JP2006283112A - Aluminum alloy sheet for drink can barrel, and method for producing the same - Google Patents

Aluminum alloy sheet for drink can barrel, and method for producing the same Download PDF

Info

Publication number
JP2006283112A
JP2006283112A JP2005104185A JP2005104185A JP2006283112A JP 2006283112 A JP2006283112 A JP 2006283112A JP 2005104185 A JP2005104185 A JP 2005104185A JP 2005104185 A JP2005104185 A JP 2005104185A JP 2006283112 A JP2006283112 A JP 2006283112A
Authority
JP
Japan
Prior art keywords
aluminum alloy
less
alloy plate
strength
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005104185A
Other languages
Japanese (ja)
Other versions
JP4771726B2 (en
Inventor
Satoru Suzuki
鈴木覚
Yasuyuki Takao
高尾康之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky KK
Original Assignee
Furukawa Sky KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky KK filed Critical Furukawa Sky KK
Priority to JP2005104185A priority Critical patent/JP4771726B2/en
Publication of JP2006283112A publication Critical patent/JP2006283112A/en
Application granted granted Critical
Publication of JP4771726B2 publication Critical patent/JP4771726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy sheet for a drink can barrel with excellent surface quality having excellent bottom wrinkle properties, also capable of obtaining high can barrel strength, and producible at high production accuracy and productivity, and to provide a method for producing the same. <P>SOLUTION: The aluminum alloy sheet for a drink has a composition containing, by weight, 0.8 to 1.5% Mg, 0.7 to 1.5% Mn, 0.35 to 0.5% Fe, 0.1 to 0.5% Si, 0.1 to 0.3% Cu, Ti, B, and the balance Al with inevitable impurities. By controlling the maximum n value of the variation curve in a work hardening exponent (n value) to ≥0.1 and prescribing the same as a strict index, and its working hardenability is retained to the fixed one or above, so as to realize production with high accuracy, by controlling its electric conductivity to 30.0 to 39.0% IACS, the degree of elute elements to enter into solid solution in the Al matrix is regulated, and further, the tensile strength of the sheet stock is controlled to ≤320 MPa to prevent the deformation resistance of the material from being made excessive during forming. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は炭酸飲料用、ビール用および清涼飲料等の各種飲料缶の缶胴材として使用される飲料缶胴用アルミニウム合金板およびその製造方法に関するものである。     TECHNICAL FIELD The present invention relates to an aluminum alloy plate for beverage can bodies used as a can body material for various beverage cans such as carbonated beverages, beer and soft drinks, and a method for producing the same.

アルミニウム合金からなる飲料缶の缶胴体としては、アルミニウム合金板に塗油を施し、カッピング、DI成形(Draw−Ironing : 絞り−しごき)を施して缶胴とし、トリミング、洗浄、乾燥、外面および内面塗装・焼付け、ネッキングおよびフランジ加工を行い、これに飲料を充填して缶蓋の巻き締めを行った2ピース缶が多く用いられている。
前記アルミニウム合金板は、アルミニウム合金鋳塊に均質化処理を施した後に熱間圧延を行い、その後必要に応じて焼鈍処理を施し、次いで冷間圧延を行うことで製造される。通常はこれに加えて焼鈍、脱脂、洗浄、潤滑油塗布等の仕上処理が施される。
The can body of a beverage can made of an aluminum alloy is coated with oil on an aluminum alloy plate, cupped and DI-molded (Draw-Ironing) to form a can body, trimming, cleaning, drying, outer surface and inner surface 2. Description of the Related Art Two-piece cans are often used that are painted, baked, necked, and flanged, filled with a beverage, and then the can lid is tightened.
The aluminum alloy sheet is manufactured by subjecting an aluminum alloy ingot to homogenization, hot rolling, then annealing as necessary, and then cold rolling. Usually, in addition to this, finishing treatments such as annealing, degreasing, washing, and lubricating oil application are performed.

近年、飲料缶のコストダウンの必要性から、缶胴の薄肉化(ゲージダウン)ならびに缶蓋の小径化が進んでいる。缶胴体の薄肉化は絞り加工時に成形力を弱めるため、缶底チャイム部への材料流入量が増加し座屈やくびれを生じ易くさせ、缶底(ボトム)しわと呼ばれる外観の形状不良を発生させる。また、缶蓋の小径化は缶同士を積み重ねた時のスタッキング性を確保するため、これに対応した缶底接地径の小径化が必要になるが、この缶底接地径の小径化は缶底チャイム部に座屈現象を生じ易くさせるため、ボトムしわ発生を促進する。   In recent years, due to the need for cost reduction of beverage cans, the thickness of the can body has been reduced (gauge down) and the diameter of the can lid has been reduced. Thinning the can body weakens the forming force during drawing, which increases the amount of material flowing into the can bottom chime, making it easy to buckle and constrict, resulting in an appearance defect called can bottom wrinkle. Let In addition, reducing the diameter of the can bottom requires a reduction in the ground diameter of the bottom of the can in order to ensure stackability when the cans are stacked together. In order to easily cause a buckling phenomenon in the chime portion, the generation of bottom wrinkles is promoted.

図3を参照して以上のボトムしわ発生のメカニズムを説明する。
飲料缶缶胴体1の薄肉化によって缶側壁2から缶底チャイム部3への材料流入量が増加して座屈やくびれを生じ易くさせ、缶底チャイム部3に缶底(ボトム)しわ3a、3a・・・を発生させる。また、缶蓋(図示せず)の小径化によって缶底接地部4の径である缶底接地径の小径化が必要になり、この缶底接地径の小径化によっても缶底チャイム部3座屈現象が生じ易くなり、これによってもボトムしわ3a、3a・・・の発生が促進される。
With reference to FIG. 3, the mechanism of the occurrence of bottom wrinkles will be described.
The thinning of the beverage can body 1 increases the amount of material flowing from the can side wall 2 to the can bottom chime portion 3 to easily cause buckling and constriction. 3a ... is generated. Further, it is necessary to reduce the diameter of the bottom of the can bottom, which is the diameter of the can bottom grounding portion 4, by reducing the diameter of the can lid (not shown). The bending phenomenon is likely to occur, and this also promotes the generation of the bottom wrinkles 3a, 3a.

以上の問題を解決し、缶胴の薄肉化ならびに缶蓋の小径化に対応し得るボトムしわ性に優れた缶胴用アルミニウム合金板およびその製造方法として、特許文献1にはMg,Mn,Fe,Si,CuおよびTiの含有量を規定するとともに、引張強さと伸び率を規制し、さらに均質化処理、熱間圧延、次いで冷間圧延の出側温度を制御した3パスからなる冷間圧延を行う改善方法が提案され
ている。
As an aluminum alloy plate for can barrels that can solve the above problems and can be used for thinning the can barrel and reducing the diameter of the can lid, and a manufacturing method thereof, Patent Document 1 discloses Mg, Mn, Fe. , Si, Cu, and Ti are defined, the tensile strength and elongation rate are regulated, and further, homogenization treatment, hot rolling, and cold rolling comprising three passes in which the cold-rolling outlet temperature is controlled. Improvement methods have been proposed.

さらに、特許文献2ではCu,Mg,Mn,FeおよびSiの含有量を規定し、伸び率、加工硬化指数および耐力といった缶底成形に影響する機械的特性を規制し、均質化処理および熱間圧延を順次に施し、次いで冷間圧延の出側温度および冷却速度を制御した改善方法が提案されている。
特開2001−262261号公報 特開2004−300537号公報
Furthermore, Patent Document 2 defines the contents of Cu, Mg, Mn, Fe and Si, regulates mechanical properties that affect can bottom molding such as elongation, work hardening index and proof stress, homogenization treatment and hot work. An improved method has been proposed in which rolling is performed sequentially, and then the outlet temperature and cooling rate of cold rolling are controlled.
JP 2001-262261 A JP 2004-3000537 A

ボトムしわ性はアルミニウム合金板の素板強度を下げて素板の伸び率を向上させることで改善されることが明らかになっており、この伸び率を向上させるためには、冷間圧延後に焼鈍処理を施すことが有効である。
しかし、冷間圧延後に焼鈍処理を施すことは生産性の低下からコストアップになるとともに缶胴強度が低下する問題があった。さらに、今後さらなる缶胴の薄肉化と缶蓋の小径化に対応するためには、高い缶胴強度を有しかつボトムしわ性に優れた材料が必要不可欠であった。
It has been clarified that the bottom wrinkle is improved by lowering the strength of the aluminum alloy sheet and increasing the elongation of the element. In order to increase this elongation, annealing after cold rolling is performed. It is effective to apply the treatment.
However, performing an annealing treatment after cold rolling has a problem of increasing the cost due to a decrease in productivity and reducing the strength of the can body. Furthermore, in order to cope with further thinning of the can body and reduction in the diameter of the can lid in the future, a material having high can body strength and excellent bottom wrinkle property is indispensable.

この様な要請に基づき特許文献1に記載の缶底成形性に優れた缶胴用アルミニウム合金板およびその製造方法では、出側温度を制御した3パスからなる冷間圧延を行うことが提案された。しかし、このアルミニウム合金板およびその製造方法は、きわめて有効な手段ではあっても高い缶胴強度を有しかつボトムしわ性に優れた材料を得るために直接必要な条件を明らかにするものではなく、高精度かつ高効率な生産性の実現という点で更なる検討が必要であった。   Based on such a request, in the aluminum alloy plate for can bodies excellent in can bottom formability described in Patent Document 1 and the manufacturing method thereof, it is proposed to perform cold rolling consisting of three passes with controlled outlet temperature. It was. However, although this aluminum alloy plate and its manufacturing method are extremely effective means, they do not clarify the conditions directly necessary for obtaining a material having high can barrel strength and excellent bottom wrinkling properties. Further study was necessary in terms of realizing highly accurate and highly efficient productivity.

一方、特許文献2では伸び率が5.5%以上、加工硬化指数が0.06以上、かつ、耐力が290N/mm以下である旨ただ漫然と規定されるのみであって、缶胴用アルミニウム合金板に求められる品質を実現する確実な手段としての検討は未だ不十分であって、高い缶胴強度を有しかつボトムしわ性に優れた材料を高精度かつ高効率で生産することを可能として、今後のさらなる缶胴の薄肉化と缶蓋の小径化に対応することを可能とするという要請には実質的に応え得るものではない。 On the other hand, Patent Document 2 simply defines that the elongation is 5.5% or more, the work hardening index is 0.06 or more, and the proof stress is 290 N / mm 2 or less. Consideration as a reliable means to achieve the quality required for alloy sheets is still insufficient, and it is possible to produce materials with high can barrel strength and excellent bottom wrinkle with high accuracy and high efficiency. As a result, it is not possible to substantially meet the demand to make it possible to cope with the further thinning of the can body and the diameter of the can lid in the future.

また以上何れの場合についても連続焼鈍を行うことによりアルミニウム合金板表面の酸化皮膜が厚くなり、DI成形時に黒筋が発生するという表面品質の低下に関する問題は未解決であった。   In any of the above cases, the continuous annealing is performed to increase the thickness of the oxide film on the surface of the aluminum alloy plate, and the problem regarding the deterioration of the surface quality that black streaks are generated during DI molding has not been solved.

本発明は以上の従来技術における問題に鑑み、ボトムしわ性に優れかつ高い缶胴強度 が得られ、缶胴の更なる薄肉化が可能であって、高い生産精度及び生産性で生産できる表面品質の優れた飲料缶胴用アルミニウム合金板及びその製造方法を提供することを目的とする。     In view of the above problems in the prior art, the present invention is excellent in bottom wrinkle and has high can body strength, and can be further thinned, and can be produced with high production accuracy and productivity. It is an object of the present invention to provide an aluminum alloy plate for beverage can bodies and a method for producing the same.

