006073014 A JP2006073014 A JP 2006073014A JP 2007247000 A JP2007247000 A JP 2007247000A
Authority
JP
Japan
Prior art keywords
aluminum alloy
rolling
alloy plate
temperature
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006073014A
Other languages
Japanese (ja)
Other versions
JP4939088B2 (en
Inventor
Kenji Tokuda
健二 徳田
Tetsuya Masuda
哲也 増田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Shinko Alcoa Yuso Kizai KK
Original Assignee
Kobe Steel Ltd
Shinko Alcoa Yuso Kizai KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd, Shinko Alcoa Yuso Kizai KK filed Critical Kobe Steel Ltd
Priority to JP2006073014A priority Critical patent/JP4939088B2/en
Publication of JP2007247000A publication Critical patent/JP2007247000A/en
Application granted granted Critical
Publication of JP4939088B2 publication Critical patent/JP4939088B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing an aluminum alloy sheet of 6,000 series, which is prevented from causing a ridging mark when being press-formed, even in a mass production hot-rolling line. <P>SOLUTION: This aluminum alloy comprises 0.4-1.3% Si, 0.2-1.2% Mg, 0.01-0.65% Mn, 0.001-1.0% Cu and the balance Al with avoidable impurities. The manufacturing method comprises the steps of: preparing a large-scale aluminum alloy ingot having the above composition and a thickness of 400 mm or larger; heat-treating the ingot at 500°C or higher but lower than the melting point for homogenization; cooling the ingot at a cooling rate of 50°C/hr to 100°C/hr; then, hot-rolling the slab by rough-rolling the slab at a starting temperature of 350 to 450°C and finish-rolling the plate at a finishing temperature of 350°C or lower, with the use of a hot-rolling line which is composed of a reverse-type roughing mill and a tandem-type finishing rolling mill, and can roll a slab in several ways each comprising a plurality of paths; further cold-rolling the plate; and then solution-treating and quenching the sheet. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、パネルへのプレス成形時のリジングマーク性に優れたアルミニウム合金板の製造方法(以下、アルミニウムを単にAlとも言う)に関するものである。本発明で言うアルミニウム合金板とは、圧延後に溶体化および焼入れ処理された板のことを言う。   The present invention relates to a method for producing an aluminum alloy plate excellent in ridging mark properties during press forming on a panel (hereinafter, aluminum is also simply referred to as Al). The aluminum alloy plate referred to in the present invention refers to a plate that has been subjected to solution treatment and quenching after rolling.

近年、排気ガス等による地球環境問題に対して、自動車などの輸送機の車体の軽量化による燃費の向上が追求されている。このため、特に、自動車の車体に対し、従来から使用されている鋼材に代わって、圧延板材、押出形材、鍛造材などの、より軽量なAl合金材の適用が増加しつつある。   In recent years, with respect to global environmental problems caused by exhaust gas and the like, improvement in fuel efficiency has been pursued by reducing the weight of the body of a transport aircraft such as an automobile. For this reason, in particular, the application of lighter Al alloy materials such as rolled plate materials, extruded profiles, forged materials, and the like instead of steel materials that have been used in the past has been increasing for automobile bodies.

この内、自動車のフード、フェンダー、ドア、ルーフ、トランクリッドなどのパネル構造体の、アウタパネル (外板) やインナパネル( 内板) 等のパネルには、Al-Mg-Si系のAA乃至JIS 6000系 (以下、単に6000系と言う) のAl合金板の使用が増加しつつある。   Of these, panels such as outer panels (outer panels) and inner panels (inner panels) of panel structures such as automobile hoods, fenders, doors, roofs, and trunk lids are made of Al-Mg-Si AA to JIS. The use of 6000 series (hereinafter simply referred to as 6000 series) Al alloy sheets is increasing.

このAl-Mg-Si系のAl合金材の中でも、自動車のフード、フェンダー、ドア、ルーフ、トランクリッドなどのパネル構造体の、アウタパネル (外板) やインナパネル( 内板) 等のパネルには、薄肉で高強度なAl合金板として、過剰Si型の6000系のAl合金板の使用が好ましい。   Among these Al-Mg-Si Al alloy materials, panels such as outer panels (outer panels) and inner panels (inner panels) of panel structures such as automobile hoods, fenders, doors, roofs, trunk lids, etc. As the thin and high-strength Al alloy plate, it is preferable to use an excess Si type 6000 series Al alloy plate.

この過剰Si型の6000系Al合金は、基本的には、Si、Mgを必須として含み、かつSi/Mg が質量比で1 以上であるAl-Mg-Si系アルミニウム合金である。そして、この過剰Si型6000系Al合金は優れた時効硬化能を有しているため、プレス成形や曲げ加工時には低耐力化により成形性を確保するとともに、成形後のパネルの塗装焼付処理などの、比較的低温の人工時効処理時の加熱により時効硬化して耐力が向上し、必要な強度を確保できる時効硬化能がある。   This excess Si type 6000 series Al alloy is basically an Al—Mg—Si series aluminum alloy containing Si and Mg as essential components and having a Si / Mg ratio of 1 or more in mass ratio. And this excess Si type 6000 series Al alloy has excellent age-hardening ability, so at the time of press molding and bending processing, it secures formability by reducing the yield strength, and paint baking treatment of the panel after molding etc. It is age-hardened by heating at the time of relatively low-temperature artificial aging treatment to improve proof stress, and has age-hardening ability that can secure the required strength.

また、これら過剰Si型6000系Al合金材は、Mg量などの合金量が多い、他の5000系のAl合金などに比して、合金元素量が比較的少ない。このため、これら6000系Al合金材のスクラップを、Al合金溶解材 (溶解原料) として再利用する際に、元の6000系Al合金鋳塊が得やすく、リサイクル性にも優れている。   Further, these excess Si type 6000 series Al alloy materials have a relatively small amount of alloy elements as compared with other 5000 series Al alloys having a large amount of alloy such as Mg. For this reason, when the scraps of these 6000 series Al alloy materials are reused as an Al alloy melting material (melting raw material), the original 6000 series Al alloy ingot is easily obtained, and the recyclability is also excellent.

一方、自動車のアウタパネルは、周知の通り、アルミニウム合金板に対し、プレス成形における張出成形時や曲げ成形などの成形加工が複合して行われて製作される。例えば、フードやドアなどのアウタパネルでは、張出などのプレス成形によって、アウタパネルとしての成形品形状となされ、次いで、このアウタパネル周縁部のフラットヘムなどのヘム (ヘミング) 加工によって、インナパネルとの接合が行われ、パネル構造体とされる。   On the other hand, as is well known, an outer panel of an automobile is manufactured by combining an aluminum alloy plate with a forming process such as an extension forming in a press forming or a bending forming. For example, an outer panel such as a hood or door is formed into a molded product shape as an outer panel by press molding such as overhanging, and then joined to the inner panel by hem (hemming) processing such as flat hem at the outer peripheral edge of the outer panel. Is performed to obtain a panel structure.

この際、過剰Si型6000系Al合金板を素材とした、プレス成形後のパネルには、リジングマークなどの表面の肌荒れ不良が生じ易いという課題がある。リジングマークは、板のスジ状に並んだ集合組織に起因し、プレス成形などの変形時に、板表面の凹凸となる現象である。このため、アルミニウム合金板の結晶粒が肌荒れを生じない程度に微細であってもプレス成形によって生じる点がやっかいである。   At this time, there is a problem that a rough surface defect such as a ridging mark is likely to occur in a panel after press molding using an excess Si type 6000 series Al alloy plate as a raw material. The ridging mark is a phenomenon resulting from unevenness on the surface of the plate at the time of deformation such as press molding due to the texture arranged in the shape of stripes on the plate. For this reason, even if the crystal grain of the aluminum alloy plate is fine enough not to cause rough skin, it is troublesome to be caused by press forming.

このリジングマークは、パネル構造体の大型化や形状の複雑化、あるいは薄肉化などによりプレス成形条件が厳しくなった場合に特に生じ易い。また、プレス成形直後には比較的目立たず、そのままパネル構造体として塗装工程に進んだ後に目立ちやすくなるという問題もある。   This ridging mark is particularly likely to occur when the press molding conditions become severe due to an increase in the size, complexity, or thickness of the panel structure. In addition, there is a problem that it becomes relatively inconspicuous immediately after press molding and becomes conspicuous after proceeding to the coating process as it is as a panel structure.

このリジングマークが生じた場合、特に表面が美麗であることが要求される、外板 (アウタ) 用などのパネル構造体では、外観不良となって使用できない問題となる。   When this ridging mark is generated, a panel structure for an outer plate (outer) or the like, which is required to have a particularly beautiful surface, has a problem in appearance and cannot be used.

また、鋳塊を500 ℃以上の温度で均質化熱処理後に冷却して、あるいは室温に冷却後再加熱して、350 〜450 ℃の比較的低温で熱延を開始することにより、過剰Si型6000系Al合金板のリジングマークを防止することも公知である (例えば、特許文献1、2 参照) 。
特許第2823797 号公報(全文) 特開平8 ー232052号公報(全文)
In addition, the ingot is cooled after homogenization heat treatment at a temperature of 500 ° C. or higher, or cooled to room temperature and reheated, and hot rolling is started at a relatively low temperature of 350 to 450 ° C. It is also known to prevent ridging marks on the Al alloy plate (see, for example, Patent Documents 1 and 2).
Japanese Patent No. 2823797 (full text) JP-A-8-232052 (full text)

しかし、このような均質化熱処理後に冷却および350 〜450 ℃の比較的低温での熱延開始を、板の量産的な熱延ラインに適用しても、熱延条件によっては、過剰Si型6000系Al合金板のリジングマークが防止できない場合がある。   However, even if cooling and initiation of hot rolling at a relatively low temperature of 350 to 450 ° C. are applied to the mass production hot rolling line after the homogenization heat treatment, depending on the hot rolling conditions, excess Si type 6000 Ridging marks on the aluminum alloy plate may not be prevented.

即ち、量産的な熱延ラインでは、アルミニウム合金鋳塊が400 mm以上の厚みに大型化する。そして、量産的な熱延ラインでは、この大型のアルミニウム合金鋳塊が、リバース式の粗圧延機と、複数の圧延機が直列に配列されるタンデム式の仕上げ圧延機とから構成されて、各々複数のパスからなる圧延が施される。   That is, in a mass production hot rolling line, the aluminum alloy ingot is enlarged to a thickness of 400 mm or more. In a mass production hot rolling line, this large aluminum alloy ingot is composed of a reverse rough rolling mill and a tandem finishing rolling mill in which a plurality of rolling mills are arranged in series, Rolling consisting of a plurality of passes is performed.

このため、量産的な熱延ラインでは、試験的な圧延機を用いたラボ的な熱延条件に比して、熱延条件が異なり、また複雑となる。このため、前記均質化熱処理後の冷却や熱延開始温度を低温化しただけでは、リジングマークが防止できない場合がある。   For this reason, in a mass-produced hot rolling line, the hot rolling conditions are different and complicated as compared to laboratory hot rolling conditions using a test rolling mill. For this reason, ridging marks may not be prevented only by cooling after the homogenization heat treatment or by lowering the hot rolling start temperature.

また、一方で、曲げ加工性とプレス成形性の向上のために、6000系Al合金板の集合組織に異方性を持たせることも、近年種々提案されているが、これら6000系Al合金板の集合組織に異方性を持たせると、プレス成形性が低下するという問題がある。   On the other hand, in order to improve bending workability and press formability, in recent years, various proposals have been made to impart anisotropy to the texture of 6000 series Al alloy sheets. If the texture is made anisotropic, there is a problem that press formability is lowered.

本発明はこの様な事情に着目してなされたものであって、その目的は、量産的な熱延ラインによって6000系Al合金板を製造する場合にでも、プレス成形時のリジングマークを防止した製造方法を提供しようとするものである。   The present invention has been made paying attention to such circumstances, and its purpose is to prevent ridging marks during press forming even when a 6000 series Al alloy plate is produced by a mass-produced hot rolling line. A manufacturing method is to be provided.

