JP2006283113A - Aluminum alloy sheet for drink can barrel, and method for producing the same - Google Patents

Aluminum alloy sheet for drink can barrel, and method for producing the same Download PDF

Info

Publication number
JP2006283113A
JP2006283113A JP2005104186A JP2005104186A JP2006283113A JP 2006283113 A JP2006283113 A JP 2006283113A JP 2005104186 A JP2005104186 A JP 2005104186A JP 2005104186 A JP2005104186 A JP 2005104186A JP 2006283113 A JP2006283113 A JP 2006283113A
Authority
JP
Japan
Prior art keywords
aluminum alloy
rolling
strength
less
baking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005104186A
Other languages
Japanese (ja)
Inventor
Satoru Suzuki
鈴木覚
Yasuyuki Takao
高尾康之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2005104186A priority Critical patent/JP2006283113A/en
Publication of JP2006283113A publication Critical patent/JP2006283113A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Containers Having Bodies Formed In One Piece (AREA)
  • Wrappers (AREA)
  • Rigid Containers With Two Or More Constituent Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for a drink can barrel having excellent bottom wrinkle properties, also capable of obtaining high can barrel strength, and producible with high production accuracy and productivity, and to provide a method for producing the same. <P>SOLUTION: The aluminum alloy sheet for a drink has a composition containing, by mass, 0.10 to 0.25% Si, 0.5 to 1.5% Mn, 0.8 to 1.5% Mg, 0.35 to 0.5% Fe, 0.1 to 0.3% Cu, Ti, B, and the balance Al with inevitable impurities. By suitably controlling the particle diameter and volume fraction of intermetallic compounds, its working hardenability is retained to the fixed one or above, so as to realize production with high accuracy, by controlling its electric conductivity to 30.0 to 39.0% IACS, the degree of elute elements to enter into solid solution in the Al matrix is regulated, and the tensile strength of a blank is controlled to ≤320 MPa to prevent the deformation resistance of the material from being made excessive during forming. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は炭酸飲料用、ビール用および清涼飲料等の各種飲料缶の缶胴材として使用される飲料缶胴用アルミニウム合金板およびその製造方法に関するものである。     TECHNICAL FIELD The present invention relates to an aluminum alloy plate for beverage can bodies used as a can body material for various beverage cans such as carbonated beverages, beer and soft drinks, and a method for producing the same.

アルミニウム合金からなる飲料缶の缶胴体としては、アルミニウム合金板に塗油を施し、カッピング、DI成形(Draw−Ironing : 絞り−しごき)を施して缶胴とし、トリミング、洗浄、乾燥、外面および内面塗装・焼付け、ネッキングおよびフランジ加工を行い、これに飲料を充填して缶蓋の巻き締めを行った2ピース缶が多く用いられている。
前記アルミニウム合金板は、アルミニウム合金鋳塊に均質化処理を施した後に熱間圧延を行い、その後必要に応じて焼鈍処理を施し、次いで冷間圧延を行うことで製造される。通常はこれに加えて焼鈍、脱脂、洗浄、潤滑油塗布等の仕上処理が施される。
As the can body of beverage cans made of aluminum alloy, oil is applied to the aluminum alloy plate, cupping and DI molding (Draw-Ironing) are applied to form the can body, and trimming, cleaning, drying, outer surface and inner surface 2. Description of the Related Art Two-piece cans are often used that are painted, baked, necked, and flanged, filled with a beverage, and then the can lid is tightened.
The aluminum alloy sheet is manufactured by subjecting an aluminum alloy ingot to homogenization, hot rolling, then annealing as necessary, and then cold rolling. Usually, in addition to this, finishing treatments such as annealing, degreasing, washing, and lubricating oil application are performed.

近年、飲料缶のコストダウンの必要性から、缶胴の薄肉化(ゲージダウン)ならびに缶蓋の小径化が進んでいる。缶胴体の薄肉化は絞り加工時に成形力を弱めるため、缶底チャイム部への材料流入量が増加し座屈やくびれを生じ易くさせ、缶底(ボトム)しわと呼ばれる外観の形状不良を発生させる。また、缶蓋の小径化は缶同士を積み重ねた時のスタッキング性を確保するため、これに対応した缶底接地径の小径化が必要になるが、この缶底接地径の小径化は缶底チャイム部に座屈現象を生じ易くさせるため、ボトムしわ発生を促進する。   In recent years, due to the need for cost reduction of beverage cans, the thickness of the can body has been reduced (gauge down) and the diameter of the can lid has been reduced. Thinning the can body weakens the forming force during drawing, which increases the amount of material flowing into the can bottom chime, making it easy to buckle and constrict, resulting in an appearance defect called can bottom wrinkle. Let In addition, reducing the diameter of the can bottom requires a reduction in the ground diameter of the bottom of the can in order to ensure stackability when the cans are stacked together. In order to easily cause a buckling phenomenon in the chime portion, bottom wrinkle generation is promoted.

図1を参照して以上のボトムしわ発生のメカニズムを説明する。
飲料缶缶胴体1の薄肉化によって缶側壁2から缶底チャイム部3への材料流入量が増加して座屈やくびれを生じ易くさせ、缶底チャイム部3に缶底(ボトム)しわ3a、3a・・・を発生させる。また、缶蓋(図示せず)の小径化によって缶底接地部4の径である缶底接地径の小径化が必要になり、この缶底接地径の小径化によっても缶底チャイム部3座屈現象が生じ易くなり、これによってもボトムしわ3a、3a・・・の発生が促進される。
With reference to FIG. 1, the mechanism of the occurrence of the above bottom wrinkles will be described.
The thinning of the beverage can body 1 increases the amount of material flowing from the can side wall 2 to the can bottom chime portion 3 to easily cause buckling and constriction. 3a ... is generated. Further, it is necessary to reduce the diameter of the bottom of the can bottom, which is the diameter of the can bottom grounding portion 4, by reducing the diameter of the can lid (not shown). The bending phenomenon is likely to occur, and this also promotes the generation of the bottom wrinkles 3a, 3a.

以上の問題を解決し、缶胴の薄肉化ならびに缶蓋の小径化に対応し得るボトムしわ性に優れた缶胴用アルミニウム合金板およびその製造方法として、特許文献1にはMg,Mn,Fe,Si,CuおよびTiの含有量を規定するとともに、引張強さと伸び率を規制し、さらに均質化処理、熱間圧延、次いで冷間圧延の出側温度を制御した3パスからなる冷間圧延を行う改善方法が提案されている。   As an aluminum alloy plate for can barrels that can solve the above problems and can be used for thinning the can barrel and reducing the diameter of the can lid, and a manufacturing method thereof, Patent Document 1 discloses Mg, Mn, Fe. , Si, Cu, and Ti are defined, the tensile strength and elongation rate are regulated, and further, homogenization treatment, hot rolling, and cold rolling comprising three passes in which the cold-rolling outlet temperature is controlled. Improvement methods have been proposed.

さらに、特許文献2ではCu,Mg,Mn,FeおよびSiの含有量を規定し、伸び率、加工硬化指数および耐力といった缶底成形に影響する機械的特性を規制し、均質化処理および熱間圧延を順次に施し、次いで冷間圧延の出側温度および冷却速度を制御した改善方法が提案されている。
特開2001−262261号公報 特開2004−300537号公報
Furthermore, Patent Document 2 defines the contents of Cu, Mg, Mn, Fe and Si, regulates mechanical properties that affect can bottom molding such as elongation, work hardening index and proof stress, homogenization treatment and hot work. An improved method has been proposed in which rolling is performed sequentially, and then the outlet temperature and cooling rate of cold rolling are controlled.
JP 2001-262261 A JP 2004-3000537 A

ボトムしわ性はアルミニウム合金板の素板強度を下げて素板の伸び率を向上させることで改善されることが明らかになっており、この伸び率を向上させるためには、冷間圧延後に焼鈍処理を施すことが有効である。
しかし、冷間圧延後に焼鈍処理を施すことは生産性の低下からコストアップになるとともに缶胴強度が低下する問題があった。さらに、今後さらなる缶胴の薄肉化と缶蓋の小径化に対応するためには、高い缶胴強度を有しかつボトムしわ性に優れた材料が必要不可欠であった。
It has been clarified that the bottom wrinkle is improved by lowering the strength of the aluminum alloy sheet and increasing the elongation of the element. In order to increase this elongation, annealing after cold rolling is performed. It is effective to apply the treatment.
However, performing an annealing treatment after cold rolling has a problem of increasing the cost due to a decrease in productivity and reducing the strength of the can body. Furthermore, in order to cope with further thinning of the can body and reduction in the diameter of the can lid in the future, a material having high can body strength and excellent bottom wrinkle property is indispensable.