上記課題を解決するため本発明者らは鋭意研究を行った結果、ボトムしわ性に優れかつ高い缶胴強度を実現するため、特定歪領域での最大n値及び導電率を規定して高強度を維持することで有効に加工硬化性を規定することが可能であることを見いだし本発明の飲料缶胴用アルミニウム合金板に想到した。さらに、本発明合金に示す所定量を含有したアルミニウム合金に対して冷間圧延パスの出側温度および合計圧延率の冷間圧延プロセスを最適制御することに加えて、熱間圧延後の連続焼鈍の諸条件(熱処理温度、熱処理時間、冷却速度)を規制することで、本発明のアルミニウム合金板を構成するための加工硬化性ならびに導電率が適切に設定され得ることを見いだし、本発明の飲料缶胴用アルミニウム合金板の製造方法に想到した。加えて本発明合金に示す所定量を含有したアルミニウム合金で熱間圧延後の連続焼鈍の雰囲気の露点(水蒸気圧)を規定することにより、板表面の酸化皮膜の厚さをコントロールし、表面品質の低下の問題を解決し得ることを見出し、そのために特定のアルミニウム合金板につき素材特性ならびに製造条件に関する最適値を検討し本発明に至った。   In order to solve the above-mentioned problems, the present inventors have conducted intensive research. As a result, in order to achieve a high can barrel strength with excellent bottom wrinkling properties, the maximum n value and the electrical conductivity in a specific strain region are specified to provide high strength. It has been found that it is possible to effectively define work hardenability by maintaining the above, and the inventors have conceived the aluminum alloy plate for beverage can bodies of the present invention. Further, in addition to optimal control of the cold rolling process of the cold rolling pass outlet temperature and the total rolling rate for the aluminum alloy containing the predetermined amount shown in the present invention alloy, continuous annealing after hot rolling It was found that by controlling the various conditions (heat treatment temperature, heat treatment time, cooling rate), the work hardenability and electrical conductivity for constituting the aluminum alloy plate of the present invention can be appropriately set, and the beverage of the present invention It came up with the manufacturing method of the aluminum alloy plate for can bodies. In addition, by controlling the thickness of the oxide film on the surface of the plate by regulating the dew point (water vapor pressure) of the atmosphere of continuous annealing after hot rolling with an aluminum alloy containing a predetermined amount shown in the present invention alloy, the surface quality The inventors have found that the problem of lowering can be solved, and for that purpose, the optimum values related to material characteristics and production conditions for a specific aluminum alloy plate have been studied, and the present invention has been achieved.

本発明の飲料缶胴用アルミニウム合金板はMn:0.7〜1.5%(質量%,以下同じ)、Mg:0.8〜1.5%、Fe:0.35〜0.5%、Si:0.1〜0.5%、Cu:0.1〜0.3%と、Ti:0.1%以下、B:0.1%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金板であり、材料特性として均一塑性ひずみ領域全域における歪量に対する加工硬化指数(n値)の変化曲線の最大n値が0.1以上で、導電率が30.0〜39.0%IACSであり、素板の圧延方向における引張強度が320MPa以下とされ、塗装焼付後の強度が圧延方向の耐力で250MPa以上であることを特徴とする。   The aluminum alloy plate for beverage can bodies of the present invention has Mn: 0.7 to 1.5% (mass%, the same applies hereinafter), Mg: 0.8 to 1.5%, Fe: 0.35 to 0.5% Si: 0.1 to 0.5%, Cu: 0.1 to 0.3%, Ti: 0.1% or less, B: 0.1% or less, the balance being Al and inevitable impurities The maximum n value of the change curve of the work hardening index (n value) with respect to the amount of strain in the entire uniform plastic strain region is 0.1 or more and the conductivity is 30.0 to 39.39. The tensile strength in the rolling direction of the base plate is 320 MPa or less, and the strength after baking is 250 MPa or more in terms of the proof stress in the rolling direction.

以上の本発明の飲料缶胴用アルミニウム合金板に施される塗装焼き付けは180〜220℃で5〜30分間保持し、または最高到達温度210〜260℃で2分以内保持して行われる塗装焼付とすることができる。   The above-mentioned coating baking applied to the aluminum alloy plate for beverage can bodies according to the present invention is held at 180 to 220 ° C. for 5 to 30 minutes or at the maximum reached temperature of 210 to 260 ° C. for 2 minutes or less. It can be.

また、板表面の酸化皮膜の厚さを20nm以下に規定することが有効である。   It is also effective to regulate the thickness of the oxide film on the plate surface to 20 nm or less.

本発明の飲料缶胴用アルミニウム合金板の製造方法は、Mn:0.7〜1.5%、Mg:0.8〜1.5%、Fe:0.35〜0.5%、Si:0.1〜0.5%、Cu:0.1〜0.3%と、Ti:0.1%以下、B:0.1%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金鋳塊を製造し、このアルミニウム合金鋳塊を面削した後、均質化処理を行い、次いで熱間圧延を施して1.5〜2.5mmの板厚とし、さらにこの合金板を連続焼鈍炉により550〜600℃の温度に急速加熱して300秒以下の時間保持し、材料特性として均一塑性ひずみ領域全域における歪量に対する加工硬化指数(n値)の変化曲線の最大n値が0.1以上で、導電率が30.0〜39.0%IACSであり、素板の圧延方向における引張強度が320MPa以下とされ、塗装焼付後の強度が圧延方向の耐力で250MPa以上であることを特徴とする。   The manufacturing method of the aluminum alloy plate for beverage can bodies of the present invention is as follows: Mn: 0.7 to 1.5%, Mg: 0.8 to 1.5%, Fe: 0.35 to 0.5%, Si: Aluminum containing 0.1 to 0.5%, Cu: 0.1 to 0.3%, Ti: 0.1% or less, B: 0.1% or less, the balance being Al and inevitable impurities An alloy ingot is manufactured, the aluminum alloy ingot is chamfered, homogenized, then hot rolled to a thickness of 1.5 to 2.5 mm, and the alloy plate is continuously annealed. The furnace is rapidly heated to a temperature of 550 to 600 ° C. and held for 300 seconds or less. As a material property, the maximum n value of the change curve of the work hardening index (n value) with respect to the strain amount in the entire uniform plastic strain region is 0. 1 or more, the conductivity is 30.0 to 39.0% IACS, in the rolling direction of the base plate Zhang intensity is less 320 MPa, the strength after paint baking is characterized in that at least 250MPa with yield strength in the rolling direction.

以上の本発明の飲料缶胴用アルミニウム合金板の製造方法によって製造される本発明の飲料缶胴用アルミニウム合金板に施される塗装焼き付けは180〜220℃で5〜30分間保持し、または最高到達温度210〜260℃で2分以内保持して行われる塗装焼付とすることができる。   The baking finish applied to the aluminum alloy plate for beverage can barrels of the present invention produced by the method for producing an aluminum alloy plate for beverage can barrels of the present invention described above is maintained at 180 to 220 ° C. for 5 to 30 minutes, or the highest Paint baking can be performed by holding at an ultimate temperature of 210 to 260 ° C. within 2 minutes.

以上の本発明の飲料缶胴用アルミニウム合金板の製造方法では合金板を連続焼鈍炉により550〜600℃の温度に急速加熱して300秒以下の時間保持した後、800℃/秒以下の冷却速度で冷却を施す工程を行うことが有効である。   In the above method for producing an aluminum alloy plate for beverage cans according to the present invention, the alloy plate is rapidly heated to a temperature of 550 to 600 ° C. by a continuous annealing furnace and held for 300 seconds or less, and then cooled to 800 ° C./second or less. It is effective to perform the process of cooling at a speed.

また以上の本発明の飲料缶胴用アルミニウム合金板の製造方法では合金板を連続焼鈍炉により550〜600℃の温度に急速加熱して300秒以下の時間保持した後、冷間圧延を70%以上の合計圧延率で最終パスの出側温度を130℃以上、それ以外の圧延パスの出側温度を130℃以下とする温度条件で施すことで材料組織の回復処理を行う様にすることができる。   Moreover, in the manufacturing method of the aluminum alloy plate for beverage can bodies according to the present invention described above, the alloy plate is rapidly heated to a temperature of 550 to 600 ° C. by a continuous annealing furnace and held for 300 seconds or less, and then cold rolling is performed by 70%. The recovery process of the material structure can be performed by applying the final rolling pass temperature at 130 ° C. or higher and the other rolling pass discharge temperatures at 130 ° C. or lower at the above total rolling rate. it can.

また以上の本発明の飲料缶胴用アルミニウム合金板の製造方法では均質化処理を550〜620℃の温度範囲で行い、合金板を連続焼鈍炉により550〜600℃の温度に急速加熱して焼鈍炉内の雰囲気ガスの露点が10℃以下である雰囲気中で300秒以下の時間保持し、板表面の酸化皮膜の厚さを20nm以下に管理することができる。   Moreover, in the manufacturing method of the aluminum alloy plate for beverage can bodies of the present invention described above, the homogenization treatment is performed in a temperature range of 550 to 620 ° C., and the alloy plate is rapidly heated to a temperature of 550 to 600 ° C. in a continuous annealing furnace and annealed. The thickness of the oxide film on the surface of the plate can be controlled to 20 nm or less by keeping the atmosphere gas in the furnace in an atmosphere having a dew point of 10 ° C. or less for 300 seconds or less.

[作用]
本発明者らがボトムしわ発生要因について詳細に検討したところ、絞り加工時にブランクホ ルダーとリドローダイス肩部での曲げ・曲げ戻し変形の抵抗力が小さいことで成形力が低下し、缶底(ボトム)部での軸方向の引張応力が減少して円周方向の圧縮歪が大きくなることでボトムしわが発生する。
したがって、本発明によれば加工硬化指数(n値)の変化曲線の最大n値を0.1以上として加工硬化指数(n値)を厳密な指標として規定し、これにより缶成形加工中の加工硬化性を一定以上に保持して高精度な生産を可能とし、さらに導電率を30.0〜39.0%IACSとして溶質元素のAlマトリックスへの固溶程度を調整すると共に素板の引張強度を320MPa以下として成形中に材料の変形抵抗が過大になることを防止してしごき加工時の割れの発生を防止し、加えて塗装焼付後の耐力を250MPa以上とすることによってアルミニウム飲料缶として中身が充填された際の内圧変化に耐える強度を保証することを可能とした。
[Action]
The present inventors examined in detail the cause of the bottom wrinkle, and found that the forming force was reduced due to the small resistance to bending and unbending deformation at the blank holder and the shoulder of the redodice during the drawing process. The bottom wrinkles occur when the tensile stress in the axial direction at the portion) decreases and the compressive strain in the circumferential direction increases.
Therefore, according to the present invention, the maximum n value of the change curve of the work hardening index (n value) is set to 0.1 or more, and the work hardening index (n value) is defined as a strict index. Maintains curability at a certain level and enables high-accuracy production, and further adjusts the degree of solid solution of solute elements in the Al matrix with an electrical conductivity of 30.0 to 39.0% IACS and the tensile strength of the base plate Is set to 320 MPa or less to prevent excessive deformation resistance of the material during molding to prevent cracking during ironing, and in addition, the proof stress after paint baking is 250 MPa or more, so that it can be used as an aluminum beverage can. It was possible to guarantee the strength to withstand the change in internal pressure when the was filled.

以上述べたように、本発明の飲料缶胴用アルミニウム合金板は、歪量に対する加工硬化指数(n値)の変化曲線の最大n値が0.1以上、導電率が30.0〜39.0%IACSで、素板の圧延方向における引張強度が320MPa以下とされ、空焼き後の耐力が250MPa以上あるため、高強度かつ優れたボトムしわ性を実現し得る。本発明のアルミニウム合金板は均質化処理条件、熱間圧延後の板厚、連続焼鈍条件、冷間圧延の合計圧延率および各パスでの冷間圧延パスの出側温度を規制することで製造可能となる。これによって、アルミニウム缶胴の薄肉化および缶蓋の小径化に対応可能なボトムしわ性に優れかつ高い缶胴強度を有するアルミニウム缶胴材を製造することができ、工業上顕著な効果が得られる。   As described above, in the aluminum alloy plate for beverage can bodies of the present invention, the maximum n value of the change curve of the work hardening index (n value) with respect to the strain amount is 0.1 or more, and the conductivity is 30.0 to 39.39. Since the tensile strength in the rolling direction of the base plate is 320 MPa or less at 0% IACS and the proof stress after baking is 250 MPa or more, high strength and excellent bottom wrinkle property can be realized. The aluminum alloy sheet of the present invention is manufactured by regulating the homogenization conditions, the sheet thickness after hot rolling, the continuous annealing conditions, the total rolling rate of cold rolling, and the exit temperature of the cold rolling pass in each pass. It becomes possible. This makes it possible to produce an aluminum can body material having excellent bottom wrinkle and high can body strength that can cope with the thinning of the aluminum can body and the reduction of the diameter of the can lid, and a remarkable industrial effect can be obtained. .

