WO2017110869A1 - Aluminum alloy sheet for can body, and method for manufacturing same - Google Patents

Aluminum alloy sheet for can body, and method for manufacturing same Download PDF

Info

Publication number
WO2017110869A1
WO2017110869A1 PCT/JP2016/088086 JP2016088086W WO2017110869A1 WO 2017110869 A1 WO2017110869 A1 WO 2017110869A1 JP 2016088086 W JP2016088086 W JP 2016088086W WO 2017110869 A1 WO2017110869 A1 WO 2017110869A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
rolling
aluminum alloy
mass
hot
Prior art date
Application number
PCT/JP2016/088086
Other languages
French (fr)
Japanese (ja)
Inventor
信吾 岩村
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Priority to CN201680071616.5A priority Critical patent/CN108368570B/en
Priority to JP2017558189A priority patent/JP6898254B2/en
Publication of WO2017110869A1 publication Critical patent/WO2017110869A1/en
Priority to US15/992,662 priority patent/US20180282848A1/en
Priority to US17/343,859 priority patent/US20210292878A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the present invention relates to an aluminum alloy plate for a can body and a method for producing the same, and more particularly to an aluminum alloy plate capable of exhibiting excellent characteristics when producing a can body and an effective production method thereof.
  • Al alloy sheets for can bodies have been manufactured by subjecting an Al alloy ingot to homogenization, hot rolling and cold rolling, as is well known. And after degreasing and oiling etc. are given to the Al alloy plate for can body, if necessary, cup molding, DI molding, trimming, cleaning, drying, painting, baking, necking and flange processing A can body for beverages and the like is manufactured through such processes.
  • the can body for beverages or the like is required to have a can body strength that can withstand use, but in the above-described baking process after coating (hereinafter referred to as a coating baking process).
  • the strength of the can body is greatly reduced.
  • various proposals have been made regarding the prevention of such a decrease in strength of the can body. For example, the following techniques have been clarified.
  • Patent Document 1 discloses an Al alloy cold-rolled sheet for bottle cans having a specific alloy composition and having a center-of-gravity diameter typified by ⁇ phase in the plate structure of 1 ⁇ m.
  • the abundance ratio of the ⁇ phase which is an Al 6 (Fe, Mn) intermetallic compound
  • the ⁇ phase which is an Al—Fe—Mn—Si intermetallic compound
  • H ⁇ The ratio of H ⁇ / H ⁇ is 0.50 or more. It has been clarified that by making the crystal ratio uniform, the variation in the ear ratio in the plate width direction can be reduced.
  • Patent Document 2 is an Al alloy cold-rolled sheet for bottle cans having a specific alloy composition, and regulates the solid solution amount of Fe and Mn in the plate structure.
  • the center side in the sheet width direction of the hot-rolled sheet, particularly at the center of the sheet thickness is increased. It is disclosed that recrystallization is promoted, the recrystallization rate in the plate width direction of the hot-rolled plate is made uniform, and as a result, the variation in the ear rate in the plate width direction is reduced.
  • the heat resistance softening property of the Al alloy plate is lowered, causing a problem that the reduction in the strength of the can in the coating baking process becomes more remarkable.
  • the strength reduction in the paint baking process when the initial strength of the Al alloy plate is increased, the thickness of the can wall becomes thinner due to the thinner and lighter can body. There is a problem that is likely to occur. Therefore, in the case of manufacturing a beverage can body by recycling the recycled mass of UBC, it was necessary to limit the amount of use and add new bullion to adjust the Si content.
  • Patent Document 1 discloses that the generation of precipitated particles ( ⁇ phase) of less than 1 ⁇ m is suppressed, and Patent Document 2 specifies only the solid solution amount of Fe and Mn, and heat It is disclosed that recrystallization during hot rolling is promoted and only the ear rate is controlled, but there is no compatibility between the strength of the can body and the ear rate, and the solidity of Fe, Mn, and Si is also disclosed. It did not pay attention to the amount of solution and the fine precipitate particles ( ⁇ phase) during cold rolling.
  • an object of the present invention is to provide an Al alloy plate for a can body and a method for producing the same that can effectively suppress a reduction in strength of the can after heat treatment that affects problems such as torso-cutting.
  • Mn 0.7 to 1.3%
  • Mg 0.8 to 1.5%
  • Fe 0.0. 25 to 0.6%
  • Si 0.25 to 0.50%
  • Cu 0.10 to 0.30%
  • Zn 0.25% or less
  • Ti 0.10% or less
  • B 0.05 %
  • the balance is a cold-rolled sheet obtained by using a hot-rolled sheet made of an Al alloy composed of Al and inevitable impurities, the solid material in the hot-rolled sheet.
  • the amount of dissolved Mn is 0.25% by mass or more
  • the amount of dissolved Fe is 0.02% by mass or more
  • the amount of dissolved Si is 0.07% by mass or more
  • the conductivity is 30.0 to 40.0% IACS.
  • the cold-rolled sheet has a tensile strength (TS) in the rolling direction of 280 to 320 MPa, and is heat treated at 205 ° C. for 10 minutes.
  • the tensile strength (ABTS) in the rolling direction is 270 to 310 MPa, and the difference between the tensile strength (TS) in the rolling direction and the yield strength (ABYS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes is 50 MPa.
  • the gist of the present invention is an Al alloy plate for a can body characterized by the following.
  • Mn 0.7 to 1.3%
  • Mg 0.8 to 1.5%
  • Fe 0.25 to 0.6%
  • Si 0 on a mass basis. 25 to 0.50%
  • Cu 0.10 to 0.30%
  • Zn 0.25% or less
  • Ti 0.10% or less
  • B 0.05% or less
  • An aluminum alloy hot-rolled sheet for a can body characterized in that it contains the above-mentioned solute Si amount and has a conductivity of 30.0 to 40.0% IACS. Is.
  • Mn 0.7 to 1.3%
  • Mg 0.8 to 1.5%
  • Fe 0.25 to 0.6%
  • Si 0 on a mass basis. 25 to 0.50%
  • Cu 0.10 to 0.30%
  • Zn 0.25% or less
  • Ti 0.10% or less
  • B 0.05% or less
  • TS tensile strength
  • ABTS tensile strength
  • Can body is characterized in that the difference between the tensile strength (TS) in the rolling direction and the yield strength (ABYS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes is 50 MPa or less.
  • An aluminum alloy plate for use is also the gist thereof.
  • the Al alloy plate for a can body according to the present invention advantageously has a conductivity of 28.4% IACS to 39.8% IACS.
  • the solid solution Mn content is 0.25% by mass or more, the solid solution Fe content is 0.02% by mass or more, the solid solution Si content is 0.07% by mass or more, and the conductivity is 30.0 to A step of obtaining a hot-rolled sheet material of 40.0% IACS, and (c) cold-rolling the hot-rolled sheet material,
  • the tensile strength (TS) in the extending direction is 280 to 320 MPa, the tensile strength (ABTS) in the rolling direction after heat treatment at 205 ° C.
  • Mn 0.7 to 1.3%
  • Mg 0.8 to 1. 5%
  • Fe 0.25 to 0.6%
  • Si 0.25 to 0.50%
  • Cu 0.10 to 0.30%
  • Zn 0.25% or less
  • Ti 0.10%
  • B 0.05% or less
  • Homogenization by heating to a homogenization temperature (T) in the range of ⁇ 620 ° C.
  • a method for producing an Al alloy plate for a can body characterized in that cold rolling is performed so that the average rolling speed of the part is 700 to 1600 m / min, and the plate thickness is 0.2 to 1.0 mm, This is the gist.
  • the conductivity (S1) of the plate material obtained by the hot finish rolling and the cold rolling can be obtained.
  • the difference (S1 ⁇ S2) from the conductivity (S2) of the plate material to be obtained is adjusted to be 0.2 to 1.6% IACS.
  • the diameter is 0.1 ⁇ m to The area ratio of 1 ⁇ m particles is configured to be 3.5% or more.
  • a beverage can body characterized by comprising the above-described aluminum alloy plate for a can body is also the object.
  • a predetermined paint baking process is performed on the above-described aluminum alloy plate for a can body.
  • the solid solution of Fe, Mn, Si in the hot rolled sheet material of Al alloy having a specific alloy composition that gives it can be provided.
  • the amount, as well as fine precipitate particles ( ⁇ phase) that precipitate during cold rolling of such hot rolled sheet material high heat resistance softening properties are imparted while ensuring excellent formability, Further, even after heat treatment, it can exhibit excellent can body strength, and can be advantageously used as a can body material.
  • an Al alloy plate for a can body having excellent characteristics such as compatibility of the formability as described above and the strength of the can body after heat treatment is industrially produced. It can be advantageously manufactured.
  • an Al alloy that provides an Al alloy plate for a can body according to the present invention has Mn: 0.7 to 1.3% (mass basis, the same applies hereinafter), Mg: 0.8 to 1.5%, Fe: 0.001. 25 to 0.6%, Si: 0.25 to 0.50%, Cu: 0.10 to 0.30%, Zn: 0.25% or less, Ti: 0.10% or less, and B: 0.05 %, And the balance has an alloy composition composed of Al and inevitable impurities, and the reasons for limiting the alloy components are as follows.
  • Mn manganese
  • Al alloy plate a basic alloy element in the Al alloy plate according to the present invention, and contributes to improvement of heat-resistant softening property in a solid solution state in addition to increasing strength.
  • an ⁇ -phase compound Al—Mn—Fe—Si system
  • the particles of the intermetallic compound have extremely high hardness, and serve to improve the surface properties of the container by preventing seizure between the raw material and the mold during molding. If the Mn content is less than 0.7%, these effects cannot be sufficiently exhibited, and if it exceeds 1.3%, the strength becomes too high.
  • a preferable content of Mn is 0.8 to 1.2%.
  • Mg magnesium
  • Mg is a component that contributes to an increase in strength of the container by being dissolved in Al. If the Mg content is less than 0.8%, there is a problem that it is difficult to obtain the strength required for the final product, and if it exceeds 1.5%, the strength of the can body becomes too high. This causes a problem that moldability is impaired.
  • a preferable content of Mg is 1.0 to 1.3%.
  • Fe forms Al 6 (Mn, Fe) phase compound and ⁇ -phase compound (Al-Mn-Fe-Si system) and Mn-Fe-Si compound together with Mn during casting. And, it is a component that prevents seizure between the material and the mold during molding by the solid lubricating action of these intermetallic compounds.
  • Fe content is less than 0.25%, the number of these intermetallic compounds is reduced, causing adhesion to the die during DI molding and causing a problem that the surface properties are lowered.
  • the Fe content exceeds 0.6%, an Al—Fe—Mn intermetallic compound is excessively formed, which becomes a starting point of cracking, and thus formability. Cause problems.
  • the preferable content of Fe is 0.30 to 0.50%.
  • Si forms an ⁇ -phase compound (Al-Mn-Fe-Si-based) or Al-Fe-Si-based compound having a solid lubricating action together with Mn and / or Fe described above to form a die during molding. It has the effect of preventing adhesion to the skin. This effect is not sufficient when the Si content is less than 0.25%, and when the Si content exceeds 0.50%, the Al—Mn—Fe—Si intermetallic compound becomes excessive. When it is formed, it becomes a starting point of cracking, and the moldability is impaired. Further, the amount of solid solution Mn is reduced, and the heat softening property is lowered.
  • the preferable content of Si is 0.30 to 0.40%.
  • Cu [Cu: 0.10 to 0.30%]
  • Cu (copper) forms an Al—Cu—Mg-based intermetallic compound in the paint baking process and precipitates it, thereby exhibiting an effect of suppressing or preventing a decrease in strength in the paint baking process. This effect is not sufficiently obtained when the Cu content is less than 0.10%, and conversely when it exceeds 0.30%, the work curability at the time of forming increases and the formability decreases. Raise the problem.
  • the preferable content of Cu is 0.15 to 0.25%.
  • Zn (zinc) is a component that improves formability. However, if the content of Zn (zinc) increases, in addition to increasing the cost, a coarse intermetallic compound is formed, causing problems that impair formability. become. Therefore, the Zn content is adjusted to be 0.25% or less. A preferable content of Zn is 0.05 to 0.20%.
  • Ti 0.10% or less and B: 0.05% or less
  • Ti (titanium) and B (boron) have a function of refining the cast structure to make the dispersion form and crystal grain structure of the crystallized product generated during casting uniform.
  • the Ti content exceeds 0.10% or the B content exceeds 0.05%, a coarse intermetallic compound is generated, and the formability is lowered.
  • preferable content of these Ti and B is 0.03% or less and 0.04% or less, respectively.
  • the Al alloy which is the material of the Al alloy plate for a can body according to the present invention is composed of Al (aluminum) and unavoidable impurities, that is, elements other than the alloy components described above, in addition to the alloy components described above. It is what is done. In addition, such inevitable impurities are preferably as low as possible so that the plate characteristics are not deteriorated. Generally, the content is not more than the upper limit value of each element of the Al alloy defined in JIS standards and the like. Will be taken. And the total content of each element which becomes such an inevitable impurity is generally 0.15% or less, preferably 0.10% or less.
  • the amount of solute Mn after hot rolling is 0.25% by mass or more.
  • the amount of dissolved Fe is 0.02% by mass or more, the amount of dissolved Si is 0.07% by mass or more, and the conductivity is 30.0 to 40.0% IACS. It shows heat-resistant softening properties.
  • compound particles composed of Mn, Fe, and Si are finely formed by cold rolling, as will be described later.
  • the solid solution amount of these elements in the hot rolled sheet is limited by the content of each element in the Al alloy, and the maximum conductivity realized by the solid solution amount of these elements is 40.0%.
  • the conductivity is 30.0% IACS or more.
  • the strength is significantly lowered in the paint baking process.
  • the Al alloy plate according to the present invention has a property that the tensile strength (TS) in the rolling direction is 280 to 320 MPa as the base plate property.
  • TS tensile strength
  • the Al alloy sheet according to the present invention has a characteristic that the tensile strength (ABTS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes is 270 to 310 MPa.
  • the tensile strength (ABTS) in the rolling direction after the heat treatment is smaller than 270 MPa, there is a problem that the strength of the can body is insufficient. On the other hand, if it exceeds 310 MPa, the DI molding becomes difficult.
  • the difference between the tensile strength (TS) in the rolling direction and the proof stress (ABYS) in the rolling direction after heat treatment at 205 ° C. ⁇ 10 minutes (TS ⁇ ABYS) does not exceed 50 MPa.
  • an Al alloy plate according to the present invention when manufacturing an Al alloy plate according to the present invention as described above, first, a material that gives the Al alloy composition as described above is melted to obtain an Al alloy molten metal, and then by a known casting technique such as a DC casting method. An Al alloy ingot is formed. Such an Al alloy ingot has an alloy composition comprising the contents of Mn, Mg, Fe, Si, Cu, Zn, Ti and B as defined in the present invention.
  • the Al alloy ingot is subjected to the same chamfering as before, and then subjected to a specific homogenization treatment in order to obtain the characteristics of the Al alloy plate according to the present invention. That is, in such a homogenization treatment, the homogenized treatment temperature (T: ° C.) of the Al alloy ingot subjected to chamfering is within a range of 550 to 620 ° C. at a heating rate of 30 to 120 ° C./hour. ) And heated for a period of (145 ⁇ 0.24T) time (Hr) or longer at the homogenization temperature (T).
  • the holding time of this homogenization treatment is set to (145-0.24T) or longer.
  • the cross-sectional structure of the treated Al alloy ingot is magnified by a magnification of 100 to 20000 using a scanning electron microscope.
  • the area ratio of particles having a diameter of 0.1 ⁇ m to 1 ⁇ m is 3.5% or more, thereby obtaining an anti-seizure effect and Mn necessary for obtaining effective heat softening resistance , Fe, Si can be secured.
  • an upper limit of the holding time of the homogenization treatment from the viewpoint of productivity and the like, generally, 30 hours or less, preferably 20 hours or less is advantageously employed.
  • the Al alloy ingot is directly (immediately) subjected to hot rolling and does not fall below 500 ° C. at a cooling rate of 10 to 90 ° C./hour ( It is also possible to perform hot rolling after cooling to the hot rolling start temperature (500 ° C. or higher).
  • the cooling rate is lower (slower) than 10 ° C./hour, or when it is cooled to a temperature lower than 500 ° C.
  • the cooling step Mn, Fe, and Si are precipitated in the medium, and the solid solution amount of these elements is lowered. As a result, precipitation of fine particles composed of Mn, Fe, and Si is insufficient during the subsequent cold rolling.
  • hot rolling for an Al alloy ingot is performed by combining hot rough rolling and hot finish rolling in the same manner as in the past, and the thickness after hot finish rolling is 1.5-4.
  • a plate material of 0 mm will be formed, in which hot rough rolling is performed on the above-described homogenized Al alloy ingot or an Al alloy ingot cooled to a predetermined temperature,
  • the delivery side temperature material temperature at the end of hot rough rolling
  • the hot finish rolling subsequent to the hot rough rolling a known rolling operation is performed such that the delivery temperature (material temperature at the end of hot finish rolling) is 300 to 390 ° C. A plate material having a thickness of 1.5 to 4.0 mm is formed.
  • the delivery temperature material temperature at the end of hot finish rolling
  • a plate material having a thickness of 1.5 to 4.0 mm is formed.
  • this delivery side temperature exceeds 390 degreeC, a recrystallized grain becomes coarse and there exists a possibility of impairing DI moldability.
  • the plate thickness is thinner than 1.5 mm, the degree of work in the subsequent cold rolling process is insufficient, and the strength is lowered. Conversely, when the thickness is excessively greater than 4.0 mm, There is a problem that the degree of processing becomes high and the strength becomes too high. And the amount of the said solid solution Mn, Fe, Si can be ensured by this hot finish rolling.
  • the hot-rolled sheet obtained as described above is further subjected to cold rolling.
  • the total degree of cold rolling is 75% or more.
  • cold rolling is performed so that the average rolling speed of the stationary part in the final pass is 700 to 1600 m / min, and an Al alloy sheet having a thickness of 0.2 to 1.0 mm is formed.
  • the cold rolling is carried out according to the same method as in the prior art. At that time, when the total degree of cold rolling is less than 75%, or the average rolling speed of the steady portion is 1600 m / If it is larger than 5 minutes, precipitation of Mn-based compound particles is not sufficient, and heat softening resistance may be reduced.
  • the difference (S1-S2) from the conductivity (S2) is 0.2 to 1.6% IACS, in other words, the conductivity of the cold rolled sheet is 28.4% IACS to 39.8%. It is preferable to manufacture the target Al alloy plate so that it is within the range of IACS.
  • solid solution Mn is sufficiently present, compound particles composed of Mn, Fe, and Si are induced by cold working and finely precipitated, and the heat-resistant softening property can be improved.
  • the Al alloy plate according to the present invention is subjected to necessary processing in the same manner as in the prior art to form the desired can body, which is advantageously used as an Al-based beverage can etc. Will be.
  • the Al alloy plate according to the present invention is subjected to degreasing and oiling as necessary, and further includes cup molding, DI molding, trimming, cleaning, drying, painting, baking, necking and flange processing.
  • a beverage can body (can body) is formed, and by attaching a can lid (can end) to this, an intended Al-based beverage can can can be produced advantageously.
  • test material composed of each Al alloy plate (base plate) is subjected to a heat treatment (205 ° C. ⁇ 10 minutes) corresponding to the paint baking process, and then a tensile test is performed in the same manner as in (1) above.
  • Tensile strength (ABTS) and proof stress (ABYS) in the rolling direction of the test material after heat treatment were measured.
  • the B1 test material lacked the amount of Mn added, so the amount of solid Mn was less than the specified range, and precipitation during cold rolling was insufficient. Decreased significantly. As a result, the amount of strength reduction during the baking process was large, and the strength of the can body was insufficient. In addition, in the B2 test material, the amount of Mn added was excessive, and the strength of the base plate was too high, which caused a problem of breaking during can making. Furthermore, the B3 test material was insufficient in strength after baking of the base plate and the paint because the amount of Mg added was insufficient.
  • the B6 test material since the added amount of Fe is excessive, a coarse intermetallic compound is formed, causing a problem of breaking during can making.
  • the B7 test material lacked the amount of Si added and lacked precipitation during cold rolling, resulting in a significant decrease in strength during paint baking and insufficient can body strength.
  • the amount of Si added was excessive, and a coarse intermetallic compound was excessively formed, causing a problem of breaking during can making.
  • the amount of Cu added to the B9 test material was insufficient, so that the precipitation strengthening during the coating baking process was insufficient. Therefore, the strength reduction due to coating baking was large, and the can body strength was insufficient.
  • Example 2- By employing the alloy component composition (Al alloy: A9) that gives the A9 test material in Example 1, various Al alloy plate materials of C1 to C13 were produced under various production conditions shown in Table 5 below. The basic manufacturing conditions not shown in Table 5 were the same as those in Example 1. Then, using various C1 to C13 Al alloy plate materials obtained in the manufacturing process, test materials (C1 to C13) were prepared, and the same evaluation as in the above examples was performed. The results are shown in Table 6 below.
  • each of the C1 to C13 Al alloy plate materials has a high tensile strength (TS) in the rolling direction in a state where the coating baking is not performed.
  • TS tensile strength
  • Example 2 By adopting the alloy component composition of Al alloy: A9 in Example 1, various Al alloy plate materials D1 to D9 were produced under various production conditions shown in Table 7 below. The manufacturing conditions not described in Table 7 were the same as those in Example 1. Then, for the test materials (D1 to D9) made of the Al alloy plates (cold rolled plates) of D1 to D9, the plate material characteristics were evaluated, and the results are shown in Table 8 below.