この様な要請に基づき特許文献1に記載の缶底成形性に優れた缶胴用アルミニウム合金板およびその製造方法では、出側温度を制御した3パスからなる冷間圧延を行うことが提案された。しかし、このアルミニウム合金板およびその製造方法は、きわめて有効な手段ではあっても高い缶胴強度を有しかつボトムしわ性に優れた材料を得るために直接必要な条件を明らかにするものではなく、高精度かつ高効率な生産性の実現という点で更なる検討が必要であった。   Based on such a request, in the aluminum alloy plate for can bodies excellent in can bottom formability described in Patent Document 1 and the manufacturing method thereof, it is proposed to perform cold rolling consisting of three passes with controlled outlet temperature. It was. However, although this aluminum alloy plate and its manufacturing method are extremely effective means, they do not clarify the conditions directly necessary for obtaining a material having high can barrel strength and excellent bottom wrinkling properties. Further study was necessary in terms of realizing highly accurate and highly efficient productivity.

一方、特許文献2では伸び率が5.5%以上、加工硬化指数が0.06以上、かつ、耐力が290N/mm2以下である旨ただ漫然と規定されるのみであって、缶胴用アルミニウム合金板に求められる品質を実現する確実な手段としての検討は未だ不十分であって、高い缶胴強度を有しかつボトムしわ性に優れた材料を高精度かつ高効率で生産することを可能として、今後のさらなる缶胴の薄肉化と缶蓋の小径化に対応することを可能とするという要請には実質的に応え得るものではない。   On the other hand, Patent Document 2 simply defines that the elongation is 5.5% or more, the work hardening index is 0.06 or more, and the proof stress is 290 N / mm 2 or less. Consideration as a reliable means to achieve the quality required for plates is still inadequate, making it possible to produce highly accurate and highly efficient materials with high can barrel strength and excellent bottom wrinkling properties. However, it is not possible to substantially meet the demand for the future reduction in the thickness of the can body and the reduction in the diameter of the can lid.

本発明は以上の従来技術における問題に鑑み、ボトムしわ性に優れかつ高い缶胴強度 が得られ、缶胴の更なる薄肉化が可能であって、高い生産精度及び生産性で生産できる飲料缶胴用アルミニウム合金板及びその製造方法を提供することを目的とする。     In view of the above problems in the prior art, the present invention provides a beverage can that is excellent in bottom wrinkle and has high can body strength, can be further thinned, and can be produced with high production accuracy and productivity. An object of the present invention is to provide an aluminum alloy plate for a trunk and a method for producing the same.

上記課題を解決するため本発明者らは鋭意研究を行った結果、ボトムしわ性に優れかつ高い缶胴強度を実現するため、本発明合金に示す所定量を含有したアルミニウム合金で、金属間化合物の分布状態(粒子径、体積分率)を最適に制御することにより、有効に加工硬化性を高くすることが可能であることを見いだし本発明の飲料缶胴用アルミニウム合金板に想到した。さらに、本発明合金に示す所定量を含有したアルミニウム合金に対して冷間圧延パスの出側温度および合計圧延率の冷間圧延プロセスを最適制御することで、本発明のアルミニウム合金板を構成するための導電率が適切に設定され得ることを見いだし、本発明の飲料缶胴用アルミニウム合金板の製造方法に想到した。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, in order to achieve excellent bottom wrinkle and high can body strength, an aluminum alloy containing a predetermined amount shown in the present invention alloy is an intermetallic compound. The present inventors have found that the work hardenability can be effectively increased by optimally controlling the distribution state (particle diameter, volume fraction), and have arrived at the aluminum alloy plate for beverage can bodies of the present invention. Further, the aluminum alloy sheet of the present invention is configured by optimally controlling the cold rolling process of the cold rolling pass outlet temperature and the total rolling rate for the aluminum alloy containing the predetermined amount shown in the alloy of the present invention. Thus, the inventors have found that the electrical conductivity can be appropriately set, and have arrived at the method for producing an aluminum alloy plate for beverage can bodies of the present invention.

本発明の飲料缶胴用アルミニウム合金板はSi:0.10〜0.25%(質量%,以下同じ)、Mn:0.5〜1.5%、Mg:0.8〜1.5%、Fe:0.35〜0.5%、Cu:0.1〜0.3%と、Ti:0.1%以下、B:0.1%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金板であり、材料特性として粒子径0.1〜1.0μmの金属間化合物の体積分率が1〜5%であり、導電率が30.0〜39.0%IACSであり、素板の圧延方向における引張強度が320MPa以下とされ、塗装焼付後の強度が圧延方向の耐力で250MPa以上であることを特徴とする。   The aluminum alloy plate for beverage can bodies of the present invention is Si: 0.10 to 0.25% (mass%, the same applies hereinafter), Mn: 0.5 to 1.5%, Mg: 0.8 to 1.5% Fe: 0.35 to 0.5%, Cu: 0.1 to 0.3%, Ti: 0.1% or less, B: 0.1% or less, the balance being Al and inevitable impurities An aluminum alloy plate comprising, as material properties, an intermetallic compound having a particle size of 0.1 to 1.0 μm having a volume fraction of 1 to 5% and an electrical conductivity of 30.0 to 39.0% IACS The tensile strength in the rolling direction of the base plate is 320 MPa or less, and the strength after baking is 250 MPa or more in terms of the yield strength in the rolling direction.

以上の本発明の飲料缶胴用アルミニウム合金板に施される塗装焼き付けは180〜220℃で5〜30分間保持し、または最高到達温度210〜260℃で2分以内保持して行われる塗装焼付とすることができる。   The above-mentioned coating baking applied to the aluminum alloy plate for beverage can bodies according to the present invention is held at 180 to 220 ° C. for 5 to 30 minutes or at the maximum reached temperature of 210 to 260 ° C. for 2 minutes or less. It can be.

本発明の飲料缶胴用アルミニウム合金板の製造方法は、Si:0.10〜0.25%、Mn:0.5〜1.5%、Mg:0.8〜1.5%、Fe:0.35〜0.5%、Cu:0.1〜0.3%と、Ti:0.1%以下、B:0.1%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金鋳塊を製造し、このアルミニウム合金鋳塊を面削した後、550〜620℃の温度で均質化処理を施し、炉出し後、熱間圧延開始までの時間を30分以内とし、次いで熱間圧延を圧延終了温度を250〜350℃に設定して施し、材料特性として粒子径0.1〜1.0μmの金属間化合物の体積分率が1〜5%であり、導電率が30.0〜39.0%IACSであり、素板の圧延方向における引張強度が320MPa以下とされ、塗装焼付後の強度が圧延方向の耐力で250MPa以上である飲料缶胴用アルミニウム合金板の製造方法である。   The manufacturing method of the aluminum alloy plate for beverage can bodies of the present invention is as follows: Si: 0.10 to 0.25%, Mn: 0.5 to 1.5%, Mg: 0.8 to 1.5%, Fe: Aluminum containing 0.35 to 0.5%, Cu: 0.1 to 0.3%, Ti: 0.1% or less, B: 0.1% or less, the balance being Al and inevitable impurities After producing an alloy ingot and chamfering the aluminum alloy ingot, it is subjected to a homogenization treatment at a temperature of 550 to 620 ° C., and after the furnace is left out, the time until hot rolling starts within 30 minutes, The rolling is performed with the rolling end temperature set at 250 to 350 ° C., and the volume fraction of the intermetallic compound having a particle size of 0.1 to 1.0 μm is 1 to 5% as a material characteristic, and the conductivity is 30. 0 to 39.0% IACS, the tensile strength in the rolling direction of the base plate is 320 MPa or less, Strength after is a manufacturing method of a beverage can body for the aluminum alloy plate is at least 250MPa with yield strength in the rolling direction.

以上の本発明の飲料缶胴用アルミニウム合金板の製造方法によって製造される本発明の飲料缶胴用アルミニウム合金板に施される塗装焼き付けは180〜220℃で5〜30分間保持し、または最高到達温度210〜260℃で2分以内保持して行われる塗装焼付とすることができる。   The baking finish applied to the aluminum alloy plate for beverage can barrels of the present invention produced by the method for producing an aluminum alloy plate for beverage can barrels of the present invention described above is maintained at 180 to 220 ° C. for 5 to 30 minutes, or the highest Paint baking can be performed by holding at an ultimate temperature of 210 to 260 ° C. within 2 minutes.