以下に本発明の飲料缶胴用アルミニウム合金板に関して、合金組成の限定理由を示す。
[Mnの成分範囲:0.7〜1.5%]
Mnは缶胴材の強度向上に寄与するともにDI成形性向上に有効な元素であり、成分範囲をMn:0.7〜1.5%とする。この範囲内で含有させることにより、固体潤滑作用を有する晶出物(Al−Mn系,Al−Mn−Fe系,Al−Mn−Fe−Si系)が十分に形成されるため、潤滑不足により成形金型にアルミニウムが凝着するビルドアップが原因となって発生するゴーリングまたはスコアリングと呼ばれる擦り傷や焼付き不具合の発生を抑制することができる。0.7%未満ではその効果は十分に得られず、逆に1.5%以上含有されると、溶解鋳造時Al−Mn−Fe系の巨大な初晶化合物が生じるため、DI加工時に割れやピンホール等を誘発させ、成形性が損なわれる。
The reasons for limiting the alloy composition will be described below with respect to the aluminum alloy plate for beverage can bodies of the present invention.
[Mn component range: 0.7 to 1.5%]
Mn is an element that contributes to improving the strength of the can body and is effective for improving the DI moldability. The component range is Mn: 0.7 to 1.5%. By containing within this range, a crystallized substance having a solid lubricating action (Al-Mn system, Al-Mn-Fe system, Al-Mn-Fe-Si system) is sufficiently formed. It is possible to suppress the occurrence of scratches and seizure defects called goling or scoring that occur due to build-up in which aluminum adheres to the molding die. If the content is less than 0.7%, the effect cannot be obtained sufficiently. Conversely, if the content is 1.5% or more, a large primary compound of Al-Mn-Fe system is generated at the time of melt casting. And pinholes are induced and formability is impaired.

[Mgの成分範囲:0.8〜1.5%]
MgはMnと同様に缶胴体の強度向上に寄与する元素で、ボトム部の高強度化ならびに加工硬化性の向上に有効である。その成分範囲を0.8〜1.5%に設定する。0.8%未満では必要とされる強度を十分に得ることは難しく、さらに成形加工時に十分な加工硬化が起こらないため、ボトムしわは発生し易くなる。また、1.5%を超えて含有されると強度が高くなり過ぎるため、DI成形時に缶胴切れと割れの発生頻度が増加して成形性が損なわれる。望ましい含有量は1.0〜1.4wt%である。
[Mg component range: 0.8 to 1.5%]
Similar to Mn, Mg is an element that contributes to improving the strength of the can body, and is effective in increasing the strength of the bottom portion and improving work hardening. Its component range is set to 0.8-1.5%. If it is less than 0.8%, it is difficult to sufficiently obtain the required strength. Further, since sufficient work hardening does not occur at the time of molding, bottom wrinkles are likely to occur. Further, if the content exceeds 1.5%, the strength becomes too high, so that the frequency of occurrence of can barrel breakage and cracking increases during DI molding, thereby impairing moldability. A desirable content is 1.0 to 1.4 wt%.

[Feの成分範囲:0.35〜0.5%]
FeはMnやMgと同様に缶胴体の強度向上に寄与する元素であるとともに、前記したMnを含む固体潤滑作用を持つ硬質なAl−Mn−Fe(−Si)系の金属間化合物の生成を促進するとともに、その分布状態を均一化させて成形性を向上させる。成分範囲は0.35〜0.5%とする。0.35%未満では十分な強度を付与することが困難であり、さらにはダイスへの凝着を防止するのに必要な金属間化合物が十分に形成されない。0.5%を超えると強度が高くなり過ぎるため、成形性が低下する。
[Fe component range: 0.35 to 0.5%]
Fe, like Mn and Mg, is an element that contributes to the improvement of the strength of the can body, and also produces the hard Al—Mn—Fe (—Si) -based intermetallic compound having a solid lubricating action containing Mn. While promoting, the distribution state is made uniform and the moldability is improved. The component range is 0.35 to 0.5%. If it is less than 0.35%, it is difficult to impart sufficient strength, and further, an intermetallic compound necessary for preventing adhesion to a die is not sufficiently formed. If it exceeds 0.5%, the strength becomes too high, and the moldability is lowered.

[Cuの成分範囲:0.1〜0.3%]
Cuはそれ自体の固溶により缶胴体の強度向上に寄与する元素であるとともに、製缶時の塗装焼付処理において、Al−Cu−Mg系析出物の析出硬化によって強度向上に寄与する元素である。これにより缶胴強度、特にボトム部の強度向上が得られる。成分範囲は0.1〜0.3%とする。0.1%未満では十分な材料強度は得られず、0.3%を超えて含有されると強度が高くなり過ぎるため、DI成形時に缶胴切れと割れの発生頻度が増加して成形性が損なわれる。
[Cu component range: 0.1 to 0.3%]
Cu is an element that contributes to improving the strength of the can body by its solid solution, and is an element that contributes to improving the strength by precipitation hardening of Al-Cu-Mg-based precipitates in the coating baking process during can making. . Thereby, the strength of the can body, particularly the strength of the bottom portion can be improved. The component range is 0.1 to 0.3%. If the content is less than 0.1%, sufficient material strength cannot be obtained. If the content exceeds 0.3%, the strength becomes too high. Is damaged.

[Siの成分範囲:0.1〜0.5%]
Siは均質化処理において、Al−Mn−Fe系の金属間化合物に相変態を起こさせ、より硬度の高いAl−Mn−Fe−Si系の金属間化合物の形成に寄与する。これによって、前記したダイスクリーニング効果が十分に得られるため、成形時のダイス金型への焼付き不具合が防止されるとともに、成形性の向上に寄与する。成分範囲は0.1〜0.5%とする。0.1%未満では前記の金属間化合物が十分形成されず、焼付き不具合が発生し易くなる。0.5%を超えると、金属間化合物が巨大化して成形性が低下する。
[Component range of Si: 0.1 to 0.5%]
In the homogenization treatment, Si causes a phase transformation in the Al—Mn—Fe intermetallic compound and contributes to the formation of an Al—Mn—Fe—Si intermetallic compound having higher hardness. As a result, the above-described die screening effect can be sufficiently obtained, so that the problem of seizure to the die during molding is prevented and the moldability is improved. The component range is 0.1 to 0.5%. If it is less than 0.1%, the intermetallic compound is not sufficiently formed, and seizure defects are likely to occur. If it exceeds 0.5%, the intermetallic compound becomes enormous and the formability deteriorates.

[不可避的不純物]
飲料缶胴用アルミニウム合金板では、結晶粒微細化のためTiおよびBを微量添加することが多い。そのTiの含有量は0.1%以下に制限され、好ましくは0.005%以上、0.05%以下とする。Tiの含有量が0.005%未満だと結晶粒微細化効果が十分に得られず、0.05%を超えるとAl−Ti系の巨大な金属間化合物が生成される傾向が生じ、0.1%を超えるとAl−Ti系の巨大な金属間化合物が生じる傾向が増大し、成形加工中に割れやピンホールを発生させて成形性は低下する。
[Inevitable impurities]
In aluminum alloy plates for beverage can bodies, a small amount of Ti and B is often added to refine crystal grains. The Ti content is limited to 0.1% or less, preferably 0.005% or more and 0.05% or less. If the Ti content is less than 0.005%, the effect of crystal grain refining cannot be sufficiently obtained. If the Ti content exceeds 0.05%, a large Al-Ti intermetallic compound tends to be produced. If it exceeds 1%, the tendency to generate a huge intermetallic compound of Al-Ti system increases, and cracks and pinholes are generated during the forming process, thereby reducing the formability.

Bは結晶粒微細化を助長させる効果を有する。そのBの含有量は0.1%以下に制限され、好ましくは0.001%以上、0.01%以下とする。0.001%未満であればその効果は十分に得られず、0.01%を超えるとTi−B系の巨大な金属間化合物が生成される傾向が生じ、0.1%を超えるとTi−B系の巨大な金属間化合物が形成される傾向が増大し、成形加工時に割れやピンホールが発生し易くなる。その他の不可避的不純物として、Znは0.3%以下、Crは0.3%以下、Zrは0.1%以下、Vは0.1%以下であれば、本発明の効果を損なわない程度で許容できる。   B has an effect of promoting crystal grain refinement. The B content is limited to 0.1% or less, preferably 0.001% or more and 0.01% or less. If the content is less than 0.001%, the effect cannot be sufficiently obtained. If the content exceeds 0.01%, a Ti-B giant intermetallic compound tends to be generated. The tendency to form a large -B-based intermetallic compound increases, and cracks and pinholes are likely to occur during molding. As other inevitable impurities, if Zn is 0.3% or less, Cr is 0.3% or less, Zr is 0.1% or less, and V is 0.1% or less, the effect of the present invention is not impaired. Is acceptable.

次に本発明のアルミニウム合金板の製造方法について説明する。まず、本発明の合金組成のアルミニウム合金を水冷式連続鋳造法によりスラブ(板状鋳塊)に鋳造する。本発明では、均質化処理の温度および時間について特に規制するものではないが、均質化処理が不十分である場合、溶質の分布の偏析が十分解消されず、成形性が低下する。この点、本発明では均質化効果と生産性を考慮して均質化処理を550〜620℃の温度範囲で行うのが好ましい。均質化処理時間については、1h以上保持しないとその効果は十分でなく、ある程度の時間保持が必要である。均質化効果と生産性を考慮して3〜12時間が望ましく、5〜10時間が適切である。均質化処理が550℃以下あるいは1時間未満では十分な均質化効果は得られず、620℃を超えると鋳造表面に膨れが生じ、さらには共晶部分が融解する。   Next, the manufacturing method of the aluminum alloy plate of this invention is demonstrated. First, an aluminum alloy having the alloy composition of the present invention is cast into a slab (plate ingot) by a water-cooled continuous casting method. In the present invention, the temperature and time of the homogenization treatment are not particularly restricted, but when the homogenization treatment is insufficient, the segregation of the solute distribution is not sufficiently eliminated and the moldability is lowered. In this respect, in the present invention, it is preferable to perform the homogenization treatment in a temperature range of 550 to 620 ° C. in consideration of the homogenization effect and productivity. As for the homogenization time, the effect is not sufficient unless it is maintained for 1 hour or longer, and a certain amount of time is required. In view of the homogenization effect and productivity, 3 to 12 hours is desirable, and 5 to 10 hours is appropriate. If the homogenization treatment is 550 ° C. or less or less than 1 hour, a sufficient homogenization effect cannot be obtained, and if it exceeds 620 ° C., the casting surface is swollen and the eutectic part is melted.