この目的を達成するために、本発明の成形時のリジングマーク性に優れたアルミニウム合金板の製造方法の要旨は、質量% で、Si:0.4〜1.3%、Mg:0.2〜1.2%、Mn:0.01 〜0.65% 、Cu:0.001〜1.0%を含み、残部がAlおよび不可避的不純物からなり、400 mm以上の厚みを有する大型のアルミニウム合金鋳塊を、500 ℃以上融点未満の温度で均質化熱処理した後、50℃/hr 以上、100 ℃/hr 以下の冷却速度で冷却し、その後、リバース式の粗圧延機とタンデム式の仕上げ圧延機とから構成されて各々複数のパスからなる圧延が施される熱延ラインによって、前記粗圧延における開始温度を350 〜450 ℃の温度範囲とし、前記仕上げ圧延における終了温度を350 ℃以下とした熱間圧延を行い、更に冷間圧延した後に、溶体化および焼入れ処理することである。   In order to achieve this object, the gist of the manufacturing method of the aluminum alloy plate excellent in ridging mark property at the time of molding according to the present invention is mass%, Si: 0.4 to 1.3%, Mg: 0.2 to 1.2%, Mn: Homogeneous heat treatment of a large aluminum alloy ingot containing 0.01 to 0.65%, Cu: 0.001 to 1.0%, the balance consisting of Al and inevitable impurities and having a thickness of 400 mm or more at a temperature of 500 ° C or higher and lower than the melting point After that, cooling is performed at a cooling rate of 50 ° C./hr or more and 100 ° C./hr or less, and thereafter, a reverse type rough rolling mill and a tandem finishing rolling mill are configured to perform rolling composed of a plurality of passes. With the hot rolling line, hot rolling with the starting temperature in the rough rolling in the temperature range of 350 to 450 ° C. and the finishing temperature in the finish rolling at 350 ° C. or less is performed, and after cold rolling, the solution is formed And quenching.

本発明では、上記均質化熱処理した後の冷却を、好ましくは、350 〜450 ℃の温度範囲まで、50℃/hr 以上、100 ℃/hr 以下の冷却速度で冷却し、350 〜450 ℃の温度範囲で、前記熱間粗圧延を開始する。   In the present invention, the cooling after the homogenization heat treatment is preferably performed at a cooling rate of 50 ° C./hr to 100 ° C./hr to a temperature range of 350 to 450 ° C., and a temperature of 350 to 450 ° C. In the range, the hot rough rolling is started.

本発明では、上記均質化熱処理した後の冷却を、好ましくは、350 ℃以下の温度範囲まで、50℃/hr 以上、100 ℃/hr 以下の冷却速度で冷却し、その後350 〜450 ℃の温度範囲まで再加熱して、前記熱間粗圧延を開始する。   In the present invention, the cooling after the homogenization heat treatment is preferably performed at a cooling rate of 50 ° C./hr or more and 100 ° C./hr or less to a temperature range of 350 ° C. or less, and then a temperature of 350 to 450 ° C. The hot rough rolling is started by reheating to the range.

本発明では、鋳塊を均質化熱処理後に冷却して、あるいは室温に冷却後再加熱して、350 〜450 ℃の比較的低温で熱延を開始する点は、前記特許文献1、2 と同じである。   In the present invention, the ingot is cooled after homogenization heat treatment or cooled to room temperature and then reheated, and hot rolling is started at a relatively low temperature of 350 to 450 ° C., which is the same as in Patent Documents 1 and 2 above. It is.

但し、本発明が対象とする量産的な熱延ラインに供せられる比較的大型の鋳塊とは、400 mm以上の厚みを有する鋳塊である。また、熱延ラインも、この大型の鋳塊に対して、リバース式の粗圧延機とタンデム式の仕上げ圧延機とから構成されて各々複数のパスからなる圧延を施す熱延ラインである。   However, the relatively large ingot used in the mass-produced hot rolling line targeted by the present invention is an ingot having a thickness of 400 mm or more. The hot rolling line is also a hot rolling line that is composed of a reverse type rough rolling mill and a tandem type finishing rolling mill for each large ingot and performs rolling composed of a plurality of passes.

本発明では、このような量産的な熱延ラインによって6000系Al合金板を製造する場合にでも、プレス成形時のリジングマークを防止するために、鋳塊を均質化熱処理後に冷却するに際して、上記要旨の通り、冷却速度を50℃/hr 以上、100 ℃/hr 以下に規定する。   In the present invention, even when producing a 6000 series Al alloy sheet by such a mass-produced hot rolling line, in order to prevent ridging marks during press forming, the ingot is cooled after homogenization heat treatment, As summarized, the cooling rate is specified to be 50 ° C / hr or more and 100 ° C / hr or less.

この特定の冷却速度範囲にすることによって、量産的な熱延ラインにおいても、熱延中の再結晶粒の核生成サイトとして適当なサイズ、分布に、鋳塊中のMg2Si 化合物を制御できる。そして、これによって、粗大な再結晶粒 (熱間ファイバー) の生成を抑制し、再結晶の際の組織の均質化を図り、成形時のリジングマーク性を向上させることができる。 By setting this specific cooling rate range, the Mg 2 Si compound in the ingot can be controlled to an appropriate size and distribution as a nucleation site for recrystallized grains during hot rolling even in a mass production hot rolling line. . As a result, the formation of coarse recrystallized grains (hot fibers) can be suppressed, the structure can be homogenized during recrystallization, and the ridging mark property during molding can be improved.

本発明の均質化熱処理後の上記特定冷却速度範囲は、鋳塊中の粗大なMg2Si 化合物を無くして微細化を徹底させるものではない。本発明では、熱延中の再結晶粒の核生成サイトとして必要な、直径が 2μm 以上の粗大なMg2Si 化合物の個数を、後述する通り、適当な分布 (数) だけ確保する。本発明の均質化熱処理後の上記特定冷却速度範囲は、このためのものである。 The specific cooling rate range after the homogenization heat treatment of the present invention does not eliminate the coarse Mg 2 Si compound in the ingot, and does not thoroughly refine. In the present invention, an appropriate distribution (number) of the number of coarse Mg 2 Si compounds having a diameter of 2 μm or more necessary as nucleation sites for recrystallized grains during hot rolling is ensured as described later. The specific cooling rate range after the homogenization heat treatment of the present invention is for this purpose.

更に、本発明では、均質化熱処理後の上記特定冷却速度範囲での冷却後の鋳塊を、上記要旨の通り、より低温で熱間圧延を開始するとともに、再結晶温度以下のより低温で熱間圧延を終了する。これによって、前記した通り、粗大な再結晶粒の生成を抑制して、再結晶の際の組織の均質化を図り、成形時のリジングマーク性を向上させることを保証する。   Further, in the present invention, the ingot after cooling in the specific cooling rate range after the homogenization heat treatment is started to be hot-rolled at a lower temperature as described above, and heated at a lower temperature below the recrystallization temperature. The hot rolling is finished. As described above, this suppresses the formation of coarse recrystallized grains, homogenizes the structure during recrystallization, and ensures that the ridging mark property during molding is improved.

この結果、280 ℃程度の低温の熱間圧延終了温度でも、上記粗大な再結晶粒が生成しやすい、過剰Si型の6000系Al合金板であっても、上記粗大な再結晶粒を抑制でき、リジングマークを抑制できる。   As a result, the coarse recrystallized grains can be suppressed even in the excess Si type 6000 series Al alloy plate, which is likely to produce the coarse recrystallized grains even at the low temperature of hot rolling at about 280 ° C. , Ridging marks can be suppressed.

因みに、鋳塊の大きさ (主として厚み) によって、その冷却速度は、勿論大きく異なる。しかし、本発明が対象とする400 mm以上の厚みを有する比較的大型の鋳塊の場合には、上記50℃/hr 以上、100 ℃/hr 以下の特定冷却速度を得ようとすると、均熱炉内または炉外でファンにより鋳塊を強制空冷する必要がある。   Incidentally, the cooling rate of course varies greatly depending on the size (mainly thickness) of the ingot. However, in the case of a relatively large ingot having a thickness of 400 mm or more, which is the subject of the present invention, when trying to obtain the specific cooling rate of 50 ° C./hr or more and 100 ° C./hr or less, soaking is performed. It is necessary to forcibly cool the ingot with a fan inside or outside the furnace.

例えば、均熱炉内または炉外での放冷では、上記比較的大型の鋳塊の場合には、冷却速度が小さくなる。このため、上記下限50℃/hr 以上の冷却速度が得られず、必然的に、下限50℃/hr 未満の冷却速度となる。一方、均熱炉外での強制空冷または水冷では、上記比較的大型の鋳塊の場合でも、冷却速度が大きくなる。このため、上記上限100 ℃/hr 以下の冷却速度とはならず、上限100 ℃/hr を越える冷却速度となる場合がある。   For example, in the case of the above-described relatively large ingot, the cooling rate is small in the soaking in the soaking furnace or outside the furnace. For this reason, a cooling rate above the lower limit of 50 ° C./hr cannot be obtained, and inevitably the cooling rate is lower than the lower limit of 50 ° C./hr. On the other hand, in forced air cooling or water cooling outside the soaking furnace, the cooling rate increases even in the case of the relatively large ingot. For this reason, the cooling rate does not reach the upper limit of 100 ° C./hr or lower, and may exceed the upper limit of 100 ° C./hr.

以下に、本発明Al合金板の製造方法の実施態様につき具体的に説明する。   Below, it demonstrates concretely about the embodiment of the manufacturing method of this invention Al alloy plate.

(化学成分組成)
先ず、本発明が対象とする6000系Al合金板の化学成分組成について説明する。本発明が対象とする6000系Al合金板は、前記した自動車材などとして、優れた成形性やBH性、強度、溶接性、耐食性などの諸特性が要求される。
(Chemical composition)
First, the chemical component composition of the 6000 series Al alloy plate targeted by the present invention will be described. The 6000 series Al alloy plate targeted by the present invention is required to have various properties such as excellent formability, BH property, strength, weldability, and corrosion resistance as the above-mentioned automobile material.

このような要求を満足するために、Al合金板の組成は、質量% で、Si:0.4〜1.3%、Mg:0.2〜1.2%、Mn:0.01 〜0.65% 、Cu:0.001〜1.0%を含み、残部がAlおよび不可避的不純物からなるものとする。   In order to satisfy such requirements, the composition of the Al alloy plate includes, by mass%, Si: 0.4 to 1.3%, Mg: 0.2 to 1.2%, Mn: 0.01 to 0.65%, Cu: 0.001 to 1.0%. The balance is made of Al and inevitable impurities.

また、本発明が対象とする6000系Al合金板は、リジングマークが生じやすいSiとMgとの質量比Si/Mg が1 以上であるような過剰Si型の6000系Al合金板に適用されて好ましい。   In addition, the 6000 series Al alloy plate targeted by the present invention is applied to an excess Si type 6000 series Al alloy plate in which the mass ratio Si / Mg between Si and Mg that is liable to generate ridging marks is 1 or more. preferable.

なお、その他の元素は、AA乃至JIS 規格などに沿った各不純物レベルの含有量 (許容量) とする。その他の合金元素とは、具体的には、Fe:1.0% 以下、Mn:1.0% 以下、Cr:0.3% 以下、Zr:0.3% 以下、V:0.3%以下、Ti:0.2% 以下、の内の1 種または2 種以上を含んでも良い。また、これらに加えて、あるいは、これらの代わりに、更に、Ag:0.2% 以下、Zn:1.0% 以下、の内の1 種または2 種を含んでも良い。   For other elements, the content (allowable amount) of each impurity level in accordance with AA or JIS standards. Specifically, other alloy elements include Fe: 1.0% or less, Mn: 1.0% or less, Cr: 0.3% or less, Zr: 0.3% or less, V: 0.3% or less, Ti: 0.2% or less. 1 type or 2 types or more may be included. In addition to or instead of these, one or two of Ag: 0.2% or less and Zn: 1.0% or less may be further included.

上記合金元素以外のその他の合金元素やガス成分も不純物である。しかし、リサイクルの観点から、溶解材として、高純度Al地金だけではなく、6000系合金やその他のAl合金スクラップ材、低純度Al地金などを溶解原料として使用して、本発明Al合金組成を溶製する場合には、これら他の合金元素は必然的に含まれることとなる。したがって、本発明では、目的とする本発明効果を阻害しない範囲で、これら不純物元素が含有されることを許容する。   Other alloy elements and gas components other than the above alloy elements are also impurities. However, from the viewpoint of recycling, not only high-purity Al ingots but also 6000 series alloys and other Al alloy scrap materials, low-purity Al ingots, etc. are used as melting raw materials as melting materials. In the case of melting, these other alloy elements are necessarily included. Therefore, in the present invention, these impurity elements are allowed to be contained within a range that does not hinder the intended effect of the present invention.

上記6000系Al合金における、各元素の好ましい含有範囲と意義、あるいは許容量について以下に説明する。   The preferable content range and significance of each element in the 6000 series Al alloy, or the allowable amount will be described below.