Abstract

Provided are an Al alloy sheet having excellent characteristics for use as a can body, and a method for manufacturing the Al alloy sheet. A sheet having an Al alloy comprising a predetermined alloy composition as the material thereof, wherein an Al alloy sheet for a can body is configured so that the solid solution Mn content thereof after hot rolling is 0.25 mass% or greater, the solid solution Fe content is 0.02 mass% or greater, and the solid solution Si content is 0.07 mass% or greater, the electrical conductivity thereof is 30.0-40.0% IACS, the tensile strength in the rolling direction of a cold-rolled sheet thereof is 280-320 MPa, the tensile strength in the rolling direction after heat treatment at 205°C for 10 minutes is 270-310 MPa, and the difference between the tensile strength in the rolling direction and the yield stress in the rolling direction after heat treatment at 205°C for 10 minutes is 50 MPa or less.

Description

缶ボディ用アルミニウム合金板及びその製造方法Aluminum alloy plate for can body and manufacturing method thereof
 本発明は、缶ボディ用アルミニウム合金板及びその製造方法に係り、特に、缶ボディの製造時に優れた特性を発揮し得るアルミニウム合金板と、その有効な製造方法に関するものである。 The present invention relates to an aluminum alloy plate for a can body and a method for producing the same, and more particularly to an aluminum alloy plate capable of exhibiting excellent characteristics when producing a can body and an effective production method thereof.
 従来から、缶ボディ用アルミニウム(Al)合金板は、よく知られているように、Al合金鋳塊に均質化処理、熱間圧延及び冷間圧延を施して、製造されてきている。そして、この缶ボディ用Al合金板に対して、必要に応じて脱脂洗浄、塗油等が施された後、更にカップ成形、DI成形、トリミング、洗浄、乾燥、塗装、焼付け、ネッキング及びフランジ加工等の工程を経て、飲料用等の缶ボディが製造されているのである。 Conventionally, aluminum (Al) alloy sheets for can bodies have been manufactured by subjecting an Al alloy ingot to homogenization, hot rolling and cold rolling, as is well known. And after degreasing and oiling etc. are given to the Al alloy plate for can body, if necessary, cup molding, DI molding, trimming, cleaning, drying, painting, baking, necking and flange processing A can body for beverages and the like is manufactured through such processes.
 ところで、飲料用等の缶ボディは、使用に耐え得る缶体強度を有していることが必要とされているのであるが、上述した塗装後の焼付けの工程(以下、塗装焼付け工程という)において、缶体強度は大きく低下するようになるのである。このため、そのような缶体強度の低下防止に関して、各種の提案が為されてきており、例えば、以下の如き技術が明らかにされている。 By the way, the can body for beverages or the like is required to have a can body strength that can withstand use, but in the above-described baking process after coating (hereinafter referred to as a coating baking process). The strength of the can body is greatly reduced. For this reason, various proposals have been made regarding the prevention of such a decrease in strength of the can body. For example, the following techniques have been clarified.
 すなわち、特開2012-92431号公報(特許文献1)には、特定の合金組成からなるボトル缶用Al合金冷間圧延板であって、板組織中のα相として代表される重心直径が1μm未満の分散粒子を少なくすると共に、Al6(Fe,Mn) 系金属間化合物であるβ相と、Al-Fe-Mn-Si系金属間化合物であるα相との存在割合を、かかるβ相のX線回折ピークの最大高さ:Hβ とα相のX線回折ピークの最大高さ:Hα との比:Hβ/Hαにおいて、0.50以上として、熱間圧延板の板幅方向の再結晶率を均一化することにより、板幅方向の耳率のばらつきを小さくし得ることが、明らかにされている。 That is, Japanese Patent Laid-Open No. 2012-92431 (Patent Document 1) discloses an Al alloy cold-rolled sheet for bottle cans having a specific alloy composition and having a center-of-gravity diameter typified by α phase in the plate structure of 1 μm. In addition to reducing the number of dispersed particles below, the abundance ratio of the β phase, which is an Al 6 (Fe, Mn) intermetallic compound, and the α phase, which is an Al—Fe—Mn—Si intermetallic compound, The maximum height of the X-ray diffraction peak of Hβ and the maximum height of the X-ray diffraction peak of the α phase: Hα: The ratio of Hβ / Hα is 0.50 or more. It has been clarified that by making the crystal ratio uniform, the variation in the ear ratio in the plate width direction can be reduced.
 また、特開2011-202273号公報(特許文献2)においては、特定の合金組成からなるボトル缶用Al合金冷間圧延板であって、板組織中のFeとMnとの固溶量を規制することによって、熱間圧延板における再結晶の核生成サイトとなる比較的大きな分散粒子の個数密度を増加せしめ、熱間圧延板での板幅方向の中央部側の、特に板厚中心部の再結晶を促進せしめ、熱間圧延板の板幅方向の再結晶率を均一化し、ひいては板幅方向の耳率のばらつきを小さくすることが、開示されている。 Japanese Patent Application Laid-Open No. 2011-202273 (Patent Document 2) is an Al alloy cold-rolled sheet for bottle cans having a specific alloy composition, and regulates the solid solution amount of Fe and Mn in the plate structure. By increasing the number density of relatively large dispersed particles that become nucleation sites for recrystallization in the hot-rolled sheet, the center side in the sheet width direction of the hot-rolled sheet, particularly at the center of the sheet thickness, is increased. It is disclosed that recrystallization is promoted, the recrystallization rate in the plate width direction of the hot-rolled plate is made uniform, and as a result, the variation in the ear rate in the plate width direction is reduced.
 一方、近年、環境保護の観点から、飲料缶ボディの製造において、使用済み飲料缶(UBC:Used Beverage Can)の再生塊をリサイクル利用することが重要な課題となっている。更に、材料使用量を削減するために、缶体の薄肉軽量化も進められている。しかして、UBCの再生塊には、SiやFe等が混入することが多いために、UBCの再生塊をリサイクル使用すると、得られるAl合金鋳塊にSiやFeが高濃度に含まれるようになるのである。その場合、Al合金鋳塊の加熱処理時に、SiがMnやFeと金属間化合物を形成し、Mn固溶量の減少をもたらすこととなる。その結果、Al合金板の耐熱軟化性が低下して、塗装焼付け工程における缶体強度の低下が一層顕著となる問題を惹起する。また、塗装焼付け工程における強度低下を考慮して、Al合金板の初期強度を高くした場合においては、缶体の薄肉軽量化によって缶壁部の板厚が薄くなる程、DI成形時に胴切れを起こし易くなる問題がある。従って、UBCの再生塊をリサイクル利用して、飲料缶ボディを製造する場合において、その使用量を制限し、新地金を加えて、Siの含有量を調整する必要があった。 On the other hand, in recent years, from the viewpoint of environmental protection, in the production of a beverage can body, it has become an important issue to recycle a recycled lump of a used beverage can (UBC). Furthermore, in order to reduce the amount of material used, the can body is being made thinner and lighter. Since the UBC reclaimed lump is often mixed with Si, Fe, etc., when the UBC reclaimed lump is recycled, the resulting Al alloy ingot contains a high concentration of Si and Fe. It becomes. In that case, during the heat treatment of the Al alloy ingot, Si forms an intermetallic compound with Mn and Fe, resulting in a decrease in the Mn solid solution amount. As a result, the heat resistance softening property of the Al alloy plate is lowered, causing a problem that the reduction in the strength of the can in the coating baking process becomes more remarkable. Also, considering the strength reduction in the paint baking process, when the initial strength of the Al alloy plate is increased, the thickness of the can wall becomes thinner due to the thinner and lighter can body. There is a problem that is likely to occur. Therefore, in the case of manufacturing a beverage can body by recycling the recycled mass of UBC, it was necessary to limit the amount of use and add new bullion to adjust the Si content.
 なお、特許文献1には、1μm未満の析出粒子(α相)の発生を抑制することが開示されており、また特許文献2には、FeとMnの固溶量のみを規定して、熱間圧延時の再結晶を促進せしめ、耳率のみを制御することが開示されているのであるが、そこでは、缶体強度と耳率を両立させるものではなく、しかもFe,Mn,Siの固溶量並びに冷間圧延中の微細な析出粒子(α相)に着目するものではなかったのである。 Patent Document 1 discloses that the generation of precipitated particles (α phase) of less than 1 μm is suppressed, and Patent Document 2 specifies only the solid solution amount of Fe and Mn, and heat It is disclosed that recrystallization during hot rolling is promoted and only the ear rate is controlled, but there is no compatibility between the strength of the can body and the ear rate, and the solidity of Fe, Mn, and Si is also disclosed. It did not pay attention to the amount of solution and the fine precipitate particles (α phase) during cold rolling.
特開2012-92431号公報JP 2012-92431 A 特開2011-202273号公報JP 2011-202273 A
 ここにおいて、本発明は、上述の如き事情を背景にして為されたものであって、その解決課題とするところは、缶ボディ用として優れた特性を有するAl合金板とその製造方法を提供することにあり、また、Al合金の冷間圧延板中のFe,Mn,Siの固溶量並びに冷間圧延中の微細な析出粒子(α相)を最適化することにより、缶体強度の低下、特に胴切れ等の問題に影響する熱処理後の缶体強度の低下を、効果的に抑制し得る缶ボディ用Al合金板及びその製造方法を提供することにある。 Here, the present invention has been made in the background of the circumstances as described above, and the problem to be solved is to provide an Al alloy plate having excellent characteristics for a can body and a method for producing the same. In particular, by optimizing the solid solution amount of Fe, Mn, Si in the cold rolled sheet of Al alloy and fine precipitate particles (α phase) during cold rolling, the strength of the can body is reduced. In particular, an object of the present invention is to provide an Al alloy plate for a can body and a method for producing the same that can effectively suppress a reduction in strength of the can after heat treatment that affects problems such as torso-cutting.
 そして、本発明にあっては、上述の如き課題を解決するために、質量基準にて、Mn:0.7~1.3%、Mg:0.8~1.5%、Fe:0.25~0.6%、Si:0.25~0.50%、Cu:0.10~0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるAl合金を材質とする熱間圧延板を用いて得られた冷間圧延板からなる板材であって、該熱間圧延板における、固溶Mn量が0.25質量%以上、固溶Fe量が0.02質量%以上及び固溶Si量が0.07質量%以上であり、且つ導電率が30.0~40.0%IACSであり、該冷間圧延板における、圧延方向の引張強さ(TS)が280~320MPaであり、205℃×10分の熱処理後の圧延方向の引張強さ(ABTS)が270~310MPaであると共に、前記圧延方向の引張強さ(TS)と205℃×10分の熱処理後の圧延方向の耐力(ABYS)との差が50MPa以下であることを特徴とする缶ボディ用Al合金板を、その要旨とするものである。 In the present invention, in order to solve the above-described problems, Mn: 0.7 to 1.3%, Mg: 0.8 to 1.5%, and Fe: 0.0. 25 to 0.6%, Si: 0.25 to 0.50%, Cu: 0.10 to 0.30%, Zn: 0.25% or less, Ti: 0.10% or less, and B: 0.05 %, And the balance is a cold-rolled sheet obtained by using a hot-rolled sheet made of an Al alloy composed of Al and inevitable impurities, the solid material in the hot-rolled sheet. The amount of dissolved Mn is 0.25% by mass or more, the amount of dissolved Fe is 0.02% by mass or more, the amount of dissolved Si is 0.07% by mass or more, and the conductivity is 30.0 to 40.0% IACS. The cold-rolled sheet has a tensile strength (TS) in the rolling direction of 280 to 320 MPa, and is heat treated at 205 ° C. for 10 minutes. The tensile strength (ABTS) in the rolling direction is 270 to 310 MPa, and the difference between the tensile strength (TS) in the rolling direction and the yield strength (ABYS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes is 50 MPa. The gist of the present invention is an Al alloy plate for a can body characterized by the following.
 また、本発明にあっては、質量基準にて、Mn:0.7~1.3%、Mg:0.8~1.5%、Fe:0.25~0.6%、Si:0.25~0.50%、Cu:0.10~0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金を材質とする熱間圧延板であって、0.25質量%以上の固溶Mn量と、0.02質量%以上の固溶Fe量と、0.07質量%以上の固溶Si量とを含有し、且つ30.0~40.0%IACSの導電率を有していることを特徴とする缶ボディ用アルミニウム合金熱間圧延板をも、その要旨とするものである。 In the present invention, Mn: 0.7 to 1.3%, Mg: 0.8 to 1.5%, Fe: 0.25 to 0.6%, Si: 0 on a mass basis. 25 to 0.50%, Cu: 0.10 to 0.30%, Zn: 0.25% or less, Ti: 0.10% or less, and B: 0.05% or less, with the balance being Al. A hot-rolled sheet made of an aluminum alloy composed of inevitable impurities, a solid solution Mn amount of 0.25 mass% or more, a solid solution Fe amount of 0.02 mass% or more, and 0.07 mass% An aluminum alloy hot-rolled sheet for a can body, characterized in that it contains the above-mentioned solute Si amount and has a conductivity of 30.0 to 40.0% IACS. Is.
 さらに、本発明にあっては、質量基準にて、Mn:0.7~1.3%、Mg:0.8~1.5%、Fe:0.25~0.6%、Si:0.25~0.50%、Cu:0.10~0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金を材質とする板材であって、圧延方向の引張強さ(TS)が280~320MPaであり、205℃×10分の熱処理後の圧延方向の引張強さ(ABTS)が270~310MPaであると共に、前記圧延方向の引張強さ(TS)と205℃×10分の熱処理後の圧延方向の耐力(ABYS)との差が50MPa以下であることを特徴とする缶ボディ用アルミニウム合金板をも、その要旨とするものである。 Further, in the present invention, Mn: 0.7 to 1.3%, Mg: 0.8 to 1.5%, Fe: 0.25 to 0.6%, Si: 0 on a mass basis. 25 to 0.50%, Cu: 0.10 to 0.30%, Zn: 0.25% or less, Ti: 0.10% or less, and B: 0.05% or less, with the balance being Al. A plate material made of an aluminum alloy composed of inevitable impurities, the tensile strength (TS) in the rolling direction is 280 to 320 MPa, and the tensile strength (ABTS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes. Can body is characterized in that the difference between the tensile strength (TS) in the rolling direction and the yield strength (ABYS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes is 50 MPa or less. An aluminum alloy plate for use is also the gist thereof.
 なお、かかる本発明に従う缶ボディ用Al合金板は、有利には、28.4%IACS~39.8%IACSの導電率を有している。 Note that the Al alloy plate for a can body according to the present invention advantageously has a conductivity of 28.4% IACS to 39.8% IACS.