また以上の本発明の飲料缶胴用アルミニウム合金板の製造方法では冷間圧延を70%以上の合計圧延率で最終パスの出側温度を130℃以上、それ以外の圧延パスの出側温度を130℃以下とする温度条件で施すことで材料組織の回復処理を行う様にすることができる。   Moreover, in the manufacturing method of the aluminum alloy plate for beverage can bodies according to the present invention described above, cold rolling is performed at a total rolling rate of 70% or more, the final pass temperature is 130 ° C. or higher, and the other roll pass outlet temperatures are set. By performing the treatment under a temperature condition of 130 ° C. or less, the material structure can be recovered.

[作用]
本発明者らがボトムしわ発生要因について詳細に検討したところ、材料の加工硬化性を高めることでボトムしわ性が改善できることを見出し、更にこの加工硬化性は、微細に分散している金属間化合物の分散状態を制御する事で向上できることを見出し本発明に至った。
[Action]
The present inventors have examined in detail the cause of bottom wrinkle generation, and found that the bottom wrinkle can be improved by increasing the work hardenability of the material. Furthermore, this work hardenability is a finely dispersed intermetallic compound. The present invention has been found out that it can be improved by controlling the dispersion state.

以上述べたように、本発明の飲料缶胴用アルミニウム合金板は、粒子径0.1〜1.0μmの金属間化合物の体積分率が1〜5%であり、導電率が30.0〜39.0%IACSで、素板の圧延方向における引張強度が320MPa以下とされ、空焼き後の耐力が250MPa以上あるため、高強度かつ優れたボトムしわ性を実現し得る。本発明のアルミニウム合金板は通常のアルミニウム合金板の製造方法における均質化処理条件および炉出し後熱間圧延開始までの時間、熱間圧延条件、冷間圧延条件を規制することにより製造可能となる。これによって、アルミニウム缶胴の薄肉化および缶蓋の小径化に対応可能なボトムしわ性に優れかつ高い缶胴強度を有するアルミニウム缶胴材を製造することができ、工業上顕著な効果が得られる。   As described above, the aluminum alloy plate for beverage can bodies of the present invention has a volume fraction of an intermetallic compound having a particle size of 0.1 to 1.0 μm of 1 to 5% and an electrical conductivity of 30.0 to With 39.0% IACS, the tensile strength in the rolling direction of the base plate is set to 320 MPa or less, and the proof stress after baking is 250 MPa or more. Therefore, high strength and excellent bottom wrinkling properties can be realized. The aluminum alloy sheet of the present invention can be produced by regulating the homogenization treatment conditions in the ordinary aluminum alloy sheet production method, the time until start of hot rolling after furnace exit, the hot rolling conditions, and the cold rolling conditions. . This makes it possible to produce an aluminum can body material that has excellent bottom wrinkling properties and can have a high can body strength, and can be used for reducing the thickness of the aluminum can body and reducing the diameter of the can lid. .

以下に本発明の飲料缶胴用アルミニウム合金板に関して、合金組成の限定理由を示す。
[Siの成分範囲:0.10〜0.25%]
Siは均質化処理においてAl−Mn−Fe系の金属間化合物に相変態を起こさせ、固体潤滑作用を持つ高硬度なAl−Mn−Fe−Si系の金属間化合物の形成に寄与する。これによって、ダイスクリーニング効果が十分に得られ、成形時のダイス金型への焼付き不具合が防止される。成分範囲は0.1〜0.25%とする。0.1%未満では前記の金属間化合物が十分形成されず、焼付き不具合が発生し易くなる。0.25%を超えると、粒子径0.1〜1.0μmの金属間化合物の体積分率が本発明規定以上に形成されるため、ボトムしわ性が低下するとともに溶質の固溶量が減少し、缶胴強度を高める効果が十分に得られない。望ましい含有量は0.18〜0.22wt%である。
The reasons for limiting the alloy composition will be described below with respect to the aluminum alloy plate for beverage can bodies of the present invention.
[Si component range: 0.10 to 0.25%]
Si causes phase transformation in the Al—Mn—Fe intermetallic compound in the homogenization treatment, and contributes to the formation of a high hardness Al—Mn—Fe—Si intermetallic compound having a solid lubricating action. As a result, a sufficient die screening effect is obtained, and the problem of seizure to the die during molding is prevented. The component range is 0.1 to 0.25%. If it is less than 0.1%, the intermetallic compound is not sufficiently formed, and seizure defects are likely to occur. If it exceeds 0.25%, the volume fraction of the intermetallic compound having a particle diameter of 0.1 to 1.0 μm is formed more than specified in the present invention, so that the bottom wrinkle property is lowered and the solid solution amount of the solute is reduced. However, the effect of increasing the strength of the can body cannot be obtained sufficiently. A desirable content is 0.18 to 0.22 wt%.

[Mnの成分範囲:0.5〜1.5%]
Mnは缶胴強度ならびにDI成形性の向上に有効な元素であるとともに、前記した固体潤滑作用を有する高硬度な金属間化合物(Al−Mn−Fe−Si系)を形成させ、ダイスクリーニング効果を得るために必要な元素である。その成分範囲を0.5〜1.5%とする。0.5%未満ではその効果は十分に得られず、潤滑不足によりダイス金型にアルミニウム合金板が凝着する不具合が発生する。さらには、金属間化合物が十分形成されないため、缶胴強度が向上しない。逆に1.5%以上含有されると材料強度が高くなり過ぎるため、DI成形性が損なわれるとともに、粒子径0.1〜1.0μmの金属間化合物の体積分率が本発明規定以上に形成されるため、ボトムしわ性が低下する。望ましい含有量は0.8〜1.2wt%である。
[Mn component range: 0.5 to 1.5%]
Mn is an element effective in improving can barrel strength and DI moldability, and forms a high-hardness intermetallic compound (Al-Mn-Fe-Si system) having a solid lubricating action as described above, thereby providing a die screening effect. It is an element necessary for obtaining. The component range is 0.5 to 1.5%. If it is less than 0.5%, the effect cannot be sufficiently obtained, and a problem that the aluminum alloy plate adheres to the die die due to insufficient lubrication occurs. Furthermore, since the intermetallic compound is not sufficiently formed, the can body strength is not improved. On the other hand, if the content is 1.5% or more, the material strength becomes too high, and thus DI moldability is impaired, and the volume fraction of the intermetallic compound having a particle size of 0.1 to 1.0 μm is more than specified in the present invention. Since it is formed, the bottom wrinkle property is lowered. A desirable content is 0.8 to 1.2 wt%.

[Mgの成分範囲:0.8〜1.5%]
MgはMnと同様に缶胴体の強度向上に寄与する元素で、ボトム部の高強度化ならびに加工硬化性の向上に有効である。その成分範囲を0.8〜1.5%に設定する。0.8%未満では必要とされる強度を十分に得ることは難しく、さらに成形加工時に十分な加工硬化が起こらないため、ボトムしわは発生し易くなる。また、1.5%を超えて含有されると強度が高くなり過ぎるため、DI成形時に缶胴切れと割れの発生頻度が増加して成形性が損なわれる。望ましい含有量は1.0〜1.4wt%である。
[Mg component range: 0.8 to 1.5%]
Similar to Mn, Mg is an element that contributes to improving the strength of the can body, and is effective in increasing the strength of the bottom portion and improving work hardening. Its component range is set to 0.8-1.5%. If it is less than 0.8%, it is difficult to sufficiently obtain the required strength. Further, since sufficient work hardening does not occur at the time of molding, bottom wrinkles are likely to occur. Further, if the content exceeds 1.5%, the strength becomes too high, so that the frequency of occurrence of can barrel breakage and cracking increases during DI molding, thereby impairing moldability. A desirable content is 1.0 to 1.4 wt%.

[Feの成分範囲:0.35〜0.5%]
FeはMnやMgと同様に缶胴体の強度向上に寄与する元素であるとともに、前記したMnを含む固体潤滑作用を持つ硬質なAl−Mn−Fe(−Si)系の金属間化合物の生成を促進するとともに、その分布状態を均一化させて成形性を向上させる。成分範囲は0.35〜0.5%とする。0.35%未満では十分な強度を付与することが困難であり、さらにはダイスへの凝着を防止するのに必要な金属間化合物が十分に形成されない。0.5%を超えると強度が高くなり過ぎるため、成形性が低下する。
[Fe component range: 0.35 to 0.5%]
Fe, like Mn and Mg, is an element that contributes to improving the strength of the can body, and also produces hard Al—Mn—Fe (—Si) -based intermetallic compounds having solid lubricating action including Mn. While promoting, the distribution state is made uniform and the moldability is improved. The component range is 0.35 to 0.5%. If it is less than 0.35%, it is difficult to impart sufficient strength, and further, an intermetallic compound necessary for preventing adhesion to a die is not sufficiently formed. If it exceeds 0.5%, the strength becomes too high, and the moldability is lowered.

[Cuの成分範囲:0.1〜0.3%]
Cuはそれ自体の固溶により缶胴体の強度向上に寄与する元素であるとともに、製缶時の塗装焼付処理において、Al−Cu−Mg系析出物の析出硬化によって強度向上に寄与する元素である。これにより缶胴強度、特にボトム部の強度向上が得られる。成分範囲は0.1〜0.3%とする。0.1%未満では十分な材料強度は得られず、0.3%を超えて含有されると強度が高くなり過ぎるため、DI成形時に缶胴切れと割れの発生頻度が増加して成形性が損なわれる。
[Cu component range: 0.1 to 0.3%]
Cu is an element that contributes to improving the strength of the can body by its own solid solution, and is an element that contributes to improving the strength by precipitation hardening of Al-Cu-Mg-based precipitates in the coating baking process during can making. . Thereby, the strength of the can body, particularly the strength of the bottom portion can be improved. The component range is 0.1 to 0.3%. If the content is less than 0.1%, sufficient material strength cannot be obtained. If the content exceeds 0.3%, the strength becomes too high. Is damaged.

[不可避的不純物]
飲料缶胴用アルミニウム合金板では、結晶粒微細化のためTiおよびBを微量添加することが多い。そのTiの含有量は0.1%以下に制限され、好ましくは0.005%以上、0.05%以下とする。Tiの含有量が0.005%未満だと結晶粒微細化効果が十分に得られず、0.05%を超えるとAl−Ti系の巨大な金属間化合物が生成される傾向が生じ、0.1%を超えるとAl−Ti系の巨大な金属間化合物が生じる傾向が増大し、成形加工中に割れやピンホールを発生させて成形性は低下する。
[Inevitable impurities]
In aluminum alloy plates for beverage can bodies, a small amount of Ti and B is often added to refine crystal grains. The Ti content is limited to 0.1% or less, preferably 0.005% or more and 0.05% or less. If the Ti content is less than 0.005%, the effect of crystal grain refining cannot be sufficiently obtained. If the Ti content exceeds 0.05%, a large Al-Ti intermetallic compound tends to be produced. If it exceeds 1%, the tendency to generate a huge intermetallic compound of Al-Ti system increases, and cracks and pinholes are generated during the forming process, thereby reducing the formability.

Bは結晶粒微細化を助長させる効果を有する。そのBの含有量は0.1%以下に制限され、好ましくは0.001%以上、0.01%以下とする。0.001%未満であればその効果は十分に得られず、0.01%を超えるとTi−B系の巨大な金属間化合物が生成される傾向が生じ、0.1%を超えるとTi−B系の巨大な金属間化合物が形成される傾向が増大し、成形加工時に割れやピンホールが発生し易くなる。その他の不可避的不純物として、Znは0.3%以下、Crは0.3%以下、Zrは0.1%以下、Vは0.1%以下であれば、本発明の効果を損なわない程度で許容できる。   B has an effect of promoting crystal grain refinement. The B content is limited to 0.1% or less, preferably 0.001% or more and 0.01% or less. If the content is less than 0.001%, the effect cannot be sufficiently obtained. If the content exceeds 0.01%, a Ti-B giant intermetallic compound tends to be generated. The tendency to form a large -B-based intermetallic compound increases, and cracks and pinholes are likely to occur during molding. As other inevitable impurities, if Zn is 0.3% or less, Cr is 0.3% or less, Zr is 0.1% or less, and V is 0.1% or less, the effect of the present invention is not impaired. Is acceptable.

次に本発明のアルミニウム合金板の製造方法について説明する。
まず、本発明の合金組成のアルミニウム合金を水冷式連続鋳造法によりスラブ(板状鋳塊)に鋳造する。このスラブに、均質化処理を施す。本発明では均質化処理温度を550〜620℃に規制する。550℃未満では十分な均質化効果は得られず溶質の分布の偏析が十分解消されないため、DI成形性が低下する。さらに、粒子径0.1〜1.0μmの金属間化合物が多数分布するため、その体積分率が本発明規定値外となる。620℃を超えると鋳造表面に膨れが生じ、さらには共晶部分が局所的に融解するため、表面品質が著しく低下する。
Next, the manufacturing method of the aluminum alloy plate of this invention is demonstrated.
First, an aluminum alloy having the alloy composition of the present invention is cast into a slab (plate ingot) by a water-cooled continuous casting method. The slab is homogenized. In the present invention, the homogenization temperature is regulated to 550 to 620 ° C. If it is less than 550 ° C., a sufficient homogenizing effect cannot be obtained, and segregation of the solute distribution is not sufficiently eliminated, so that the DI moldability is lowered. Furthermore, since a large number of intermetallic compounds having a particle size of 0.1 to 1.0 μm are distributed, the volume fraction is outside the specified value of the present invention. If it exceeds 620 ° C., the cast surface is swollen, and further, the eutectic portion is locally melted, so that the surface quality is remarkably deteriorated.

均質化処理時間については、1h以上保持しないとその効果は十分でなく、ある程度の時間保持が必要である。均質化効果と生産性を考慮して3〜12時間が望ましく、5〜10時間が適切である。均質化処理が550℃以下あるいは1時間未満では十分な均質化効果は得られず、620℃を超えると鋳造表面に膨れが生じ、さらには共晶部分が融解する。   As for the homogenization time, the effect is not sufficient unless it is maintained for 1 hour or longer, and a certain amount of time is required. In view of the homogenization effect and productivity, 3 to 12 hours is desirable, and 5 to 10 hours is appropriate. If the homogenization treatment is 550 ° C. or less or less than 1 hour, a sufficient homogenization effect cannot be obtained, and if it exceeds 620 ° C., the casting surface is swollen and the eutectic part is melted.

均質化処理後に熱間圧延を施す。その際、均質化処理後に再加熱することなくそのまま熱間圧延を施す処理、あるいは一旦室温に冷却した後に再加熱して熱間圧延を施す処理のどちらでも良い。   Hot rolling is performed after the homogenization treatment. At that time, either a process of performing hot rolling as it is without reheating after the homogenization process or a process of performing reheating and hot rolling after being cooled to room temperature may be used.

さらに、金属間化合物の分布状態を調整するため、炉出し後、熱間圧延開始までの時間を30分以内に規制する。30分以上であると、その間に粒子径0.1〜1.0μmの金属間化合物が過多に形成されるため、体積分率が本発明規定値外となる。   Furthermore, in order to adjust the distribution state of the intermetallic compound, the time from the start of the furnace to the start of hot rolling is regulated within 30 minutes. If it is 30 minutes or longer, an excessive amount of intermetallic compounds having a particle size of 0.1 to 1.0 μm is formed during that period, and the volume fraction falls outside the specified value of the present invention.

熱間圧延開始温度は400〜550℃とするのが好ましく、さらに好ましくは450〜550℃とする。450℃未満であれば、十分な圧延加工性は得られないため、板幅エッジ部で割れが生じる懸念があり、400℃以下の場合、熱間圧延終了温度が低くなるため、立方体方位の再結晶粒が十分生成されないため、板幅エッジ部で圧延割れが生じる。550℃を越える場合は熱間圧延板の表面酸化、あるいは再結晶粒の粗大化によってDI成形性が低下する。   The hot rolling start temperature is preferably 400 to 550 ° C, more preferably 450 to 550 ° C. If it is less than 450 ° C., sufficient rolling processability cannot be obtained, so there is a concern that cracks may occur at the edge of the sheet width, and if it is 400 ° C. or less, the hot rolling end temperature is lowered, so Since sufficient crystal grains are not generated, rolling cracks occur at the plate width edge portion. When the temperature exceeds 550 ° C., the DI formability deteriorates due to surface oxidation of the hot rolled plate or coarsening of recrystallized grains.

熱間圧延終了温度は250〜350℃に規定する。250℃以下であれば再結晶状態とすることができず最終板の強度が著しく上昇しDI成形性が低下する。一方で、350℃以上の場合は、Mnなどの遷移元素の析出し易くなるため、本発明の金属間化合物の体積分率が規定外となる。   The hot rolling end temperature is specified at 250 to 350 ° C. If it is 250 degrees C or less, it cannot be made into a recrystallized state, but the intensity | strength of a final board will raise remarkably and DI moldability will fall. On the other hand, in the case of 350 ° C. or higher, transition elements such as Mn are likely to be precipitated, so that the volume fraction of the intermetallic compound of the present invention is not specified.

本発明では、熱間圧延板の板厚を2.5mm以下、特には1.5〜2.5mmに規制する。板厚が2.5mmを超えると冷間圧延率が高くなり、材料強度が上昇してDI成形性が低下する。一方、1.5mm未満であれば熱間圧延板に焼付きや肌荒れが生じ易くなり、さらに、板厚プロフィールが悪化する。   In the present invention, the thickness of the hot-rolled sheet is regulated to 2.5 mm or less, particularly 1.5 to 2.5 mm. When the plate thickness exceeds 2.5 mm, the cold rolling rate increases, the material strength increases, and the DI moldability decreases. On the other hand, if the thickness is less than 1.5 mm, the hot-rolled sheet is likely to be seized or rough, and the thickness profile is further deteriorated.

熱間圧延後に冷間圧延を施す。最終冷間圧延の出側温度を130℃以上、好ましくは200℃以下、それ以外の圧延パスの出側温度を130℃以下、好ましくは110℃以下とする。
このように本発明では最終冷間圧延の出側温度を130℃以上にして、途中パスの冷間圧延で生成された加工転位密度を減少させて過度に上昇した素板強度をコントロールして素材の伸びを向上させボトムしわ性の向上に寄与する。
Cold rolling is performed after hot rolling. The exit side temperature of the final cold rolling is 130 ° C. or more, preferably 200 ° C. or less, and the exit side temperature of the other rolling passes is 130 ° C. or less, preferably 110 ° C. or less.
As described above, in the present invention, the material temperature is controlled by controlling the base plate strength that is excessively increased by reducing the processing dislocation density generated by the cold rolling in the middle pass by setting the outlet temperature of the final cold rolling to 130 ° C. or higher. Contributes to the improvement of bottom wrinkle.

一方で、途中パスの圧延の出側温度は130℃以下、好ましくは110℃以下とすることにより、冷間圧延中に生成されるAl−Cu−Mg系析出物やAl−Cu−Mg−Si系析出物の生成量を抑制することに寄与する。これにより、成形時に析出物を起点とした転位の局在化が起こり難くなるため、動的回復による局所的な加工軟化が抑制されてボトムしわ性は改善される。冷間圧延の合計圧延率は70%以上とする。70%未満では耐圧強度が不足する。この冷間圧延の合計圧延率は好ましくは90%以下とする。90%を超えると最終板の強度が著しく高くなりDI成形性が低下する。   On the other hand, the exit side temperature of the intermediate pass rolling is 130 ° C. or lower, preferably 110 ° C. or lower, so that Al—Cu—Mg-based precipitates and Al—Cu—Mg—Si generated during cold rolling are used. This contributes to reducing the amount of system precipitates produced. As a result, dislocation localization starting from precipitates is less likely to occur during molding, so that local work softening due to dynamic recovery is suppressed and bottom wrinkle properties are improved. The total rolling reduction of cold rolling is 70% or more. If it is less than 70%, the pressure strength is insufficient. The total rolling rate of this cold rolling is preferably 90% or less. If it exceeds 90%, the strength of the final plate is remarkably increased and the DI moldability is lowered.

次に本発明の飲料缶胴用アルミニウム合金板に関して、金属間化合物の分布状態(粒子径、体積分率)ならびに導電率の限定理由を示す。   Next, regarding the aluminum alloy plate for beverage can bodies of the present invention, the distribution state of the intermetallic compound (particle diameter, volume fraction) and the reason for limiting the conductivity will be shown.

本発明の特徴とする金属間化合物を有する組織は、前記した合金組成、製造工程の適切な設定によって得られる。本発明規定の粒子径0.1〜1.0μmでかつ体積分率1〜5%の金属間化合物は、材料強度ならびにボトムしわ性に重要な影響を与える。粒子径0.1〜1.0μmの金属間化合物の体積分率が5%を超えると、成形加工中に転位の局在化が起こり易くなり、加工硬化性が低下するため、ボトムしわが発生し易くなる。一方で、体積分率1%以下であると、析出硬化による効果が十分に得られず、缶胴強度が向上しない。   The structure | tissue which has the intermetallic compound characterized by this invention is obtained by an appropriate setting of an above-described alloy composition and a manufacturing process. An intermetallic compound having a particle diameter of 0.1 to 1.0 μm and a volume fraction of 1 to 5% specified in the present invention has an important influence on material strength and bottom wrinkle property. If the volume fraction of the intermetallic compound having a particle size of 0.1 to 1.0 μm exceeds 5%, dislocations are likely to be localized during the forming process, and work curability is lowered, so that bottom wrinkles are generated. It becomes easy to do. On the other hand, when the volume fraction is 1% or less, the effect of precipitation hardening cannot be sufficiently obtained, and the can body strength is not improved.

導電率については、その範囲を30.0〜39.0%IACSに規制する。導電率は材料中の固溶元素量と相関する特性値であり、材料中に溶質元素が固溶されることで、固溶体硬化による缶胴強度の向上効果が得られる。39.0%IACSを超えると固溶元素量が少ないため、その効果は十分に得られず缶胴強度が向上しない。一方で、30.0%IACS未満であると、過度な固溶体硬化により成形性が低下する。   For conductivity, the range is restricted to 30.0-39.0% IACS. The conductivity is a characteristic value that correlates with the amount of the solid solution element in the material. When the solute element is dissolved in the material, an effect of improving the can body strength by solid solution hardening can be obtained. If it exceeds 39.0% IACS, the amount of solid solution elements is small, so that the effect cannot be sufficiently obtained and the strength of the can body is not improved. On the other hand, if it is less than 30.0% IACS, the moldability deteriorates due to excessive solid solution curing.

次に、本発明のアルミニウム合金板の素板の引張強度と空焼き後の耐力の限定理由について説明する。
素板の引張強度は320MPa以下とする。320MPaを超えると、成形中に材料の変形抵抗が大きくなるため、しごき加工時に割れの発生頻度が増す。塗装焼付後の耐力は250MPa以上とする。250MPa未満だと耐圧強度が不足し、アルミニウム缶として中身が充填された際、内圧変化に耐える強度を維持できない。
Next, the reasons for limiting the tensile strength of the base plate of the aluminum alloy plate of the present invention and the yield strength after baking are described.
The tensile strength of the base plate is set to 320 MPa or less. If it exceeds 320 MPa, the deformation resistance of the material increases during molding, so the frequency of occurrence of cracks increases during ironing. The yield strength after baking is set to 250 MPa or more. When the pressure is less than 250 MPa, the pressure resistance is insufficient, and when the contents are filled as an aluminum can, the strength that can withstand changes in internal pressure cannot be maintained.

以下に本発明を実施例に基づき、具体的に説明する。
表1に示す合金成分の本発明のアルミニウム合金を常法により、溶解鋳造して厚さ500mmのスラブ(板状鋳塊)を得た。このスラブを厚さ490mmに面削した後、600℃で6時間均質化処理した後、室温まで冷却しその後、熱間圧延開始温度まで再加熱を行う。炉出し後熱間圧延開始までの時間は20分とする。次いで、圧延開始温度は490℃、圧延終了温度は320℃で熱間圧延を行い、厚さ2.2mmの熱間圧延板とし、これをコイルに巻取って室温まで冷却する。熱間圧延については粗圧延をシングルミルのリバース式圧延機で行い、仕上げ圧延には4スタンドのタンデム式圧延機を使用した。次いで、冷間圧延を行い厚さ0.3mmの飲料缶胴用アルミニウム合金板を製造する。冷間圧延では3パスの合計圧延率を86%とする。
The present invention will be specifically described below based on examples.
The aluminum alloy of the present invention having the alloy components shown in Table 1 was melt cast by a conventional method to obtain a slab (plate ingot) having a thickness of 500 mm. The slab is chamfered to a thickness of 490 mm, homogenized at 600 ° C. for 6 hours, cooled to room temperature, and then reheated to the hot rolling start temperature. The time from the start of the furnace to the start of hot rolling is 20 minutes. Next, hot rolling is performed at a rolling start temperature of 490 ° C. and a rolling end temperature of 320 ° C. to obtain a hot-rolled sheet having a thickness of 2.2 mm, which is wound around a coil and cooled to room temperature. For hot rolling, rough rolling was performed with a single mill reverse type rolling mill, and a four-stand tandem rolling mill was used for finish rolling. Next, cold rolling is performed to produce an aluminum alloy plate for beverage can bodies having a thickness of 0.3 mm. In cold rolling, the total rolling rate of 3 passes is 86%.

(比較例1)
合金組成を本発明規定値外とした他は、実施例1と同じ方法により、アルミニウム合金板を製造した。
(Comparative Example 1)
An aluminum alloy plate was produced by the same method as in Example 1 except that the alloy composition was outside the specified value of the present invention.

表1に本発明実施例1および比較例1の合金組成を示す。   Table 1 shows the alloy compositions of Example 1 and Comparative Example 1 of the present invention.

Figure 2006283113
Figure 2006283113

実施例1及び比較例1で製造した各々のアルミニウム合金について、(1)機械的特性、(2)導電率、(3)金属間化合物の粒子径と体積分率、(4)DI成形性、(5)缶底成形性(ボトムしわ性)、(6)耐圧強度の評価を行った。   For each aluminum alloy produced in Example 1 and Comparative Example 1, (1) mechanical properties, (2) conductivity, (3) particle size and volume fraction of intermetallic compound, (4) DI moldability, (5) Can bottom moldability (bottom wrinkle property) and (6) pressure strength were evaluated.

(1)機械的特性は、製造したアルミニウム合金板の圧延方向における素板の引張強度と空焼き後の耐力を測定して行った。
空焼きとは製缶時の塗装焼付け条件を想定したものであり、205℃×10分で行った。素板の引張強度は320MPaを基準としてこれ以下を合格(本発明規定値内)と評価し、空焼き後の耐力は250MPa以上を合格と判定した。
(2)導電率は20℃の恒温室中で一定温度に保持した後、渦電流法により測定した。
(3)金属間化合物の粒子径と体積分率は、450℃の塩浴中に20秒間の加熱後、水焼入れを行うことで転位を除去した試料について、透過型電子顕微鏡を用いて粒子径0.1〜1.0μmの金属間化合物の体積分率を求めた。なお、金属間化合物を球と仮定し、試料厚さは等厚干渉縞により決定した。
(1) The mechanical properties were measured by measuring the tensile strength of the base plate in the rolling direction of the manufactured aluminum alloy plate and the yield strength after baking.
Empty baking is the assumption of paint baking conditions at the time of can-making, and was performed at 205 ° C. for 10 minutes. With respect to the tensile strength of the base plate, 320 MPa or less was evaluated as acceptable (within the specified value of the present invention), and the yield strength after baking was determined to be acceptable at 250 MPa or more.
(2) The conductivity was measured by an eddy current method after being kept at a constant temperature in a constant temperature room at 20 ° C.
(3) The particle size and volume fraction of the intermetallic compound were determined by using a transmission electron microscope for a sample from which dislocation was removed by water quenching after heating in a salt bath at 450 ° C. for 20 seconds. The volume fraction of the intermetallic compound of 0.1 to 1.0 μm was determined. Note that the intermetallic compound was assumed to be a sphere, and the sample thickness was determined by equal thickness interference fringes.

(4)DI成形性は一般飲料用の缶胴(内径66mmΦ、側壁板厚100μm、側壁先端板厚150μm)にDI成形し、10000缶の製缶で、割れおよび破断等が全く発生しないで連続製缶できたものを良好(○)とし、割れおよび破断が発生したものを不良(×)として判定した。
(5)ボトムしわ性はブランクからカップを絞り、その後、再絞り缶(ブランク径140mmΦ、カップ径87mmΦ、再絞り径66mmΦ)について、缶底テーパー部の起状を形状測定器にて全周の測定を行い、その最大振幅にて評価した。最大振幅が180μm以下を良好(○)、180μm以上を不良(×)と判定した。
(6)耐圧強度はDI成形後、空焼き(205℃×10分)を施し、缶胴内部にエアー圧を掛けて缶底ドームが反転する圧力を測定した。反転圧力が650kPa以上のものを良好(○)とし、650kPa以下を不良(×)として判定した。これら調査結果を表2に示す。表2は、 実施例1および比較例1で製造した各々のアルミニウム合金の各種特性評価を示す。
(4) DI moldability is DI molded into a can body for a general beverage (inner diameter 66 mmΦ, sidewall plate thickness 100 μm, sidewall tip plate thickness 150 μm), and is a can of 10,000 cans. Continuous without cracking or breaking. What was able to be made can be judged as good (◯), and those with cracks and fractures were judged as bad (x).
(5) For bottom wrinkle, the cup is squeezed from the blank, and then the re-drawn can (blank diameter: 140 mmΦ, cup diameter: 87 mmΦ, redrawable diameter: 66 mmΦ) Measurements were made and evaluated at the maximum amplitude. A maximum amplitude of 180 μm or less was judged as good (◯), and 180 μm or more was judged as bad (×).
(6) With regard to the pressure strength, after DI molding, baking (205 ° C. × 10 minutes) was performed, and the pressure at which the can bottom dome was reversed by applying air pressure to the inside of the can body was measured. A reversal pressure of 650 kPa or higher was judged as good (◯), and a reversal pressure of 650 kPa or lower was judged as defective (x). These survey results are shown in Table 2. Table 2 shows various characteristic evaluations of the aluminum alloys manufactured in Example 1 and Comparative Example 1.

Figure 2006283113
Figure 2006283113

表2より明らかなように、合金組成が本発明の規定範囲内であって、かつ製造条件が本発明を充足する実施例1の試料No.1(合金No.A)、試料No.2(合金No.B)、試料No.3(合金No.C)のアルミニウム合金板はいずれもボトムしわ性に優れ、かつ飲料缶に要求される諸特性(DI成形性、耐圧強度、機械的特性)が良好であった。   As apparent from Table 2, the sample No. of Example 1 in which the alloy composition is within the specified range of the present invention and the manufacturing conditions satisfy the present invention. 1 (alloy No. A), sample no. 2 (Alloy No. B), Sample No. All the aluminum alloy plates of No. 3 (alloy No. C) were excellent in bottom wrinkle properties and good properties (DI moldability, pressure strength, mechanical properties) required for beverage cans.

これに対して、合金組成が本発明規定外である比較例1の試料No.4(合金No.D)のアルミニウム合金板はMg量が多いため、素板の引張強度が上昇してDI成形性が低下し、しごき割れが発生した。
試料No.5(合金No.E)のアルミニウム合金板はMg量が少ないため、空焼き後の耐力が本発明規定外となり耐圧強度が劣る結果となった。
On the other hand, Sample No. of Comparative Example 1 whose alloy composition is outside the scope of the present invention. Since the aluminum alloy plate of No. 4 (alloy No. D) has a large amount of Mg, the tensile strength of the base plate increased, the DI formability decreased, and ironing cracks occurred.
Sample No. Since the aluminum alloy plate of No. 5 (Alloy No. E) has a small amount of Mg, the yield strength after baking was outside the scope of the present invention, resulting in poor pressure strength.

試料No.6(合金No.F)のアルミニウム合金板はMn量が多いため、素板の引張強度が上昇するとともに、粗大な金属間化合物が形成しそこが起点となって、DI成形時にしごき割れが発生した。さらに、粒子径0.1〜1.0μmの金属間化合物の体積分率が本発明規定値外となり、ボトムしわ発生が認められた。
試料No.7(合金No.G)のアルミニウム合金板はMn量が少ないため固体潤滑作用を有する晶出物が少なくなり、しごきダイスに焼付けが生じて缶表面が荒れて成形不良となった。さらに、空焼き後の耐力が本発明規定外となり耐圧強度が低下した。
Sample No. 6 (Alloy No. F) aluminum alloy plate has a large amount of Mn, so the tensile strength of the base plate increases, and a coarse intermetallic compound is formed. did. Furthermore, the volume fraction of the intermetallic compound having a particle size of 0.1 to 1.0 μm was outside the specified value of the present invention, and bottom wrinkles were observed.
Sample No. Since the aluminum alloy plate of No. 7 (Alloy No. G) had a small amount of Mn, the amount of crystallized material having a solid lubricating action was reduced, the ironing die was baked, the surface of the can was rough, and the molding was defective. Furthermore, the proof stress after baking was out of the scope of the present invention, and the pressure resistance decreased.