Si:0.4〜1.3%。
SiはMgとともに、固溶強化と、塗装焼き付け処理などの前記低温での人工時効処理時に、強度向上に寄与する時効析出物を形成して、時効硬化能を発揮し、自動車のアウタパネルとして必要な、例えば170MPa以上の必要強度(耐力)を得るための必須の元素である。したがって、本発明過剰Si型6000系Al合金板にあって、プレス成形性、ヘム加工性などの諸特性を兼備させるための最重要元素である。
Si: 0.4 to 1.3%.
Si, together with Mg, forms an aging precipitate that contributes to strength improvement during solid tempering and artificial aging treatment at low temperatures such as paint baking treatment, and exhibits age hardening ability, which is necessary as an outer panel for automobiles. For example, it is an essential element for obtaining the required strength (proof strength) of 170 MPa or more. Therefore, it is the most important element for combining various characteristics such as press formability and hemmability in the excess Si type 6000 series Al alloy plate of the present invention.

また、パネルへの成形後の低温塗装焼き付け処理後(2% ストレッチ付与後170 ℃×20分の低温時効処理時) の耐力を170MPa以上という、優れた低温時効硬化能を発揮させるためにも、Si/Mg を質量比で1.0 以上とし、SiをMgに対し過剰に含有させた過剰Si型6000系Al合金組成とすることが好ましい。   In addition, in order to demonstrate the excellent low-temperature age-hardening ability of 170 MPa or more after the low-temperature paint baking treatment after molding to the panel (at the time of low-temperature aging treatment after applying 2% stretch at 170 ° C × 20 minutes) It is preferable to have an excess Si type 6000-based Al alloy composition in which Si / Mg is 1.0 or more by mass and Si is excessively contained with respect to Mg.

Si量が0.4%未満では、前記時効硬化能、更には、各用途に要求される、プレス成形性、ヘム加工性などの諸特性を兼備することができない。一方、Siが1.3%を越えて含有されると、特にヘム加工性やプレス成形性が著しく阻害される。更に、溶接性を著しく阻害する。したがって、Siは0.4 〜1.3%の範囲とする。なお、アウタパネルでは、ヘム加工性が特に重視されるため、プレス成形性とともにフラットヘム加工性をより向上させるために、Si含有量を0.6 〜1.2%と、より低めの範囲とすることが好ましい。   When the Si content is less than 0.4%, the age-hardening ability and further various properties such as press formability and hemmability required for each application cannot be obtained. On the other hand, when Si exceeds 1.3%, hemmability and press formability are particularly hindered. Furthermore, weldability is significantly impaired. Therefore, Si is set in the range of 0.4 to 1.3%. In the outer panel, hem workability is particularly important. Therefore, in order to further improve flat hem workability as well as press formability, the Si content is preferably set to a lower range of 0.6 to 1.2%.

Mg:0.2〜1.2%。
Mgは、固溶強化と、塗装焼き付け処理などの前記人工時効処理時に、Siとともに強度向上に寄与する時効析出物を形成して、時効硬化能を発揮し、パネルとして、例えば170MPa以上の必要耐力を得るための必須の元素である。
Mg: 0.2-1.2%.
Mg forms aging precipitates that contribute to strength improvement with Si during the above-mentioned artificial aging treatment such as solid solution strengthening and paint baking treatment, and exhibits age-hardening ability, and as a panel, for example, necessary proof stress of 170 MPa or more It is an essential element for obtaining.

Mgの0.2%未満の含有では、絶対量が不足するため、人工時効処理時に前記化合物相を形成できず、時効硬化能を発揮できない。このためパネルとして必要な170MPa以上の必要耐力が得られない。   If the Mg content is less than 0.2%, the absolute amount is insufficient, so that the compound phase cannot be formed during the artificial aging treatment, and the age hardening ability cannot be exhibited. For this reason, the required proof stress of 170 MPa or more necessary for a panel cannot be obtained.

一方、Mgが1.2%を越えて含有されると、却って、プレス成形性や曲げ加工性等の成形性が著しく阻害される。したがって、Mgの含有量は、0.2 〜1.2%の範囲で、かつSi/Mg が質量比で1.0 以上となるような量とする。また、フラットヘム加工性をより向上させるために、Si含有量を前記0.6 〜1.2%のより低めの範囲とする場合には、これに対応して過剰Si型6000系Al合金組成とするために、Mg含有量も0.2 〜0.7%と低めの範囲とすることが好ましい。   On the other hand, if the Mg content exceeds 1.2%, the formability such as press formability and bending workability is significantly inhibited. Therefore, the Mg content is in the range of 0.2 to 1.2%, and the Si / Mg is such that the mass ratio is 1.0 or more. In order to further improve the flat heme workability, when the Si content is set to a lower range of 0.6 to 1.2%, in order to obtain an excess Si type 6000 series Al alloy composition correspondingly, Further, the Mg content is preferably in the lower range of 0.2 to 0.7%.

Cu:0.001〜1.0%
Cuは、本発明の比較的低温短時間の人工時効処理の条件で、Al合金材組織の結晶粒内への強度向上に寄与する時効析出物の形成を促進させる効果がある。また、固溶したCuは成形性を向上させる効果もある。Cu含有量が0.001%未満ではこの効果がない。一方、1.0%を越えると、耐応力腐食割れ性や、塗装後の耐蝕性の内の耐糸さび性、また溶接性を著しく劣化させる。このため、耐食性が重視される構造材用途などの場合には0.8%以下、自動車外板用などのパネル用途などの場合には、耐糸さび性の発現が顕著となる0.1%以下の量とすることが好ましい。
Cu: 0.001 to 1.0%
Cu has the effect of accelerating the formation of aging precipitates that contribute to the improvement of strength in the crystal grains of the Al alloy material structure under the conditions of artificial aging treatment at a relatively low temperature and short time of the present invention. Further, solid solution Cu has an effect of improving formability. This effect is not obtained when the Cu content is less than 0.001%. On the other hand, if it exceeds 1.0%, the stress corrosion cracking resistance, the thread rust resistance of the corrosion resistance after coating, and the weldability are significantly deteriorated. For this reason, it is 0.8% or less for structural material applications where corrosion resistance is important, and 0.1% or less for the appearance of yarn rust resistance in panel applications such as automotive exterior panels. It is preferable to do.

Mn:0.01 〜0.65%
Mnには、均質化熱処理時に分散粒子 (分散相) を生成し、これらの分散粒子には再結晶後の粒界移動を妨げる効果があるため、微細な結晶粒を得ることができる効果がある。前記した通り、本発明Al合金板のプレス成形性やヘム加工性はAl合金組織の結晶粒が微細なほど向上する。この点、Mn含有量が0.01% 未満ではこれらの効果が無い。
Mn: 0.01 to 0.65%
Mn produces dispersed particles (dispersed phase) during the homogenization heat treatment, and these dispersed particles have the effect of preventing grain boundary movement after recrystallization, so that fine crystal grains can be obtained. . As described above, the press formability and hem workability of the Al alloy plate of the present invention improve as the crystal grains of the Al alloy structure become finer. In this respect, when the Mn content is less than 0.01%, these effects are not obtained.

一方、Mn含有量が多くなった場合、溶解、鋳造時に粗大なAl-Fe-Si-(Mn、Cr、Zr) 系の金属間化合物や晶析出物を生成しやすく、Al合金板の機械的性質を低下させる原因となる。また、特に、前記複雑形状や薄肉化、あるいはインナパネル端部とアウタパネル縁曲部内面との間の隙間の存在などによって、加工条件が厳しくなったフラットヘム加工では、Mn含有量が0.15% を越えた場合、ヘム加工性が低下する。このため、Mnは0.01〜0.65% の範囲とし、特に前記加工条件が厳しくなったフラットヘム加工では、より好ましくは0.01〜0.15% の範囲とする。   On the other hand, when the Mn content is increased, coarse Al-Fe-Si- (Mn, Cr, Zr) -based intermetallic compounds and crystal precipitates are easily generated during melting and casting, and the mechanical properties of the Al alloy sheet Causes the properties to deteriorate. In particular, in flat hem processing where the processing conditions have become strict due to the complicated shape, thinning, or the presence of a gap between the inner panel edge and the inner edge of the outer panel edge, the Mn content is 0.15%. When it exceeds, heme workability will fall. For this reason, Mn is set in the range of 0.01 to 0.65%, and more preferably in the range of 0.01 to 0.15%, particularly in flat hem processing in which the processing conditions are severe.

(製造方法)
次ぎに、本発明Al合金板の製造方法について以下に説明する。本発明では、上記した成分組成のAl合金鋳塊を、均質化熱処理後、熱間圧延し、更に冷間圧延した後に、溶体化および焼入れ処理する、工程的には常法と同じである。
(Production method)
Next, a method for producing the Al alloy plate of the present invention will be described below. In the present invention, the Al alloy ingot having the above-described component composition is subjected to homogenization heat treatment, hot rolling, and further cold rolling, followed by solution treatment and quenching treatment.

但し、本発明が対象とするのは、前記した通り、比較的大型の鋳塊を用いた量産的な熱延ラインである。本発明では、このような量産的な熱延ラインによって6000系Al合金板を製造する場合にでも、プレス成形時のリジングマークを防止する。このための必要、あるいは好ましい条件について以下に説明する。   However, as described above, the present invention is intended for mass-produced hot rolling lines using relatively large ingots. In the present invention, even when a 6000 series Al alloy plate is manufactured by such a mass-produced hot rolling line, ridging marks during press forming are prevented. Necessary or preferable conditions for this will be described below.

(溶解、鋳造)
先ず、溶解、鋳造工程では、上記6000系成分規格範囲内に溶解調整されたAl合金溶湯を、連続鋳造圧延法、半連続鋳造法(DC鋳造法)等の通常の溶解鋳造法を適宜選択して鋳造する。
(Melting, casting)
First, in the melting and casting process, a normal melt casting method such as a continuous casting rolling method and a semi-continuous casting method (DC casting method) is appropriately selected for the molten Al alloy melt adjusted within the above-mentioned 6000 component standard range. And cast.

(均質化熱処理)
次いで、前記鋳造されたAl合金鋳塊に均質化熱処理を施す。均質化熱処理の温度自体は、常法通り、500 ℃以上の均質化温度で、融点未満の温度が適宜選択される。この均質化熱処理は、組織の均質化、すなわち、鋳塊組織中の結晶粒内の偏析をなくすことを目的とする。熱処理温度が500℃より低いと鋳塊の粒内偏析を十分になくすことができず、これが破壊の起点として作用するため、プレス成形性及び曲げ性が劣化する。また、熱処理時間は、鋳塊の厚みにもよるが、2hr 以上とすることが好ましい。2hr より低いと鋳塊の粒内偏析を十分になくすことができず、これが破壊の起点として作用する可能性がある。
(Homogenization heat treatment)
Next, the cast Al alloy ingot is subjected to homogenization heat treatment. As the temperature of the homogenization heat treatment itself, a homogenization temperature of 500 ° C. or higher and a temperature lower than the melting point are appropriately selected as usual. The purpose of this homogenization heat treatment is to homogenize the structure, that is, to eliminate segregation in the crystal grains in the ingot structure. When the heat treatment temperature is lower than 500 ° C., intragranular segregation of the ingot cannot be sufficiently eliminated, and this acts as a starting point of fracture, so that press formability and bendability deteriorate. Further, the heat treatment time is preferably 2 hours or more, although it depends on the thickness of the ingot. If it is lower than 2 hr, intragranular segregation of the ingot cannot be sufficiently eliminated, and this may act as a starting point of fracture.

本発明では、量産的な熱延ラインによって6000系Al合金板を製造する場合にでもプレス成形時のリジングマークを防止するために、鋳塊を均質化熱処理後に350 〜450 ℃の粗圧延開始温度範囲まで、50℃/hr 以上、100 ℃/hr 以下の冷却速度で冷却する。   In the present invention, in order to prevent ridging marks during press forming even when producing a 6000 series Al alloy sheet by a mass-produced hot rolling line, a rough rolling start temperature of 350 to 450 ° C. is applied after homogenization heat treatment of the ingot. Cool to a range at a cooling rate of 50 ° C / hr or more and 100 ° C / hr or less.

この特定の冷却速度範囲にすることによって、量産的な熱延ラインにおいても、熱延中の再結晶粒の核生成サイトとして適当なサイズ、分布に、鋳塊中のMg2Si 化合物を制御できる。この結果、過剰Si型の6000系Al合金板であっても、熱延中の粗大な再結晶粒 (熱間ファイバー) の生成を抑制し、再結晶の際の組織の均質化を図り、成形時のリジングマーク性を向上させることができる。 By setting this specific cooling rate range, the Mg 2 Si compound in the ingot can be controlled to an appropriate size and distribution as a nucleation site for recrystallized grains during hot rolling even in a mass production hot rolling line. . As a result, even with an excess Si type 6000 series Al alloy plate, the formation of coarse recrystallized grains (hot fibers) during hot rolling is suppressed, and the structure during recrystallization is homogenized and formed. The ridging mark property at the time can be improved.