 そして、上記の如き本発明に従う缶ボディ用Al合金板を製造するために、(a)質量基準にて、Mn:0.7~1.3%、Mg:0.8~1.5%、Fe:0.25~0.6%、Si:0.25~0.50%、Cu:0.10~0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金を材質とするアルミニウム合金鋳塊を準備する工程と、(b)かかるアルミニウム合金鋳塊を用いて、熱間圧延を実施し、固溶Mn量が0.25質量%以上、固溶Fe量が0.02質量%以上及び固溶Si量が0.07質量%以上であり、且つ導電率が30.0~40.0%IACSである熱間圧延板材を得る工程と、(c)該熱間圧延板材を冷間圧延して、圧延方向の引張強さ(TS)が280~320MPaであり、205℃×10分の熱処理後の圧延方向の引張強さ(ABTS)が270~310MPaであると共に、前記圧延方向の引張強さ(TS)と205℃×10分の熱処理後の圧延方向の耐力(ABYS)との差が50MPa以下である冷間圧延板材を形成する工程とを含む製造方法が、有利に採用されるのである。 And, in order to produce an Al alloy plate for a can body according to the present invention as described above, (a) based on mass, Mn: 0.7 to 1.3%, Mg: 0.8 to 1.5%, Fe: 0.25 to 0.6%, Si: 0.25 to 0.50%, Cu: 0.10 to 0.30%, Zn: 0.25% or less, Ti: 0.10% or less, and B A step of preparing an aluminum alloy ingot containing 0.05% or less of aluminum alloy consisting of Al and inevitable impurities, and (b) hot rolling using the aluminum alloy ingot. The solid solution Mn content is 0.25% by mass or more, the solid solution Fe content is 0.02% by mass or more, the solid solution Si content is 0.07% by mass or more, and the conductivity is 30.0 to A step of obtaining a hot-rolled sheet material of 40.0% IACS, and (c) cold-rolling the hot-rolled sheet material, The tensile strength (TS) in the extending direction is 280 to 320 MPa, the tensile strength (ABTS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes is 270 to 310 MPa, and the tensile strength in the rolling direction ( A manufacturing method including a step of forming a cold-rolled sheet material in which a difference between TS) and a yield strength (ABYS) in a rolling direction after heat treatment at 205 ° C. for 10 minutes is 50 MPa or less is advantageously employed.
 また、本発明にあっては、上述の如き缶ボディ用Al合金板を有利に製造するために、質量基準にて、Mn:0.7~1.3%、Mg:0.8~1.5%、Fe:0.25~0.6%、Si:0.25~0.50%、Cu:0.10~0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるAl合金を材質とするAl合金鋳塊を面削した後、30~120℃/時間の昇温速度で550~620℃の範囲内の均質化処理温度(T)まで加熱昇温せしめ、そして該均質化処理温度(T)において、(145-0.24T)時間以上の間、保持することにより、均質化処理を施し、次いでかかる均質化処理の終了後、直ちに、又は10~90℃/時間の冷却速度で、500℃を下回ることのない熱間圧延開始温度まで冷却した後、出側温度:430~550℃となるように熱間粗圧延を実施して、板厚:20~40mmの板材を形成せしめ、続いて出側温度:300~390℃となるように熱間仕上圧延を行って、板厚:1.5~4.0mmの板材とした後、総加工度が75%以上且つ最終パスの定常部の平均圧延速度が700~1600m/分となるように冷間圧延を行って、0.2~1.0mmの板厚とすることを特徴とする缶ボディ用Al合金板の製造方法を、その要旨とするものである。 In the present invention, in order to advantageously produce the above-described Al alloy plate for can bodies, Mn: 0.7 to 1.3%, Mg: 0.8 to 1. 5%, Fe: 0.25 to 0.6%, Si: 0.25 to 0.50%, Cu: 0.10 to 0.30%, Zn: 0.25% or less, Ti: 0.10% And B: 0.05% or less, and after chamfering an Al alloy ingot made of an Al alloy consisting of Al and unavoidable impurities, 550 at a temperature rising rate of 30 to 120 ° C./hour. Homogenization by heating to a homogenization temperature (T) in the range of ˜620 ° C. and holding at the homogenization temperature (T) for not less than (145-0.24 T) hours And then immediately after completion of such homogenization or at a cooling rate of 10 to 90 ° C./hour. After cooling to a hot rolling start temperature that does not fall below 0 ° C., hot rough rolling is performed so that the delivery temperature is 430 to 550 ° C. to form a plate material with a plate thickness of 20 to 40 mm, Subsequently, hot finish rolling is performed so that the outlet temperature is 300 to 390 ° C. to obtain a plate material having a plate thickness of 1.5 to 4.0 mm, and the total workability is 75% or more and the final pass is steady. A method for producing an Al alloy plate for a can body, characterized in that cold rolling is performed so that the average rolling speed of the part is 700 to 1600 m / min, and the plate thickness is 0.2 to 1.0 mm, This is the gist.
 なお、かかる本発明に従う缶ボディ用Al合金板の製造方法の好ましい態様の一つにあっては、前記熱間仕上圧延にて得られる板材の導電率(S1)と前記冷間圧延にて得られる板材の導電率(S2)との差(S1-S2)が、0.2~1.6%IACSであるように調整されることとなる。 In addition, in one of the preferable embodiments of the method for producing an Al alloy plate for a can body according to the present invention, the conductivity (S1) of the plate material obtained by the hot finish rolling and the cold rolling can be obtained. The difference (S1−S2) from the conductivity (S2) of the plate material to be obtained is adjusted to be 0.2 to 1.6% IACS.
 また、本発明に従う缶ボディ用アルミニウム合金板の製造方法の好ましい他の態様にあっては、前記均質化処理の施されたAl合金鋳塊に対する走査型電子顕微鏡写真において、直径:0.1μm~1μmの粒子の面積率が、3.5%以上となるように、構成されることとなる。 In another preferred embodiment of the method for producing an aluminum alloy plate for a can body according to the present invention, in a scanning electron micrograph of the homogenized Al alloy ingot, the diameter is 0.1 μm to The area ratio of 1 μm particles is configured to be 3.5% or more.
 さらに、本発明にあっては、上記した缶ボディ用アルミニウム合金板からなることを特徴とする飲料缶ボディをも、その対象とするものである。 Furthermore, in the present invention, a beverage can body characterized by comprising the above-described aluminum alloy plate for a can body is also the object.
 なお、そのような本発明に従う飲料缶ボディの好ましい態様の一つにおいては、所定の塗装焼付け処理が、上記した缶ボディ用アルミニウム合金板に対して施されている。 In addition, in one of the preferable embodiments of the beverage can body according to the present invention, a predetermined paint baking process is performed on the above-described aluminum alloy plate for a can body.
 従って、このような本発明に従う構成とされた缶ボディ用Al合金板にあっては、それを与える、特定の合金組成からなるAl合金の熱間圧延板材中のFe,Mn,Siの固溶量、並びにかかる熱間圧延板材の冷間圧延中に析出する微細な析出粒子(α相)が最適化されていることにより、優れた成形性を確保しつつ、高い耐熱軟化特性が付与され、更に熱処理後においても、優れた缶体強度を発揮し得るものであって、これにより、缶ボディ用材料として有利に用いられ得ることとなったのである。 Therefore, in such an Al alloy sheet for can bodies configured according to the present invention, the solid solution of Fe, Mn, Si in the hot rolled sheet material of Al alloy having a specific alloy composition that gives it can be provided. By optimizing the amount, as well as fine precipitate particles (α phase) that precipitate during cold rolling of such hot rolled sheet material, high heat resistance softening properties are imparted while ensuring excellent formability, Further, even after heat treatment, it can exhibit excellent can body strength, and can be advantageously used as a can body material.
 また、本発明に従う缶ボディ用Al合金板の製造方法によれば、上述の如き成形性と熱処理後の缶体強度の両立等の優れた特性を有する缶ボディ用Al合金板が、工業的に有利に製造され得るのである。 In addition, according to the method for producing an Al alloy plate for a can body according to the present invention, an Al alloy plate for a can body having excellent characteristics such as compatibility of the formability as described above and the strength of the can body after heat treatment is industrially produced. It can be advantageously manufactured.
合金組成の異なる2つのAl合金材料に対して、150℃の温度で圧縮加工を施した際における導電率の変化量を示すグラフである。It is a graph which shows the variation | change_quantity of the electrical conductivity at the time of performing a compression process at the temperature of 150 degreeC with respect to two Al alloy materials from which an alloy composition differs.
 先ず、本発明に従う缶ボディ用Al合金板を与えるAl合金は、Mn:0.7~1.3%(質量基準、以下同じ)、Mg:0.8~1.5%、Fe:0.25~0.6%、Si:0.25~0.50%、Cu:0.10~0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなる合金組成を有するものであって、それら合金成分の限定理由は、以下の通りである。 First, an Al alloy that provides an Al alloy plate for a can body according to the present invention has Mn: 0.7 to 1.3% (mass basis, the same applies hereinafter), Mg: 0.8 to 1.5%, Fe: 0.001. 25 to 0.6%, Si: 0.25 to 0.50%, Cu: 0.10 to 0.30%, Zn: 0.25% or less, Ti: 0.10% or less, and B: 0.05 %, And the balance has an alloy composition composed of Al and inevitable impurities, and the reasons for limiting the alloy components are as follows.
[Mn:0.7~1.3%]
 Mn(マンガン)は、本発明に従うAl合金板において、基本となる合金元素であり、強度を増加させる他、特に、固溶状態で耐熱軟化性の向上に寄与する。また、製造工程中に、不可避的に含まれる不純物元素でもあるFe及びSiと、α相化合物(Al-Mn-Fe-Si系)を形成する。この金属間化合物の粒子は極めて高硬度であり、成形時の素材と成形型との焼付きを防止して、容器の表面性状を向上させる働きがある。このMnの含有量が0.7%未満であると、それらの効果が充分に発現され得ず、また1.3%を超えるようになると、強度が高くなり過ぎる問題を惹起する。なお、このMnの好ましい含有量は、0.8~1.2%である。
[Mn: 0.7 to 1.3%]
Mn (manganese) is a basic alloy element in the Al alloy plate according to the present invention, and contributes to improvement of heat-resistant softening property in a solid solution state in addition to increasing strength. Further, during the manufacturing process, an α-phase compound (Al—Mn—Fe—Si system) is formed with Fe and Si which are inevitably contained impurity elements. The particles of the intermetallic compound have extremely high hardness, and serve to improve the surface properties of the container by preventing seizure between the raw material and the mold during molding. If the Mn content is less than 0.7%, these effects cannot be sufficiently exhibited, and if it exceeds 1.3%, the strength becomes too high. A preferable content of Mn is 0.8 to 1.2%.
[Mg:0.8~1.5%]
 Mg(マグネシウム)は、Alに固溶することで、容器の強度の増加に寄与する成分である。このMgの含有量が0.8%未満となると、最終製品に必要な強度を得ることが難しくなる問題があり、また1.5%を超えるようになると、缶体強度が高くなり過ぎるために、成形性が損なわれる問題を惹起する。なお、このMgの好ましい含有量は、1.0~1.3%である。
[Mg: 0.8-1.5%]
Mg (magnesium) is a component that contributes to an increase in strength of the container by being dissolved in Al. If the Mg content is less than 0.8%, there is a problem that it is difficult to obtain the strength required for the final product, and if it exceeds 1.5%, the strength of the can body becomes too high. This causes a problem that moldability is impaired. A preferable content of Mg is 1.0 to 1.3%.
[Fe:0.25~0.6%]
 Fe(鉄)は、鋳造時に、Mnと共に、Al6(Mn,Fe)  相化合物やα相化合物(Al-Mn-Fe-Si系)を形成し、またAl-Fe-Si系化合物を形成し、そしてそれら金属間化合物の固体潤滑作用により、成形時における素材と成形型との焼付きを防止する成分である。このFeの含有量が0.25%未満となると、それら金属間化合物の数が少なくなり、DI成形時にダイスに凝着して、表面性状が低下する問題を惹起する。一方、このFeの含有量が0.6%を超えるようになると、Al-Fe-Mn系の金属間化合物が過剰に形成されるようになり、それが割れの起点となるために、成形性が損なわれる問題を生じる。なお、このFeの好ましい含有量は、0.30~0.50%である。
[Fe: 0.25 to 0.6%]
Fe (iron) forms Al 6 (Mn, Fe) phase compound and α-phase compound (Al-Mn-Fe-Si system) and Mn-Fe-Si compound together with Mn during casting. And, it is a component that prevents seizure between the material and the mold during molding by the solid lubricating action of these intermetallic compounds. When the Fe content is less than 0.25%, the number of these intermetallic compounds is reduced, causing adhesion to the die during DI molding and causing a problem that the surface properties are lowered. On the other hand, when the Fe content exceeds 0.6%, an Al—Fe—Mn intermetallic compound is excessively formed, which becomes a starting point of cracking, and thus formability. Cause problems. The preferable content of Fe is 0.30 to 0.50%.
[Si:0.25~0.50%]
 Si(珪素)は、上記したMn及び/又はFeと共に、固体潤滑作用を有するα相化合物(Al-Mn-Fe-Si系)やAl-Fe-Si系化合物を形成して、成形時におけるダイスへの凝着を防止する効果を有する。この効果は、Siの含有量が0.25%未満では充分でなく、またSiの含有量が0.50%を超えるようになると、Al-Mn-Fe-Si系の金属間化合物が過剰に形成されて、それが割れの起点となって、成形性が損なわれ、更に固溶Mn量が減少して、耐熱軟化性が低下する問題を生じる。なお、このSiの好ましい含有量は、0.30~0.40%である。
[Si: 0.25 to 0.50%]
Si (silicon) forms an α-phase compound (Al-Mn-Fe-Si-based) or Al-Fe-Si-based compound having a solid lubricating action together with Mn and / or Fe described above to form a die during molding. It has the effect of preventing adhesion to the skin. This effect is not sufficient when the Si content is less than 0.25%, and when the Si content exceeds 0.50%, the Al—Mn—Fe—Si intermetallic compound becomes excessive. When it is formed, it becomes a starting point of cracking, and the moldability is impaired. Further, the amount of solid solution Mn is reduced, and the heat softening property is lowered. The preferable content of Si is 0.30 to 0.40%.
[Cu:0.10~0.30%]
 Cu(銅)は、塗装焼付け工程において、Al-Cu-Mg系の金属間化合物を形成して、析出せしめ、塗装焼付け工程における強度低下を抑制乃至は阻止する効果を発揮する。この効果は、Cuの含有量が0.10%未満では、充分に得られず、逆に0.30%を超えるようになると、成形加工時の加工硬化性が大きくなり、成形性が低下する問題を惹起する。なお、このCuの好ましい含有量は、0.15~0.25%である。
[Cu: 0.10 to 0.30%]
Cu (copper) forms an Al—Cu—Mg-based intermetallic compound in the paint baking process and precipitates it, thereby exhibiting an effect of suppressing or preventing a decrease in strength in the paint baking process. This effect is not sufficiently obtained when the Cu content is less than 0.10%, and conversely when it exceeds 0.30%, the work curability at the time of forming increases and the formability decreases. Raise the problem. The preferable content of Cu is 0.15 to 0.25%.
[Zn:0.25%以下]
 Zn(亜鉛)は、成形性を向上させる成分ではあるが、その含有量が多くなると、高コストとなることに加え、粗大な金属間化合物を形成して、成形性を損なう問題を惹起するようになる。従って、Znの含有量は、0.25%以下となるように、調整されることとなる。なお、このZnの好ましい含有量は、0.05~0.20%である。
[Zn: 0.25% or less]
Zn (zinc) is a component that improves formability. However, if the content of Zn (zinc) increases, in addition to increasing the cost, a coarse intermetallic compound is formed, causing problems that impair formability. become. Therefore, the Zn content is adjusted to be 0.25% or less. A preferable content of Zn is 0.05 to 0.20%.