試料No.8(合金No.H)のアルミニウム合金板はSi量が多いため、溶質の固溶量が減少し、固溶体硬化による空焼き後の缶胴強度を高める効果が十分に得られず耐圧強度が低下した。
試料No.9(合金No.I)はSi量が少ないため、固体潤滑作用を有する晶出物が少なくなり、しごきダイスに焼付けが発生し、缶表面が荒れて成形不良となった。
Sample No. The aluminum alloy plate of No. 8 (alloy No. H) has a large amount of Si, so the amount of solute is reduced and the effect of increasing the strength of the can body after baking is not obtained by solid solution hardening, resulting in a decrease in pressure resistance. did.
Sample No. 9 (Alloy No. I) had a small amount of Si, so the amount of crystallized material having a solid lubricating action was reduced, the ironing die was baked, the surface of the can was rough, and the molding was defective.

試料No.10(合金No.J)のアルミニウム合金板はCu量が少ないため、空焼き後の耐力が本発明規定外となり耐圧強度が劣る結果となった。
試料No.11(合金No.K)のアルミニウム合金板はCu量が多いため、素板の引張強度が上昇しDI成形性が低下した。
Sample No. Since the aluminum alloy plate of No. 10 (alloy No. J) has a small amount of Cu, the yield strength after baking was out of the scope of the present invention, resulting in poor pressure strength.
Sample No. Since the aluminum alloy plate of No. 11 (alloy No. K) has a large amount of Cu, the tensile strength of the base plate increased and the DI moldability decreased.

表1に示した本発明規定組成の(合金No.A)のアルミニウム合金を常法により溶解鋳造して厚さ500mmの板状鋳塊(スラブ)とし厚さ490mmに面削した後、均質化処理と熱間圧延を施す。次に、冷間圧延を行い厚さ0.3mmの飲料缶胴用アルミニウム合金板を本発明の規定値内で種々変化させて製造した。   The aluminum alloy of (alloy No. A) of the present invention composition shown in Table 1 is melt cast by a conventional method to form a plate-like ingot (slab) having a thickness of 500 mm, which is chamfered to a thickness of 490 mm, and then homogenized. Processing and hot rolling. Next, it cold-rolled and manufactured the aluminum alloy plate for drink can bodies of thickness 0.3mm variously within the regulation value of this invention.

(比較例2) 製造条件を本発明規定値外とした他は、実施例2と同じ方法によりアルミニウム合金板を製造した。実施例2または比較例2で得られた各々のアルミニウム合金板について、実施例1の場合と同じ方法により、諸特性を調査し良否を判定した。その結果を表3及び表4に示す。表3は、本発明実施例2および比較例2のアルミニウム合金板製造条件を示す。 (Comparative example 2) The aluminum alloy plate was manufactured by the same method as Example 2 except having made manufacturing conditions outside the regulation value of the present invention. About each aluminum alloy plate obtained in Example 2 or Comparative Example 2, various characteristics were investigated by the same method as in Example 1, and the quality was judged. The results are shown in Tables 3 and 4. Table 3 shows the aluminum alloy sheet manufacturing conditions of Example 2 and Comparative Example 2 of the present invention.

Figure 2006283113
Figure 2006283113

表4は、本発明実施例2および比較例2で製造したアルミニウム合金各種特性評価を示す。   Table 4 shows various characteristics evaluations of the aluminum alloys manufactured in Example 2 and Comparative Example 2 of the present invention.

Figure 2006283113
Figure 2006283113

表4により明らかなように、本発明実施例2のアルミニウム合金(試料No.12、試料No.13、試料No.14、試料No.15、試料No.16、試料No.17、試料No.18)はいずれもボトムしわ性が良好で金属間化合物の粒子径と体積分率、導電率ならびに素板の引張強度、空焼き後の耐力も本発明の条件を満足する値を示した。   As is apparent from Table 4, the aluminum alloy of Example 2 of the present invention (Sample No. 12, Sample No. 13, Sample No. 14, Sample No. 15, Sample No. 16, Sample No. 17, Sample No. 17). No. 18) had good bottom wrinkle properties, and the particle diameter and volume fraction of the intermetallic compound, the electrical conductivity, the tensile strength of the base plate, and the proof strength after baking were values that satisfied the conditions of the present invention.

これに対して、比較例である試料No.19のアルミニウム合金板は炉出し後熱間圧延開始までの時間が30分以上であるため、金属間化合物の形成によってボトムしわが発生した。   On the other hand, sample No. which is a comparative example. In No. 19 aluminum alloy sheet, since the time until the start of hot rolling after furnace discharge was 30 minutes or more, bottom wrinkles were generated due to the formation of intermetallic compounds.

試料No.20のアルミニウム合金板は均質化処理の温度が低いため、偏析が十分解消されずDI成形性が低下した。さらに、金属間化合物の形成によってボトムしわ発生が認められた。
試料No.21のアルミニウム合金板は熱間圧延開始温度が高いため、しごき成形性が低下した。
試料No.22のアルミニウム合金板は熱間圧延終了温度が低いため、再結晶せずDI成形性が低下した。
Sample No. Since the aluminum alloy plate No. 20 had a low homogenization temperature, segregation was not sufficiently eliminated and DI formability was lowered. Furthermore, bottom wrinkles were observed due to the formation of intermetallic compounds.
Sample No. Since the aluminum alloy plate No. 21 had a high hot rolling start temperature, the iron formability was lowered.
Sample No. Since the aluminum alloy plate No. 22 had a low hot rolling finish temperature, it was not recrystallized and its DI formability was lowered.

試料No.23と試料No.24のアルミニウム合金板は冷間圧延の1パス目あるいは2パス目の出側温度が高く、金属間化合物の過多な形成によってボトムしわが発生した。
試料No.25のアルミニウム合金板は最終冷間圧延の出側温度が低く、ボトムしわ性が低下した。
試料No.26のアルミニウム合金板は合計圧延率が低いため、空焼き後の耐力が低くなり耐圧強度が低下した。
Sample No. 23 and sample no. The aluminum alloy sheet No. 24 had a high exit temperature in the first or second pass of cold rolling, and bottom wrinkles were generated due to excessive formation of intermetallic compounds.
Sample No. The 25 aluminum alloy sheet had a low exit side temperature in the final cold rolling, and the bottom wrinkle property was lowered.
Sample No. The 26 aluminum alloy sheet had a low total rolling rate, so the yield strength after baking was reduced and the pressure resistance was reduced.

本発明は炭酸飲料用、ビール用および清涼飲料等の各種飲料缶の缶胴材として使用されるアルミニウム合金板に関して、ボトムしわ性に優れ、かつ高い缶胴強度が得られる飲料缶胴用アルミニウム合金板およびその製造方法として適用することができる。   The present invention relates to an aluminum alloy plate used as a can body material for various beverage cans such as carbonated beverages, beer and soft drinks, and has an excellent bottom wrinkle property and can provide a high can body strength. It can be applied as a plate and its manufacturing method.

ボトムしわが発生する部位(缶底チャイム部)を模式的に示す断面図である。It is sectional drawing which shows typically the site | part (can bottom chime part) where a bottom wrinkle generate | occur | produces.

符号の説明Explanation of symbols

1・・・飲料缶缶胴体、2・・・缶側壁、3・・・缶底チャイム部、4・・・缶底接地部
DESCRIPTION OF SYMBOLS 1 ... Beverage can body, 2 ... Can side wall, 3 ... Can bottom chime part, 4 ... Can bottom grounding part

Claims (5)

Si:0.10〜0.25%(質量%,以下同じ)、Mn:0.5〜1.5%、Mg:0.8〜1.5%、Fe:0.35〜0.5%、Cu:0.1〜0.3%と、Ti:0.1%以下、B:0.1%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金板であり、材料特性として粒子径0.1〜1.0μmの金属間化合物の体積分率が1〜5%であり、導電率が30.0〜39.0%IACSであり、素板の圧延方向における引張強度が320MPa以下とされ、塗装焼付後の強度が圧延方向の耐力で250MPa以上であることを特徴とする飲料缶胴用アルミニウム合金板。   Si: 0.10 to 0.25% (mass%, the same applies hereinafter), Mn: 0.5 to 1.5%, Mg: 0.8 to 1.5%, Fe: 0.35 to 0.5% Cu: 0.1 to 0.3%, Ti: 0.1% or less, B: 0.1% or less, the balance is an aluminum alloy plate made of Al and inevitable impurities, The volume fraction of the intermetallic compound having a particle size of 0.1 to 1.0 μm is 1 to 5%, the conductivity is 30.0 to 39.0% IACS, and the tensile strength in the rolling direction of the base plate is 320 MPa. An aluminum alloy plate for a beverage can body, characterized in that the strength after baking is at least 250 MPa in terms of proof stress in the rolling direction. 塗装焼き付けが180〜220℃で5〜30分間保持し、または最高到達温度210〜260℃で2分以内保持して行われる塗装焼付である請求項1記載の飲料缶胴用アルミニウム合金板。   The aluminum alloy plate for beverage can bodies according to claim 1, wherein the baking is performed by holding the coating baking at 180 to 220 ° C for 5 to 30 minutes, or holding the maximum baking temperature at 210 to 260 ° C within 2 minutes. Si:0.10〜0.25%、Mn:0.5〜1.5%、Mg:0.8〜1.5%、Fe:0.35〜0.5%、Cu:0.1〜0.3%と、Ti:0.1%以下、B:0.1%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金鋳塊を製造し、このアルミニウム合金鋳塊を面削した後、550〜620℃の温度で均質化処理を施し、炉出し後、熱間圧延開始までの時間を30分以内とし、次いで熱間圧延を圧延終了温度を250〜350℃に設定して施し、材料特性として粒子径0.1〜1.0μmの金属間化合物の体積分率が1〜5%であり、導電率が30.0〜39.0%IACSであり、素板の圧延方向における引張強度が320MPa以下とされ、塗装焼付後の強度が圧延方向の耐力で250MPa以上であることを特徴とする飲料缶胴用アルミニウム合金板の製造方法。   Si: 0.10 to 0.25%, Mn: 0.5 to 1.5%, Mg: 0.8 to 1.5%, Fe: 0.35 to 0.5%, Cu: 0.1 An aluminum alloy ingot containing 0.3%, Ti: 0.1% or less, B: 0.1% or less, the balance being Al and inevitable impurities is manufactured, and the aluminum alloy ingot is face-cut. Then, a homogenization treatment is performed at a temperature of 550 to 620 ° C., and after the furnace is discharged, the time until the start of hot rolling is within 30 minutes, and then the hot rolling is performed at a rolling end temperature of 250 to 350 ° C. As a material property, the volume fraction of the intermetallic compound having a particle size of 0.1 to 1.0 μm is 1 to 5%, the conductivity is 30.0 to 39.0% IACS, and the rolling direction of the base plate The tensile strength at 320 is 320 MPa or less, and the strength after baking is 250 MPa or more as the proof stress in the rolling direction. Method for producing a beverage can body for an aluminum alloy sheet, wherein the door. 塗装焼き付けは180〜220℃で5〜30分間保持し、または最高到達温度210〜260℃で2分以内保持して行われる塗装焼付である請求項3記載の飲料缶胴用アルミニウム合金板の製造方法。   4. Production of aluminum alloy sheet for beverage can body according to claim 3, wherein the paint baking is performed by holding at 180-220 [deg.] C. for 5-30 minutes or at a maximum temperature of 210-260 [deg.] C. for 2 minutes. Method. 冷間圧延を70%以上の合計圧延率で最終パスの出側温度を130℃以上、それ以外の圧延パスの出側温度を130℃以下とする温度条件で施すことで材料組織の回復処理を行う請求項3または請求項4に記載の飲料缶胴用アルミニウム合金板の製造方法。   Cold rolling is performed at a total rolling ratio of 70% or more under a temperature condition in which the outlet temperature of the final pass is 130 ° C. or higher and the outlet temperature of the other rolling passes is 130 ° C. or lower. The manufacturing method of the aluminum alloy plate for drink can bodies of Claim 3 or Claim 4 to perform.
JP2005104186A 2005-03-31 2005-03-31 Aluminum alloy sheet for drink can barrel, and method for producing the same Pending JP2006283113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104186A JP2006283113A (en) 2005-03-31 2005-03-31 Aluminum alloy sheet for drink can barrel, and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104186A JP2006283113A (en) 2005-03-31 2005-03-31 Aluminum alloy sheet for drink can barrel, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2006283113A true JP2006283113A (en) 2006-10-19

Family

ID=37405323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104186A Pending JP2006283113A (en) 2005-03-31 2005-03-31 Aluminum alloy sheet for drink can barrel, and method for producing the same

Country Status (1)

Country Link
JP (1) JP2006283113A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254874A (en) * 2006-03-24 2007-10-04 Kobe Steel Ltd Aluminum alloy sheet for packaging container and method of manufacturing the same
CN100445406C (en) * 2006-12-13 2008-12-24 中国铝业股份有限公司 Compounded material for smelting flat 3104 aluminium alloy ingot and its material throwing process
CN103526079A (en) * 2012-07-06 2014-01-22 住友轻金属工业株式会社 A can aluminum alloy plate and a manufacturing method thereof
WO2016147816A1 (en) * 2015-03-19 2016-09-22 株式会社神戸製鋼所 Aluminum alloy sheet for can body
JP2016176140A (en) * 2015-03-19 2016-10-06 株式会社神戸製鋼所 Aluminum alloy sheet for can body
WO2017110869A1 (en) * 2015-12-25 2017-06-29 株式会社Uacj Aluminum alloy sheet for can body, and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452042A (en) * 1987-08-21 1989-02-28 Furukawa Aluminium Aluminum-alloy sheet for forming
JP2001262261A (en) * 2000-03-22 2001-09-26 Furukawa Electric Co Ltd:The Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452042A (en) * 1987-08-21 1989-02-28 Furukawa Aluminium Aluminum-alloy sheet for forming
JP2001262261A (en) * 2000-03-22 2001-09-26 Furukawa Electric Co Ltd:The Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007254874A (en) * 2006-03-24 2007-10-04 Kobe Steel Ltd Aluminum alloy sheet for packaging container and method of manufacturing the same
CN100445406C (en) * 2006-12-13 2008-12-24 中国铝业股份有限公司 Compounded material for smelting flat 3104 aluminium alloy ingot and its material throwing process
CN103526079A (en) * 2012-07-06 2014-01-22 住友轻金属工业株式会社 A can aluminum alloy plate and a manufacturing method thereof
WO2016147816A1 (en) * 2015-03-19 2016-09-22 株式会社神戸製鋼所 Aluminum alloy sheet for can body
JP2016176140A (en) * 2015-03-19 2016-10-06 株式会社神戸製鋼所 Aluminum alloy sheet for can body
CN107406924A (en) * 2015-03-19 2017-11-28 株式会社神户制钢所 Tank body aluminium alloy plate
WO2017110869A1 (en) * 2015-12-25 2017-06-29 株式会社Uacj Aluminum alloy sheet for can body, and method for manufacturing same
CN108368570A (en) * 2015-12-25 2018-08-03 株式会社Uacj Tank body aluminium alloy plate and its manufacturing method
JPWO2017110869A1 (en) * 2015-12-25 2018-10-11 株式会社Uacj Aluminum alloy plate for can body and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
JP6326485B2 (en) Aluminum alloy plate for DR can body and manufacturing method thereof
JP4019083B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP4791072B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
WO2014129385A1 (en) Aluminum alloy plate for can body and production method therefor
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
WO2016031234A1 (en) Steel sheet for cans and method for producing same
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2009235477A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2007277694A (en) Painted aluminum-alloy sheet for lid of positive pressure can, and manufacturing method therefor
JP2008274319A (en) Method for manufacturing aluminum alloy sheet for beverage can body
JP2004244701A (en) Aluminum alloy cold rolled sheet for can barrel, and aluminum alloy hot rolled sheet to be used as the stock therefor
JP4257135B2 (en) Aluminum alloy hard plate for can body
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP3550259B2 (en) Aluminum alloy plate for DI can body excellent in high-speed ironing formability and method for producing the same
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP3871462B2 (en) Method for producing aluminum alloy plate for can body
JP2933501B2 (en) Method for producing aluminum alloy sheet excellent in formability of DI can bottom
JP2001262261A (en) Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
JP3871473B2 (en) Method for producing aluminum alloy plate for can body
JP4467443B2 (en) Method for producing aluminum alloy plate
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP2005076041A (en) Method for manufacturing hard aluminum alloy sheet for can body
JP4750392B2 (en) Aluminum alloy plate for bottle-shaped cans
JP2002322530A (en) Aluminum foil for container and production method therefor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110209