前記した通り、本発明の均質化熱処理後の上記特定冷却速度範囲は、鋳塊中の粗大なMg2Si 化合物を無くして微細化を徹底させるものではない。熱延中の再結晶粒の核生成サイトとして必要な、直径が 2μm 以上の粗大なMg2Si 化合物の個数を、適当な分布 (数) だけ確保するためのものである。 As described above, the specific cooling rate range after the homogenization heat treatment according to the present invention does not eliminate the coarse Mg 2 Si compound in the ingot, and does not thoroughly refine. This is to secure the appropriate number (number) of coarse Mg 2 Si compounds with a diameter of 2 μm or more necessary as nucleation sites for recrystallized grains during hot rolling.

上記下限50℃/hr 未満の冷却速度では、鋳塊中のMg2Si 化合物が粗大化し、具体的には、直径が 2μm 以上のMg2Si 化合物 (析出量) が平均個数密度で1000個/mm2を越えて多くなり過ぎる。このため、溶体化処理時に化合物が十分に固溶することが困難となるために、人工時効後に必要な強度を得ることが出来なくなる。 When the cooling rate is less than the lower limit of 50 ° C./hr, the Mg 2 Si compound in the ingot is coarsened. Specifically, the Mg 2 Si compound having a diameter of 2 μm or more (precipitation amount) has an average number density of 1000 / Too much beyond mm 2 . For this reason, since it becomes difficult for a compound to fully dissolve at the time of solution treatment, it becomes impossible to obtain a required strength after artificial aging.

一方、上記上限100 ℃/hr を越える冷却速度では、直径が1 〜 2μm あるいはそれ以下の直径の微細なMg2Si 化合物 (析出量) が増し過ぎる。具体的には、直径が1 〜 2μm の微細なMg2Si 化合物 (析出量) が平均個数密度で8000個/mm2を越えて多くなり過ぎる。そして、直径が 2μm 以上の粗大なMg2Si 化合物 (析出量) が平均個数密度で300 個/mm2未満となって、少なくなり過ぎる。このため、却って、熱延中の再結晶粒の核生成サイトとして必要な、直径が 2μm 以上の粗大なMg2Si 化合物の個数を確保できなくなる。この結果、粗大な再結晶粒 (熱間ファイバー) の生成は抑制されるものの、却って、再結晶の際の組織の均質化が図れなくなる。この結果、成形時のリジングマーク性が向上できなくなる。 On the other hand, when the cooling rate exceeds the upper limit of 100 ° C./hr, the fine Mg 2 Si compound (precipitation amount) having a diameter of 1 to 2 μm or less is excessively increased. Specifically, the fine Mg 2 Si compound (precipitation amount) having a diameter of 1 to 2 μm is excessively increased with an average number density exceeding 8000 / mm 2 . Then, the coarse Mg 2 Si compound (precipitation amount) having a diameter of 2 μm or more becomes an average number density of less than 300 / mm 2 and becomes too small. For this reason, the number of coarse Mg 2 Si compounds having a diameter of 2 μm or more necessary as nucleation sites for recrystallized grains during hot rolling cannot be secured. As a result, the formation of coarse recrystallized grains (hot fibers) is suppressed, but on the contrary, the structure cannot be homogenized during recrystallization. As a result, the ridging mark property at the time of molding cannot be improved.

したがって、リジングマーク性向上のためには、熱間圧延に供せられる鋳塊中のMg2Si 化合物は、直径が 2μm 以上の粗大なMg2Si 化合物が平均個数密度で300 〜1000個/mm2存在 (析出) することが好ましい。また、同時に、直径が1 〜 2μm の微細なMg2Si 化合物 (析出) は平均個数密度で8000個/mm2以下とすることが好ましい。 Therefore, in order to improve the ridging mark property, the Mg 2 Si compound in the ingot used for hot rolling is a coarse Mg 2 Si compound having a diameter of 2 μm or more and an average number density of 300 to 1000 / mm. 2 is preferably present (precipitated). At the same time, the fine Mg 2 Si compound (precipitation) having a diameter of 1 to 2 μm is preferably 8000 / mm 2 or less in terms of average number density.

(導電率)
Mg2Si 化合物がこのような範囲にある板組織では、その板表面で測定した導電率は、50IACS% 以下となる。したがって、この板表面で測定した導電率は、上記好ましいMg2Si 化合物の析出状態 (組織) を示す目安となる。板表面の導電率(%IACS) の測定は、板表面をエメリ紙# (メッシュ)1000 で研磨後、板中央部を、渦電流式導電率測定装置により測定する。測定数は板の任意の10箇所とし、導電率はこれらの平均値として求める。
(conductivity)
In a plate structure in which the Mg 2 Si compound is in such a range, the conductivity measured on the plate surface is 50 IACS% or less. Therefore, the conductivity measured on the surface of the plate is a standard indicating the precipitation state (structure) of the preferable Mg 2 Si compound. The electrical conductivity (% IACS) of the plate surface is measured by polishing the plate surface with emery paper # (mesh) 1000 and then measuring the central portion of the plate with an eddy current conductivity measuring device. The number of measurements is arbitrary 10 places on the plate, and the conductivity is obtained as an average value of these.

(Mg2Si 化合物の平均個数密度測定)
ここで、Mg2Si 化合物の直径とは、個々のMg2Si 化合物の直径の内で、最大の直径を言う。これら直径が 2μm 以上と、直径が0.5 〜 2μm とのMg2Si 化合物の平均個数密度は、SEM(走査型電子顕微鏡) 像の画像解析によって測定する。測定に再現性を持たせるために、SEMによる測定は、厚みt のアルミニウム合金板の表面から1/4 t 深さ部分について実施し、観察倍率1000倍、任意の測定箇所20箇所について、画像解析を行なうこととする。
(Average number density measurement of Mg 2 Si compound)
Here, the diameter of the Mg 2 Si compound refers to the maximum diameter among the diameters of the individual Mg 2 Si compounds. The average number density of Mg 2 Si compounds having a diameter of 2 μm or more and a diameter of 0.5 to 2 μm is measured by image analysis of SEM (scanning electron microscope) images. In order to make the measurement reproducible, the SEM measurement is carried out at a depth of 1/4 t from the surface of the aluminum alloy plate of thickness t, and image analysis is performed at an observation magnification of 1000 times and 20 arbitrary measurement points Will be performed.

(均質化熱処理後の冷却手段)
本発明が対象とする400 mm以上の厚みを有する比較的大型の鋳塊の場合には、均質化熱処理後の鋳塊の冷却速度を、上記50℃/hr 以上、100 ℃/hr 以下の特定冷却速度範囲とするためには、均熱炉内または炉外でファンにより鋳塊を強制空冷する必要がある。
(Cooling means after homogenization heat treatment)
In the case of a relatively large ingot having a thickness of 400 mm or more, which is a subject of the present invention, the cooling rate of the ingot after the homogenization heat treatment is specified to be 50 ° C / hr or more and 100 ° C / hr or less. In order to achieve a cooling rate range, it is necessary to forcibly air-cool the ingot with a fan inside or outside the soaking furnace.

実際の鋳塊 (スラブ) サイズは、400 〜600mm 厚さ、1000〜2500mm幅、4〜10m 長さを有しており、鋳塊が均一に上記特定冷却速度範囲で冷却されるように、鋳塊のサイズや配置に応じて、ファンを適宜配置し、均熱炉内または炉外で強制空冷する。   The actual ingot (slab) size has a thickness of 400 to 600 mm, a width of 1000 to 2500 mm, and a length of 4 to 10 m, so that the ingot is uniformly cooled in the above specific cooling rate range. Depending on the size and arrangement of the lump, fans are arranged as appropriate, and forced air cooling is performed inside or outside the soaking furnace.

ファンを用いずに、均熱炉内または炉外で放冷した場合、上記比較的大型の鋳塊の場合には、冷却速度が小さくなり過ぎる。このため、必然的に、下限50℃/hr 未満の冷却速度となる。一方、鋳塊をミストやスプレーで水冷した場合は、上記比較的大型の鋳塊の場合でも、冷却速度が大きくなり過ぎる。このため、上記上限100 ℃/hr 以下の冷却速度とはならず、夏期においても、必然的に、上限100 ℃/hr を越える冷却速度となる。このため、鋳塊の熱収縮による変形やソリなど、形状に異常が生じる新たな問題が発生する可能性もある。   In the case of the above-described relatively large ingot, the cooling rate becomes too low when the cooling is performed in the soaking furnace or outside the furnace without using a fan. Therefore, the cooling rate is inevitably lower than the lower limit of 50 ° C./hr. On the other hand, when the ingot is water-cooled with mist or spray, the cooling rate is too high even in the case of the relatively large ingot. For this reason, the cooling rate does not reach the upper limit of 100 ° C./hr or lower, and inevitably the cooling rate exceeds the upper limit of 100 ° C./hr even in summer. For this reason, there is a possibility that a new problem in which an abnormality occurs in the shape such as deformation or warping due to heat shrinkage of the ingot may occur.

(均質化熱処理後の冷却の態様)
ここで、均質化熱処理後に、熱間粗圧延を開始する350 〜450 ℃の温度範囲まで冷却する際の態様は、上記50℃/hr 以上、100 ℃/hr 以下の冷却速度で、この温度範囲まで直接冷却し、この温度範囲で熱間粗圧延を開始しても良い (以下、2 段均熱とも言う) 。
(Mode of cooling after homogenization heat treatment)
Here, after the homogenization heat treatment, the mode when cooling to the temperature range of 350 to 450 ° C. where the hot rough rolling is started is the above cooling range of 50 ° C./hr or more and 100 ° C./hr or less. It is also possible to cool directly to this temperature and start hot rough rolling in this temperature range (hereinafter also referred to as two-stage soaking).

また、350 ℃以下の温度範囲まで、上記50℃/hr 以上、100 ℃/hr 以下の冷却速度で冷却し、その後更に、熱間粗圧延を開始する350 〜450 ℃の温度範囲まで再加熱して、この温度範囲で熱間粗圧延を開始しても良い( 以下、2 回均熱とも言う) 。   In addition, it is cooled to a temperature range of 350 ° C. or less at a cooling rate of 50 ° C./hr or more and 100 ° C./hr or less, and then reheated to a temperature range of 350 to 450 ° C. where hot rough rolling is started. Then, hot rough rolling may be started in this temperature range (hereinafter also referred to as twice soaking).

(熱延ライン)
本発明では、均質化熱処理後に上記特定冷却速度範囲で冷却された比較的大型の鋳塊を、板の量産に適した熱延ラインにて熱間圧延する。この熱延ラインは、通常1 基からなるリバース式の粗圧延機と、通常3 〜5 基からなるタンデム式の仕上げ圧延機とから構成される。これら粗圧延機と仕上げ圧延機では、各々複数のパスからなる圧延が施される。
(Hot rolling line)
In the present invention, a relatively large ingot cooled in the specific cooling rate range after the homogenization heat treatment is hot-rolled by a hot rolling line suitable for mass production of plates. This hot rolling line is usually composed of a reverse type rough rolling mill consisting of one unit and a tandem type finishing mill consisting of usually 3 to 5 units. In these rough rolling mill and finish rolling mill, rolling consisting of a plurality of passes is performed.

本発明では、均質化熱処理後の上記特定冷却速度範囲での冷却後の鋳塊を、この熱延ラインにおいて、350 〜450 ℃のより低温の温度範囲で熱間粗圧延を開始する。それとともに、350 ℃以下で仕上げ圧延における熱間圧延を終了する。これによって、前記した通り、粗大な再結晶粒の生成を抑制して、再結晶の際の組織の均質化を図り、成形時のリジングマーク性を向上させることを保証する。   In the present invention, hot rough rolling of the ingot after cooling in the specific cooling rate range after the homogenization heat treatment is started in this hot rolling line in a lower temperature range of 350 to 450 ° C. At the same time, the hot rolling in the finish rolling is finished at 350 ° C. or lower. As described above, this suppresses the formation of coarse recrystallized grains, homogenizes the structure during recrystallization, and ensures that the ridging mark property during molding is improved.