[Ti:0.10%以下及びB:0.05%以下]
 Ti(チタン)及びB(ホウ素)は、鋳造組織を微細化して、鋳造時に生成する晶出物の分散形態及び結晶粒組織を均一化する機能を有している。しかしながら、Tiの含有量が0.10%を超えたり、Bの含有量が0.05%を超えたりすると、粗大な金属間化合物が生成して、成形性が低下するようになる。なお、これらTi及びBの好ましい含有量は、それぞれ、0.03%以下及び0.04%以下である。
[Ti: 0.10% or less and B: 0.05% or less]
Ti (titanium) and B (boron) have a function of refining the cast structure to make the dispersion form and crystal grain structure of the crystallized product generated during casting uniform. However, when the Ti content exceeds 0.10% or the B content exceeds 0.05%, a coarse intermetallic compound is generated, and the formability is lowered. In addition, preferable content of these Ti and B is 0.03% or less and 0.04% or less, respectively.
[Al+不可避的不純物:残部]
 本発明に従う缶ボディ用Al合金板の材質であるAl合金は、上記した合金成分に加えて、残部が、Al(アルミニウム)と、不可避的不純物、即ち上記した合金成分以外の元素にて、構成されるものである。なお、そのような不可避的不純物は、板特性が悪化しないように、その含有量は少ない程好ましく、一般に、JIS規格等にて規定されているAl合金の各元素の上限値程度以下の含有量とされることとなる。そして、そのような不可避的不純物となる各元素の合計含有量は、一般に、0.15%以下、好ましくは0.10%以下である。
[Al + inevitable impurities: balance]
The Al alloy which is the material of the Al alloy plate for a can body according to the present invention is composed of Al (aluminum) and unavoidable impurities, that is, elements other than the alloy components described above, in addition to the alloy components described above. It is what is done. In addition, such inevitable impurities are preferably as low as possible so that the plate characteristics are not deteriorated. Generally, the content is not more than the upper limit value of each element of the Al alloy defined in JIS standards and the like. Will be taken. And the total content of each element which becomes such an inevitable impurity is generally 0.15% or less, preferably 0.10% or less.
 そして、かくの如き合金組成のAl合金を材質とする、本発明に従うAl合金板にあっては、熱間圧延後(冷間圧延前)の固溶Mn量が0.25質量%以上、固溶Fe量が0.02質量%以上、及び固溶Si量が0.07質量%以上であり、且つ導電率が30.0~40.0%IACSとなるように構成され、これによって、高い耐熱軟化性を示すものとなる。それら元素の固溶量が多くなると、後述するように、冷間圧延によって、Mn,Fe,Siからなる化合物粒子が微細に形成されるようになるのである。また、それら元素の熱間圧延板における固溶量は、それぞれの元素のAl合金中の含有量によって制限を受け、それら元素の固溶量によって実現される最大の導電率は、40.0%IACSであり、更に、添加元素が最大限固溶した場合であっても、導電率は、30.0%IACS以上となる。なお、それら元素の固溶量が、上記で規定された下限値よりも少なくなると、塗装焼付け工程において、強度が著しく低下するようになる。 And, in the Al alloy plate according to the present invention made of an Al alloy having such an alloy composition, the amount of solute Mn after hot rolling (before cold rolling) is 0.25% by mass or more. The amount of dissolved Fe is 0.02% by mass or more, the amount of dissolved Si is 0.07% by mass or more, and the conductivity is 30.0 to 40.0% IACS. It shows heat-resistant softening properties. As the solid solution amount of these elements increases, compound particles composed of Mn, Fe, and Si are finely formed by cold rolling, as will be described later. Further, the solid solution amount of these elements in the hot rolled sheet is limited by the content of each element in the Al alloy, and the maximum conductivity realized by the solid solution amount of these elements is 40.0%. Furthermore, even if the additive element is a solid solution at the maximum, the conductivity is 30.0% IACS or more. In addition, when the solid solution amount of these elements is less than the lower limit defined above, the strength is significantly lowered in the paint baking process.
 また、本発明に従うAl合金板は、元板特性として、その圧延方向の引張強さ(TS)が280~320MPaである特性を有している。かかる引張強さ(TS)が280MPaよりも小さくなると、そのようなAl合金板を用いて製造される缶体の強度が不足する問題があり、また320MPaを超えるようになると、DI成形が困難となる問題が生じる。更に、本発明に従うAl合金板は、その205℃×10分の熱処理後の圧延方向の引張強さ(ABTS)が270~310MPaである特性を有している。この熱処理後の圧延方向の引張強さ(ABTS)が270MPaよりも小さくなると、缶体強度が不足する問題があり、一方310MPaを超えるようになると、DI成形が困難となる問題を惹起する。加えて、本発明に従うAl合金板は、その圧延方向の引張強さ(TS)と205℃×10分の熱処理後の圧延方向の耐力(ABYS)の差(TS-ABYS)が50MPaを超えないように、調整されており、これによって、Al合金板の成形性と、そのようなAl合金板を用いて得られる缶体の熱処理後の缶体強度とを有利に両立せしめることが可能となったのである。 Further, the Al alloy plate according to the present invention has a property that the tensile strength (TS) in the rolling direction is 280 to 320 MPa as the base plate property. When the tensile strength (TS) is smaller than 280 MPa, there is a problem that the strength of the can body manufactured using such an Al alloy plate is insufficient, and when it exceeds 320 MPa, DI molding is difficult. Problem arises. Furthermore, the Al alloy sheet according to the present invention has a characteristic that the tensile strength (ABTS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes is 270 to 310 MPa. If the tensile strength (ABTS) in the rolling direction after the heat treatment is smaller than 270 MPa, there is a problem that the strength of the can body is insufficient. On the other hand, if it exceeds 310 MPa, the DI molding becomes difficult. In addition, in the Al alloy sheet according to the present invention, the difference between the tensile strength (TS) in the rolling direction and the proof stress (ABYS) in the rolling direction after heat treatment at 205 ° C. × 10 minutes (TS−ABYS) does not exceed 50 MPa. Thus, it is possible to advantageously balance both the formability of the Al alloy plate and the strength of the can after the heat treatment of the can obtained using such an Al alloy plate. It was.
 ところで、かくの如き本発明に従うAl合金板を製造するに際しては、先ず、前述の如きAl合金組成を与える材料を溶解し、Al合金溶湯とした後、公知の鋳造手法、例えばDC鋳造法によって、Al合金鋳塊が造塊される。なお、そのようなAl合金鋳塊は、本発明にて規定される、Mn,Mg,Fe,Si,Cu,Zn,Ti及びBの含有量からなる合金組成を有するものである。 By the way, when manufacturing an Al alloy plate according to the present invention as described above, first, a material that gives the Al alloy composition as described above is melted to obtain an Al alloy molten metal, and then by a known casting technique such as a DC casting method. An Al alloy ingot is formed. Such an Al alloy ingot has an alloy composition comprising the contents of Mn, Mg, Fe, Si, Cu, Zn, Ti and B as defined in the present invention.
 次に、かかるAl合金鋳塊には、従来と同様な面削が施された後、本発明に従うAl合金板の特性を得るべく、特定の均質化処理が施されることとなる。即ち、そのような均質化処理は、面削の施されたAl合金鋳塊を、30~120℃/時間の昇温速度において、550~620℃の範囲内の均質化処理温度(T:℃)まで加熱昇温せしめ、そして、かかる均質化処理温度(T)において、(145-0.24T)時間(Hr)以上の間、保持することにより、実施されることとなるのである。なお、かかる昇温速度が30℃/時間よりも遅くなると、装置の占有時間が長くなり、製造コストが増加し、また120℃/時間よりも早くなると、微細な粒子が多量に形成されて、強度が高くなり過ぎ、成形性が悪化する問題がある。また、均質化処理温度(T)が550℃よりも低くなると、均質化処理の効果が充分に得られず、一方、620℃以上となると、材料が部分溶融して、成形性が著しく低下する問題を惹起する。この均質化処理は、Al合金鋳塊に存在する元素の偏析を解消して、均一な組織とする他、粗大なα相化合物を析出させて、成形時の焼付きを防止する働きを発揮させる特徴も有している。そして、この均質化処理の保持時間を(145-0.24T)時間以上とすることにより、その処理されたAl合金鋳塊の断面組織について、走査型電子顕微鏡を用いて倍率:100倍~20000倍で観察した写真において、直径:0.1μm~1μmの粒子の面積率が3.5%以上となり、これによって焼付き防止効果が得られ、且つ有効な耐熱軟化性を得るために必要なMn,Fe,Siの固溶量を確保することが出来る状態となる。なお、この均質化処理の保持時間の上限としては、生産性等の観点から、一般に、30時間以下、好ましくは20時間以下が有利に採用されることとなる。 Next, the Al alloy ingot is subjected to the same chamfering as before, and then subjected to a specific homogenization treatment in order to obtain the characteristics of the Al alloy plate according to the present invention. That is, in such a homogenization treatment, the homogenized treatment temperature (T: ° C.) of the Al alloy ingot subjected to chamfering is within a range of 550 to 620 ° C. at a heating rate of 30 to 120 ° C./hour. ) And heated for a period of (145−0.24T) time (Hr) or longer at the homogenization temperature (T). In addition, when the rate of temperature increase is slower than 30 ° C./hour, the occupation time of the apparatus becomes longer, the manufacturing cost increases, and when it becomes faster than 120 ° C./hour, a large amount of fine particles are formed, There is a problem that the strength becomes too high and the moldability deteriorates. Further, when the homogenization treatment temperature (T) is lower than 550 ° C., the effect of the homogenization treatment cannot be sufficiently obtained. Raise the problem. This homogenization treatment eliminates segregation of elements present in the Al alloy ingot to form a uniform structure, and precipitates a coarse α-phase compound to exert the function of preventing seizure during molding. It also has features. Then, by setting the holding time of this homogenization treatment to (145-0.24T) or longer, the cross-sectional structure of the treated Al alloy ingot is magnified by a magnification of 100 to 20000 using a scanning electron microscope. In the photograph observed at a magnification, the area ratio of particles having a diameter of 0.1 μm to 1 μm is 3.5% or more, thereby obtaining an anti-seizure effect and Mn necessary for obtaining effective heat softening resistance , Fe, Si can be secured. In addition, as an upper limit of the holding time of the homogenization treatment, from the viewpoint of productivity and the like, generally, 30 hours or less, preferably 20 hours or less is advantageously employed.
 そして、上記した均質化処理の終了後、Al合金鋳塊は、そのまま(直ちに)、熱間圧延に供される他、10~90℃/時間の冷却速度で、500℃を下回ることのない(500℃以上の)熱間圧延開始温度まで冷却された後、熱間圧延を施すようにすることも可能である。なお、Al合金鋳塊に対して冷却が施される場合において、その冷却速度が10℃/時間よりも小さい(遅い)場合、或いは500℃よりも低い温度まで冷却した場合には、その冷却工程中において、Mn,Fe,Siが析出して、それら元素の固溶量が低下するようになり、これによって、後の冷間圧延時のMn,Fe,Siからなる微細粒子の析出が不十分となって、耐熱軟化性が低下する問題を生じる。また、かかる冷却速度が90℃/時間よりも大きい(速い)場合においては、Al合金鋳塊内の温度分布が不均一となり、最終製品の特性が不安定となる問題がある。 After the above homogenization treatment is finished, the Al alloy ingot is directly (immediately) subjected to hot rolling and does not fall below 500 ° C. at a cooling rate of 10 to 90 ° C./hour ( It is also possible to perform hot rolling after cooling to the hot rolling start temperature (500 ° C. or higher). In the case where the Al alloy ingot is cooled, when the cooling rate is lower (slower) than 10 ° C./hour, or when it is cooled to a temperature lower than 500 ° C., the cooling step Mn, Fe, and Si are precipitated in the medium, and the solid solution amount of these elements is lowered. As a result, precipitation of fine particles composed of Mn, Fe, and Si is insufficient during the subsequent cold rolling. Thus, there arises a problem that the heat resistance softening property is lowered. Further, when the cooling rate is larger (faster) than 90 ° C./hour, there is a problem that the temperature distribution in the Al alloy ingot becomes non-uniform and the characteristics of the final product become unstable.
 本発明において、Al合金鋳塊に対する熱間圧延は、従来と同様に熱間粗圧延と熱間仕上圧延とを組み合わせて実施され、熱間仕上圧延終了後の板厚が1.5~4.0mmとなる板材を形成することとなるが、そこにおいて、熱間粗圧延は、上記した均質化処理されたままのAl合金鋳塊又は所定の温度まで冷却されたAl合金鋳塊に対して、出側温度(熱間粗圧延終了時の材料温度)が430~550℃となるように実施されて、板厚が20~40mmの板材が形成されることとなる。そこで、かかる出側温度が430℃よりも低くなると、熱間粗圧延に続く熱間仕上圧延の出側温度が低めに外れる問題が生じ、また出側温度が550℃を超えるようになると、熱間圧延中に粗大な再結晶粒が生じて、成形性を損なう恐れがある。また、この熱間粗圧延にて得られる板材の厚さが20mmより薄くなると、続く熱間仕上圧延での加工度が不足し、熱間仕上圧延後に有効な再結晶組織を得ることが出来なくなる恐れがあり、一方、その厚さが40mmを超えるようになると、熱間仕上圧延での加工度が大きくなり過ぎて、DI成形時の異方性が強くなる問題が惹起されるようになる。 In the present invention, hot rolling for an Al alloy ingot is performed by combining hot rough rolling and hot finish rolling in the same manner as in the past, and the thickness after hot finish rolling is 1.5-4. A plate material of 0 mm will be formed, in which hot rough rolling is performed on the above-described homogenized Al alloy ingot or an Al alloy ingot cooled to a predetermined temperature, The delivery side temperature (material temperature at the end of hot rough rolling) is carried out to be 430 to 550 ° C., so that a plate material with a plate thickness of 20 to 40 mm is formed. Therefore, when the delivery temperature is lower than 430 ° C., there is a problem that the delivery temperature of the hot finish rolling following the hot rough rolling is lowered, and when the delivery temperature exceeds 550 ° C., Coarse recrystallized grains are produced during hot rolling, which may impair the formability. Further, when the thickness of the plate material obtained by this hot rough rolling is less than 20 mm, the workability in the subsequent hot finish rolling is insufficient, and an effective recrystallized structure cannot be obtained after hot finish rolling. On the other hand, when the thickness exceeds 40 mm, the degree of work in hot finish rolling becomes too large, and the problem that the anisotropy at the time of DI molding becomes strong is caused.