均質化処理後に熱間圧延を施す。その際、均質化処理後に再加熱することなくそのまま熱間圧延を施す処理、あるいは一旦室温に冷却した後に再加熱して熱間圧延を施す処理のどちらでも良い。熱間圧延開始温度は400〜550℃とするのが好ましく、さらに好ましくは450〜550℃とする。450℃未満であれば、十分な圧延加工性は得られないため、板幅エッジ部で割れが生じる懸念があり、400℃以下の場合、熱間圧延終了温度が低くなるため、立方体方位の再結晶粒が十分生成されないため、板幅エッジ部で圧延割れが生じる。550℃を越える場合は熱間圧延板の表面酸化、あるいは再結晶粒の粗大化によってDI成形性が低下する。
一方で、熱間圧延終了温度は280℃〜380℃とするのが好ましい。280℃未満の場合、立方体方位の再結晶粒が十分生成されないため板幅エッジ部で圧延割れを生じたり、耳率が高くなったりする恐れがある。さらに、材料強度が過度に上昇するため、DI成形性が低下する。380℃を超えると、ロールコーティングが不均一になり表面欠陥が生じ易くなる。
Hot rolling is performed after the homogenization treatment. At that time, either a process of performing hot rolling as it is without reheating after the homogenization process or a process of performing reheating and hot rolling after being cooled to room temperature may be used. The hot rolling start temperature is preferably 400 to 550 ° C, more preferably 450 to 550 ° C. If it is less than 450 ° C., sufficient rolling processability cannot be obtained, so there is a concern that cracks may occur at the edge of the sheet width, and if it is 400 ° C. or less, the hot rolling end temperature is lowered, so Since sufficient crystal grains are not generated, rolling cracks occur at the plate width edge portion. When the temperature exceeds 550 ° C., the DI formability deteriorates due to surface oxidation of the hot rolled plate or coarsening of recrystallized grains.
On the other hand, the hot rolling end temperature is preferably 280 ° C to 380 ° C. When it is less than 280 ° C., sufficient recrystallized grains having a cubic orientation are not generated, which may cause rolling cracks at the sheet width edge portion or increase the ear ratio. Furthermore, since the material strength rises excessively, the DI moldability decreases. If it exceeds 380 ° C., the roll coating becomes non-uniform and surface defects tend to occur.

本発明では、熱間圧延板の板厚を1.5〜2.5mmに規制する。1.5mm未満であれば熱間圧延板に焼付きや肌荒れが生じ易くなり、さらに、板厚プロフィールが悪化するためである。一方、板厚が2.5mmを超えると冷間圧延率が高くなり、材料強度が上昇してDI成形性が低下する。   In the present invention, the thickness of the hot rolled sheet is regulated to 1.5 to 2.5 mm. If the thickness is less than 1.5 mm, the hot-rolled sheet is likely to be seized or rough, and the thickness profile is further deteriorated. On the other hand, if the plate thickness exceeds 2.5 mm, the cold rolling rate increases, the material strength increases, and the DI moldability decreases.

本発明では熱間圧延後にCAL(Continuous Annealing Line)により、550〜600℃の温度に急速加熱し300秒以下の時間保持後急速冷却を施す。その際、冷却速度は800℃/秒以下の速度とするのが好ましい。この冷却には、ミスト冷却による急速冷却、あるいは外気導入による空冷のどちらをも適用できる。
係る連続焼鈍処理により、溶質元素が十分に固溶されて本発明規定の導電率になるとともに加工硬化性(n値)が向上してボトムしわ性が改善する。さらに固溶された溶質元素は、固溶体硬化によって材料強度を高める。550℃未満ではボトムしわ性の改善ならびに強度向上の効果が十分に得られず、600℃を超えると過度な強度上昇によってDI成形性が低下する。好ましい保持温度は560〜580℃である。
In the present invention, after hot rolling, it is rapidly heated to a temperature of 550 to 600 ° C. by CAL (Continuous Annealing Line), and then rapidly cooled after holding for 300 seconds or less. At that time, the cooling rate is preferably 800 ° C./second or less. For this cooling, either rapid cooling by mist cooling or air cooling by introduction of outside air can be applied.
By such a continuous annealing treatment, the solute element is sufficiently solid-solved to have the conductivity defined in the present invention, and the work curability (n value) is improved and the bottom wrinkle property is improved. Further, the solute element that has been dissolved increases the strength of the material by solid solution hardening. If it is less than 550 degreeC, the effect of a bottom wrinkle improvement and an intensity | strength improvement will not fully be acquired, but if it exceeds 600 degreeC, DI moldability will fall by excessive intensity | strength raise. A preferable holding temperature is 560 to 580 ° C.

連続焼鈍処理における550〜600℃の温度での保持時間は300秒以下と定める。300秒を超えると、溶質元素が過飽和に固溶されるため材料強度が過度向上しDI成形性が低下する。以上のようにボトムしわ性、DI成形性、材料強度の観点から焼鈍条件を設定する。さらに、焼鈍炉内の雰囲気ガスの露点を10℃以下に規定する。雰囲気ガスの露点が10℃を超えると、雰囲気中の水蒸気量が多いため、550〜600℃の焼鈍時、アルミニウム合金板表面の酸化皮膜が水蒸気と反応して皮膜が厚くなり、DI成形性時に黒筋が発生して表面品質が低下する。本発明において連続焼鈍を行う場合は、雰囲気ガスで雰囲気を加熱する直接焼鈍とする。雰囲気ガスは窒素ガス、アルゴンガス、一酸化炭素ガス、二酸化炭素ガス還元性ガスあるいは大気から選ばれる少なくとも一種とする。   The holding time at a temperature of 550 to 600 ° C. in the continuous annealing treatment is set to 300 seconds or less. If it exceeds 300 seconds, the solute element is dissolved in a supersaturated state, so that the material strength is excessively improved and the DI moldability is lowered. As described above, annealing conditions are set from the viewpoints of bottom wrinkle property, DI moldability, and material strength. Furthermore, the dew point of the atmospheric gas in the annealing furnace is defined as 10 ° C. or less. When the dew point of the atmospheric gas exceeds 10 ° C., the amount of water vapor in the atmosphere is large. Therefore, when annealing at 550 to 600 ° C., the oxide film on the surface of the aluminum alloy plate reacts with water vapor to increase the film thickness, and during DI moldability Black streaks appear and the surface quality decreases. In the present invention, when continuous annealing is performed, direct annealing is performed in which the atmosphere is heated with an atmosphere gas. The atmospheric gas is at least one selected from nitrogen gas, argon gas, carbon monoxide gas, carbon dioxide gas reducing gas, or air.

熱間圧延後に冷間圧延を施す。最終冷間圧延の出側温度を130℃以上、好ましくは200℃以下、それ以外の圧延パスの出側温度を130℃以下、好ましくは110℃以下とする。
このように本発明では最終冷間圧延の出側温度を130℃以上にして、途中パスの冷間圧延で生成された加工転位密度を減少させて過度に上昇した素板強度をコントロールして素材の伸びを向上させDI成形性の向上に寄与する。
Cold rolling is performed after hot rolling. The exit side temperature of the final cold rolling is 130 ° C. or more, preferably 200 ° C. or less, and the exit side temperature of the other rolling passes is 130 ° C. or less, preferably 110 ° C. or less.
As described above, in the present invention, the material temperature is controlled by controlling the base plate strength which is excessively increased by reducing the processing dislocation density generated by the cold rolling of the intermediate pass by setting the exit side temperature of the final cold rolling to 130 ° C. or more. To improve the DI moldability.

一方で、途中パスの圧延の出側温度は130℃以下、好ましくは110℃以下とすることにより、冷間圧延中に生成されるAl−Cu−Mg系析出物やAl−Cu−Mg−Si系析出物の生成量を抑制することに寄与する。これにより、成形時に析出物を起点とした転位の局在化が起こり難くなるため、動的回復による局所的な加工軟化が抑制されてボトムしわ性は改善される。冷間圧延の合計圧延率は70%以上とする。70%未満では十分な缶胴強度を維持できないとともに、必要とされる最終冷間圧延時の出側温度を十分に確保できない。この冷間圧延の合計圧延率は好ましくは90%以下とする。90%を超えると過度に加工硬化してDI成形性が低下する。   On the other hand, the exit side temperature of the intermediate pass rolling is 130 ° C. or lower, preferably 110 ° C. or lower, so that Al—Cu—Mg-based precipitates and Al—Cu—Mg—Si generated during cold rolling are used. This contributes to reducing the amount of system precipitates produced. As a result, dislocation localization starting from precipitates is less likely to occur during molding, so that local work softening due to dynamic recovery is suppressed and bottom wrinkle properties are improved. The total rolling reduction of cold rolling is 70% or more. If it is less than 70%, sufficient can body strength cannot be maintained, and the required outlet temperature during the final cold rolling cannot be sufficiently secured. The total rolling rate of this cold rolling is preferably 90% or less. If it exceeds 90%, it is excessively work-cured and the DI moldability is lowered.

次に本発明の飲料缶胴用アルミニウム合金板に関して、歪量に対する加工硬化指数(n値)の変化曲線の最大n値ならびに導電率の限定理由を示す。   Next, regarding the aluminum alloy plate for beverage can bodies of the present invention, the maximum n value of the change curve of the work hardening index (n value) with respect to the strain amount and the reason for limiting the conductivity will be shown.

引張試験を行い公称応力sと公称ひずみeを求めた公称応力−公称ひずみ曲線を模式的に図1に示す。図1(a)は軟鋼やAl−Mg合金のように明瞭な上降伏点および下降伏点が現れる材料、また図1(b)は銅やアルミニウムのように明瞭な降伏点を示さない材料を表す。図1(a)のように明瞭な降伏点を示す材料の場合には下降伏点sy1、図1(b)のように明瞭な降伏点を示さない材料の場合には、一定の永久ひずみ(通常は0.2%の永久ひずみ)を生じる公称応力s0.2を降伏応力(耐力)とみなしている。この降伏応力を過ぎると、さらに塑性変形させるために必要な応力は増加し、公称応力の最大荷重点Bに達する。この最大荷重点Bに達するまでは、加工対象となる材料はほぼ一様に変形しているとみなすことができる。 FIG. 1 schematically shows a nominal stress-nominal strain curve obtained by conducting a tensile test to obtain a nominal stress s and a nominal strain e. Fig. 1 (a) shows a material with clear upper and lower yield points such as mild steel and Al-Mg alloy, and Fig. 1 (b) shows a material with no clear yield point such as copper and aluminum. To express. In the case of a material showing a clear yield point as shown in FIG. 1 (a), the yield point s y1 is used. In the case of a material not showing a clear yield point as shown in FIG. The nominal stress s 0.2 that produces (usually 0.2% permanent strain) is considered the yield stress (yield strength). When this yield stress is passed, the stress necessary for further plastic deformation increases and reaches the maximum load point B of the nominal stress. Until this maximum load point B is reached, it can be considered that the material to be processed is deformed substantially uniformly.

すなわち本発明にいう均一塑性ひずみ領域は図1(a)のように明瞭な降伏点を示す材料の場合では下降伏点sy1から最大荷重点Bまでの塑性ひずみ領域であり、図1b)のように明瞭な降伏点を示さない材料の場合には、公称応力s0.2から公称応力の最大荷重点Bまでの塑性ひずみ領域であっる。
したがって本発明にいう均一塑性ひずみ領域は図1(b)のように明瞭な降伏点を示さない材料の場合には、0.2%耐力から最大荷重点B間の塑性ひずみ領域として理解することができる。
That is, the uniform plastic strain region referred to in the present invention is a plastic strain region from the lower yield point sy1 to the maximum load point B in the case of a material having a clear yield point as shown in FIG. In the case of a material that does not show a clear yield point, it is a plastic strain region from the nominal stress s 0.2 to the maximum load point B of the nominal stress.
Therefore, in the case of a material that does not show a clear yield point as shown in FIG. 1B, the uniform plastic strain region referred to in the present invention should be understood as a plastic strain region between the 0.2% proof stress and the maximum load point B. Can do.

本発明の飲料缶胴用アルミニウム合金板では材料特性として以上の均一塑性ひずみ領域全域若しくは0.2%耐力から最大荷重点間の塑性変形領域における歪量に対する加工硬化指数(n値)の変化曲線の最大n値が0.1以上である様に管理される。     In the aluminum alloy plate for beverage can bodies of the present invention, the change curve of work hardening index (n value) with respect to the amount of strain in the plastic deformation region between the entire uniform plastic strain region or 0.2% proof stress and the maximum load point as material characteristics. It is managed so that the maximum n value of is 0.1 or more.