この結果、280 ℃程度の低温の熱間圧延終了温度でも、上記粗大な再結晶粒が生成しやすい、過剰Si型の6000系Al合金板であっても、上記粗大な再結晶粒を抑制でき、リジングマークを抑制できる。   As a result, the coarse recrystallized grains can be suppressed even in the excess Si type 6000 series Al alloy plate, which is likely to produce the coarse recrystallized grains even at the low temperature of hot rolling at about 280 ° C. , Ridging marks can be suppressed.

熱間粗圧延開始温度が450 ℃を超えた場合、再結晶が生じて熱間圧延時に粗大な再結晶粒が生成し、リジングマークの原因となる、板の特定方位の再結晶粒がスジ状に並ぶことが多くなる。また、熱間粗圧延開始温度が350 ℃未満では、熱間圧延自体が困難となる。   When the hot rough rolling start temperature exceeds 450 ° C, recrystallization occurs and coarse recrystallized grains are formed during hot rolling, and the recrystallized grains in a specific orientation of the plate that cause ridging marks are streaked. It is often lined up in. Further, if the hot rough rolling start temperature is less than 350 ° C., the hot rolling itself becomes difficult.

更に、熱間圧延の終了温度は350 ℃以下として、コイル状、板状などの板形状に加工する。熱間圧延終了温度が350 ℃を超えた場合、特に粗大な再結晶粒が生成しやすくなり、リジングマークの原因となる、板の特定方位の再結晶粒がスジ状に並ぶことが多くなる。   Further, the end temperature of the hot rolling is set to 350 ° C. or less, and it is processed into a plate shape such as a coil shape or a plate shape. When the hot rolling finish temperature exceeds 350 ° C., particularly coarse recrystallized grains are likely to be generated, and the recrystallized grains in a specific orientation of the plate that cause ridging marks are often arranged in a streak shape.

以上のように、本発明では、均質化熱処理後の鋳塊を冷却して、より低温で熱間圧延を開始するとともに、粗大な再結晶粒が生成しない、より低温で熱間圧延を終了させる。このため、熱間圧延時に、リジングマークの原因となる、粗大な再結晶粒が生成するのを抑制できる。   As described above, in the present invention, the ingot after the homogenization heat treatment is cooled, and hot rolling is started at a lower temperature, and the hot rolling is finished at a lower temperature without generating coarse recrystallized grains. . For this reason, it is possible to suppress the formation of coarse recrystallized grains that cause ridging marks during hot rolling.

(熱延板の焼鈍)
この熱延板の冷間圧延前の焼鈍 (荒鈍) は、必要に応じて行なう。製造の効率化や製造コストの低減のために省略し、熱延板を予め焼鈍を施こすことなく、冷間圧延を行っても良い。
(Hot rolled sheet annealing)
The hot rolled sheet is annealed (roughened) before cold rolling as necessary. It may be omitted for the sake of manufacturing efficiency and reduction of manufacturing cost, and cold rolling may be performed without pre-annealing the hot-rolled sheet.

(冷間圧延)
この荒鈍後に、引き続き冷間圧延を行なって、所望の板厚の冷延板 (コイルも含む) を製作する。
(Cold rolling)
After the roughening, cold rolling is subsequently performed to produce a cold-rolled sheet (including a coil) having a desired thickness.

(溶体化および焼入れ処理)
上記鋳塊の均熱によって本発明範囲内のサイズ分布と量とに制御した分散粒子を活用し、最終の溶体化および焼入れ処理において、リジングマークを抑制するための再結晶核として、ランダムな方位を持つ再結晶方位とするためには、最終の溶体化処理の昇温速度を100 ℃/分以上とすることが好ましい。最終の溶体化処理の100 ℃/分以上の昇温過程で、上記分散粒子は、ランダムな再結晶結晶方位の形成の核として働く。昇温速度は、より好ましくは、200 ℃/分以上、より好ましくは、300 ℃/分以上である。
(Solution and quenching)
Utilizing dispersed particles controlled to a size distribution and amount within the range of the present invention by soaking of the ingot, random orientation as a recrystallization nucleus for suppressing ridging marks in the final solution treatment and quenching treatment In order to obtain a recrystallization orientation having the above, it is preferable that the temperature raising rate of the final solution treatment is 100 ° C./min or more. In the temperature rising process of 100 ° C./min or more in the final solution treatment, the dispersed particles serve as nuclei for forming random recrystallized crystal orientations. The rate of temperature rise is more preferably 200 ° C./min or more, and more preferably 300 ° C./min or more.

なお、溶体化処理の条件は、板のプレス成形後の塗装焼き付け硬化処理などの人工時効処理により強度向上に寄与する時効析出物を十分粒内に析出させるために、好ましくは500 ℃以上、融点以下までの温度範囲で行う。より好ましくは、510 ℃以上、570 ℃以下、更に好ましくは、520 ℃以上560 ℃以下である。   The solution treatment conditions are preferably at least 500 ° C. and a melting point in order to sufficiently precipitate aging precipitates that contribute to strength improvement by artificial aging treatment such as paint baking hardening after press molding of the plate. Perform in the following temperature range. More preferably, they are 510 degreeC or more and 570 degrees C or less, More preferably, they are 520 degreeC or more and 560 degrees C or less.

次く溶体化処理温度からの焼入れ処理では、冷却速度が遅いと、粒界上にSi、Mg2Si などが析出しやすくなり、プレス成形や曲げ加工時の割れの起点となり易く、これら成形性が低下する。この冷却速度を確保するために、焼入れ処理は、ファンなどの空冷、ミスト、スプレー、浸漬等の水冷手段や条件を各々選択して用い、冷却速度を300 ℃/ 分以上の急冷とすることが好ましい。より好ましくは、600 ℃/ 分以上、より好ましくは、700 ℃/ 分以上で、さらに好ましくは、800 ℃/ 分以上である。 Next, in the quenching treatment from the solution treatment temperature, if the cooling rate is slow, Si, Mg 2 Si, etc. are likely to precipitate on the grain boundary, which is likely to be the starting point of cracks during press forming and bending, and these formability Decreases. In order to ensure this cooling rate, the quenching treatment should be performed by selecting and using water cooling means and conditions such as air cooling such as fans, mist, spraying, immersion, etc., and quenching at a cooling rate of 300 ° C / min or more. preferable. More preferably, it is 600 ° C./min or more, more preferably 700 ° C./min or more, and still more preferably 800 ° C./min or more.

本発明では、成形パネルの塗装焼き付け工程などの人工時効硬化処理での時効硬化性をより高めるため、焼入れ処理後に、強度向上に寄与する時効析出物の析出を促進するために、予備時効処理をしても良い。この予備時効処理は、 60 〜150 ℃、好ましくは70〜120 ℃の温度範囲に、1 〜24時間の必要時間保持することが好ましい。この予備時効処理として、上記焼入れ処理の冷却終了温度を60〜150 ℃と高くした後に、直ちに再加熱乃至そのまま保持して行う。あるいは、溶体化処理後常温までの焼入れ処理の後に、5 分以内に、直ちに60〜150 ℃に再加熱して行う。   In the present invention, in order to further enhance the age-hardening property in the artificial age-hardening treatment such as the paint baking process of the molded panel, a pre-aging treatment is performed after the quenching treatment in order to promote the precipitation of the age-related precipitates that contribute to strength improvement. You may do it. This preliminary aging treatment is preferably held at a temperature range of 60 to 150 ° C., preferably 70 to 120 ° C. for a required time of 1 to 24 hours. As this preliminary aging treatment, after the cooling end temperature of the quenching treatment is increased to 60 to 150 ° C., it is immediately reheated or kept as it is. Alternatively, it is immediately reheated to 60-150 ° C. within 5 minutes after solution treatment and quenching to room temperature.

更に、室温時効抑制のために、前記予備時効処理後に、時間的な遅滞無く、比較的低温での熱処理 (人工時効処理) を行っても良い。前記時間的な遅滞があった場合、予備時効処理後でも、時間の経過とともに室温時効 (自然時効) が生じ、この室温時効が生じた後では、前記比較的低温での熱処理による効果が発揮しにくくなる。   Furthermore, in order to suppress aging at room temperature, heat treatment (artificial aging treatment) at a relatively low temperature may be performed after the preliminary aging treatment without time delay. When the time delay is present, room temperature aging (natural aging) occurs with time even after the preliminary aging treatment, and after the room temperature aging occurs, the effect of the heat treatment at the relatively low temperature is exhibited. It becomes difficult.

また、連続溶体化焼入れ処理の場合には、前記予備時効の温度範囲で焼入れ処理を終了し、そのままの高温でコイルに巻き取るなどして行う。なお、コイルに巻き取る前に再加熱しても、巻き取り後に保温しても良い。また、常温までの焼入れ処理の後に、前記温度範囲に再加熱して高温で巻き取るなどしてもよい。   Further, in the case of continuous solution quenching, the quenching process is completed within the temperature range of the preliminary aging, and the coil is wound around a coil at the same high temperature. In addition, you may reheat before winding up to a coil, and you may heat-retain after winding. Moreover, after the quenching process to room temperature, it may be reheated to the above temperature range and wound at a high temperature.

この他、用途や必要特性に応じて、更に高温の時効処理や安定化処理を行い、より高強度化などを図ることなども勿論可能である。   In addition to this, it is of course possible to further increase the strength by performing aging treatment or stabilization treatment at a higher temperature according to the application or required characteristics.

(平均結晶粒径)
こうして得られたAl合金板の平均結晶粒径は50μm 以下の微細化させる。結晶粒径をこの範囲に細かく乃至小さくすることによって、曲げ加工性やプレス成形性が確保乃至向上される。平均結晶粒径が50μm を越えて粗大化した場合、曲げ加工性や張出などのプレス成形性が著しく低下し、成形時の割れや肌荒れなどの不良が生じ易い。また、リジングマークも生じやすくなる。
(Average crystal grain size)
The Al alloy plate thus obtained is refined to an average crystal grain size of 50 μm or less. By making the crystal grain size fine or small within this range, bending workability and press formability can be ensured or improved. When the average crystal grain size is larger than 50 μm, the press formability such as bending workability and overhang is remarkably deteriorated, and defects such as cracks and rough skin during forming tend to occur. Also, ridging marks are likely to occur.

なお、ここで言う結晶粒径とは板の長手(L) 方向の結晶粒の最大径である。この結晶粒径は、Al合金板を0.05〜0.1mm 機械研磨した後電解エッチングした表面を、光学顕微鏡を用いて観察し、前記L 方向に、ラインインターセプト法で測定する。1 測定ライン長さは0.95mmとし、1 視野当たり各3 本で合計5 視野を観察することにより、全測定ライン長さを0.95×15mmとし、平均化する。   The crystal grain size referred to here is the maximum diameter of crystal grains in the longitudinal (L) direction of the plate. The crystal grain size is measured by a line intercept method in the L direction by observing the surface of the Al alloy plate that has been mechanically polished by 0.05 to 0.1 mm and then electrolytically etched using an optical microscope. 1 The measurement line length is 0.95mm, and the total measurement line length is 0.95 x 15mm by observing a total of 5 fields with 3 lines per field.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも可能であり、それらは何れも本発明の技術的範囲に含まれる。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. It is also possible to implement, and they are all included in the technical scope of the present invention.

次に、本発明の実施例を説明する。表1 に示すA 〜I の組成の6000系Al合金板を、表2 に示す条件で、均質化熱処理 (均熱処理と略記) および熱間圧延 (熱延と略記) し、更に、冷間圧延を行い、溶体化および焼入れ処理して、製造した。なお、表1 中の各元素の含有量の表示において、「−」の表示は、検出限界以下であることを示す。   Next, examples of the present invention will be described. A 6000 series Al alloy sheet having the composition of A to I shown in Table 1 is subjected to homogenization heat treatment (abbreviated as soaking) and hot rolling (abbreviated as hot rolling) under the conditions shown in Table 2, and further cold rolled. Was manufactured by solution treatment and quenching. In addition, in the display of the content of each element in Table 1, “−” indicates that the content is below the detection limit.