 さらに、かかる熱間粗圧延に続く熱間仕上圧延においては、出側温度(熱間仕上圧延終了時の材料温度)が300~390℃となるようにして、公知の圧延操作が実施され、板厚が1.5~4.0mmの板材が形成されることとなる。この熱間仕上圧延では、得られた板材のコイル巻取り後の冷却中に再結晶組織に調整することが重要である。かかる熱間仕上圧延の出側温度が300℃よりも低くなると、再結晶組織の形成が不充分となり、異方性が強くなったり、製品の強度が高くなり過ぎる問題が惹起される。なお、この出側温度が390℃を超えるようになると、再結晶粒が粗大となり、DI成形性を損なう恐れがある。また、板厚が1.5mmよりも薄くなると、その後の冷間圧延工程での加工度が不足して、強度が低くなり、逆に4.0mmより厚くなり過ぎると、冷間圧延工程での加工度が高くなり、強度が高くなり過ぎる問題を生じる。そして、この熱間仕上圧延によって、前記固溶Mn,Fe,Si量が確保され得るようになっている。 Further, in the hot finish rolling subsequent to the hot rough rolling, a known rolling operation is performed such that the delivery temperature (material temperature at the end of hot finish rolling) is 300 to 390 ° C. A plate material having a thickness of 1.5 to 4.0 mm is formed. In this hot finish rolling, it is important to adjust to a recrystallized structure during cooling after coiling of the obtained plate material. If the exit temperature of such hot finish rolling is lower than 300 ° C., the formation of the recrystallized structure becomes insufficient, causing problems that the anisotropy becomes strong and the strength of the product becomes too high. In addition, when this delivery side temperature exceeds 390 degreeC, a recrystallized grain becomes coarse and there exists a possibility of impairing DI moldability. Moreover, when the plate thickness is thinner than 1.5 mm, the degree of work in the subsequent cold rolling process is insufficient, and the strength is lowered. Conversely, when the thickness is excessively greater than 4.0 mm, There is a problem that the degree of processing becomes high and the strength becomes too high. And the amount of the said solid solution Mn, Fe, Si can be ensured by this hot finish rolling.
 そして、上述の如くして得られた熱間圧延板には、更に冷間圧延が施されることとなるが、本発明にあっては、かかる冷間圧延の総加工度が75%以上で且つ最終パスの定常部の平均圧延速度が700~1600m/分となるように、冷間圧延を実施して、0.2~1.0mmの板厚のAl合金板が形成されるのである。なお、その冷間圧延は、従来と同様な手法に従って実施されるものであるが、その際、冷間圧延の総加工度が75%よりも低くなると、或いは定常部の平均圧延速度が1600m/分よりも大きくなると、Mn系化合物粒子の析出が充分でなく、耐熱軟化性が低下する恐れがある。また、かかる定常部の平均圧延速度が700m/分よりも小さい場合には、生産性が著しく低下する問題がある。更に、そこで得られるAl合金板の板厚が0.2mmよりも薄くなると、缶体強度を確保することが困難となる問題があり、一方、板厚が1.0mmよりも厚くなると、重量が重くなり、飲料缶として不適となる。 The hot-rolled sheet obtained as described above is further subjected to cold rolling. In the present invention, the total degree of cold rolling is 75% or more. In addition, cold rolling is performed so that the average rolling speed of the stationary part in the final pass is 700 to 1600 m / min, and an Al alloy sheet having a thickness of 0.2 to 1.0 mm is formed. The cold rolling is carried out according to the same method as in the prior art. At that time, when the total degree of cold rolling is less than 75%, or the average rolling speed of the steady portion is 1600 m / If it is larger than 5 minutes, precipitation of Mn-based compound particles is not sufficient, and heat softening resistance may be reduced. Moreover, when the average rolling speed of the stationary part is smaller than 700 m / min, there is a problem that productivity is remarkably lowered. Furthermore, when the thickness of the Al alloy plate obtained therebelow is less than 0.2 mm, there is a problem that it is difficult to ensure the strength of the can body, while when the plate thickness is greater than 1.0 mm, the weight is increased. It becomes heavier and unsuitable as a beverage can.
 さらに、本発明にあっては、前記した熱間仕上圧延にて得られる板材(熱間圧延板)の導電率(S1)と上記の冷間圧延にて得られる板材(冷間圧延板)の導電率(S2)との差(S1-S2)が、0.2~1.6%IACSとなるように、換言すれば冷間圧延板の導電率が28.4%IACS~39.8%IACSの範囲内となるように、目的とするAl合金板を製造することが好ましい。固溶Mnが十分に存在すると、Mn,Fe,Siからなる化合物粒子が、冷間加工により誘起されて微細に析出し、耐熱軟化性が向上せしめられ得ることとなるのである。因みに、図1には、Mnの含有量の異なるAl合金からなる二つの試験片について、それぞれ冷間圧延を模擬した150℃での圧縮試験前後の導電率の差を調べた結果が示されているが、そこでは、Mnを含むAl合金からなる試験片では、冷間加工で導電率が増加しているのに対して、Mnを添加していないAl合金からなる試験片では、冷間加工による導電率の変化は殆ど認められないのであって、このことは、冷間加工によりMn系化合物粒子が析出していることを裏付けるものである。そして、基本的に、冷間圧延では、加工歪により導電率が下がるものの、Mn系の化合物粒子の析出により、導電率は増加するようになるところから、全体として、導電率の低下量は0.2~1.6%IACSの範囲内となるのである。なお、そのような導電率の低下量が0.2%IACSよりも小さくなると、冷間加工度が不足して、強度不足の問題を惹起し、一方、1.6%IACSよりも大きくなると、冷間圧延にて誘起されるMn,Fe,Si系の析出粒子が不足し、耐熱軟化性の改善が充分でない問題を惹起することとなる。 Furthermore, in the present invention, the electrical conductivity (S1) of the plate material (hot rolled plate) obtained by the above hot finish rolling and the plate material (cold rolled plate) obtained by the cold rolling described above. The difference (S1-S2) from the conductivity (S2) is 0.2 to 1.6% IACS, in other words, the conductivity of the cold rolled sheet is 28.4% IACS to 39.8%. It is preferable to manufacture the target Al alloy plate so that it is within the range of IACS. When solid solution Mn is sufficiently present, compound particles composed of Mn, Fe, and Si are induced by cold working and finely precipitated, and the heat-resistant softening property can be improved. Incidentally, FIG. 1 shows the results of examining the difference in conductivity before and after the compression test at 150 ° C. simulating cold rolling for two test pieces made of Al alloys having different Mn contents. However, in the test piece made of Al alloy containing Mn, the electrical conductivity is increased by cold working, whereas in the test piece made of Al alloy not added with Mn, cold working is done. The change in the electrical conductivity due to is hardly recognized, and this confirms that the Mn-based compound particles are precipitated by cold working. Basically, in cold rolling, although the conductivity decreases due to processing strain, the conductivity increases due to the precipitation of Mn-based compound particles, so the overall decrease in conductivity is 0. It is within the range of 2 to 1.6% IACS. In addition, when the amount of decrease in the conductivity is smaller than 0.2% IACS, the cold work degree is insufficient, causing a problem of insufficient strength. On the other hand, when it is larger than 1.6% IACS, Mn, Fe, and Si-based precipitated particles induced by cold rolling are insufficient, which causes a problem that the heat softening property is not sufficiently improved.
 そして、かくの如くして得られた本発明に従うAl合金板は、従来と同様にして、必要な加工が施されて、目的とする缶ボディが形成され、Al系飲料缶等として有利に用いられることとなる。例えば、本発明に従うAl合金板には、必要に応じて脱脂洗浄や塗油等が施され、更に、カップ成形、DI成形、トリミング、洗浄、乾燥、塗装、焼付け、ネッキング及びフランジ加工の工程を経て、飲料缶ボディ(缶胴体)とされ、これに缶蓋(缶エンド)を取り付けることにより、目的とするAl系飲料缶が有利に製造されることとなるのである。 Then, the Al alloy plate according to the present invention thus obtained is subjected to necessary processing in the same manner as in the prior art to form the desired can body, which is advantageously used as an Al-based beverage can etc. Will be. For example, the Al alloy plate according to the present invention is subjected to degreasing and oiling as necessary, and further includes cup molding, DI molding, trimming, cleaning, drying, painting, baking, necking and flange processing. After that, a beverage can body (can body) is formed, and by attaching a can lid (can end) to this, an intended Al-based beverage can can be produced advantageously.
 以下に、本発明の代表的な実施例を示し、本発明を更に具体的に明らかにすることとするが、本発明が、そのような実施例の記載によって、何等の制約をも受けるものでないことは、言うまでもないところである。また、本発明には、以下の実施例の他にも、更には上記した具体的記述以外にも、本発明の趣旨を逸脱しない限りにおいて、当業者の知識に基づいて、種々なる変更、修正、改良等を加え得るものであることが、理解されるべきである。 Hereinafter, representative examples of the present invention will be shown to clarify the present invention more specifically, but the present invention is not limited by the description of such examples. It goes without saying. In addition to the following examples, the present invention includes various changes and modifications based on the knowledge of those skilled in the art without departing from the spirit of the present invention, in addition to the specific description described above. It should be understood that improvements can be made.
 なお、以下の実施例及び比較例において、得られたAl合金板(元板:冷間圧延板)又はその中間製品である熱間圧延板から作製された試験材については、以下の手法に従って、測定乃至は評価した。
(1)元板の圧延方向の引張強さ(TS)
 実施例及び比較例において得られた、それぞれのAl合金板(元板)から、その圧延方向において、JIS 5号試験材を作製し、JIS-Z-2241に従って引張試験を実施することにより、圧延方向の引張強さ(TS)を測定した。
(2)205℃×10分間の熱処理後の圧延方向における引張強さ(ABTS)と耐力(ABYS)
 それぞれのAl合金板(元板)からなる試験材に対して、塗装焼付け工程相当の熱処理(205℃×10分間)を施した後、上記(1)と同様にして引張試験を実施し、かかる熱処理後の試験材における圧延方向での引張強さ(ABTS)と耐力(ABYS)を、それぞれ測定した。
(3)Si、Fe及びMn固溶量の測定(フェノール溶解法)
 実施例及び比較例においてそれぞれ得られた熱間仕上圧延後の熱間圧延板から切り出した小片サンプルを、170℃のフェノールに浸漬することにより、Al合金中のマトリックス成分を溶解せしめた後、ベンジルアルコールを添加して、その溶液を液体状態に保ちつつ、0.1μmの孔径を有するフィルターを用いてろ過を行う。そして、そのフィルター上に捕捉された析出物を、塩酸・フッ酸混合液にて溶解し、その得られた溶解液を希釈した液を用いて、ICP(Inductively Coupled Plasma)発光分光分析を行うことにより、析出Mn,Fe,Si量を求めた。また、固溶Mn,Fe,Si量は、鋳塊中の含有量から、上記析出量を差し引くことにより、求めた。
(4)導電率
 熱間仕上圧延後の板材(熱間圧延板)及び冷間圧延後の板材(元板:冷間圧延板)に対して、それぞれ、導電率測定器(フェルスター社製SIGMATEST2.069)を用いて、周波数:960kHzにおいて測定し、n=3の平均値を求めた。なお、試験材の板厚が1mm未満の場合には、総厚が1mm以上となるように試験材(板)を重ね合わせて、測定に供した。
(5)製缶性評価
 実施例及び比較例で得られた各種Al合金板(元板)について、それぞれ、通常の製缶手法に従って、しごき率66%にて、カップ成形及びDI成形を行い、更にトリミングの後、従来と同様な塗装焼付けを実施して、製缶の可否を確認した。また、かかる製缶操作における缶壁の焼付き状況についても、目視評価した。
In addition, in the following examples and comparative examples, for the test material made from the obtained Al alloy plate (base plate: cold rolled plate) or a hot rolled plate that is an intermediate product thereof, according to the following method, Measurement or evaluation.
(1) Tensile strength (TS) in the rolling direction of the base plate
From each Al alloy plate (base plate) obtained in the examples and comparative examples, a JIS No. 5 test material was produced in the rolling direction and a tensile test was carried out in accordance with JIS-Z-2241. The tensile strength (TS) in the direction was measured.
(2) Tensile strength (ABTS) and proof stress (ABYS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes
A test material composed of each Al alloy plate (base plate) is subjected to a heat treatment (205 ° C. × 10 minutes) corresponding to the paint baking process, and then a tensile test is performed in the same manner as in (1) above. Tensile strength (ABTS) and proof stress (ABYS) in the rolling direction of the test material after heat treatment were measured.
(3) Measurement of Si, Fe and Mn solid solution (phenol dissolution method)
After dissolving the matrix component in Al alloy by immersing the small piece sample cut out from the hot-rolled sheet after hot finish rolling obtained in each of Examples and Comparative Examples in phenol at 170 ° C., benzyl Filtration is performed using a filter having a pore size of 0.1 μm while adding alcohol and keeping the solution in a liquid state. Then, the precipitate captured on the filter is dissolved in a hydrochloric acid / hydrofluoric acid mixed solution, and ICP (Inductively Coupled Plasma) emission spectroscopic analysis is performed using a solution obtained by diluting the obtained dissolved solution. Thus, the amounts of precipitated Mn, Fe, and Si were obtained. Moreover, the amount of solid solution Mn, Fe, Si was calculated | required by subtracting the said precipitation amount from content in an ingot.
(4) Conductivity Conductivity meter (SIGMATEST2 manufactured by Forster Co., Ltd.) for the plate material after hot finish rolling (hot rolled plate) and the plate material after cold rolling (base plate: cold rolled plate), respectively. 0.069), the frequency was measured at 960 kHz, and the average value of n = 3 was obtained. In addition, when the plate | board thickness of the test material was less than 1 mm, the test material (plate) was piled up so that the total thickness might be 1 mm or more, and it used for the measurement.
(5) Evaluation of can-making properties For each of the various Al alloy plates (base plates) obtained in Examples and Comparative Examples, cup molding and DI molding were performed at a squeezing rate of 66%, respectively, according to a normal can-making method. Further, after trimming, the same paint baking as before was carried out to confirm the possibility of can making. Further, the seizure situation of the can wall in the can making operation was also visually evaluated.
-実施例1-
 先ず、下記表1に示される合金成分組成を有する各種のAl合金:A1~A10を、常法に従って溶製した後、半連続鋳造法により、それぞれ、Al合金鋳塊を造塊した。次いで、この得られたAl合金鋳塊に対して、従来と同様に面削を施した後、空気炉を用いて、40℃/時間の昇温速度にて、600℃の温度まで加熱、昇温せしめ、引き続き600℃の温度で10時間の均質化処理を施した。なお、本発明で規定される(145-0.24T)時間以上の値は、1時間以上となり、上記の10時間の均質化処理は、その条件を充分に満たしている。
-Example 1-
First, various Al alloys having the alloy component composition shown in Table 1 below: A1 to A10 were melted in accordance with a conventional method, and then ingots of Al alloys were formed by a semi-continuous casting method. Next, the obtained Al alloy ingot was chamfered in the same manner as before, and then heated and raised to a temperature of 600 ° C. at a rate of temperature increase of 40 ° C./hour using an air furnace. The mixture was warmed and then subjected to a homogenization treatment at 600 ° C. for 10 hours. Note that the value of (145-0.24T) time or more defined in the present invention is 1 hour or more, and the above-mentioned 10-hour homogenization treatment sufficiently satisfies the conditions.