アルミニウム合金は、一般的に圧延加工によって歪量が増加し、材料が硬化することが知られている。缶胴材に用いられるJIS3004合金は材料強度を高めるため、冷間圧延における加工硬化現象を積極的に利用している。この加工硬化現象の程度を示す加工硬化性は、n値(加工硬化指数:work hardening exponent)と呼ばれる加工硬化特性を示す定数によって表現することができる。このn値は、真応力をσ、真歪をε、加工硬化指数をnとした時に真応力σと真歪εとの関係をσ=Fε によって近似させたHollomonの公式により算出される。この加工硬化指数(n値)は絞り加工性の目安にもなる特性値で、n値が大きいほど、局部収縮発生までの伸びが大きいため絞り性が良くなる。 It is known that an aluminum alloy generally increases its strain by rolling and hardens the material. The JIS3004 alloy used for the can body material actively uses the work hardening phenomenon in cold rolling in order to increase the material strength. The work hardening property indicating the degree of the work hardening phenomenon can be expressed by a constant indicating a work hardening property called an n value (work hardening exponent). This n value is calculated by the Hollomon formula in which the relationship between the true stress σ and the true strain ε is approximated by σ = Fε n when the true stress is σ, the true strain is ε, and the work hardening index is n. This work hardening index (n value) is a characteristic value that also serves as a guide for drawing workability. The larger the n value, the larger the elongation until the occurrence of local shrinkage, and the better the drawing ability.

図1に本発明の飲料缶胴用アルミニウム合金板がその材料特性として有する均一塑性ひずみ領域全域若しくは0.2%耐力から最大荷重点間の塑性変形領域における歪量に対する加工硬化指数(n値)の変化曲線を模式的に示す。
図1に示される様に本発明の飲料缶胴用アルミニウム合金板では均一塑性ひずみ領域全域若しくは0.2%耐力から最大荷重点間の塑性変形領域における最大n値が0.1を超えるものとされる。
これにより缶成形加工中の加工硬化性が高くなるため、成形力が向上し缶底部の歪が緩和されてボトムしわ性が向上する。0.1未満であるとその効果が十分に得られず、缶底にしわが発生し易くなる。
FIG. 1 shows the work hardening index (n value) with respect to the amount of strain in the uniform plastic strain region or the plastic deformation region between 0.2% proof stress and the maximum load point which the aluminum alloy plate for beverage can bodies of the present invention has as its material characteristics. A change curve is schematically shown.
As shown in FIG. 1, in the aluminum alloy plate for beverage can bodies of the present invention, the maximum n value in the uniform plastic strain region or the plastic deformation region between 0.2% proof stress and the maximum load point exceeds 0.1. Is done.
This increases the work curability during the can molding process, so that the molding force is improved, the strain at the bottom of the can is relaxed, and the bottom wrinkle property is improved. If it is less than 0.1, the effect is not sufficiently obtained, and wrinkles are likely to occur on the bottom of the can.

導電率は30.0〜39.0%IACSとする。これにより、溶質元素が適度に固溶されて加工硬化性の向上が得られる。39.0%IACS以上であると、その効果は十分に得られず缶底部にしわが発生し易くなる。一方、30.0%IACS以下であると、溶質元素が過飽和に固溶されるため、強度上昇によってDI成形性が低下する。   The conductivity is 30.0 to 39.0% IACS. As a result, the solute element is appropriately solid-dissolved to improve work hardening. If it is 39.0% IACS or more, the effect is not sufficiently obtained and wrinkles are likely to occur at the bottom of the can. On the other hand, if it is 30.0% IACS or less, the solute element is solid-dissolved in a supersaturated state, so that the DI moldability decreases due to an increase in strength.

次に、本発明のアルミニウム合金板の素板の引張強度と空焼き後の耐力の限定理由について説明する。
素板の引張強度は320MPa以下とする。320MPaを超えると、成形中に材料の変形抵抗が大きくなるため、しごき加工時に割れの発生頻度が増す。塗装焼付後の耐力は250MPa以上とする。250MPa未満だと耐圧強度が不足し、アルミニウム缶として中身が充填された際、内圧変化に耐える強度を維持できない。
Next, the reasons for limiting the tensile strength of the base plate of the aluminum alloy plate of the present invention and the yield strength after baking are described.
The tensile strength of the base plate is set to 320 MPa or less. If it exceeds 320 MPa, the deformation resistance of the material increases during molding, so the frequency of occurrence of cracks increases during ironing. The yield strength after baking is set to 250 MPa or more. When the pressure is less than 250 MPa, the pressure resistance is insufficient, and when the contents are filled as an aluminum can, the strength that can withstand changes in internal pressure cannot be maintained.

以下に本発明を実施例に基づき、具体的に説明する。
表1に示す合金成分の本発明のアルミニウム合金を常法により、溶解鋳造して厚さ500mmのスラブ(板状鋳塊)を得た。このスラブを厚さ490mmに面削した後、600℃で6時間均質化処理した後、室温まで冷却する。次いで、圧延開始温度490℃、圧延終了温度は320℃で熱間圧延を行い、厚さ2.2mmの熱間圧延板とし、これをコイルに巻取って室温まで冷却する。熱間圧延については粗圧延をシングルミルのリバース式圧延機で行い、仕上げ圧延には4スタンドのタンデム式圧延機を使用した。この合金板を連続焼鈍炉により、560℃に急速加熱し30秒保持後、20℃/秒の速度で冷却を施す。次いで、冷間圧延を行い厚さ0.3mmの飲料缶胴用アルミニウム合金板を製造する。冷間圧延では3パスの合計圧延率を86%とする。
The present invention will be specifically described below based on examples.
The aluminum alloy of the present invention having the alloy components shown in Table 1 was melt cast by a conventional method to obtain a slab (plate ingot) having a thickness of 500 mm. The slab is chamfered to a thickness of 490 mm, homogenized at 600 ° C. for 6 hours, and then cooled to room temperature. Next, hot rolling is performed at a rolling start temperature of 490 ° C. and a rolling end temperature of 320 ° C. to form a hot rolled plate having a thickness of 2.2 mm, which is wound on a coil and cooled to room temperature. For hot rolling, rough rolling was performed with a single mill reverse type rolling mill, and a four-stand tandem rolling mill was used for finish rolling. This alloy plate is rapidly heated to 560 ° C. in a continuous annealing furnace, held for 30 seconds, and then cooled at a rate of 20 ° C./second. Next, cold rolling is performed to produce an aluminum alloy plate for beverage can bodies having a thickness of 0.3 mm. In cold rolling, the total rolling rate of 3 passes is 86%.

(比較例1)
合金組成を本発明規定値外とした他は、実施例1と同じ方法により、アルミニウム合金板を製造した。
(Comparative Example 1)
An aluminum alloy plate was produced by the same method as in Example 1 except that the alloy composition was outside the specified value of the present invention.

表1に本発明実施例1および比較例1の合金組成を示す。   Table 1 shows the alloy compositions of Example 1 and Comparative Example 1 of the present invention.

Figure 2006283112
Figure 2006283112

実施例1及び比較例1で製造した各々のアルミニウム合金について、(1)機械的特性、(2)(2)導電率、(3)最大n値、(4)DI成形性、(5)缶底成形性(ボトムしわ性)、(6)耐圧強度の評価を行った。   For each aluminum alloy produced in Example 1 and Comparative Example 1, (1) mechanical properties, (2) (2) conductivity, (3) maximum n value, (4) DI formability, (5) can The bottom moldability (bottom wrinkle property) and (6) pressure strength were evaluated.

(1)機械的特性は、製造したアルミニウム合金板の圧延方向における素板の引張強度と空焼き後の耐力を測定して行った。
空焼きとは製缶時の塗装焼付け条件を想定したものであり、205℃×10分で行った。素板の引張強度は320MPaを基準としてこれ以下を合格(本発明規定値内)と評価し、空焼き後の耐力は250MPa以上を合格と判定した。
(2)導電率は20℃の恒温室中で一定温度に保持した後、渦電流法により測定した。
(3)n値は、均一塑性ひずみ領域全域において、公称歪を0.05%の間隔で公称応力を測定し、これら測定値から真応力と真歪を計算した後、JISZ2253に基づき、公称歪の前後1%を計算範囲として最小自乗法によってn値を求めた。次いで、計算したn値を用いて真歪に対するn値の変化曲線を作成し、最大n値が0.1以上であるものを良好(○)とし、0.1未満のものを不良(×)とした。
(1) The mechanical properties were measured by measuring the tensile strength of the base plate in the rolling direction of the manufactured aluminum alloy plate and the yield strength after baking.
Empty baking is the assumption of paint baking conditions at the time of can-making, and was performed at 205 ° C. for 10 minutes. With respect to the tensile strength of the base plate, 320 MPa or less was evaluated as acceptable (within the specified value of the present invention), and the yield strength after baking was determined to be acceptable at 250 MPa or more.
(2) The conductivity was measured by an eddy current method after being kept at a constant temperature in a constant temperature room at 20 ° C.
(3) The n value is determined by measuring the nominal stress at an interval of 0.05% over the uniform plastic strain region, calculating the true stress and the true strain from these measured values, and then, based on JISZ2253, the nominal strain. The n value was obtained by the method of least squares with 1% before and after the calculation range. Next, using the calculated n value, a change curve of the n value with respect to the true strain is created, and a sample having a maximum n value of 0.1 or more is judged good (◯), and a sample having a value less than 0.1 is bad (×) It was.

(4)DI成形性は一般飲料用の缶胴(内径66mmΦ、側壁板厚100μm、側壁先端板厚150μm)にDI成形し、10000缶の製缶で、割れおよび破断等が全く発生しないで連続製缶できたものを良好(○)とし、割れおよび破断が発生したものを不良(×)として判定した。
(5)ボトムしわ性はブランクからカップを絞り、その後、再絞り缶(ブランク径140mmΦ、カップ径87mmΦ、再絞り径66mmΦ)について、缶底テーパー部の起状を形状測定器にて全周の測定を行い、その最大振幅にて評価した。最大振幅が180μm以下を良好(○)、180μm以上を不良(×)と判定した。
(6)耐圧強度はDI成形後、空焼き(205℃×10分)を施し、缶胴内部にエアー圧を掛けて缶底ドームが反転する圧力を測定した。反転圧力が650kPa以上のものを良好(○)とし、650kPa以下を不良(×)として判定した。これら調査結果を表2に示す。表2は、実施例1および比較例1で製造した各々のアルミニウム合金の各種特性評価を示す。
(4) DI moldability is DI molded into a can body for a general beverage (inner diameter 66 mmΦ, side wall plate thickness 100 μm, side wall tip plate thickness 150 μm), and is a can of 10,000 cans. What was able to be made can be judged as good (◯), and those with cracks and fractures were judged as bad (x).
(5) For bottom wrinkle, the cup is squeezed from the blank, and then the re-drawn can (blank diameter 140 mmΦ, cup diameter 87 mmΦ, redrawn diameter 66 mmΦ) Measurements were made and evaluated at the maximum amplitude. A maximum amplitude of 180 μm or less was judged as good (◯), and 180 μm or more was judged as bad (×).
(6) With regard to the pressure strength, after DI molding, baking (205 ° C. × 10 minutes) was performed, and the pressure at which the can bottom dome was reversed by applying air pressure to the inside of the can body was measured. A reversal pressure of 650 kPa or higher was judged as good (◯), and a reversal pressure of 650 kPa or lower was judged as defective (x). These survey results are shown in Table 2. Table 2 shows various characteristic evaluations of the aluminum alloys manufactured in Example 1 and Comparative Example 1.

Figure 2006283112
Figure 2006283112

表2より明らかなように、実施例1の試料NO.1(合金No.A)、試料NO.2(合金No.B)、試料NO.3(合金No.C)のアルミニウム合金板はいずれもボトムしわ性、DI成形性、耐圧強度に優れる良好な結果を示した。
これに対して、比較例1の試料NO.4(合金No.D)のアルミニウム合金板はMg量が多いため、素板の引張強度が上昇してDI成形性が低下し、しごき割れが発生した。
試料NO.5(合金No.E)のアルミニウム合金板はMg量が少ないため、空焼き後の耐力が本発明規定外となり耐圧強度が劣る結果となった。さらには導電率が高くかつ最大n値が0.1を超える部分がないためボトムしわ発生が認められた。
試料NO.6(合金No.F)のアルミニウム合金板はMn量が多いため、素板の引張強度が上昇するとともに巨大晶出物が生成し、そこが起点となってDI成形時に割れが発生した。
試料NO.7(合金No.G)のアルミニウム合金板はMn量が少ないため固体潤滑作用を有する晶出物が少なくなり、しごきダイスに焼付けが生じて缶表面が荒れて成形不良となった。さらに、空焼き後の耐力が本発明規定外となり耐圧強度が低下した。
試料NO.8(合金No.H)のアルミニウム合金板はCu量が少ないため、空焼き後の耐力が本発明規定外となり耐圧強度が劣る結果となった。
試料NO.9(合金No.I)のアルミニウム合金板はCu量が多いため、素板の引張強度が上昇しDI成形性が低下した。
As is clear from Table 2, the sample No. 1 of Example 1 was obtained. 1 (alloy No. A), sample NO. 2 (alloy No. B), sample NO. All the aluminum alloy plates of No. 3 (alloy No. C) showed good results excellent in bottom wrinkle property, DI formability and pressure strength.
On the other hand, the sample NO. Since the aluminum alloy plate of No. 4 (alloy No. D) has a large amount of Mg, the tensile strength of the base plate increased, the DI formability decreased, and ironing cracks occurred.
Sample No. Since the aluminum alloy plate of No. 5 (Alloy No. E) has a small amount of Mg, the yield strength after baking was outside the scope of the present invention, resulting in poor pressure strength. Furthermore, since the conductivity is high and there is no portion where the maximum n value exceeds 0.1, bottom wrinkles were observed.
Sample No. Since the aluminum alloy plate of No. 6 (Alloy No. F) has a large amount of Mn, the tensile strength of the base plate increased and a giant crystallized product was generated, which started as a starting point and cracked during DI molding.
Sample No. Since the aluminum alloy plate of No. 7 (Alloy No. G) had a small amount of Mn, the amount of crystallized material having a solid lubricating action was reduced, the ironing die was baked, the surface of the can was rough, and the molding was defective. Furthermore, the proof stress after baking was out of the scope of the present invention, and the pressure resistance decreased.
Sample No. Since the aluminum alloy plate of No. 8 (alloy No. H) has a small amount of Cu, the yield strength after baking was out of the scope of the present invention, resulting in poor pressure strength.
Sample No. Since the aluminum alloy plate of No. 9 (alloy No. I) has a large amount of Cu, the tensile strength of the base plate increased and the DI moldability decreased.

表1に示した本発明規定組成の(合金No.A)のアルミニウム合金を常法により溶解鋳造して厚さ500mmの板状鋳塊(スラブ)とし厚さ490mmに面削した後、均質化処理と熱間圧延を施す。この合金板を連続焼鈍炉により急速加熱し一定時間保持した後冷却を施す。次に、冷間圧延を行い厚さ0.3mmの飲料缶胴用アルミニウム合金板を本発明の規定値内で種々変化させて製造した。   The aluminum alloy of (alloy No. A) of the present invention composition shown in Table 1 is melt cast by a conventional method to form a plate-like ingot (slab) having a thickness of 500 mm, which is chamfered to a thickness of 490 mm, and then homogenized. Processing and hot rolling. This alloy plate is rapidly heated by a continuous annealing furnace and kept for a predetermined time, and then cooled. Next, it cold-rolled and manufactured the aluminum alloy plate for drink can bodies of thickness 0.3mm variously within the regulation value of this invention.

(比較例2)製造条件を本発明規定値外とした他は、実施例2と同じ方法によりアルミニウム合金板を製造した。実施例2または比較例2で得られた各々のアルミニウム合金板について、実施例1の場合と同じ方法により、諸特性を調査し良否を判定した。製造条件を表3に示し調査結果を表4に示す。表3は、本発明実施例2および比較例2のアルミニウム合金板製造条件を示す。 (Comparative Example 2) An aluminum alloy plate was produced in the same manner as in Example 2 except that the production conditions were outside the specified values of the present invention. About each aluminum alloy plate obtained in Example 2 or Comparative Example 2, various characteristics were investigated by the same method as in Example 1, and the quality was judged. The manufacturing conditions are shown in Table 3, and the survey results are shown in Table 4. Table 3 shows the aluminum alloy sheet manufacturing conditions of Example 2 and Comparative Example 2 of the present invention.

Figure 2006283112
Figure 2006283112

表4は、本発明実施例2および比較例2で製造したアルミニウム合金各種特性評価を示す。   Table 4 shows various characteristics evaluations of the aluminum alloys manufactured in Example 2 and Comparative Example 2 of the present invention.

Figure 2006283112
Figure 2006283112

表4により明らかなように、本発明実施例2のアルミニウム合金(試料NO.10、試料NO.11、試料NO.12、試料NO.13、試料NO.14、試料NO.15、試料NO.16)はいずれもボトムしわ性が良好で最大n値、導電率ならびに素板の引張強度、空焼き後の耐力も本発明の条件を満足する値を示した。
これに対して、比較例である試料NO.17のアルミニウム合金板は均質化処理温度が低く十分な均質化効果が得られず、DI成形性が低下した。さらに、導電率が本発明規定値外であるとともに最大n値が0.1を超える部分がなくボトムしわが発生した。
試料NO.18のアルミニウム合金板は熱間圧延開始温度が高いため、再結晶粒が粗大化しDI成形性が低下した。
試料NO.19のアルミニウム合金板は熱間圧延終了温度が低いためコイル端部に圧延割れが生じるとともに、素板の引張強度が上昇したためDI成形性が低下した。
試料NO.20のアルミニウム合金板は熱間圧延後の板厚が薄いため、冷間圧延率が低下して空焼き後の耐力および耐圧強度が低下した。さらに、熱間圧延板に肌荒れが生じ、表面性状が劣化した。
試料NO.21は熱間圧延後の板厚が厚いため冷間圧延率が大きくなり、素板の引張強度が高くなるためDI成形性が低下してしごき割れが発生した。
試料NO.22は熱間圧延後の連続焼鈍温度が低いため、導電率が高くなるとともに最大n値が0.1を超える部分がなくボトムしわ発生が顕著に認められた。
試料NO.23は連続焼鈍時間が長く、溶質元素が過飽和に固溶されるため素板の引張強度が上昇し、DI成形性が低下してしごき割れが発生した。
試料NO.24は連続焼鈍後の冷却速度が高く溶質元素の固溶量が増加して素板の引張強度が上昇したためDI成形性が低下した。
試料NO.25と試料NO.26は冷間圧延の1パス目あるいは2パス目の出側温度が高く、析出物生成によって導電率が高くなり、かつ最大n値が0.1を超える部分がなくボトムしわが発生した。
試料NO.27は最終冷間圧延の出側温度が低く、素板の引張強度が上昇してDI成形性が低下した。
試料NO.28は合計圧延率が低いため、空焼き後の耐力が低くなり耐圧強度が低下した。
As apparent from Table 4, the aluminum alloy of Example 2 of the present invention (Sample No. 10, Sample No. 11, Sample No. 12, Sample No. 13, Sample No. 14, Sample No. 15, Sample No. 15) In all cases 16), the bottom wrinkle was good, and the maximum n value, the electrical conductivity, the tensile strength of the base plate, and the proof stress after baking were values that satisfied the conditions of the present invention.
On the other hand, sample NO. The aluminum alloy plate No. 17 had a low homogenization temperature, and a sufficient homogenization effect was not obtained, resulting in a decrease in DI formability. Furthermore, the conductivity was outside the specified value of the present invention, and there was no portion where the maximum n value exceeded 0.1, and bottom wrinkles were generated.
Sample No. Since the 18 aluminum alloy plate had a high hot rolling start temperature, the recrystallized grains were coarsened and the DI moldability was lowered.
Sample No. No. 19 aluminum alloy sheet had a low hot rolling end temperature, so that rolling cracks occurred at the coil end, and the tensile strength of the base sheet increased, so the DI formability decreased.
Sample No. Since the aluminum alloy plate of 20 was thin after hot rolling, the cold rolling rate was reduced and the yield strength and pressure strength after baking were reduced. Furthermore, the hot rolled sheet was rough and the surface properties were deteriorated.
Sample No. In No. 21, since the plate thickness after hot rolling was thick, the cold rolling rate was increased, and the tensile strength of the base plate was increased, so that DI moldability was lowered and ironing cracks were generated.
Sample No. No. 22 had a low continuous annealing temperature after hot rolling, so that the conductivity was high, and there was no portion where the maximum n value exceeded 0.1, and bottom wrinkling was noticeably observed.
Sample No. No. 23 had a long continuous annealing time, and the solute element was dissolved in supersaturation, so that the tensile strength of the base plate increased, the DI moldability decreased, and ironing cracks occurred.
Sample No. In No. 24, the cooling rate after continuous annealing was high, and the solid solution amount of the solute element increased and the tensile strength of the base plate increased, so that the DI moldability decreased.
Sample No. 25 and sample NO. In No. 26, the exit temperature of the first pass or the second pass of cold rolling was high, the conductivity increased due to the formation of precipitates, and there was no portion where the maximum n value exceeded 0.1, and bottom wrinkles occurred.
Sample No. In No. 27, the exit side temperature of the final cold rolling was low, the tensile strength of the base plate was increased, and the DI moldability was lowered.
Sample No. Since No. 28 had a low total rolling ratio, the yield strength after baking was lowered and the pressure strength was lowered.

表5のアルミニウム合金に実施例1と同様に常法により、溶解鋳造・面削・均質化処理し、室温まで冷却して得られた合金板を連続焼鈍炉により、580℃に急速加熱し30秒保持後冷却する処理を施す。その際に焼鈍炉内の雰囲気ガスの露点を0℃とする。次いで、圧延開始温度490℃、圧延終了温度は320℃で熱間圧延を行い、厚さ2.2mmの熱間圧延板とし、これをコイルに巻取って室温まで冷却する。この合金板を連続焼鈍炉により、580℃に急速加熱し30秒保持後冷却を施す。次いで、冷間圧延を行い厚さ0.3mmの飲料缶胴用アルミニウム合金板を製造する。冷間圧延は3パスとし、合計圧延率を86%とする。   In the same manner as in Example 1, the aluminum alloy shown in Table 5 was melt cast, chamfered, homogenized and cooled to room temperature, and the alloy plate obtained was rapidly heated to 580 ° C. in a continuous annealing furnace. A cooling process is performed after holding for 2 seconds. At that time, the dew point of the atmospheric gas in the annealing furnace is set to 0 ° C. Next, hot rolling is performed at a rolling start temperature of 490 ° C. and a rolling end temperature of 320 ° C. to form a hot rolled plate having a thickness of 2.2 mm, which is wound on a coil and cooled to room temperature. This alloy plate is rapidly heated to 580 ° C. by a continuous annealing furnace, held for 30 seconds, and then cooled. Next, cold rolling is performed to produce an aluminum alloy plate for beverage can bodies having a thickness of 0.3 mm. Cold rolling is 3 passes and the total rolling rate is 86%.

(比較例3)
合金組成を本発明規定値外とした他は、実施例3と同じ方法により、アルミニウム合金板を製造した。
表5に本発明実施例3および比較例3の合金組成を示す。
(Comparative Example 3)
An aluminum alloy plate was produced in the same manner as in Example 3 except that the alloy composition was outside the specified value of the present invention.
Table 5 shows alloy compositions of Example 3 and Comparative Example 3 of the present invention.

Figure 2006283112
Figure 2006283112

実施例3で製造した各々のアルミニウム合金について、(1)機械的特性、(2)導電率、(4)DI成形性、(6)耐圧強度に関しては実施例1及び比較例1で製造した各々のアルミニウム合金に対する特性評価と同様にして、(3)最大n値、(5)ボトムしわ性、(7)酸化皮膜の厚さ、(8)DI成形時の表面品質(黒筋発生の有無)については以下のようにして評価を行った。
(3)n値の計算は0.2%耐力から最大荷重点までの塑性変形領域について、公称応力と公称歪を0.05%の間隔で測定し公称歪の各々1%を測定範囲として、真応力と真歪を計算し最小自乗法を用いて算出を行った。そして、最大n値が0.1以上であるものを良好(○)とし、0.1未満のものを不良(×)とした。
(5)ボトムしわ性は、DI成形後の缶底しわの有無を目視にて判定した。
(7)酸化皮膜の厚さについては、オージェ電子分光装置により板表面から深さ方向への元素プロファイルにより測定を行った。
(8)黒筋発生の有無に関しては、DI成形後目視にて評価を行った。
表6は、本発明実施例3および比較例3の各種特性評価を示す。
For each aluminum alloy produced in Example 3, (1) mechanical properties, (2) conductivity, (4) DI formability, and (6) pressure strength, each produced in Example 1 and Comparative Example 1 (3) Maximum n value, (5) Bottom wrinkle, (7) Oxide film thickness, (8) Surface quality during DI molding (whether black streak is generated) Was evaluated as follows.
(3) For the calculation of n value, for the plastic deformation region from 0.2% proof stress to the maximum load point, the nominal stress and the nominal strain are measured at an interval of 0.05%, and each 1% of the nominal strain is the measurement range. True stress and true strain were calculated and calculated using the method of least squares. And the thing whose maximum n value is 0.1 or more was made into favorable ((circle)), and the thing below 0.1 was made into defect (x).
(5) The bottom wrinkle was visually determined for the presence or absence of a wrinkle at the bottom after DI molding.
(7) The thickness of the oxide film was measured by an element profile in the depth direction from the plate surface with an Auger electron spectrometer.
(8) The presence or absence of black streaks was evaluated visually after DI molding.
Table 6 shows various characteristic evaluations of Example 3 and Comparative Example 3 of the present invention.

Figure 2006283112
Figure 2006283112

表6より明らかなように、本発明実施例3の試料NO.1(合金No.A)、試料NO.2(合金No.B)、試料NO.3(合金No.C)のアルミニウム合金板は、いずれもボトムしわ性およびDI成形性に優れる良好な結果を示した。   As can be seen from Table 6, the sample NO. 1 (alloy No. A), sample NO. 2 (alloy No. B), sample NO. All the aluminum alloy sheets of No. 3 (Alloy No. C) showed good results excellent in bottom wrinkle property and DI formability.

これに対して、比較例3の試料NO.4(合金No.D)のアルミニウム合金板はMg量が多いため、素板強度が上昇しDI成形性が低下してしごき割れが発生した。
試料NO.5(合金No.E)はMg量が少ないため、空焼き後の耐力が本発明規定外となり耐圧強度が低下した。さらに、最大n値が0.1を超える部分がなく、ボトムしわが発生した。
On the other hand, the sample NO. Since the aluminum alloy plate of No. 4 (Alloy No. D) has a large amount of Mg, the strength of the base plate increased, the DI formability decreased, and ironing cracks occurred.
Sample No. 5 (Alloy No. E) had a small amount of Mg, and therefore the yield strength after baking was out of the scope of the present invention, and the pressure resistance decreased. Furthermore, there was no portion where the maximum n value exceeded 0.1, and bottom wrinkles occurred.

試料NO.6(合金No.F)のアルミニウム合金板はMn量が多いため巨大晶出物が生成し、そこが起点となってDI成形性時にしごき割れが発生するとともに、最大n値が0.1を超える部分がなくボトムしわ発生が認められた。
試料NO.7(合金No.G)のアルミニウム合金板はMn量が少ないため固体潤滑作用を有する晶出物が少なくなり、しごきダイスに焼付けが生じ、缶表面が荒れて成形不良となった。さらに、空焼き後耐力が本発明規定外となり耐圧強度が低下した。
試料NO.8(合金No.H)のアルミニウム合金板はSi量が多いため、溶質原子の固溶度が減少し空焼き後の缶胴強度を高める効果が十分に得られず耐圧強度がした。さらに、最大n値が0.1を超える部分がなくボトムしわが発生した。
試料NO.9(合金No.I)はSi量が少ないため、固体潤滑作用を有する晶出物が少なくなり、しごきダイスに焼付けが生じ、缶表面が荒れて成形不良となった。
試料NO.10(合金No.J)はCu量が多いため、素板強度が上昇しDI成形性が低下した。
Sample No. The aluminum alloy plate of No. 6 (Alloy No. F) has a large amount of Mn, so that a large crystallized product is generated, and iron cracks are generated at the time of DI forming, and the maximum n value is 0.1. There was no excess part and the occurrence of bottom wrinkles was observed.
Sample No. The aluminum alloy plate of No. 7 (Alloy No. G) had a small amount of Mn, so the amount of crystallized material having a solid lubricating action was reduced, the ironing die was baked, the surface of the can was rough, and the molding was defective. Furthermore, the yield strength after baking was out of the scope of the present invention, and the pressure resistance decreased.
Sample No. Since the aluminum alloy plate of No. 8 (alloy No. H) has a large amount of Si, the solid solubility of the solute atoms decreased, and the effect of increasing the strength of the can body after baking was not sufficiently obtained, and the pressure strength was increased. Further, there was no portion where the maximum n value exceeded 0.1, and bottom wrinkles occurred.
Sample No. 9 (Alloy No. I) had a small amount of Si, so the amount of crystallized material having a solid lubricating action was reduced, the ironing die was baked, the surface of the can was roughed, and molding was poor.
Sample No. 10 (Alloy No. J) has a large amount of Cu, so that the strength of the base plate increased and the DI moldability decreased.

表5に示した本発明実施例3の合金成分に示した本発明規定組成の(合金No.A)のアルミニウム合金を用い、実施例2と同様にして溶解鋳造・面削・均質化処理・熱間圧延を施し、この合金板を連続焼鈍炉により急速加熱し一定時間保持後冷却を施した後、冷間圧延を3パス行い、厚さ0.3mmの飲料缶胴用アルミニウム合金板を本発明の規定値内で種々変化させて製造した。   Using an aluminum alloy of (alloy No. A) of the present invention composition shown in the alloy composition of Example 3 of the present invention shown in Table 5, in the same manner as in Example 2, melting casting, face-cutting, homogenizing treatment, After hot rolling, this alloy plate is rapidly heated in a continuous annealing furnace, held for a certain period of time, then cooled, and then subjected to 3 passes of cold rolling to produce a 0.3 mm thick aluminum alloy plate for beverage can bodies. Various variations were made within the specified values of the invention.

(比較例4) 製造条件を本発明規定値外とした他は実施例4と同じ方法によりアルミニウム合金板を製造した。表7は、本発明実施例4および比較例4のアルミニウム合金板製造条件を示す。 (Comparative Example 4) An aluminum alloy plate was produced by the same method as in Example 4 except that the production conditions were outside the specified values of the present invention. Table 7 shows the aluminum alloy sheet production conditions of Example 4 and Comparative Example 4 of the present invention.

Figure 2006283112
Figure 2006283112

実施例4及び比較例4で得られた各々のアルミニウム合金板について、実施例3および比較例3の場合と同じ方法により、諸特性を調査し良否を判定した。調査結果を表8に示す。表8は、実施例4および比較例4で得られた各々のアルミニウム合金板の各種特性評価を示す。   About each aluminum alloy board obtained in Example 4 and Comparative Example 4, various characteristics were investigated by the same method as the case of Example 3 and Comparative Example 3, and the quality was determined. The survey results are shown in Table 8. Table 8 shows various characteristic evaluations of the aluminum alloy plates obtained in Example 4 and Comparative Example 4.

Figure 2006283112
Figure 2006283112

表8より明らかなように、本発明例のアルミニウム合金(試料NO.11、試料NO.12、試料NO.13、試料NO.14、試料NO.15、試料NO.16、試料NO.17)は最大n値、素板の引張強度、空焼き後の耐力ならびに導電率も本発明の条件を満足する値を示し、いずれもボトムしわ性とDI成形性が良好であった。   As is apparent from Table 8, the aluminum alloy of the present invention example (Sample No. 11, Sample No. 12, Sample No. 13, Sample No. 14, Sample No. 15, Sample No. 16, Sample No. 17) The maximum n value, the tensile strength of the base plate, the yield strength after baking, and the electrical conductivity showed values satisfying the conditions of the present invention, and all had good bottom wrinkling properties and DI moldability.

これに対して、比較例である試料NO.18は均質化処理温度が低くDI成形性が低下し、さらに導電率が高いため、ボトムしわ発生が顕著に認められた。
試料NO.19のアルミニウム合金板は熱間圧延開始温度が高いためDI成形性が低下した。
試料NO.20のアルミニウム合金板は熱間圧延終了温度が低いため、圧延加工性が低下してコイル端部に割れが生じるとともに、DI成形性が低下した。
On the other hand, sample NO. In No. 18, since the homogenization temperature was low, the DI moldability was lowered, and the electrical conductivity was high, the occurrence of bottom wrinkles was noticeably observed.
Sample No. Since the aluminum alloy sheet of No. 19 has a high hot rolling start temperature, the DI formability deteriorated.
Sample No. Since the aluminum alloy plate No. 20 had a low hot rolling end temperature, the rolling processability was reduced, cracking occurred at the coil end, and the DI formability was lowered.

試料NO.21のアルミニウム合金板は熱間圧延後の連続焼鈍温度が低いため、導電率が高くなりボトムしわが発生した。
試料NO.22のアルミニウム合金板は熱間圧延後の連続焼鈍時間が長く、溶質原子が過飽和に固溶されるため材料強度が上昇し、DI成形性が低下してしごき割れが発生した。
試料NO.23のアルミニウム合金板は焼鈍炉内の雰囲気ガスの露点が高いため、板表面の酸化皮膜が水蒸気と反応して厚くなりDI成形時に黒筋が発生した。
試料NO.24のアルミニウム合金板は合計圧延率が低いため、空焼き後の耐力と耐圧強度が低い値となった。
Sample No. Since the aluminum alloy plate No. 21 had a low continuous annealing temperature after hot rolling, the electrical conductivity was high and bottom wrinkles were generated.
Sample No. The 22 aluminum alloy sheet had a long continuous annealing time after hot rolling, and the solute atoms were dissolved in supersaturation, so that the material strength was increased, the DI formability was lowered, and ironing cracks were generated.
Sample No. Since the aluminum alloy plate No. 23 had a high dew point of the atmospheric gas in the annealing furnace, the oxide film on the plate surface reacted with water vapor and became thick and black streaks were generated during DI molding.
Sample No. Since the 24 aluminum alloy sheet had a low total rolling ratio, the yield strength and pressure strength after air baking were low.

本発明は炭酸飲料用、ビール用および清涼飲料等の各種飲料缶の缶胴材として使用されるアルミニウム合金板に関して、ボトムしわ性に優れ、かつ高い缶胴強度が得られる飲料缶胴用アルミニウム合金板およびその製造方法として適用することができる。   The present invention relates to an aluminum alloy plate used as a can body material for various beverage cans such as carbonated beverages, beer and soft drinks, and has an excellent bottom wrinkle property and can provide a high can body strength. It can be applied as a plate and its manufacturing method.

引張試験を行い公称応力sと公称ひずみeを求めた公称応力−公称ひずみ曲線を示す模式図で、(a)は軟鋼等の明瞭な上降伏点および下降伏点が現れる材料の場合を示し、(b)は非鉄金属一般の明瞭な降伏点を示さない材料の場合を示す。FIG. 5 is a schematic diagram showing a nominal stress-nominal strain curve obtained by conducting a tensile test and obtaining a nominal stress s and a nominal strain e, wherein (a) shows the case of a material in which clear upper and lower yield points such as mild steel appear; (B) shows the case of the material which does not show the clear yield point of the nonferrous metal in general. 均一塑性ひずみ領域全域における歪量に対する加工硬化指数(n値)の変化曲線である。It is a change curve of the work hardening index (n value) with respect to the strain amount in the entire uniform plastic strain region. ボトムしわが発生する部位(缶底チャイム部)を模式的に示す断面図である。It is sectional drawing which shows typically the site | part (can bottom chime part) where a bottom wrinkle generate | occur | produces.