試験材Al合金板の、より具体的な製造条件は以下の通りである。表1 に示す各組成の500mm 厚さ、2000mm幅、7m長さの鋳塊を、DC鋳造法により溶製後、表2 に示す条件で均質化熱処理(1回目) を施した。この均質化熱処理後に、表2 に示す条件の冷却速度で、熱延開始温度まで冷却する2 段均熱を行なった (表2 では2 回目の均熱を「−」と表示している分) 。あるいは、表2 に示す条件の冷却速度で、一旦室温まで冷却し、熱延開始温度まで再加熱する2 回均熱を行なった (表2 では2 回目の均熱の再加熱温度と保持時間とを記載している分) 。   More specific production conditions for the test material Al alloy plate are as follows. An ingot of 500 mm thickness, 2000 mm width, and 7 m length having each composition shown in Table 1 was melted by a DC casting method and then subjected to homogenization heat treatment (first time) under the conditions shown in Table 2. After this homogenization heat treatment, two-stage soaking was performed to cool down to the hot rolling start temperature at the cooling rate shown in Table 2 (in Table 2, the second soaking was indicated as ``-'') . Alternatively, it was cooled twice to room temperature at the cooling rate shown in Table 2 and then reheated to the hot rolling start temperature (in Table 2, the reheating temperature and holding time for the second soaking were determined). ).

この均熱後に、表2 に示す粗圧延の各開始温度と各終了温度と、仕上げ圧延の各終了温度とで、厚さ2.5mmtまで熱間圧延した。この熱延板を、荒鈍を省略した上で、直接冷間圧延を行い、厚さ1.2mmtの冷延板を得た。   After this soaking, hot rolling was performed to a thickness of 2.5 mmt at each start temperature and each end temperature of rough rolling shown in Table 2 and each end temperature of finish rolling. The hot-rolled sheet was subjected to direct cold rolling after omitting the roughening to obtain a cold-rolled sheet having a thickness of 1.2 mmt.

供試板となる、この最終冷延板の板厚は、近年の衝突時の歩行者や乗員保護のための自動車アウタパネルの厚肉化を反映させるために、厚さ1.2mmtに厚肉化させた。このように供試板の板厚を厚肉化させた場合、プレス成形性向上には有利であるが、ヘムなどの曲げ加工性に対しては不利となる。更に、この自動車アウタパネルの厚肉化に伴って、重量増加を抑制するために、ヘム部に挟み込まれるインナパネルが薄板化されるため、余計にヘムなどの180 °曲げ加工性に対しては不利となる。   The thickness of the final cold-rolled plate, which will be the test plate, is increased to 1.2 mm to reflect the increased thickness of the outer car panel for protecting pedestrians and occupants in recent collisions. It was. When the thickness of the test plate is increased in this way, it is advantageous for improving press formability, but disadvantageous for bending workability such as hem. Furthermore, the inner panel sandwiched between the hems is made thinner to suppress the increase in weight as the automobile outer panel becomes thicker, which is disadvantageous for 180 ° bending workability such as hems. It becomes.

そして、この冷延板を、連続式の熱処理設備で、各例とも共通して、昇温速度およそ300 ℃/分で加熱し、550 ℃の溶体化処理温度に到達した時点で( 保持時間 10 秒程度) 、直ちに室温まで、冷却速度およそ600 ℃/ 分の急冷にて焼入れた。また、この焼入れ後直ちに、100 ℃の温度で2 時間保持する予備時効処理を行った。   The cold-rolled sheet was heated in a continuous heat treatment facility at a rate of temperature increase of about 300 ° C./min in common with each example, and when the solution treatment temperature of 550 ° C. was reached (holding time 10 Immediately after quenching to room temperature, quenching was performed at a cooling rate of approximately 600 ° C./min. Immediately after this quenching, a preliminary aging treatment was carried out at a temperature of 100 ° C. for 2 hours.

(供試板要件)
これら調質処理後の各最終製品板から供試板 (ブランク) を切り出し、前記調質処理後 3カ月間 (90日間) の室温時効後の各供試板組織の直径2 μm 以上のサイズのMg2Si 化合物粒子の平均個数密度と、直径0.5 〜2 μm のサイズのMg2Si 化合物粒子の平均個数密度とを前記した測定方法により各々測定した。
(Test plate requirements)
A test plate (blank) is cut out from each final product plate after the tempering treatment, and each test plate structure has a diameter of 2 μm or more after aging at room temperature for 3 months (90 days). the average number density of mg 2 Si compound particles were each measured by the measuring method described above and the average number density of mg 2 Si compound particles size diameter 0.5 to 2 [mu] m.

また、同じく、前記調質処理後 3カ月間の室温時効後の各供試板の組織として平均導電率(IACS%) と平均結晶粒径 (μm)、同供試板の特性として、リジングマーク性、圧延方向に対し45°の方向の0.2%耐力 (MPa)などを各々測定、評価した。これらの結果を表3 に示す。平均導電率(IACS%) と平均結晶粒径 (μm)は各々前記した方法で求めた。   Similarly, the average conductivity (IACS%) and average crystal grain size (μm) as the structure of each test plate after room temperature aging for 3 months after the tempering treatment, and the characteristics of the test plate as ridging marks And 0.2% proof stress (MPa) in the direction of 45 ° with respect to the rolling direction were measured and evaluated. These results are shown in Table 3. The average conductivity (IACS%) and the average crystal grain size (μm) were each determined by the method described above.

(リジングマーク)
製造されたアルミニウム合金板のリジングマーク性は、実際にプレス成形した後に塗装処理せずとも評価できる。即ち、各供試板の圧延方向に直角方向に、引張試験により10% ストレッチした後の、表面粗さRaと表面うねりWaとを測定することによって、模擬的に評価できる。具体的には、各供試板の前記ストレッチする前の表面粗さRaと表面うねりWaとを測定し、ストレッチ後の表面粗さRaのストレッチ前の表面粗さRaに対する倍率 (比) 、ストレッチ後の表面うねりWaのストレッチ前の表面うねりWaに対する倍率 (比) 、を各々求める。
(Riding mark)
The ridging mark property of the manufactured aluminum alloy sheet can be evaluated without actually applying the coating treatment after press forming. That is, it can be evaluated in a simulated manner by measuring the surface roughness Ra and the surface waviness Wa after 10% stretching by a tensile test in a direction perpendicular to the rolling direction of each test plate. Specifically, the surface roughness Ra and surface waviness Wa before stretching of each test plate are measured, and the ratio (ratio) of the surface roughness Ra after stretching to the surface roughness Ra before stretching, the stretch The magnification (ratio) of the subsequent surface waviness Wa to the surface waviness Wa before stretching is determined.

そして、これらの倍率 (比) が、ともに5 倍以下であり、プレス成形を模擬したストレッチをした後でも、表面粗さRaと表面うねりWaとの所謂肌荒れの増加が小さいものを、プレス成形時のリジングマーク性が優れると評価できる。   Both of these magnifications (ratio) are 5 times or less, and even after stretching simulating press molding, a so-called increase in surface roughness between surface roughness Ra and surface waviness Wa is small. It can be evaluated that the ridging mark property is excellent.

10% ストレッチを付与するための引張試験は、上記により得られたAl合金板からJISZ2201の5号試験片(25mm×50mmGL×板厚)を採取し、室温引張りを行った。このときの試験片の採取方向は、圧延方向を「直角方向」にし、引張り方向を圧延方向の直角方向とした。引張り速度は、0.2%耐力までは5mm/分、耐力以降は20mm/min とした。   In the tensile test for imparting 10% stretch, a No. 5 test piece (25 mm × 50 mmGL × plate thickness) of JISZ2201 was collected from the Al alloy plate obtained as described above, and subjected to room temperature tension. At this time, the specimens were sampled in a direction perpendicular to the rolling direction and a direction perpendicular to the rolling direction. The tensile speed was 5 mm / min up to 0.2% proof stress and 20 mm / min after proof stress.

板の表面粗さRa (算術平均粗さ) と、表面うねりWa(算術平均うねり) とは、各々JIS B0601 に規定される定義と測定法に基づき、板表面の凸凹を触針式表面粗さ計で測定して求めた。   The surface roughness Ra (arithmetic mean roughness) and surface waviness Wa (arithmetic mean waviness) of the plate are based on the definition and measurement method defined in JIS B0601, respectively. It was determined by measuring with a meter.

(As耐力)
上記調質処理直後のAl合金板から、圧延方向に対し垂直方向のJISZ2201の5号試験片(25mm×50mmGL×板厚)を採取し、室温引張り試験を行った。室温引張り試験は、JISZ2241(1980)(金属材料引張り試験方法)に基づき、室温20℃で試験を行った。また、クロスヘッド速度は、5mm/分で、試験片が破断するまで一定の速度で行った。この方法によって、0.2%耐力を評価し、AS耐力とした(N数=5の平均値)。
(As proof stress)
A JISZ2201 No. 5 test piece (25 mm × 50 mmGL × sheet thickness) perpendicular to the rolling direction was taken from the Al alloy plate immediately after the tempering treatment, and a room temperature tensile test was performed. The room temperature tensile test was performed at room temperature of 20 ° C. based on JISZ2241 (1980) (metal material tensile test method). The crosshead speed was 5 mm / min, and the test was performed at a constant speed until the test piece broke. By this method, 0.2% proof stress was evaluated, and AS proof strength was set (N number = average value of 5).

(BH 後耐力)
人工時効処理能(BH 性) を調査するため、これらAl合金板がパネルとしてプレス成形されることを模擬して、前記、JIS5 号試験片に、2%の歪みを予め与えた後、170 ℃、20分の人工時効硬化処理を施し、処理後の各供試板の(元板の圧延方向に平行な耐力を上記引っ張り試験条件にて、BH後耐力(MPa )として測定した。これらの結果を表3 に各々示す。
(Yield strength after BH)
In order to investigate the artificial aging treatment ability (BH property), the above JIS No. 5 test piece was preliminarily given a strain of 2% and simulated at 170 ° C. , 20 minutes of artificial age hardening treatment was performed, and the proof stress (MPa) of each test plate after treatment was measured as the post-BH proof stress (MPa) under the tensile test conditions described above. Are shown in Table 3.

(成形性)
供試板の成形性として、張出し成形性評価のための割れ限界高さ(LDH0)および限界絞り比(LDR )と、圧延方向に対し平行方向の曲げ性曲げ性を各々試験した。これらの結果も表3 に各々示す。
(Formability)
As the formability of the test plate, the crack limit height (LDH 0 ) and the limit drawing ratio (LDR) for evaluating the stretch formability, and the bendability in the direction parallel to the rolling direction were tested. These results are also shown in Table 3.

割れ限界高さ(LDH0)試験は、供試板を、長さ180mm 、幅110mm の試験片に切り、直径101.6mm の球状張出しパンチを用い、潤滑剤としてR-303Pを用いて、しわ押え圧力200kN 、パンチ速度4mm/S で張出し成形し、試験片が割れるときの高さ(mm)を求めた。各サンプルに対して3 回の試験を行い、その平均値を採用した。割れ限界高さが大きい程、張出し成形性に優れていることを意味し、例えば自動車用成形パネルに要求される張出し成形性を満足するためには、27.0mm以上であればよい。 For the crack limit height (LDH 0 ) test, the test plate was cut into a test piece with a length of 180 mm and a width of 110 mm, using a spherical overhang punch with a diameter of 101.6 mm, and using R-303P as a lubricant, Stretching was performed at a pressure of 200 kN and a punching speed of 4 mm / S, and the height (mm) at which the test piece cracked was determined. Each sample was tested 3 times and the average value was adopted. The larger the crack limit height, the better the stretch formability. For example, in order to satisfy the stretch formability required for a molded panel for automobiles, it may be 27.0 mm or more.

限界絞り比(LDR )は、供試板から種々の直径の試験片を打抜きにより作製した上で、ポンチ:50mmφ- 肩R8mm、ダイス:53mmφ- 肩R8mm、潤滑材R-303Pを用いて、しわ押さえ圧300〜600kgf、試験速度20mm/minの条件で深絞り試験を行った。そして、深絞り成形できない成形限界ブランク径を決定し、次の式により限界絞り比を算出した。限界絞り比=成形限界ブランク径/ ポンチ径。限界絞り比が大きいほど、深絞り成形性に優れている事を意味し、例えば自動車用成形パネルに要求される深絞り成形性を満足するためには、1.8 以上であればよい。   The limit drawing ratio (LDR) was obtained by punching test pieces of various diameters from the test plate, punching: 50mmφ-shoulder R8mm, die: 53mmφ-shoulder R8mm, and using the lubricant R-303P. A deep drawing test was performed under the conditions of a pressing pressure of 300 to 600 kgf and a test speed of 20 mm / min. And the shaping | molding limit blank diameter which cannot be deep-drawn was determined, and the limit drawing ratio was computed by the following formula | equation. Limit drawing ratio = forming limit blank diameter / punch diameter. The larger the limit drawing ratio, the better the deep drawability. For example, in order to satisfy the deep drawability required for a molded panel for automobiles, it may be 1.8 or more.