 次いで、かかる均質化処理の後、そのまま(直ちに)、熱間圧延に供し、先ず、出側温度が460~510℃の範囲となるように、板厚が28mmとなるまで、リバース式圧延機を用いて、従来と同様な熱間粗圧延を実施し、次いで、出側温度が300~330℃の温度となるように、板厚が2.2mmとなるまで、熱間仕上圧延を、4スタンドのタンデム式圧延機を用いて、従来と同様な手法によって実施した。最後に、3パスの冷間圧延を行い、0.28mmの板厚のAl合金板を製造した。この冷間圧延工程における総加工度は、87.3%であった。また、このとき、最終パスの平均圧延速度は900~1100m/分の範囲とした。なお、冷間圧延における最終パスの出側温度は、145~155℃であった。 Next, after such homogenization treatment, it is subjected to hot rolling as it is (immediately). First, a reverse rolling mill is used until the sheet thickness reaches 28 mm so that the delivery temperature is in the range of 460 to 510 ° C. Using the same hot rough rolling as in the past, and then performing hot finish rolling for 4 stands until the sheet thickness is 2.2 mm so that the delivery temperature is 300 to 330 ° C. The tandem type rolling mill was used to perform the same method as before. Finally, three passes of cold rolling were performed to produce an Al alloy plate having a thickness of 0.28 mm. The total degree of work in this cold rolling process was 87.3%. At this time, the average rolling speed in the final pass was set in the range of 900 to 1100 m / min. The outlet temperature of the final pass in cold rolling was 145 to 155 ° C.
 上記の各工程で得られたA1~A10のAl合金からなる各種の板材のそれぞれについて、試験材(A1~A10)を作製し、上記した評価法に従って、それぞれの性能評価を行い、その結果を、下記表2に示した。なお、下記表2においては、熱間圧延板の導電率(S1)と冷間圧延板の導電率(S2)との差(S1-S2)が、冷間圧延における導電率低下量として示されている。 Test materials (A1 to A10) were prepared for each of the various plate materials made of Al alloys of A1 to A10 obtained in the above steps, and each performance evaluation was performed according to the evaluation method described above. The results are shown in Table 2 below. In Table 2 below, the difference (S1−S2) between the conductivity (S1) of the hot-rolled sheet and the conductivity (S2) of the cold-rolled sheet is shown as the decrease in conductivity in the cold rolling. ing.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 かかる表1及び表2の結果より明らかなように、A1~A10のAl合金からなる板材は、何れも、塗装焼付け工程を通過していない状態での圧延方向の引張強さ(TS)が高過ぎず、それらの製缶性は良好であった。また、それらA1~A10のAl合金板(試験材)は、熱処理した後の圧延方向での引張強さ(ABTS)が高く、耐熱軟化性においても、優れていることを認めた。 As is clear from the results in Tables 1 and 2, all the plate materials made of Al alloys of A1 to A10 have a high tensile strength (TS) in the rolling direction in a state where they have not passed through the coating baking process. However, their can-making ability was good. Further, it was confirmed that the Al alloy plates (test materials) of A1 to A10 had high tensile strength (ABTS) in the rolling direction after heat treatment and were excellent in heat softening resistance.
-比較例1-
 下記表3に示される各種の合金成分組成において、上記実施例1と同様な条件下において、B1~B13の各種Al合金からなる板材を製造した。そして、それらAl合金板材の製造工程において得られた試験材(B1~B13)について、その特性を、上記と同様にして評価し、その結果を、下記表4に示した。
-Comparative Example 1-
In the various alloy component compositions shown in Table 3 below, plate materials made of various Al alloys of B1 to B13 were manufactured under the same conditions as in Example 1 above. The characteristics of the test materials (B1 to B13) obtained in the production process of the Al alloy sheet were evaluated in the same manner as described above, and the results are shown in Table 4 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 かかる表3及び表4の結果より明らかなように、B1試験材は、Mnの添加量が不足したため、固溶Mn量が規定範囲より少なくなり、冷間圧延時の析出が不足して導電率が大きく低下した。その結果として、塗装焼付け処理時の強度低下量が大きく、缶体強度が不足した。また、B2試験材にあっては、Mnの添加量が過多であり、元板の強度が高くなり過ぎたために、製缶時に破断する問題を惹起した。更に、B3試験材は、Mgの添加量が不足したため、元板、塗装焼付け後の強度が不足した。B4試験材においては、Mgの添加量が過多であるところから、元板の強度が高くなり過ぎ、そのために、製缶時に破断する問題が惹起された。B5試験材では、Feの添加量が不足したため、粗大な金属間化合物が不足し、製缶後に表面荒れが惹起された。また、固溶Fe量が不足し、冷間圧延時の析出が不足したため、塗装焼付け時に大きく強度が低下した。 As is clear from the results of Tables 3 and 4, the B1 test material lacked the amount of Mn added, so the amount of solid Mn was less than the specified range, and precipitation during cold rolling was insufficient. Decreased significantly. As a result, the amount of strength reduction during the baking process was large, and the strength of the can body was insufficient. In addition, in the B2 test material, the amount of Mn added was excessive, and the strength of the base plate was too high, which caused a problem of breaking during can making. Furthermore, the B3 test material was insufficient in strength after baking of the base plate and the paint because the amount of Mg added was insufficient. In the B4 test material, since the amount of Mg added is excessive, the strength of the base plate becomes too high, which causes a problem of breaking during can making. In the B5 test material, since the amount of Fe added was insufficient, the coarse intermetallic compound was insufficient, and surface roughness was induced after canning. Moreover, since the amount of solid solution Fe was insufficient and precipitation during cold rolling was insufficient, the strength was greatly reduced during coating baking.
 そして、B6試験材にあっては、Feの添加量が過多であるため、粗大な金属間化合物が形成されて、製缶時に破断する問題を惹起した。またB7試験材は、Siの添加量が不足し、冷間圧延時の析出が不足したため、塗装焼付け時の強度低下が大きく、缶体強度が不足した。B8試験材は、Siの添加量が過多であり、粗大な金属間化合物が過剰に形成されて、製缶時に破断する問題を惹起した。また、B9試験材は、Cuの添加量が不足しており、そのために塗装焼付け処理時の析出強化が不足することとなったため、塗装焼付けによる強度低下が大きく、缶体強度が不足した。更に、B10の試験材にあっては、Cuの添加量が過多であるために、元板強度が高くなり過ぎ、製缶時に破断する問題を惹起した。加えて、B11、B12及びB13の試験材にあっては、それぞれ、Zn,Ti,Bの添加量が過多であって、そのために粗大な金属間化合物粒子が過剰に形成されて、製缶時に破断する問題が惹起された。 And, in the B6 test material, since the added amount of Fe is excessive, a coarse intermetallic compound is formed, causing a problem of breaking during can making. In addition, the B7 test material lacked the amount of Si added and lacked precipitation during cold rolling, resulting in a significant decrease in strength during paint baking and insufficient can body strength. In the B8 test material, the amount of Si added was excessive, and a coarse intermetallic compound was excessively formed, causing a problem of breaking during can making. In addition, the amount of Cu added to the B9 test material was insufficient, so that the precipitation strengthening during the coating baking process was insufficient. Therefore, the strength reduction due to coating baking was large, and the can body strength was insufficient. Furthermore, in the test material of B10, since the amount of Cu added is excessive, the strength of the base plate becomes too high, causing a problem of breaking during can making. In addition, in the test materials of B11, B12, and B13, the amount of Zn, Ti, and B added is excessive, so that coarse intermetallic compound particles are formed excessively, and at the time of can making The problem of breaking occurred.
-実施例2-
 実施例1におけるA9試験材を与える合金成分組成(Al合金:A9)を採用して、下記表5に示される各種製造条件下において、C1~C13の各種Al合金板材を、それぞれ製造した。なお、かかる表5に示されていない基本的な製造条件は、実施例1と同様とした。そして、その製造工程において得られたC1~C13の各種のAl合金板材を用いて、それぞれ試験材(C1~C13)を作製し、上記の実施例と同様の評価を行って、その結果を、下記表6に示した。
-Example 2-
By employing the alloy component composition (Al alloy: A9) that gives the A9 test material in Example 1, various Al alloy plate materials of C1 to C13 were produced under various production conditions shown in Table 5 below. The basic manufacturing conditions not shown in Table 5 were the same as those in Example 1. Then, using various C1 to C13 Al alloy plate materials obtained in the manufacturing process, test materials (C1 to C13) were prepared, and the same evaluation as in the above examples was performed. The results are shown in Table 6 below.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 かかる表5及び表6の結果から明らかなように、C1~C13のAl合金板材(試験材)は、それぞれ、塗装焼付けが施されていない状態下における圧延方向の引張強さ(TS)が高過ぎず、適切な値とされているところから、何れも、製缶性が良好となるものであった。 As is apparent from the results of Tables 5 and 6, each of the C1 to C13 Al alloy plate materials (test materials) has a high tensile strength (TS) in the rolling direction in a state where the coating baking is not performed. However, since it was set to an appropriate value, the can-making properties were all good.
-比較例2-
 実施例1におけるAl合金:A9の合金成分組成を採用して、下記表7に示される各種製造条件下において、D1~D9の各種Al合金板材を製造した。なお、かかる表7に記載のない製造条件は、実施例1の場合と同様とした。そして、それらD1~D9のAl合金板材(冷間圧延板)からなる試験材(D1~D9)について、その板材特性を評価し、その結果を、下記表8に示した。
-Comparative Example 2-
By adopting the alloy component composition of Al alloy: A9 in Example 1, various Al alloy plate materials D1 to D9 were produced under various production conditions shown in Table 7 below. The manufacturing conditions not described in Table 7 were the same as those in Example 1. Then, for the test materials (D1 to D9) made of the Al alloy plates (cold rolled plates) of D1 to D9, the plate material characteristics were evaluated, and the results are shown in Table 8 below.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 かかる表7及び表8の結果より明らかなように、D1試験材は、均質化処理に際しての昇温速度が速いために、昇温中に、微細なMn,Fe,Si系粒子が形成されて、強度が増加し、製缶時において破断する問題を惹起した。また、D2試験材にあっては、均質化処理における保持温度が低いために、均質化効果が充分でなく、組織が不均一となって、製缶時に破断する問題があり、一方、均質化処理における保持温度が高過ぎるD3試験材にあっては、共晶融解を起した組織となり、組織が不均一となって、製缶時に破断する問題が惹起された。更に、D4試験材にあっては、均質化処理における保持時間が(145-0.24T)よりも短い時間であったために、個体潤滑効果を示す円相当径で、0.1~1.0μmのMn,Fe,Si系化合物粒子の形成が不充分となり、製缶後の表面に焼き付きが生じた。 As is clear from the results of Tables 7 and 8, since the D1 test material has a high temperature increase rate during the homogenization treatment, fine Mn, Fe, and Si-based particles are formed during the temperature increase. The strength increased, and the problem of breaking during can making was caused. Further, in the D2 test material, since the holding temperature in the homogenization treatment is low, there is a problem that the homogenization effect is not sufficient, the structure becomes non-uniform, and breaks during canning. In the case of the D3 test material having a too high holding temperature in the processing, a structure in which eutectic melting occurred was caused, the structure became non-uniform, and a problem of breaking during can making was caused. Furthermore, in the D4 test material, since the holding time in the homogenization treatment was shorter than (145-0.24T), the equivalent circle diameter showing the individual lubrication effect was 0.1 to 1.0 μm. The formation of Mn, Fe, Si compound particles was insufficient, and seizure occurred on the surface after canning.
 また、D5試験材にあっては、熱間圧延(熱延)開始温度までの冷却速度が小さいために、冷却中において析出が進み、Mn,Fe,Siの固溶量が減少して、冷延(冷間圧延)時においてMn,Fe,Si系微細粒子の析出が不充分となって、耐熱軟化性が低下したものとなり、一方、熱延開始温度までの冷却速度が大きいD6試験材にあっては、鋳塊内部の温度が不均一となって、材料組織にバラツキが生じ、製缶時に破断する問題を惹起した。加えて、D7試験材においては、熱延開始温度が低いために、熱延開始温度まで冷却する過程で析出が進んで、Mn,Fe,Siの固溶量が減少し、冷延時のMn,Fe,Si系微細粒子の析出が不十分となって、耐熱軟化性が低下し、その結果、塗装焼付け後の缶体強度が不足した。 In addition, in the D5 test material, since the cooling rate to the hot rolling (hot rolling) start temperature is small, precipitation proceeds during cooling, and the solid solution amount of Mn, Fe, Si decreases, During the rolling (cold rolling), the precipitation of Mn, Fe, Si-based fine particles becomes insufficient and the heat softening resistance is lowered. On the other hand, the D6 test material has a high cooling rate up to the hot rolling start temperature. In this case, the temperature inside the ingot becomes non-uniform, the material structure varies, and the problem of breaking during can making is caused. In addition, in the D7 test material, since the hot rolling start temperature is low, precipitation proceeds in the process of cooling to the hot rolling start temperature, so that the solid solution amount of Mn, Fe, Si decreases, and Mn, Precipitation of Fe and Si-based fine particles became insufficient, and the heat softening resistance was lowered. As a result, the strength of the can after baking was insufficient.
 さらに、D8の試験材にあっては、冷間圧延における総加工度が不足しているため、強度が不足する問題を内在するものであった。加えて、D9試験材においては、冷間圧延工程における最終パスの圧延速度が速いために、冷間圧延中において、Mn,Fe,Si系微細粒子の析出が不十分となり、耐熱軟化性が低下する問題を惹起するものであった。 Furthermore, in the D8 test material, since the total degree of work in cold rolling is insufficient, the problem of insufficient strength is inherent. In addition, in the D9 test material, since the rolling speed of the final pass in the cold rolling process is high, precipitation of Mn, Fe, and Si-based fine particles becomes insufficient during cold rolling, and heat softening resistance is reduced. It was something that caused problems.

Claims (10)

  1.  質量基準にて、Mn:0.7~1.3%、Mg:0.8~1.5%、Fe:0.25~0.6%、Si:0.25~0.50%、Cu:0.10~0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金を材質とする熱間圧延板を用いて得られた冷間圧延板からなる板材であって、該熱間圧延板における、固溶Mn量が0.25質量%以上、固溶Fe量が0.02質量%以上及び固溶Si量が0.07質量%以上であり、且つ導電率が30.0~40.0%IACSであり、該冷間圧延板における、圧延方向の引張強さ(TS)が280~320MPaであり、205℃×10分の熱処理後の圧延方向の引張強さ(ABTS)が270~310MPaであると共に、前記圧延方向の引張強さ(TS)と205℃×10分の熱処理後の圧延方向の耐力(ABYS)との差が50MPa以下であることを特徴とする缶ボディ用アルミニウム合金板。 On the basis of mass, Mn: 0.7 to 1.3%, Mg: 0.8 to 1.5%, Fe: 0.25 to 0.6%, Si: 0.25 to 0.50%, Cu : 0.10-0.30%, Zn: 0.25% or less, Ti: 0.10% or less, and B: 0.05% or less, with the balance being aluminum alloy consisting of Al and inevitable impurities A hot-rolled sheet obtained from a cold-rolled sheet, and the hot-rolled sheet has a solute Mn content of 0.25% by mass or more and a solute Fe content of 0.02 The tensile strength (TS) in the rolling direction of the cold-rolled sheet is not less than mass%, the amount of dissolved Si is not less than 0.07 mass%, and the electrical conductivity is 30.0 to 40.0% IACS. Is 280 to 320 MPa, and the tensile strength (ABTS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes is 270 to 310. The aluminum alloy for can bodies, characterized in that the difference between the tensile strength (TS) in the rolling direction and the yield strength (ABYS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes is 50 MPa or less. Board.
  2.  質量基準にて、Mn:0.7~1.3%、Mg:0.8~1.5%、Fe:0.25~0.6%、Si:0.25~0.50%、Cu:0.10~0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金を材質とする熱間圧延板であって、0.25質量%以上の固溶Mn量と、0.02質量%以上の固溶Fe量と、0.07質量%以上の固溶Si量とを含有し、且つ30.0~40.0%IACSの導電率を有していることを特徴とする缶ボディ用アルミニウム合金熱間圧延板。 On the basis of mass, Mn: 0.7 to 1.3%, Mg: 0.8 to 1.5%, Fe: 0.25 to 0.6%, Si: 0.25 to 0.50%, Cu : 0.10-0.30%, Zn: 0.25% or less, Ti: 0.10% or less, and B: 0.05% or less, with the balance being aluminum alloy consisting of Al and inevitable impurities A hot-rolled sheet containing 0.25% by mass or more of solid solution Mn, 0.02% by mass or more of solid solution Fe, and 0.07% by mass or more of solid solution Si. And an aluminum alloy hot-rolled sheet for a can body, characterized by having a conductivity of 30.0 to 40.0% IACS.
  3.  質量基準にて、Mn:0.7~1.3%、Mg:0.8~1.5%、Fe:0.25~0.6%、Si:0.25~0.50%、Cu:0.10~0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金を材質とする板材であって、圧延方向の引張強さ(TS)が280~320MPaであり、205℃×10分の熱処理後の圧延方向の引張強さ(ABTS)が270~310MPaであると共に、前記圧延方向の引張強さ(TS)と205℃×10分の熱処理後の圧延方向の耐力(ABYS)との差が50MPa以下であることを特徴とする缶ボディ用アルミニウム合金板。 On the basis of mass, Mn: 0.7 to 1.3%, Mg: 0.8 to 1.5%, Fe: 0.25 to 0.6%, Si: 0.25 to 0.50%, Cu : 0.10-0.30%, Zn: 0.25% or less, Ti: 0.10% or less, and B: 0.05% or less, with the balance being aluminum alloy consisting of Al and inevitable impurities The tensile strength (TS) in the rolling direction is 280 to 320 MPa, the tensile strength (ABTS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes is 270 to 310 MPa, and An aluminum alloy sheet for a can body, wherein the difference between the tensile strength (TS) in the rolling direction and the yield strength (ABYS) in the rolling direction after heat treatment at 205 ° C for 10 minutes is 50 MPa or less.
  4.  導電率が、28.4%IACS~39.8%IACSである請求項3に記載の缶ボディ用アルミニウム合金板。 4. The aluminum alloy plate for can bodies according to claim 3, wherein the electrical conductivity is 28.4% IACS to 39.8% IACS.
  5.  質量基準にて、Mn:0.7~1.3%、Mg:0.8~1.5%、Fe:0.25~0.6%、Si:0.25~0.50%、Cu:0.10~0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金を材質とするアルミニウム合金鋳塊を準備する工程と、
     かかるアルミニウム合金鋳塊を用いて、熱間圧延を実施し、固溶Mn量が0.25質量%以上、固溶Fe量が0.02質量%以上及び固溶Si量が0.07質量%以上であり、且つ導電率が30.0~40.0%IACSである熱間圧延板材を得る工程と、
     該熱間圧延板材を冷間圧延して、圧延方向の引張強さ(TS)が280~320MPaであり、205℃×10分の熱処理後の圧延方向の引張強さ(ABTS)が270~310MPaであると共に、前記圧延方向の引張強さ(TS)と205℃×10分の熱処理後の圧延方向の耐力(ABYS)との差が50MPa以下である冷間圧延板材を形成する工程と、
     を有することを特徴とする缶ボディ用アルミニウム合金板の製造方法。
    On the basis of mass, Mn: 0.7 to 1.3%, Mg: 0.8 to 1.5%, Fe: 0.25 to 0.6%, Si: 0.25 to 0.50%, Cu : 0.10-0.30%, Zn: 0.25% or less, Ti: 0.10% or less, and B: 0.05% or less, with the balance being aluminum alloy consisting of Al and inevitable impurities A step of preparing an aluminum alloy ingot to be
    Using such an aluminum alloy ingot, hot rolling is performed, the solid solution Mn amount is 0.25 mass% or more, the solid solution Fe amount is 0.02 mass% or more, and the solid solution Si amount is 0.07 mass%. A step of obtaining a hot-rolled sheet material having the above-mentioned conductivity of 30.0 to 40.0% IACS;
    The hot-rolled sheet material is cold-rolled, the tensile strength (TS) in the rolling direction is 280 to 320 MPa, and the tensile strength (ABTS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes is 270 to 310 MPa. And forming a cold rolled sheet having a difference between the tensile strength (TS) in the rolling direction and the yield strength (ABYS) in the rolling direction after heat treatment at 205 ° C. for 10 minutes of 50 MPa or less,
    The manufacturing method of the aluminum alloy plate for can bodies characterized by having.
  6.  質量基準にて、Mn:0.7~1.3%、Mg:0.8~1.5%、Fe:0.25~0.6%、Si:0.25~0.50%、Cu:0.10~0.30%、Zn:0.25%以下、Ti:0.10%以下及びB:0.05%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金を材質とするAl合金鋳塊を面削した後、30~120℃/時間の昇温速度で550~620℃の範囲内の均質化処理温度(T)まで加熱昇温せしめ、そして該均質化処理温度(T)において、(145-0.24T)時間以上の間、保持することにより、均質化処理を施し、次いでかかる均質化処理の終了後、直ちに、又は10~90℃/時間の冷却速度で、500℃を下回ることのない熱間圧延開始温度まで冷却した後、出側温度:430~550℃となるように熱間粗圧延を実施して、板厚:20~40mmの板材を形成せしめ、続いて出側温度:300~390℃となるように熱間仕上圧延を行って、板厚:1.5~4.0mmの板材とした後、総加工度が75%以上且つ最終パスの定常部の平均圧延速度が700~1600m/分となるように冷間圧延を行って、0.2~1.0mmの板厚とすることを特徴とする缶ボディ用アルミニウム合金板の製造方法。 On the basis of mass, Mn: 0.7 to 1.3%, Mg: 0.8 to 1.5%, Fe: 0.25 to 0.6%, Si: 0.25 to 0.50%, Cu : 0.10-0.30%, Zn: 0.25% or less, Ti: 0.10% or less, and B: 0.05% or less, with the balance being aluminum alloy consisting of Al and inevitable impurities After chamfering the Al alloy ingot to be heated, the temperature is raised to a homogenization temperature (T) within a range of 550 to 620 ° C. at a temperature increase rate of 30 to 120 ° C./hour, and the homogenization temperature In (T), a homogenization treatment is performed by holding for (145-0.24T) time or more, and then immediately after completion of the homogenization treatment or at a cooling rate of 10 to 90 ° C./hour. After cooling to the hot rolling start temperature that does not fall below 500 ° C., the exit temperature: 43 Hot rough rolling was carried out to a temperature of ˜550 ° C. to form a plate material with a thickness of 20 to 40 mm, followed by hot finish rolling to a delivery temperature of 300 ° C. to 390 ° C. Sheet thickness: After forming a sheet material of 1.5 to 4.0 mm, cold rolling is performed so that the total processing degree is 75% or more and the average rolling speed of the stationary part in the final pass is 700 to 1600 m / min. A method for producing an aluminum alloy plate for a can body, wherein the plate thickness is 0.2 to 1.0 mm.
  7.  前記熱間仕上圧延にて得られる板材の導電率(S1)と前記冷間圧延にて得られる板材の導電率(S2)との差(S1-S2)が、0.2~1.6%IACSであることを特徴とする請求項6に記載の缶ボディ用アルミニウム合金板の製造方法。 The difference (S1-S2) between the conductivity (S1) of the plate material obtained by the hot finish rolling and the conductivity (S2) of the plate material obtained by the cold rolling is 0.2 to 1.6%. The method for producing an aluminum alloy plate for a can body according to claim 6, wherein the method is IACS.
  8.  前記均質化処理の施されたAl合金鋳塊に対する走査型電子顕微鏡写真において、直径:0.1μm~1μmの粒子の面積率が、3.5%以上である請求項6又は7に記載の缶ボディ用アルミニウム合金板の製造方法。 The can according to claim 6 or 7, wherein an area ratio of particles having a diameter of 0.1 µm to 1 µm is 3.5% or more in a scanning electron micrograph of the homogenized Al alloy ingot. Manufacturing method of aluminum alloy sheet for body.
  9.  請求項1又は請求項3又は請求項4に記載の缶ボディ用アルミニウム合金板からなることを特徴とする飲料缶ボディ。 A beverage can body comprising the aluminum alloy plate for a can body according to claim 1, claim 3, or claim 4.
  10.  所定の塗装焼付け処理が施されている請求項9に記載の飲料缶ボディ。 The beverage can body according to claim 9, which has been subjected to a predetermined baking process.
PCT/JP2016/088086 2015-12-25 2016-12-21 Aluminum alloy sheet for can body, and method for manufacturing same WO2017110869A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680071616.5A CN108368570B (en) 2015-12-25 2016-12-21 Aluminum alloy plate for can and method for producing same
JP2017558189A JP6898254B2 (en) 2015-12-25 2016-12-21 Aluminum alloy plate for can body and its manufacturing method
US15/992,662 US20180282848A1 (en) 2015-12-25 2018-05-30 Aluminum alloy sheet for can body, and process for producing the same
US17/343,859 US20210292878A1 (en) 2015-12-25 2021-06-10 Aluminum alloy sheet for can body, and process for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-254746 2015-12-25
JP2015254746 2015-12-25

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/992,662 Continuation US20180282848A1 (en) 2015-12-25 2018-05-30 Aluminum alloy sheet for can body, and process for producing the same

Publications (1)

Publication Number Publication Date
WO2017110869A1 true WO2017110869A1 (en) 2017-06-29

Family

ID=59089456

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/088086 WO2017110869A1 (en) 2015-12-25 2016-12-21 Aluminum alloy sheet for can body, and method for manufacturing same

Country Status (4)

Country Link
US (2) US20180282848A1 (en)
JP (1) JP6898254B2 (en)
CN (1) CN108368570B (en)
WO (1) WO2017110869A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117286376A (en) * 2023-11-27 2023-12-26 中国第一汽车股份有限公司 Variable yield strength aluminum alloy and preparation method and application thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111020312A (en) * 2019-12-20 2020-04-17 山东南山铝业股份有限公司 Aluminum alloy strip for small-caliber unscrewing bottle and tank and production method thereof
CN113549794A (en) * 2021-09-22 2021-10-26 山东宏桥新型材料有限公司 Aluminum alloy tank produced by using waste aluminum alloy tank
CN116949321A (en) * 2022-04-19 2023-10-27 宝山钢铁股份有限公司 Aluminum alloy plate for tank body and manufacturing method thereof

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452042A (en) * 1987-08-21 1989-02-28 Furukawa Aluminium Aluminum-alloy sheet for forming
JPH07233456A (en) * 1994-02-23 1995-09-05 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet excellent in formability
JPH08239729A (en) * 1995-03-01 1996-09-17 Kobe Steel Ltd Production of aluminum alloy sheet excellent in di can bottom formability
JPH11181558A (en) * 1997-12-22 1999-07-06 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for low and positive pressure can body
JP2000248326A (en) * 1999-03-03 2000-09-12 Sumitomo Light Metal Ind Ltd High formability aluminum alloy sheet excellent in recyclability, and its manufacture
JP2006037148A (en) * 2004-07-26 2006-02-09 Furukawa Sky Kk Aluminum alloy hard sheet for can barrel and its production method
JP2006283112A (en) * 2005-03-31 2006-10-19 Furukawa Sky Kk Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2006283113A (en) * 2005-03-31 2006-10-19 Furukawa Sky Kk Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2006291326A (en) * 2005-04-14 2006-10-26 Furukawa Sky Kk Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2007126706A (en) * 2005-11-02 2007-05-24 Kobe Steel Ltd Cold rolled aluminum alloy sheet for bottle can having excellent formability of neck part
JP2012167333A (en) * 2011-02-15 2012-09-06 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for can body, and method of manufacturing the same

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62263954A (en) * 1986-05-08 1987-11-16 Nippon Light Metal Co Ltd Manufacture of heat-treatment-type aluminum alloy sheet for drawing
JPH08246060A (en) * 1995-03-10 1996-09-24 Kawasaki Steel Corp Production of steel sheet for can
FR2792001B1 (en) * 1999-04-12 2001-05-18 Pechiney Rhenalu PROCESS FOR MANUFACTURING TYPE 2024 ALUMINUM ALLOY SHAPED PARTS
US6908520B2 (en) * 1999-05-28 2005-06-21 The Furukawa Electric Co., Ltd. Aluminum alloy hollow material, aluminum alloy extruded pipe material for air conditioner piping and process for producing the same
DE10392186T5 (en) * 2002-01-08 2005-01-05 Mitsubishi Materials Corp. Nickel-based alloy with outstanding corrosion resistance to supercritical water environments containing inorganic acids
JP4001007B2 (en) * 2002-12-19 2007-10-31 日本軽金属株式会社 Aluminum alloy plate for rectangular cross-section battery container
JP4290165B2 (en) * 2005-06-22 2009-07-01 住友軽金属工業株式会社 Aluminum alloy plate for battery case and manufacturing method thereof
JP5272714B2 (en) * 2008-12-24 2013-08-28 Jfeスチール株式会社 Manufacturing method of steel plate for can manufacturing
KR101306515B1 (en) * 2010-03-30 2013-09-09 가부시키가이샤 고베 세이코쇼 Aluminum alloy plate for battery case, and battery case
JP2012092431A (en) * 2010-09-30 2012-05-17 Kobe Steel Ltd Aluminum alloy cold-rolled sheet for bottle can
CN103748245B (en) * 2011-07-12 2016-02-17 株式会社Uacj Lithium-ion battery shell aluminum alloy plate materials
JP5906113B2 (en) * 2012-03-27 2016-04-20 三菱アルミニウム株式会社 Extruded heat transfer tube for heat exchanger, heat exchanger, and method for producing extruded heat transfer tube for heat exchanger
JP6054658B2 (en) * 2012-07-06 2016-12-27 株式会社Uacj Aluminum alloy plate for can body and manufacturing method thereof
JP6336434B2 (en) * 2013-02-25 2018-06-06 株式会社Uacj Aluminum alloy plate for can body and manufacturing method thereof
CN105537870A (en) * 2015-12-21 2016-05-04 山东南山铝业股份有限公司 Production method of 5052 aluminum alloy tank cover base material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452042A (en) * 1987-08-21 1989-02-28 Furukawa Aluminium Aluminum-alloy sheet for forming
JPH07233456A (en) * 1994-02-23 1995-09-05 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet excellent in formability
JPH08239729A (en) * 1995-03-01 1996-09-17 Kobe Steel Ltd Production of aluminum alloy sheet excellent in di can bottom formability
JPH11181558A (en) * 1997-12-22 1999-07-06 Furukawa Electric Co Ltd:The Production of aluminum alloy sheet for low and positive pressure can body
JP2000248326A (en) * 1999-03-03 2000-09-12 Sumitomo Light Metal Ind Ltd High formability aluminum alloy sheet excellent in recyclability, and its manufacture
JP2006037148A (en) * 2004-07-26 2006-02-09 Furukawa Sky Kk Aluminum alloy hard sheet for can barrel and its production method
JP2006283112A (en) * 2005-03-31 2006-10-19 Furukawa Sky Kk Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2006283113A (en) * 2005-03-31 2006-10-19 Furukawa Sky Kk Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2006291326A (en) * 2005-04-14 2006-10-26 Furukawa Sky Kk Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2007126706A (en) * 2005-11-02 2007-05-24 Kobe Steel Ltd Cold rolled aluminum alloy sheet for bottle can having excellent formability of neck part
JP2012167333A (en) * 2011-02-15 2012-09-06 Sumitomo Light Metal Ind Ltd Aluminum alloy sheet for can body, and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117286376A (en) * 2023-11-27 2023-12-26 中国第一汽车股份有限公司 Variable yield strength aluminum alloy and preparation method and application thereof

Also Published As

Publication number Publication date
CN108368570B (en) 2021-02-12
JPWO2017110869A1 (en) 2018-10-11
CN108368570A (en) 2018-08-03
JP6898254B2 (en) 2021-07-07
US20210292878A1 (en) 2021-09-23
US20180282848A1 (en) 2018-10-04

Similar Documents

Publication Publication Date Title
US20210292878A1 (en) Aluminum alloy sheet for can body, and process for producing the same
JP2020514556A (en) Casting of recycled aluminum scrap
JP4852754B2 (en) Magnesium alloy for drawing, press forming plate material made of the alloy, and method for producing the same
JP6054658B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP2013525608A (en) Damage-resistant aluminum material with hierarchical microstructure
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
WO2014129385A1 (en) Aluminum alloy plate for can body and production method therefor
TW201807210A (en) Al-mg-Si-based alloy material, Al-Mg-Si-based alloy plate, and method for manufacturing Al-Mg-Si-based alloy plate
JP2021532262A (en) Highly formable recycled aluminum alloy and its manufacturing method
JP4325126B2 (en) Aluminum alloy plate excellent in warm formability and manufacturing method thereof
TWI299755B (en)
JP4996853B2 (en) Aluminum alloy material for high temperature and high speed forming, method for manufacturing the same, and method for manufacturing aluminum alloy formed product
JP2003342657A (en) Hot-rolled aluminum plate and plate material using the same and used for can shell
JP3657738B2 (en) Method for producing aluminum alloy plate for can body with low ear rate
JP5059505B2 (en) Aluminum alloy cold-rolled sheet that can be formed with high strength
JPH0931616A (en) Aluminum-magnesium-silicon alloy sheet excellent in formability and its production
JPH10152762A (en) Production of hard aluminum alloy sheet excellent in di workability
JP4001059B2 (en) Method for producing aluminum alloy sheet with excellent bake resistance
WO2005061744A1 (en) Aluminum alloy sheet excellent in resistance to softening by baking
JPH10121177A (en) Aluminum alloy sheet excellent in high speed ironing formability for di can drum and manufacture therefor
JP2008062255A (en) SUPERPLASTIC MOLDING METHOD FOR Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING REDUCED GENERATION OF CAVITY, AND Al-Mg-Si BASED ALUMINUM ALLOY MOLDED SHEET
JP4201745B2 (en) 6000 series aluminum alloy plate for superplastic forming excellent in paint bake hardenability and method for producing the same
TW201738390A (en) Method for producing al-mg-Si alloy plate
JP2000160272A (en) Al ALLOY SHEET EXCELLENT IN PRESS FORMABILITY
JP2000234158A (en) Production of aluminum alloy sheet for can barrel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16878756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017558189

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16878756

Country of ref document: EP

Kind code of ref document: A1