符号の説明Explanation of symbols

1・・・飲料缶缶胴体、2・・・缶側壁、3・・・缶底チャイム部、4・・・缶底接地部
DESCRIPTION OF SYMBOLS 1 ... Beverage can body, 2 ... Can side wall, 3 ... Can bottom chime part, 4 ... Can bottom grounding part

Claims (8)

Mn:0.7〜1.5%(質量%,以下同じ)、Mg:0.8〜1.5%、Fe:0.35〜0.5%、Si:0.1〜0.5%、Cu:0.1〜0.3%と、Ti:0.1%以下、B:0.1%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金板であり、材料特性として均一塑性ひずみ領域全域における歪量に対する加工硬化指数(n値)の変化曲線の最大n値が0.1以上で、導電率が30.0〜39.0%IACSであり、素板の圧延方向における引張強度が320MPa以下とされ、塗装焼付後の強度が圧延方向の耐力で250MPa以上であることを特徴とする飲料缶胴用アルミニウム合金板。   Mn: 0.7 to 1.5% (mass%, the same applies hereinafter), Mg: 0.8 to 1.5%, Fe: 0.35 to 0.5%, Si: 0.1 to 0.5% Cu: 0.1 to 0.3%, Ti: 0.1% or less, B: 0.1% or less, the balance is an aluminum alloy plate made of Al and inevitable impurities, The maximum n value of the change curve of the work hardening index (n value) with respect to the strain amount in the entire uniform plastic strain region is 0.1 or more, the electrical conductivity is 30.0 to 39.0% IACS, and the rolling direction of the base plate An aluminum alloy plate for a beverage can body, wherein the tensile strength in the case is 320 MPa or less and the strength after baking is 250 MPa or more in terms of proof stress in the rolling direction. 塗装焼き付けが180〜220℃で5〜30分間保持し、または最高到達温度210〜260℃で2分以内保持して行われる塗装焼付である請求項1記載の飲料缶胴用アルミニウム合金板。   The aluminum alloy plate for beverage can bodies according to claim 1, wherein the baking is performed by holding the coating baking at 180 to 220 ° C for 5 to 30 minutes, or holding the maximum baking temperature at 210 to 260 ° C within 2 minutes. 板表面の酸化皮膜の厚さが20nm以下である請求項1または請求項2記載の飲料缶胴用アルミニウム合金板。   The aluminum alloy plate for beverage can bodies according to claim 1 or 2, wherein the thickness of the oxide film on the surface of the plate is 20 nm or less. Mn:0.7〜1.5%、Mg:0.8〜1.5%、Fe:0.35〜0.5%、Si:0.1〜0.5%、Cu:0.1〜0.3%と、Ti:0.1%以下、B:0.1%以下を含有し、残部がAlと不可避的不純物からなるアルミニウム合金鋳塊を製造し、このアルミニウム合金鋳塊を面削した後、均質化処理を行い、次いで熱間圧延を施して1.5〜2.5mmの板厚とし、さらにこの合金板を連続焼鈍炉により550〜600℃の温度に急速加熱して300秒以下の時間保持し、材料特性として均一塑性ひずみ領域全域における歪量に対する加工硬化指数(n値)の変化曲線の最大n値が0.1以上で、導電率が30.0〜39.0%IACSであり、素板の圧延方向における引張強度が320MPa以下とされ、塗装焼付後の強度が圧延方向の耐力で250MPa以上であることを特徴とする飲料缶胴用アルミニウム合金板の製造方法。   Mn: 0.7-1.5%, Mg: 0.8-1.5%, Fe: 0.35-0.5%, Si: 0.1-0.5%, Cu: 0.1 An aluminum alloy ingot containing 0.3%, Ti: 0.1% or less, B: 0.1% or less, the balance being Al and inevitable impurities is manufactured, and the aluminum alloy ingot is face-cut. Then, a homogenization treatment is performed, and then hot rolling is performed to obtain a plate thickness of 1.5 to 2.5 mm. Further, this alloy plate is rapidly heated to a temperature of 550 to 600 ° C. in a continuous annealing furnace for 300 seconds. The maximum n value of the change curve of the work hardening index (n value) with respect to the amount of strain in the entire uniform plastic strain region is 0.1 or more and the conductivity is 30.0 to 39.0%. It is IACS, the tensile strength in the rolling direction of the base plate is 320 MPa or less, the strength after paint baking Method for producing a beverage can body for an aluminum alloy sheet, characterized in that in the rolling direction of the yield strength is at least 250 MPa. 塗装焼き付けは180〜220℃で5〜30分間保持し、または最高到達温度210〜260℃で2分以内保持して行われる塗装焼付である請求項4記載の飲料缶胴用アルミニウム合金板の製造方法。   The production of an aluminum alloy plate for beverage can bodies according to claim 4, wherein the coating baking is performed by holding at 180 to 220 ° C for 5 to 30 minutes, or holding at a maximum achieved temperature of 210 to 260 ° C within 2 minutes. Method. 合金板を連続焼鈍炉により550〜600℃の温度に急速加熱して300秒以下の時間保持した後、800℃/秒以下の冷却速度で冷却を施す請求項4または請求項5記載の飲料缶胴用アルミニウム合金板の製造方法。   The beverage can according to claim 4 or 5, wherein the alloy plate is rapidly heated to a temperature of 550 to 600 ° C by a continuous annealing furnace and held for 300 seconds or less, and then cooled at a cooling rate of 800 ° C / second or less. Manufacturing method of aluminum alloy plate for trunk. 合金板を連続焼鈍炉により550〜600℃の温度に急速加熱して300秒以下の時間保持した後、冷間圧延を70%以上の合計圧延率で最終パスの出側温度を130℃以上、それ以外の圧延パスの出側温度を130℃以下とする温度条件で施すことで材料組織の回復処理を行う請求項4乃至請求項6のいずれか一に記載の飲料缶胴用アルミニウム合金板の製造方法。   After rapidly heating the alloy sheet to a temperature of 550 to 600 ° C. by a continuous annealing furnace and holding it for 300 seconds or less, cold rolling is performed at a total rolling rate of 70% or more and the exit temperature of the final pass is 130 ° C. or more. The aluminum alloy plate for beverage can bodies according to any one of claims 4 to 6, wherein a recovery process of the material structure is performed by applying the other side of the rolling pass under a temperature condition of 130 ° C or lower. Production method. 均質化処理を550〜620℃の温度範囲で行い、合金板を連続焼鈍炉により550〜600℃の温度に急速加熱して焼鈍炉内の雰囲気ガスの露点が10℃以下である雰囲気中で300秒以下の時間保持し、板表面の酸化皮膜の厚さを20nm以下に管理する請求項4乃至請求項7のいずれか一に記載の飲料缶胴用アルミニウム合金板の製造方法。   The homogenization treatment is performed in a temperature range of 550 to 620 ° C., the alloy plate is rapidly heated to a temperature of 550 to 600 ° C. by a continuous annealing furnace, and the atmosphere gas in the annealing furnace has a dew point of 10 ° C. or less in an atmosphere of 300 ° C. The manufacturing method of the aluminum alloy plate for drink can bodies as described in any one of Claim 4 thru | or 7 which hold | maintains time for less than second, and manages the thickness of the oxide film on the plate surface to 20 nm or less.
JP2005104185A 2005-03-31 2005-03-31 Aluminum alloy plate for beverage can body and manufacturing method thereof Active JP4771726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005104185A JP4771726B2 (en) 2005-03-31 2005-03-31 Aluminum alloy plate for beverage can body and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005104185A JP4771726B2 (en) 2005-03-31 2005-03-31 Aluminum alloy plate for beverage can body and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006283112A true JP2006283112A (en) 2006-10-19
JP4771726B2 JP4771726B2 (en) 2011-09-14

Family

ID=37405322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005104185A Active JP4771726B2 (en) 2005-03-31 2005-03-31 Aluminum alloy plate for beverage can body and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4771726B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110869A1 (en) * 2015-12-25 2017-06-29 株式会社Uacj Aluminum alloy sheet for can body, and method for manufacturing same
WO2018003927A1 (en) * 2016-06-29 2018-01-04 株式会社Uacj Aluminum alloy plate and method for producing same
CN114563282A (en) * 2022-03-18 2022-05-31 核工业西南物理研究院 Performance test method of small-size simply supported beam

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452042A (en) * 1987-08-21 1989-02-28 Furukawa Aluminium Aluminum-alloy sheet for forming
JPH02247364A (en) * 1989-03-20 1990-10-03 Furukawa Alum Co Ltd Production of aluminum alloy stock for forming
JPH07197173A (en) * 1993-12-29 1995-08-01 Kobe Steel Ltd Aluminum alloy hardened sheet for forming work and its production
JP2001262261A (en) * 2000-03-22 2001-09-26 Furukawa Electric Co Ltd:The Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
JP2004300537A (en) * 2003-03-31 2004-10-28 Kobe Steel Ltd Aluminum alloy sheet for packaging container and its producing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6452042A (en) * 1987-08-21 1989-02-28 Furukawa Aluminium Aluminum-alloy sheet for forming
JPH02247364A (en) * 1989-03-20 1990-10-03 Furukawa Alum Co Ltd Production of aluminum alloy stock for forming
JPH07197173A (en) * 1993-12-29 1995-08-01 Kobe Steel Ltd Aluminum alloy hardened sheet for forming work and its production
JP2001262261A (en) * 2000-03-22 2001-09-26 Furukawa Electric Co Ltd:The Aluminum alloy sheet for can barrel excellent in can bottom formability and its producing method
JP2004300537A (en) * 2003-03-31 2004-10-28 Kobe Steel Ltd Aluminum alloy sheet for packaging container and its producing method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110869A1 (en) * 2015-12-25 2017-06-29 株式会社Uacj Aluminum alloy sheet for can body, and method for manufacturing same
JPWO2017110869A1 (en) * 2015-12-25 2018-10-11 株式会社Uacj Aluminum alloy plate for can body and manufacturing method thereof
US20210292878A1 (en) * 2015-12-25 2021-09-23 Uacj Corporation Aluminum alloy sheet for can body, and process for producing the same
WO2018003927A1 (en) * 2016-06-29 2018-01-04 株式会社Uacj Aluminum alloy plate and method for producing same
CN114563282A (en) * 2022-03-18 2022-05-31 核工业西南物理研究院 Performance test method of small-size simply supported beam

Also Published As

Publication number Publication date
JP4771726B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4019082B2 (en) Aluminum alloy plate for bottle cans with excellent high temperature characteristics
JP4019083B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP6326485B2 (en) Aluminum alloy plate for DR can body and manufacturing method thereof
JP2009221567A (en) Aluminum alloy sheet for positive pressure coated can lid, and method for producing the same
JP2012188703A (en) Aluminum-alloy sheet for resin coated can body, and method for producing the same
WO2010113333A1 (en) Steel sheet for high‑strength container and manufacturing method thereof
JP6336434B2 (en) Aluminum alloy plate for can body and manufacturing method thereof
JP4791072B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP5568031B2 (en) Aluminum alloy cold rolled sheet for bottle cans
JP2007254825A (en) Method for manufacturing aluminum alloy sheet superior in bendability
JPH05263203A (en) Production of rolled sheet of aluminum alloy for forming
WO2016031234A1 (en) Steel sheet for cans and method for producing same
JP2009235477A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2006283113A (en) Aluminum alloy sheet for drink can barrel, and method for producing the same
JP2008169417A (en) Aluminum alloy sheet for aerosol container, and its manufacturing method
JP2007277694A (en) Painted aluminum-alloy sheet for lid of positive pressure can, and manufacturing method therefor
JP2008274319A (en) Method for manufacturing aluminum alloy sheet for beverage can body
JP4771726B2 (en) Aluminum alloy plate for beverage can body and manufacturing method thereof
JP6912886B2 (en) Aluminum alloy plate for beverage can body and its manufacturing method
JP4257135B2 (en) Aluminum alloy hard plate for can body
JP4708555B2 (en) Continuous solution quenching method for rolled aluminum alloy sheets with excellent formability and flatness
JP3605662B2 (en) Aluminum foil for containers
JP2933501B2 (en) Method for producing aluminum alloy sheet excellent in formability of DI can bottom
JP4019084B2 (en) Aluminum alloy cold rolled sheet for bottle cans with excellent high temperature characteristics
JP2002212691A (en) Method for producing aluminum alloy sheet material for can body having excellent barrel cutting resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080306

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110530

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110621

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250