曲げ性の評価は、供試板から長さ150mm ×幅30mmの曲げ加工試験片を採取し、フラットヘミング加工を想定した曲げ性を評価した。即ち、試験片に対して、15%の歪みを予め加えた後、角度180°の密着曲げ(内側曲げ半径R=約0.25mm)を行った。曲げ性の評価は、曲げ加工後の試験片縁曲部の割れ発生程度を目視で確認し、下記基準に基づいて5 段階で評価した。
0:肌荒れ、及び微小な割れが無い。
1:肌荒れが僅かに発生している。
2:肌荒れが発生しているものの微小なものを含めた割れは無い。
3:微小な割れが発生。
4:大きな割れが発生。
5:大きな割れが複数あるいは多数発生。
上記のランクの内、0 〜2 段階が合格で、3 〜5 段階は不合格である。なお、前記したヘム部に挟み込まれるインナパネルの薄板化の厳しいヘム加工条件を反映させるため、インナパネルのヘム部への挟み込みは無しとした。
For the evaluation of bendability, a bend test specimen having a length of 150 mm and a width of 30 mm was taken from a test plate, and bendability assuming flat hemming was evaluated. That is, a 15% strain was preliminarily applied to the test piece, and then contact bending at an angle of 180 ° (inner bending radius R = about 0.25 mm) was performed. The evaluation of bendability was evaluated in five stages based on the following criteria by visually confirming the degree of cracking at the bent part of the test piece after bending.
0: No rough skin or fine cracks.
1: Rough skin has occurred.
2: Although there is rough skin, there are no cracks including minute ones.
3: Small cracks occur.
4: Large cracks occur.
5: Multiple or many large cracks occurred.
Of the above ranks, 0 to 2 stages are acceptable and 3 to 5 are unacceptable. In order to reflect the severe hemming conditions of the inner panel sandwiched between the hem portions described above, the inner panel was not sandwiched into the hem portions.

表1 、2 に示す通り、発明例1 〜12は、本発明成分組成範囲内で、かつ、本発明条件範囲で、均質化熱処理および熱間圧延を行なっている。このため、表3 に示す通りの、好ましいMg2Si 化合物粒子の平均個数密度と平均導電率(IACS%) 、あるいは平均結晶粒径 (μm)との組織を有している。 As shown in Tables 1 and 2, Invention Examples 1 to 12 are subjected to homogenization heat treatment and hot rolling within the composition range of the present invention and within the conditions of the present invention. For this reason, as shown in Table 3, the Mg 2 Si compound particles have a preferred average density and average conductivity (IACS%) or average crystal grain size (μm).

この結果、前記調質処理後 3カ月間 (90日間) の室温時効して、成形性が低下した過剰Si型の組成の6000系Al合金板の例でも、優れたBH性、プレス成形性、曲げ加工性を維持しつつ、リジングマーク性が優れている。   As a result, even in the example of a 6000 series Al alloy plate with an excess Si type composition that has been aged at room temperature for 3 months (90 days) after the tempering treatment and the formability has deteriorated, excellent BH properties, press formability, Excellent ridging mark property while maintaining bending workability.

なお、同じ発明例1 〜6 の中での比較で、発明例2 は均熱処理後の冷却速度が比較的大きい (上限に近い) 。発明例3 は均熱処理後の冷却速度が比較的小さい (下限に近い) 。発明例4 は均熱冷却後の再加熱温度が比較的低い (下限に近い) 。発明例6 は均熱冷却後の再加熱温度が比較的高い (上限に近い) 。このため、発明例2 、3 は均熱処理後の冷却速度が最適な発明例1 に比して、発明例4 、6 は均熱冷却後の再加熱温度が最適な発明例5 に比して、相対的にではあるが特性が低い。   In comparison with the same Invention Examples 1 to 6, Invention Example 2 has a relatively high cooling rate after soaking (close to the upper limit). In Invention Example 3, the cooling rate after soaking is relatively small (close to the lower limit). In Invention Example 4, the reheating temperature after soaking is relatively low (close to the lower limit). In Invention Example 6, the reheating temperature after soaking is relatively high (close to the upper limit). Therefore, Invention Examples 2 and 3 are in comparison with Invention Example 1 where the cooling rate after soaking is optimal, and Invention Examples 4 and 6 are in comparison with Invention Example 5 where the reheating temperature after soaking is optimal. , But relatively low characteristics.

これに対して、比較例13〜18は、上記発明例1 〜6 と同じ合金例A を用いている。しかし、各比較例は、製造条件が発明範囲を外れている。
比較例13は均熱処理後の冷却速度が発明範囲を下限に外れて小さ過ぎる。
比較例14は均熱処理後の冷却速度が発明範囲を上限に外れて大き過ぎる。
比較例15は均熱処理後の冷却速度は適切であるものの、熱間圧延開始温度が発明範囲を上限に外れて高過ぎる。
比較例16は均熱処理後の冷却速度は適切であるものの、熱間圧延開始温度が発明範囲を下限に外れて低過ぎる。
比較例17は均熱処理後の冷却速度は適切であるものの、再加熱温度が発明範囲を上限に外れて高過ぎ、熱間圧延開始温度も高過ぎる。
比較例18は均熱処理後の冷却速度は適切であるものの、再加熱温度が発明範囲を下限に外れて低過ぎ、熱間圧延開始温度も低過ぎる。
On the other hand, Comparative Examples 13 to 18 use the same alloy example A as Invention Examples 1 to 6. However, the manufacturing conditions of each comparative example are out of the scope of the invention.
In Comparative Example 13, the cooling rate after soaking is too small outside the range of the invention.
In Comparative Example 14, the cooling rate after soaking is too large outside the range of the invention.
In Comparative Example 15, the cooling rate after the soaking is appropriate, but the hot rolling start temperature is too high outside the range of the invention.
In Comparative Example 16, although the cooling rate after soaking is appropriate, the hot rolling start temperature is too low outside the range of the invention.
In Comparative Example 17, although the cooling rate after soaking is appropriate, the reheating temperature is too high outside the range of the invention, and the hot rolling start temperature is too high.
In Comparative Example 18, although the cooling rate after soaking is appropriate, the reheating temperature is too low outside the range of the invention, and the hot rolling start temperature is too low.

このため、表3 に示す通り、比較例16と18は熱間圧延が実施困難であり、比較例13、14、15、17はMg2Si 化合物粒子の平均個数密度と平均導電率(IACS%) 、あるいは平均結晶粒径 (μm)のいずれかが好ましい範囲から外れた組織となっている。この結果、比較例13〜18は、前記調質処理後 3カ月間の室温時効して、成形性が低下した過剰Si型の組成の6000系Al合金板の例では、BH性、プレス成形性、曲げ加工性のいずれかとともに、リジングマーク性が、発明例に比して著しく劣る。 Therefore, as shown in Table 3, it is difficult to perform hot rolling in Comparative Examples 16 and 18, and Comparative Examples 13, 14, 15, and 17 are the average number density and average conductivity (IACS%) of Mg 2 Si compound particles. ) Or the average crystal grain size (μm) is out of the preferred range. As a result, in Comparative Examples 13 to 18, the examples of 6000 series Al alloy plates with an excess Si type composition that was aged at room temperature for 3 months after the tempering treatment and the formability was lowered, BH property, press formability In addition to any of the bending workability, the ridging mark property is remarkably inferior as compared with the inventive examples.

Si量が0.4%未満で成分組成が外れる合金H を用いた比較例19は、本発明条件範囲で、均質化熱処理および熱間圧延を行なっているにもかかわらず、BH性、プレス成形性とともに、リジングマーク性が、発明例に比して著しく劣る。   Comparative Example 19 using an alloy H with an Si content of less than 0.4% and deviating from the component composition has BH properties and press formability in spite of performing homogenization heat treatment and hot rolling within the range of the present invention. The ridging mark property is remarkably inferior to that of the inventive examples.

Mg量が0.2%未満で成分組成が外れる合金I を用いた比較例20は、本発明条件範囲で、均質化熱処理および熱間圧延を行なっているにもかかわらず、BH性、プレス成形性とともに、リジングマーク性が、発明例に比して著しく劣る。   Comparative Example 20, which uses Alloy I with an Mg content of less than 0.2% and a component composition deviating, has BH properties and press formability in spite of performing homogenization heat treatment and hot rolling within the range of the present invention. The ridging mark property is remarkably inferior to that of the inventive examples.

したがって、以上の実施例の結果から、本発明の各要件の持つ臨界的な意義乃至効果が裏付けられる。   Therefore, the results of the above examples support the critical significance or effect of each requirement of the present invention.

Figure 2007247000
Figure 2007247000

Figure 2007247000
Figure 2007247000

Figure 2007247000
Figure 2007247000

本発明によれば、量産的な熱延ラインによって6000系Al合金板を製造する場合にでも、プレス成形時のリジングマークを防止した製造方法を提供できる。また、近年の衝突時の歩行者や乗員保護のための厚肉化した自動車アウタパネルの曲げ加工にも対応できる。この結果、自動車、船舶あるいは車両などの輸送機、家電製品、建築、構造物の部材や部品用として、また、特に、自動車などの輸送機の部材に、6000系Al合金板の適用を拡大できる。   ADVANTAGE OF THE INVENTION According to this invention, even when manufacturing a 6000 series Al alloy plate with a mass-production hot rolling line, the manufacturing method which prevented the ridging mark at the time of press molding can be provided. In addition, it can cope with the bending process of a thickened automobile outer panel for protecting pedestrians and passengers at the time of collision in recent years. As a result, it is possible to expand the application of 6000 series Al alloy plates for transportation equipment such as automobiles, ships or vehicles, household electrical appliances, buildings, structural members and parts, and especially for transportation equipment such as automobiles. .

Claims (8)

質量% で、Si:0.4〜1.3%、Mg:0.2〜1.2%、Mn:0.01 〜0.65% 、Cu:0.001〜1.0%を含み、残部がAlおよび不可避的不純物からなり、400mm 以上の厚みを有する大型のアルミニウム合金鋳塊を、500 ℃以上融点未満の温度で均質化熱処理した後、50℃/hr 以上、100 ℃/hr 以下の冷却速度で冷却し、その後、リバース式の粗圧延機とタンデム式の仕上げ圧延機とから構成されて各々複数のパスからなる圧延が施される熱延ラインによって、前記粗圧延における開始温度を350 〜450 ℃の温度範囲とし、前記仕上げ圧延における終了温度を350 ℃以下とした熱間圧延を行い、更に冷間圧延した後に、溶体化および焼入れ処理することを特徴とする成形時のリジングマーク性に優れたアルミニウム合金板の製造方法。   In mass%, Si: 0.4-1.3%, Mg: 0.2-1.2%, Mn: 0.01-0.65%, Cu: 0.001-1.0%, the balance is made of Al and inevitable impurities, and has a thickness of 400 mm or more A large aluminum alloy ingot is subjected to a homogenization heat treatment at a temperature of 500 ° C or higher and lower than the melting point, and then cooled at a cooling rate of 50 ° C / hr or higher and 100 ° C / hr or lower. The hot rolling line is composed of a finishing mill of the type and is subjected to rolling consisting of a plurality of passes, and the starting temperature in the rough rolling is set to a temperature range of 350 to 450 ° C., and the finishing temperature in the finishing rolling is 350 A method for producing an aluminum alloy plate excellent in ridging mark property during forming, characterized by performing hot rolling at a temperature of ℃ or less and further cold rolling, followed by solution treatment and quenching treatment. 前記均質化熱処理後に、350 〜450 ℃の温度範囲まで、50℃/hr 以上、100 ℃/hr 以下の冷却速度で冷却し、前記熱間粗圧延を開始する、請求項1に記載の成形時のリジングマーク性に優れたアルミニウム合金板の製造方法。   The molding according to claim 1, wherein after the homogenization heat treatment, the hot rough rolling is started by cooling to a temperature range of 350 to 450 ° C at a cooling rate of 50 ° C / hr or more and 100 ° C / hr or less. The manufacturing method of the aluminum alloy plate excellent in the ridging mark property of. 前記均質化熱処理後に、350 ℃以下の温度範囲まで、50℃/hr 以上、100 ℃/hr 以下の冷却速度で冷却し、その後350 〜450 ℃の温度範囲まで再加熱して、前記熱間粗圧延を開始する、請求項1または2に記載の成形時のリジングマーク性に優れたアルミニウム合金板の製造方法。   After the homogenization heat treatment, it is cooled at a cooling rate of 50 ° C./hr or more and 100 ° C./hr or less to a temperature range of 350 ° C. or less, and then reheated to a temperature range of 350 to 450 ° C. The manufacturing method of the aluminum alloy plate excellent in the ridging mark property at the time of shaping | molding of Claim 1 or 2 which starts rolling. 前記均質化熱処理後の50℃/hr 以上、100 ℃/hr 以下の冷却速度を、均熱炉内または炉外での鋳塊のファンによる強制空冷で得る請求項1乃至3のいずれか1項に記載の成形時のリジングマーク性に優れたアルミニウム合金板の製造方法。   4. The cooling rate of 50 ° C./hr or more and 100 ° C./hr or less after the homogenization heat treatment is obtained by forced air cooling with an ingot fan inside or outside the soaking furnace. The manufacturing method of the aluminum alloy plate excellent in the ridging mark property at the time of shaping | molding described in 2. 前記SiとMgとの質量比Si/Mg が1 以上である請求項1乃至4のいずれか1項に記載の成形時のリジングマーク性に優れたアルミニウム合金板の製造方法。   5. The method for producing an aluminum alloy plate having excellent ridging mark property at the time of molding according to claim 1, wherein the mass ratio Si / Mg between Si and Mg is 1 or more. 前記Cu含有量を0.1%以下に規制した請求項1乃至5のいずれか1項に記載の成形時のリジングマーク性に優れたアルミニウム合金板の製造方法。   The method for producing an aluminum alloy plate excellent in ridging mark property at the time of molding according to any one of claims 1 to 5, wherein the Cu content is regulated to 0.1% or less. 前記アルミニウム合金板が自動車外板用である請求項1乃至6のいずれか1項に記載の成形時のリジングマーク性に優れたアルミニウム合金板の製造方法。   The method for producing an aluminum alloy plate excellent in ridging mark property at the time of molding according to any one of claims 1 to 6, wherein the aluminum alloy plate is for an automobile outer plate. 製造されたアルミニウム合金板を、圧延方向に直角方向に10% ストレッチした後の表面粗さRaと表面うねりWaとが、この板のストレッチ前の表面粗さRaと表面うねりWaとの、ともに5 倍以下である請求項1乃至7のいずれか1項に記載の成形時のリジングマーク性に優れたアルミニウム合金板の製造方法。   The surface roughness Ra and the surface waviness Wa after the manufactured aluminum alloy plate is stretched 10% in the direction perpendicular to the rolling direction are both 5%, the surface roughness Ra and the surface waviness Wa before stretching of this plate. The method for producing an aluminum alloy plate excellent in ridging mark property at the time of forming according to any one of claims 1 to 7, wherein the aluminum alloy plate is at most twice as large.
JP2006073014A 2006-03-16 2006-03-16 Manufacturing method of aluminum alloy sheet with excellent ridging mark property during forming Expired - Fee Related JP4939088B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006073014A JP4939088B2 (en) 2006-03-16 2006-03-16 Manufacturing method of aluminum alloy sheet with excellent ridging mark property during forming

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006073014A JP4939088B2 (en) 2006-03-16 2006-03-16 Manufacturing method of aluminum alloy sheet with excellent ridging mark property during forming

Publications (2)

Publication Number Publication Date
JP2007247000A true JP2007247000A (en) 2007-09-27
JP4939088B2 JP4939088B2 (en) 2012-05-23

Family

ID=38591617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006073014A Expired - Fee Related JP4939088B2 (en) 2006-03-16 2006-03-16 Manufacturing method of aluminum alloy sheet with excellent ridging mark property during forming

Country Status (1)

Country Link
JP (1) JP4939088B2 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254825A (en) * 2006-03-23 2007-10-04 Kobe Steel Ltd Method for manufacturing aluminum alloy sheet superior in bendability
JP2007262484A (en) * 2006-03-28 2007-10-11 Kobe Steel Ltd Method for producing 6000 series aluminum alloy sheet for automobile panel excellent in hem bendability and bake hardenability
JP2008248297A (en) * 2007-03-30 2008-10-16 Furukawa Sky Kk Rolled aluminum alloy sheet with excellent thermal conductivity, strength and bendability, and its manufacturing method
WO2009093559A1 (en) * 2008-01-22 2009-07-30 Kabushiki Kaisha Kobe Seiko Sho Aluminum-base alloy sheet
WO2009123011A1 (en) * 2008-03-31 2009-10-08 株式会社神戸製鋼所 Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
JP2009242904A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet superior in paint baking hardenability and invulnerable to room temperature aging, and method for production thereof
CN105903765A (en) * 2016-04-27 2016-08-31 海安县华达铝型材有限公司 Aluminum alloy strip rolling production line
JP2017530259A (en) * 2015-07-20 2017-10-12 ノベリス・インコーポレイテッドNovelis Inc. AA6XXX aluminum alloy sheet having high anodizing quality and method for making the same
CN114231862A (en) * 2021-12-08 2022-03-25 湖南乾龙新材料有限公司 Production process and application of T4P-state aluminum alloy narrow coiled plate
CN114540652A (en) * 2022-02-23 2022-05-27 东莞市灿煜金属制品有限公司 Method for manufacturing high-strength heat-treated alumina 6N63 for pen flat plate
CN115341082A (en) * 2022-08-01 2022-11-15 浙江永杰铝业有限公司 Preparation method of aluminum alloy strip and aluminum alloy strip
CN115698355A (en) * 2020-06-10 2023-02-03 爱励轧制产品德国有限责任公司 Method for manufacturing aluminum alloy sheet for vacuum chamber member

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634049A (en) * 1986-06-23 1988-01-09 Furukawa Alum Co Ltd Manufacture of al-alloy sheet for vessel
JPH07228956A (en) * 1994-02-16 1995-08-29 Sumitomo Light Metal Ind Ltd Production of aluminum alloy sheet for forming work
JPH11106856A (en) * 1997-10-03 1999-04-20 Kobe Steel Ltd Aluminum-magnesium-silicon series aluminum alloy sheet for forming
JP2001011559A (en) * 1999-06-29 2001-01-16 Sumitomo Light Metal Ind Ltd High strength aluminum alloy extruded material excellent in corrosion resistance and its production
JP2002356730A (en) * 2001-03-28 2002-12-13 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet excellent in formability and hardenability during baking of coating and production method therefor
JP2003105471A (en) * 2001-09-28 2003-04-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet, and production method therefor
JP2005171295A (en) * 2003-12-09 2005-06-30 Furukawa Sky Kk Aluminum alloy sheet to be formed and manufacturing method therefor
JP2007169740A (en) * 2005-12-22 2007-07-05 Kobe Steel Ltd Aluminum alloy sheet having excellent formability and its production method

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS634049A (en) * 1986-06-23 1988-01-09 Furukawa Alum Co Ltd Manufacture of al-alloy sheet for vessel
JPH07228956A (en) * 1994-02-16 1995-08-29 Sumitomo Light Metal Ind Ltd Production of aluminum alloy sheet for forming work
JPH11106856A (en) * 1997-10-03 1999-04-20 Kobe Steel Ltd Aluminum-magnesium-silicon series aluminum alloy sheet for forming
JP2001011559A (en) * 1999-06-29 2001-01-16 Sumitomo Light Metal Ind Ltd High strength aluminum alloy extruded material excellent in corrosion resistance and its production
JP2002356730A (en) * 2001-03-28 2002-12-13 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet excellent in formability and hardenability during baking of coating and production method therefor
JP2003105471A (en) * 2001-09-28 2003-04-09 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet, and production method therefor
JP2005171295A (en) * 2003-12-09 2005-06-30 Furukawa Sky Kk Aluminum alloy sheet to be formed and manufacturing method therefor
JP2007169740A (en) * 2005-12-22 2007-07-05 Kobe Steel Ltd Aluminum alloy sheet having excellent formability and its production method

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254825A (en) * 2006-03-23 2007-10-04 Kobe Steel Ltd Method for manufacturing aluminum alloy sheet superior in bendability
JP2007262484A (en) * 2006-03-28 2007-10-11 Kobe Steel Ltd Method for producing 6000 series aluminum alloy sheet for automobile panel excellent in hem bendability and bake hardenability
JP2008248297A (en) * 2007-03-30 2008-10-16 Furukawa Sky Kk Rolled aluminum alloy sheet with excellent thermal conductivity, strength and bendability, and its manufacturing method
WO2009093559A1 (en) * 2008-01-22 2009-07-30 Kabushiki Kaisha Kobe Seiko Sho Aluminum-base alloy sheet
WO2009123011A1 (en) * 2008-03-31 2009-10-08 株式会社神戸製鋼所 Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
JP2009242904A (en) * 2008-03-31 2009-10-22 Kobe Steel Ltd Aluminum alloy sheet superior in paint baking hardenability and invulnerable to room temperature aging, and method for production thereof
JP2009263781A (en) * 2008-03-31 2009-11-12 Kobe Steel Ltd Aluminum alloy sheet with excellent post-fabrication surface quality and method of manufacturing same
US8366846B2 (en) 2008-03-31 2013-02-05 Kobe Steel, Ltd. Aluminum alloy sheet with excellent post-fabrication surface qualities and method of manufacturing same
US10662514B2 (en) 2015-07-20 2020-05-26 Novelis Inc. AA6xxx aluminum alloy sheet with high anodized quality and method for making same
JP2017530259A (en) * 2015-07-20 2017-10-12 ノベリス・インコーポレイテッドNovelis Inc. AA6XXX aluminum alloy sheet having high anodizing quality and method for making the same
CN105903765A (en) * 2016-04-27 2016-08-31 海安县华达铝型材有限公司 Aluminum alloy strip rolling production line
CN115698355A (en) * 2020-06-10 2023-02-03 爱励轧制产品德国有限责任公司 Method for manufacturing aluminum alloy sheet for vacuum chamber member
CN114231862A (en) * 2021-12-08 2022-03-25 湖南乾龙新材料有限公司 Production process and application of T4P-state aluminum alloy narrow coiled plate
CN114540652A (en) * 2022-02-23 2022-05-27 东莞市灿煜金属制品有限公司 Method for manufacturing high-strength heat-treated alumina 6N63 for pen flat plate
CN115341082A (en) * 2022-08-01 2022-11-15 浙江永杰铝业有限公司 Preparation method of aluminum alloy strip and aluminum alloy strip
CN115341082B (en) * 2022-08-01 2023-11-17 浙江永杰铝业有限公司 Preparation method of aluminum alloy strip and aluminum alloy strip

Also Published As

Publication number Publication date
JP4939088B2 (en) 2012-05-23

Similar Documents

Publication Publication Date Title
JP4939088B2 (en) Manufacturing method of aluminum alloy sheet with excellent ridging mark property during forming
AU2016206897B2 (en) Highly formable automotive aluminum sheet with reduced or no surface roping and a method of preparation
JP5059423B2 (en) Aluminum alloy plate
JP4495623B2 (en) Aluminum alloy plate excellent in stretch flangeability and bending workability and method for producing the same
JP4312819B2 (en) Aluminum alloy sheet with excellent ridging marks during molding
JP2007169740A (en) Aluminum alloy sheet having excellent formability and its production method
WO2016140335A1 (en) Aluminum alloy plate
JP2007262484A (en) Method for producing 6000 series aluminum alloy sheet for automobile panel excellent in hem bendability and bake hardenability
JP2008045192A (en) Aluminum alloy sheet showing excellent ridging-mark resistance at molding
JP4939091B2 (en) Manufacturing method of aluminum alloy plate with excellent bending workability
JP2009173973A (en) Aluminum alloy sheet having excellent ridging mark property upon forming
JP5643479B2 (en) Al-Mg-Si aluminum alloy plate with excellent bendability
JP4944474B2 (en) Aluminum alloy plate excellent in stretch flangeability and manufacturing method thereof
JP2017088906A (en) Aluminum alloy sheet for automobile structural member and manufacturing method therefor
JP2006257505A (en) Aluminum alloy sheet having excellent extension flange formability
JP4515363B2 (en) Aluminum alloy plate excellent in formability and method for producing the same
JP3838504B2 (en) Aluminum alloy plate for panel forming and manufacturing method thereof
JP2004010982A (en) Aluminum alloy sheet having excellent bending workability and press formability
JP2003321754A (en) Method for manufacturing aluminum alloy sheet with excellent bendability
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP2004238657A (en) Method of manufacturing aluminum alloy plate for outer panel
JP6768568B2 (en) Aluminum alloy plate with excellent press formability, rigging mark property, and BH property
JP3766334B2 (en) Aluminum alloy plate with excellent bending workability
JP2008101239A (en) Method for manufacturing aluminum alloy sheet superior in bendability, and aluminum alloy sheet
JP2003247040A (en) Aluminum alloy sheet having excellent flat hem workability and production method thereof

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110329

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110330

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120221

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120224

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4939088

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees