WO2016031234A1 - Steel sheet for cans and method for producing same - Google Patents

Steel sheet for cans and method for producing same Download PDF

Info

Publication number
WO2016031234A1
WO2016031234A1 PCT/JP2015/004269 JP2015004269W WO2016031234A1 WO 2016031234 A1 WO2016031234 A1 WO 2016031234A1 JP 2015004269 W JP2015004269 W JP 2015004269W WO 2016031234 A1 WO2016031234 A1 WO 2016031234A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
cans
strength
amount
rolling
Prior art date
Application number
PCT/JP2015/004269
Other languages
French (fr)
Japanese (ja)
Inventor
多田 雅毅
克己 小島
裕樹 中丸
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to KR1020177005192A priority Critical patent/KR101923839B1/en
Priority to MYPI2017700598A priority patent/MY177004A/en
Priority to CN201580045669.5A priority patent/CN106605006B/en
Priority to JP2016501260A priority patent/JP5939368B1/en
Publication of WO2016031234A1 publication Critical patent/WO2016031234A1/en
Priority to PH12017500200A priority patent/PH12017500200B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0268Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to a steel plate for a can used as a raw material for a three-piece can formed by high-working can body processing, a two-piece can that requires pressure strength, and a method for manufacturing the same.
  • the present invention relates to a steel plate for cans having a large total elongation and excellent upper yield strength, and a method for producing the same.
  • Measures to reduce can manufacturing costs include cost reduction of materials.
  • 2-piece cans formed by drawing even 3-piece cans mainly made of simple cylindrical molding are being used to reduce the thickness of the steel sheets used.
  • ultra-thin and hard steel plates for cans are manufactured by the Double Reduce method (hereinafter referred to as DR method) in which secondary cold rolling with a reduction rate of 20% or more is performed after annealing.
  • DR method Double Reduce method
  • a steel sheet manufactured using the DR method has a high strength but a small total elongation.
  • a DR material with poor ductility as a material for a can formed by can body processing with a strong working degree such as a deformed can that has recently been put on the market.
  • the DR material has a higher manufacturing cost because the number of manufacturing steps is increased as compared with a steel sheet that is subjected to temper rolling after normal annealing.
  • Patent Document 1 in mass%, C: 0.02% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.0050 to 0.0250%, and (Solution C + Solution N) 0.0050% or more, with the balance being Fe and inevitable impurities , Having a structure having a recrystallization rate of 90% or more, bake hardening amount (BH amount): 100 MPa or more, increase amount of tensile strength by paint baking treatment ⁇ TS: 30 MPa or more, yield stress after painting / baking treatment: An ultra-thin cold-rolled steel sheet for high-strength cans having a sheet thickness of 0.3 mm or less, characterized by having 550 MPa or more is disclosed.
  • BH amount bake hardening amount
  • ⁇ TS increase amount of tensile strength by paint baking treatment
  • ⁇ TS 30 MPa or more
  • yield stress after painting / baking treatment An ultra
  • Patent Document 1 adjusts hot rolling conditions and cooling conditions, rapidly cools to a low temperature range after continuous annealing, and effectively uses the effect of solid solution C amount + solid solution N amount to use the age hardening phenomenon. By doing so, a technique for obtaining a steel plate for a high-strength can similar to a DR material has been proposed.
  • the steel sheet for cans described in Patent Document 1 has a high yield stress of 550 MPa or more after the paint baking process.
  • Patent Document 2 by weight ratio, C: 0.020 to 0.150%, Si: 0.05% or less, Mn: 1.00% or less, P: 0.050% or less, S: 0.010 %, N: 0.0100% or less, Al: 0.100% or less, Nb: 0.005 to 0.025%, and the balance consists of inevitable impurities and iron, and a substantial ferrite single phase structure
  • the yield strength is 40 kgf / mm 2 or more
  • the average crystal grain size is 10 ⁇ m or less
  • the plate thickness is 0.300 mm or less.
  • Patent Document 2 proposes a steel plate having a balance between strength and ductility by combining precipitation strengthening with Nb carbide and refinement strengthening with Nb, Ti, and B carbonitrides.
  • Patent Document 3 C: 0.001 to 0.010 wt%, Si: ⁇ 0.05 wt%, Mn: ⁇ 0.9 wt%, P: 0.131 to 0.200 wt%, S: ⁇ 0.04 wt%, Al: 0.
  • a steel plate for a thinned deep-drawn ironing can characterized by comprising a low-carbon steel plate containing 006 to 0.08 wt%, N: 0.0010 to 0.015 wt%, the balance Fe and inevitable impurities.
  • a method of increasing the strength by using solid solution strengthening such as Mn, P, and N has been proposed.
  • the above-described conventional technology can produce a steel sheet that satisfies any of the strength, ductility (total elongation), and corrosion resistance, but cannot produce a steel sheet that satisfies all of the above characteristics.
  • Patent Document 1 Although the method described in Patent Document 1 is an effective method for increasing the strength, since the amount of solute C and solute N in the steel is large, the yield elongation increases. Yield elongation occurs because solute C or solute N adheres to dislocations, thereby reducing movable dislocations. In a strain region where the yield elongation is large, a local yield phenomenon occurs, causing uneven deformation, and thus wrinkles called stretcher strains may occur, thereby impairing the appearance.
  • Patent Document 2 high strength is realized by precipitation strengthening, and steel with a balance between strength and ductility is proposed, but yield elongation is not taken into consideration, and the manufacturing method described in Patent Document 2 is The yield elongation value targeted by the invention cannot be obtained.
  • Patent Document 3 proposes high strength by solid solution strengthening.
  • P and Mn which are generally known as elements that inhibit corrosion resistance, are added in excess, there is a high risk of inhibiting corrosion resistance.
  • the present invention has been made in view of such circumstances, and has an upper yield strength of 450 to 600 MPa after coating and baking, a total elongation of 13% or more, and good corrosion resistance even for highly corrosive contents.
  • An object of the present invention is to provide a steel sheet for cans with high workability and high strength and a method for producing the same.
  • the present inventors have conducted intensive research to solve the above problems. As a result, the following knowledge was obtained.
  • the balance between precipitation strengthening and solid solution strengthening can increase the strength without impairing the elongation.
  • the reduction rate in the secondary cold rolling is set to 1 to 19%, and the work strength at a reduction rate lower than that in the conventional secondary cold rolling can enhance the strength without reducing the total elongation.
  • composition of the original plate with the element addition amount in a range that does not affect the corrosion resistance, it shows good corrosion resistance even for highly corrosive contents.
  • the present invention has completed the high-workability and high-strength steel plate and its manufacturing method by comprehensively managing the components and the manufacturing method based on the above findings.
  • the present invention has been made based on the above findings, and the gist thereof is as follows.
  • a high workability high strength steel sheet having an upper yield strength of 450 to 630 MPa and a total elongation of 13% or more can be obtained. More specifically, in the present invention, precipitation strengthening by Nb, solid solution strengthening by N, and work strengthening by performing secondary cold rolling at a low pressure reduction rate of 1 to 19% after annealing are harmful to other characteristics. Strengthening the composite without increasing the strength. As a result, the final yield is 450 to 630 MPa in the final product while the total elongation is 13% or more.
  • the present invention by increasing the strength of the original plate, it is possible to ensure high strength of the can even if the welded can is made thinner (thinned). Even if the high workability high strength steel sheet of the present invention is applied to a two-piece can application that requires the pressure resistance of the bottom portion, it is possible to obtain a high pressure resistance with the current gauge. In addition, by increasing ductility, it is possible to perform strong can barrel processing and flange processing such as can expansion processing used in welded cans.
  • the component composition is set so that the corrosion resistance is not hindered.
  • the steel sheet for high workability and high strength can of the present invention is excellent in any of strength, workability and corrosion resistance.
  • the steel sheet for high workability and high strength can of the present invention has an excellent yield resistance with an upper yield strength (hereinafter sometimes referred to as U-YP) of 450 to 630 MPa and a total elongation of 13% or more. Moreover, in the high workability high strength steel plate for cans of the present invention, aging can be reduced.
  • U-YP upper yield strength
  • Nb is added as a precipitation strengthening element
  • N is added as a solid solution strengthening element
  • the upper yield strength is increased by work strengthening by performing secondary cold rolling with a rolling reduction of 1 to 19% after annealing. It can be made into a range. Furthermore, if the upper yield strength is increased by the above-described method in a specific component system, the total elongation is also high. Having excellent upper yield strength and high overall elongation is a feature of the present invention and is the most important requirement.
  • the upper yield strength is 450 to 630 MPa, A steel with high workability and high strength cans having an elongation of 13% or more is obtained.
  • the steel sheet for high workability and high strength can of the present invention is in mass%, C: more than 0.020% and 0.130% or less, Si: 0.04% or less, Mn: 0.10 to 1.20%, P : 0.100% or less, S: 0.030% or less, Al: 0.10% or less, N: more than 0.0120% and 0.020% or less, Nb: 0.004 to 0.040%,
  • the balance has a composition composed of iron and inevitable impurities.
  • % in the description of the component composition means “% by mass”.
  • the upper yield strength (450 to 630 MPa) is not less than a predetermined value after continuous annealing and at the same time the total elongation is 13% or more. It is.
  • the C content of the steel plate for cans is important. Specifically, the C content needs to exceed 0.020%.
  • the C content exceeds 0.040%, the strength of the hot-rolled sheet increases and the deformation resistance during cold rolling increases, so that surface defects may easily occur after rolling. Moreover, in order to reduce this defect, it is necessary to make rolling speed small.
  • the C content is preferably 0.070% or more.
  • the C content exceeds 0.130%, subperitectic cracking occurs during the cooling process during steel melting. For this reason, the upper limit of the C content is 0.130%.
  • the C content is preferably more than 0.020% to 0.040% from the viewpoint of ease of manufacture.
  • Si 0.04% or less Si is an element that increases the strength of steel by solid solution strengthening. However, if the Si content exceeds 0.04%, the corrosion resistance is significantly impaired. Therefore, the Si content is set to 0.04% or less. In the present invention, since the upper yield strength is increased by adjusting elements other than Si and manufacturing conditions, it is not necessary to use solid solution strengthening by Si. For this reason, in this invention, it is not necessary to contain Si.
  • Mn 0.10 to 1.20% Mn increases the strength of the steel by solid solution strengthening and also reduces the ferrite average crystal grain size. The effect of reducing the average ferrite grain size is noticeably produced when the Mn content is 0.10% or more. Moreover, in order to ensure the target upper yield strength, the Mn content must be 0.10% or more. Therefore, the lower limit of the Mn content is 0.10%. On the other hand, if the Mn content exceeds 1.20%, the corrosion resistance and surface characteristics are inferior. Therefore, the upper limit of the Mn content is 1.20%.
  • P 0.100% or less P is an element having a large solid solution strengthening ability. However, if the P content exceeds 0.100%, the corrosion resistance is poor. For this reason, the P content is 0.100% or less.
  • the steel plate for high workability and high strength cans of the present invention may not contain S, it is preferable to set S to 0.030% or less when implementing this patent. . Since the steel plate for cans of the present invention has a high Nb, C, and N content, the slab edge tends to break in the straightening zone during continuous casting. From the viewpoint of preventing slab cracking, the S content is preferably 0.030% or less. Preferably, the S content is 0.020% or less. More preferably, the S content is 0.010% or less.
  • Al 0.10% or less Increasing the Al content results in an increase in the recrystallization temperature. Therefore, it is necessary to set the annealing temperature as high as the increase in the Al content. In the present invention, the recrystallization temperature rises due to the influence of other elements added to increase the upper yield strength, and the annealing temperature must be set high. Therefore, it is necessary to avoid the increase in the recrystallization temperature due to Al as much as possible. Therefore, the Al content is set to 0.10% or less. Al is preferably added as a deoxidizer, and in order to obtain this effect, the Al content is preferably 0.010% or more.
  • N 0.0120% to 0.020% or less
  • N is an element necessary for increasing solid solution strengthening.
  • the N content is 0.020% or less.
  • the N content needs to be over 0.0120%.
  • Nb 0.004 to 0.040%
  • Nb is an important additive element in the present invention.
  • Nb is an element having a high carbide generating ability and precipitates fine carbides.
  • the upper yield strength and surface properties can be adjusted by the Nb content. Since this effect occurs when the Nb content is 0.004% or more, the lower limit of the Nb content is limited to 0.004%.
  • Nb increases the recrystallization temperature. Therefore, if the Nb content exceeds 0.040%, non-recrystallization is not achieved in continuous annealing at an annealing temperature of 650 to 780 ° C. and a soaking time of 10 to 55 seconds. It becomes difficult to anneal, such as remaining part. For this reason, the upper limit of Nb content is limited to 0.040%.
  • the Nb content is preferably 0.004 to 0.020% from the viewpoint of suppressing an increase in deformation resistance during cold rolling.
  • the remainder other than the above essential components and optional components is Fe and inevitable impurities.
  • the structure of the steel sheet for cans of the present invention is a ferrite single-phase structure.
  • the average ferrite grain size affects not only the upper yield strength but also the surface properties during drawing. If the ferrite average crystal grain size of the final product exceeds 7.0 ⁇ m, after the drawing process, a rough skin phenomenon occurs in part and the beauty of the surface appearance is lost. Therefore, the ferrite average crystal grain size is set to 7.0 ⁇ m or less.
  • the element that forms fine precipitates that suppress the grain growth of ferrite crystals by reducing the soaking temperature during continuous annealing or pin the grain boundary migration.
  • the ferrite average crystal grain size is preferably 5.0 ⁇ m or more because the production cost is increased because it is necessary to add a large amount of.
  • the ferrite average crystal grain size may be in the above range after coating baking, but since the ferrite average crystal grain size does not change before and after the coating baking process, it may be measured either before or after the coating baking process.
  • the coating baking process is a process corresponding to heating during coating baking and laminating, and specifically refers to heat treatment in the range of 170 to 265 ° C. for 12 seconds to 30 minutes. In the examples described later, heat treatment is performed at 210 ° C. for 20 minutes as a standard condition.
  • the ferrite average crystal grain size is controlled by the component composition, the cold rolling reduction ratio, and the annealing temperature. Specifically, the ferrite average crystal grain size of 7.0 ⁇ m or less can be obtained by adopting the above component composition and adopting the production conditions described later. Increasing the soaking temperature in continuous annealing increases the average ferrite grain size, and decreasing the soaking temperature decreases the average ferrite grain size.
  • Precipitation Nb amount / Total Nb amount ⁇ 0.30
  • the ratio of the precipitated Nb amount to the total Nb amount (precipitated Nb amount / total Nb amount) is preferably 0.30 or more, the target upper yield strength of 450 to 630 MPa can be realized while improving the total elongation and corrosion resistance.
  • the amount of precipitated Nb / total Nb amount is preferably 0.9 or less because the particle size of the precipitated Nb becomes coarse when the amount of precipitated Nb increases.
  • the deposited Nb amount / total Nb amount may be within the above range after baking. Since the deposited Nb amount / total Nb amount does not change before and after the paint baking process, it may be measured before or after the paint baking process. Since the paint baking process is the same as described above, the description thereof is omitted.
  • the amount of precipitated Nb can be increased by increasing the soaking temperature during continuous annealing.
  • Average particle size of Nb precipitates 20 nm or less
  • the average particle size of Nb precipitates is set to 20 nm or less.
  • the value measured by the method as described in an Example is employ
  • the Nb precipitate average particle diameter may be within the above range after the coating baking. Since the average particle size of Nb precipitates does not change before and after the paint baking process, it may be measured before or after the paint baking process. Since the paint baking process is the same as described above, the description thereof is omitted.
  • the soaking time of continuous annealing may be shortened to suppress the growth of Nb precipitates.
  • the ratio of the volume ratio means that the ratio of the volume ratio is in the above range after baking. Since the paint baking process is the same as described above, the description thereof is omitted.
  • the volume ratio of Nb precipitates in the region from the surface to the 1 / 8th depth position in the plate thickness direction can be obtained by, for example, lowering the temperature of the final finish rolling in hot rolling to roughen the surface layer, If adjusted by a method of promoting Nb precipitation, the value becomes large, and if the temperature of the final finish rolling is increased to refine the surface layer and suppress Nb precipitation in the crystal grains of the surface layer, the value becomes small.
  • the volume fraction of Nb precipitates in the region from the 3/8 depth position to the 4/8 depth position from the surface becomes large if, for example, the Nb precipitate is grown by increasing the coiling temperature of hot rolling.
  • the coiling temperature of hot rolling is lowered to suppress the growth of Nb precipitates, the value becomes small.
  • Upper yield strength 450-630MPa
  • the upper yield strength is set to 450 MPa or more in order to ensure the paneling strength and dent strength of the welded can and the pressure strength of the two-piece can.
  • the upper yield strength is 630 MPa or less.
  • the upper yield strength can be controlled to a target value by employing the above component composition and employing the manufacturing conditions described later. In the present invention, it means that the upper yield strength is in the above range after baking. Since the paint baking process is the same as described above, the description thereof is omitted.
  • Total elongation 13% or more
  • the total elongation is controlled to a target value by setting the component composition in a specific range and setting the rolling reduction ratio of secondary cold rolling after annealing in a specific range.
  • the total elongation after baking is in the above range. Since the paint baking process is the same as described above, the description thereof is omitted.
  • the total elongation is usually 35% or less.
  • the steel plate for cans of this invention is manufactured by the method which has a hot rolling process, a primary cold rolling process, an annealing process, and a secondary cold rolling process.
  • a hot rolling process a hot rolling process
  • a primary cold rolling process a primary cold rolling process
  • an annealing process a secondary cold rolling process
  • Hot rolling process is a process in which steel (for example, slab) is hot-rolled under conditions where the finishing temperature is Ar3 transformation point or higher and 990 ° C or lower, and the winding temperature is 400 ° C or higher and lower than 600 ° C. This is a winding process.
  • the steel used as a raw material will be described. Steel is obtained by melting molten steel adjusted to the above-described component composition by a generally known melting method using a converter or the like, and then using a casting method such as a continuous casting method as a rolling material. It is done.
  • the rolling material means steel as a raw material.
  • the hot rolled sheet is manufactured by subjecting the rolled material obtained as described above to hot rolling.
  • the temperature of the rolled material is preferably set to 1230 ° C. or higher.
  • the finishing temperature in the hot rolling is not less than the Ar3 transformation point.
  • the finish rolling temperature in hot rolling is an important factor in securing the upper yield strength.
  • the hot rolling finishing temperature is limited to the Ar3 transformation point or higher.
  • the finish rolling temperature is higher than 990 ° C., the total elongation is insufficient and the formability deteriorates.
  • the finish rolling temperature is 990 ° C. as the upper limit.
  • the coiling temperature in the hot rolling process is an important factor in controlling the upper yield strength and the total elongation, which are important in the present invention, to the target values.
  • the coiling temperature is set to 600 ° C. or higher, N added for solid solution strengthening is precipitated as AlN, so that the amount of solid solution N decreases, and as a result, the upper yield strength decreases. For this reason, the coiling temperature was set to less than 600 ° C. Further, when the winding temperature is less than 400 ° C., the total elongation is lowered and the moldability is deteriorated, so the winding temperature is set to 400 ° C. or more.
  • the cooling rate after winding is preferably slow cooling, preferably cooling at 11.5 ° C./hour or less, and further cooling at 6.3 ° C./hour or less.
  • cooling at 1.7 ° C./hour or less is more preferable.
  • the primary cold rolling step is a step of pickling a steel plate (hot-rolled plate) after the hot rolling step and rolling under a condition where the rolling reduction is 80% or more.
  • Pickling is not particularly limited as long as the surface scale can be removed. Pickling can be performed by a commonly performed method.
  • the rolling reduction in primary cold rolling is one of the important conditions in the present invention. If the rolling reduction in primary cold rolling is less than 80%, it is difficult to produce a steel sheet having an upper yield strength of 450 MPa or more. Further, when the reduction ratio in this step is less than 80%, at least the thickness of the hot-rolled plate needs to be 1 mm or less in order to obtain a plate thickness (about 0.17 mm) comparable to that of the DR material. However, in operation, it is difficult to set the thickness of the hot-rolled sheet to 1 mm or less. Therefore, the rolling reduction in this step is 80% or more.
  • An annealing step is a step in which a steel plate (cold rolled plate) is continuously annealed after the primary cold rolling step under conditions of a soaking temperature of 650 to 780 ° C. and a soaking time of 10 s to 55 s.
  • the soaking temperature needs to be equal to or higher than the recrystallization temperature of the steel sheet in order to ensure good workability, and in order to make the structure more uniform and ensure the total elongation, the soaking temperature is 650 ° C. or more. Limited to.
  • the soaking temperature exceeds 780 ° C., the ferrite crystal grain size is increased, the upper yield strength is lowered, and the pressure resistance is insufficient.
  • the soaking temperature is set to a range of 650 to 780 ° C.
  • the soaking time is 55 s or less.
  • the soaking time is 10 s or more.
  • the secondary cold rolling step is a step of rolling the steel plate (annealed plate) under the condition of a rolling reduction of 1 to 19% after the annealing step.
  • the rolling reduction in the secondary cold rolling after annealing is made the same as the normal DR material manufacturing conditions, so the strain introduced at the time of processing increases, so the total elongation decreases.
  • the reduction ratio in the secondary cold rolling is set to 19% or less.
  • the rolling reduction of the secondary cold rolling needs to be 1% or more because the unevenness of the roll is transferred to the steel sheet.
  • the rolling reduction in secondary cold rolling is preferably 4 to 12% from the viewpoint of preventing slippage of the steel sheet and roll during rolling and ensuring the total elongation.
  • the plated steel plate obtained above is subjected to a heat treatment corresponding to a coating baking process at 210 ° C. for 20 minutes, and then subjected to a tensile test to measure the upper yield strength and the total elongation.
  • the texture and average crystal grain size were also investigated.
  • the survey method is as follows.
  • the tensile test was performed using a JIS No. 5 size tensile test piece, and the upper yield strength (U-YP) and total elongation (El) were measured to evaluate the strength, ductility and aging. Aging was evaluated by the yield elongation that contributes to the generation of stretcher strain during processing. If the yield elongation is 4% or less, the occurrence of stretcher strain during processing can be suppressed. The obtained results are shown in Table 3.
  • the crystal structure was observed with an optical microscope by polishing the sample, corroding the crystal grain boundary with nital.
  • the ferrite average crystal grain size was measured using the cutting method of JIS G5503 for the crystal structure observed as described above. The obtained results are shown in Table 3.
  • the amount of precipitated Nb was 10% acetylacetone-1% tetramethylammonium chloride-methanol solution, electrolytically extracted and then dissolved in acid, and Nb was quantified by ICP measurement. The total Nb amount was measured by ICP after directly dissolving the sample in acid. Moreover, the Nb precipitate average particle diameter was measured by TEM. The obtained results are shown in Table 3.
  • a 0.26mm thick plate (plated steel plate) is molded into a 63mm ⁇ lid, and then wrapped around a 63mm ⁇ welded can body, compressed air is introduced into the can, and the can lid is deformed.
  • the pressure when measured was measured.
  • the case where the can lid was not deformed even when the internal pressure was 0.20 MPa was designated as “ ⁇ ”, and the case where the can lid was deformed at less than 0.20 MPa was designated as “x”.
  • Table 4 The results are shown in Table 4.
  • the example of the present invention has an average crystal grain size of 7.0 ⁇ m or less and a fine ferrite structure, and therefore has a high upper yield strength and is excellent in both strength and ductility. Moreover, in this invention, since it is adjusted to the component composition in Table 1, corrosion resistance is also excellent.
  • any of the conditions in the claims of the present application is out of order, so that the desired characteristics of the present application cannot be obtained.
  • a steel sheet having excellent strength, ductility, and corrosion resistance can be obtained, a three-piece can with a high degree of processing can body processing, and a two-piece can with a bottom portion of several percent processed. It is most suitable as a steel plate for cans.

Abstract

This invention provides: a highly workable, high-strength steel sheet for cans that has an upper yield strength of 450-600 MPa after baking the coating thereof, a total elongation characteristic of 13% or more, and good corrosion resistance to even highly corrosive contents; and a method for producing same. The highly workable, high-strength steel sheet for cans is characterized by having a component composition comprising, in mass %, C: over 0.020% and up to 0.130%, Si: 0.04% or less, Mn: 0.10-1.20%, P: 0.100% or less, S: 0.030% or less, Al: 0.10% or less, N: over 0.0120% and up to 0.020%, and Nb: 0.004-0.040%, the remainder comprising iron and inevitable impurities. The highly workable, high-strength steel sheet for cans is further characterized in that: the ratio of a precipitated Nb amount and a total Nb amount as expressed by precipitated Nb amount / total Nb amount ≥ 0.30; the average Nb precipitate particle size is 20 nm or less; the average ferrite grain size is 7.0 μm or less; the upper yield strength after baking the coating thereof is 450-630 MPa; and the total elongation is 13% or more.

Description

缶用鋼板及びその製造方法Steel plate for can and manufacturing method thereof
 本発明は、高加工度の缶胴加工により成形される3ピース缶、耐圧強度を必要とする2ピース缶等の素材として用いられる缶用鋼板およびその製造方法に関するものである。詳しくは、本発明は、全伸びが大きく、かつ、優れた上降伏強度を有する缶用鋼板およびその製造方法に関するものである。 The present invention relates to a steel plate for a can used as a raw material for a three-piece can formed by high-working can body processing, a two-piece can that requires pressure strength, and a method for manufacturing the same. Specifically, the present invention relates to a steel plate for cans having a large total elongation and excellent upper yield strength, and a method for producing the same.
 近年、スチール缶の需要を拡大するため、製缶コストを低減する策、ボトル缶や異形缶のような新規缶種にスチール缶を投入する策がとられている。 In recent years, in order to increase the demand for steel cans, measures have been taken to reduce can manufacturing costs and to introduce steel cans into new can types such as bottle cans and deformed cans.
 製缶コストの低減策としては、素材の低コスト化が挙げられる。絞り加工により成形される2ピース缶はもとより、単純な円筒成形が主体の3ピース缶であっても、使用する鋼板の薄肉化が進められている。 Measures to reduce can manufacturing costs include cost reduction of materials. In addition to 2-piece cans formed by drawing, even 3-piece cans mainly made of simple cylindrical molding are being used to reduce the thickness of the steel sheets used.
 ただし、単に鋼板を薄肉化すると缶体強度が低下する。したがって、DRD(drawing and redrawing)缶や溶接缶の缶胴部のような高強度材が用いられている箇所には、単に薄肉化したのみの鋼板を用いることができない。そこで、高強度で極薄の缶用鋼板が望まれている。 However, simply reducing the thickness of the steel sheet decreases the strength of the can. Accordingly, it is not possible to use a steel plate that is simply thinned at a location where a high-strength material such as a DRD (drawing and redrawing) can or a can body of a welding can is used. Therefore, a high strength and extremely thin steel plate for cans is desired.
 現在、極薄で硬質な缶用鋼板は、焼鈍後に圧下率が20%以上の2次冷間圧延を施すDuble Reduce法(以下、DR法と称す)で製造されている。DR法を利用して製造した鋼板は高強度であるが、全伸びが小さいという特徴がある。 At present, ultra-thin and hard steel plates for cans are manufactured by the Double Reduce method (hereinafter referred to as DR method) in which secondary cold rolling with a reduction rate of 20% or more is performed after annealing. A steel sheet manufactured using the DR method has a high strength but a small total elongation.
 一方、最近市場に投入されている異形缶のような、強い加工度の缶胴加工により成形される缶の素材として、延性に乏しいDR材を用いることは、加工性の観点から困難である。また、DR材は通常の焼鈍後、調質圧延する鋼板に比べて、製造工程も増えるため製造コストが高い。 On the other hand, it is difficult from the viewpoint of workability to use a DR material with poor ductility as a material for a can formed by can body processing with a strong working degree such as a deformed can that has recently been put on the market. In addition, the DR material has a higher manufacturing cost because the number of manufacturing steps is increased as compared with a steel sheet that is subjected to temper rolling after normal annealing.
 こうしたDR材の欠点を回避するため、2次冷間圧延を省略し、種々の強化法を用いるとともに、1次冷間圧延および焼鈍工程で特性を制御するSingle Reduce法(SR法)または、2次冷間圧延圧下率5%以下程度の軽圧下により高強度鋼板を製造する方法が下記特許文献に提案されている。 In order to avoid such defects of the DR material, secondary cold rolling is omitted, various strengthening methods are used, and properties are controlled in the primary cold rolling and annealing processes. The following patent document proposes a method for producing a high-strength steel sheet by light reduction at a sub-cold rolling reduction ratio of about 5% or less.
 特許文献1には、質量%で、C:0.02%以下、Si:0.10%以下、Mn:1.5%以下、P:0.20%以下、S:0.01%以下、Al:0.01%以下、N:0.0050~0.0250%を含み、かつ(固溶C+固溶N)を0.0050%以上含有し、残部がFeおよび不可避的不純物からなる組成と、再結晶率が90%以上である組織を有し、焼付硬化量(BH量):100MPa以上、塗装焼付処理による引張強さの増加量ΔTS:30MPa以上、塗装・焼付け処理後の降伏応力:550MPa以上を有することを特徴とする板厚:0.3mm以下の高強度缶用極薄冷延鋼板が開示されている。また、特許文献1には、熱間圧延条件及び冷却条件を調整し、連続焼鈍後に低温域まで急冷し、固溶C量+固溶N量の作用を有効利用して、時効硬化現象を利用することでDR材並みの高強度缶用鋼板を得る技術が提案されている。特許文献1に記載の缶用鋼板は、塗装焼付け処理後の降伏応力が550MPa以上と高い。 In Patent Document 1, in mass%, C: 0.02% or less, Si: 0.10% or less, Mn: 1.5% or less, P: 0.20% or less, S: 0.01% or less, Al: 0.01% or less, N: 0.0050 to 0.0250%, and (Solution C + Solution N) 0.0050% or more, with the balance being Fe and inevitable impurities , Having a structure having a recrystallization rate of 90% or more, bake hardening amount (BH amount): 100 MPa or more, increase amount of tensile strength by paint baking treatment ΔTS: 30 MPa or more, yield stress after painting / baking treatment: An ultra-thin cold-rolled steel sheet for high-strength cans having a sheet thickness of 0.3 mm or less, characterized by having 550 MPa or more is disclosed. Further, Patent Document 1 adjusts hot rolling conditions and cooling conditions, rapidly cools to a low temperature range after continuous annealing, and effectively uses the effect of solid solution C amount + solid solution N amount to use the age hardening phenomenon. By doing so, a technique for obtaining a steel plate for a high-strength can similar to a DR material has been proposed. The steel sheet for cans described in Patent Document 1 has a high yield stress of 550 MPa or more after the paint baking process.
 特許文献2には、重量比で、C:0.020~0.150%、Si:0.05%以下、Mn:1.00%以下、P:0.050%以下、S:0.010%以下、N:0.0100%以下、Al:0.100%以下、Nb:0.005~0.025%を含有し、残部が不可避的不純物と鉄からなり、実質的なフェライト単相組織であり、降伏強さが40kgf/mm以上、平均結晶粒径が10μm以下、板厚が0.300mm以下であることを特徴とする、製缶時の深絞り性及びフランジ加工性と、製缶後の表面性状とに優れ、十分な缶強度を有する製缶用鋼板が開示されている。また、特許文献2は、Nb炭化物による析出強化やNb、Ti、Bの炭窒化物による微細化強化を複合的に組み合わせることで、強度と延性のバランスがとれた鋼板を提案している。 In Patent Document 2, by weight ratio, C: 0.020 to 0.150%, Si: 0.05% or less, Mn: 1.00% or less, P: 0.050% or less, S: 0.010 %, N: 0.0100% or less, Al: 0.100% or less, Nb: 0.005 to 0.025%, and the balance consists of inevitable impurities and iron, and a substantial ferrite single phase structure The yield strength is 40 kgf / mm 2 or more, the average crystal grain size is 10 μm or less, and the plate thickness is 0.300 mm or less. A steel plate for can making having excellent surface properties after can and having sufficient can strength is disclosed. Patent Document 2 proposes a steel plate having a balance between strength and ductility by combining precipitation strengthening with Nb carbide and refinement strengthening with Nb, Ti, and B carbonitrides.
 特許文献3には、C:0.001~0.010重量%、Si:≦0.05重量%、Mn: ≦0.9重量%、P:0.131~0.200重量%、S:≦0.04重量%、Al:0. 006~0.08重量%、N:0.0010~0.015重量%、残部Feおよび不可避的不純物を含んだ低炭素鋼板からなることを特徴とする薄肉化深絞りしごき缶用鋼板が開示されており、Mn、P、N等の固溶強化を用いて高強度化する方法が提案されている。 In Patent Document 3, C: 0.001 to 0.010 wt%, Si: ≦ 0.05 wt%, Mn: ≦ 0.9 wt%, P: 0.131 to 0.200 wt%, S: ≦ 0.04 wt%, Al: 0. Disclosed is a steel plate for a thinned deep-drawn ironing can characterized by comprising a low-carbon steel plate containing 006 to 0.08 wt%, N: 0.0010 to 0.015 wt%, the balance Fe and inevitable impurities. A method of increasing the strength by using solid solution strengthening such as Mn, P, and N has been proposed.
特開2001-107186号公報JP 2001-107186 A 特開平8-325670号公報JP-A-8-325670 特開2004-183074号公報JP 2004-183074 A
 まず、薄ゲージ化(薄肉化)するために強度確保が必要である。一方、拡缶加工のような缶胴加工により成形される缶体、フランジ加工により成形される缶体に鋼板を用いる場合には、高延性の鋼を適用する必要がある。 First, it is necessary to secure strength in order to reduce the gauge (thinner). On the other hand, when a steel plate is used for a can body formed by can body processing such as can expansion processing or a can body formed by flange processing, it is necessary to apply high ductility steel.
 例えば、2ピース缶製造時のボトム加工、拡缶加工を代表とする3ピース缶製造時の缶胴加工およびフランジ加工において、鋼板の割れが発生しないように全伸びの大きい鋼板を素材として用いる必要がある。 For example, it is necessary to use a steel plate with a large total elongation as a raw material so that cracking of the steel plate does not occur in the can body processing and flange processing at the time of manufacturing the three-piece can represented by bottom processing and can expansion processing at the time of manufacturing the two-piece can There is.
 さらに、腐食性の強い内容物への耐性も考慮すると耐食性が良好な鋼板にする必要がある。そこで、耐食性を阻害する過剰な元素添加は行うことができない。 Furthermore, considering the resistance to highly corrosive contents, it is necessary to use a steel sheet with good corrosion resistance. Therefore, it is impossible to add an excessive element that inhibits the corrosion resistance.
 上記特性について、前述の従来技術では、強度、延性(全伸び)、耐食性の中のいずれかを満たす鋼板を製造することは可能であるが、全てを満足する鋼板は製造できない。 With regard to the above characteristics, the above-described conventional technology can produce a steel sheet that satisfies any of the strength, ductility (total elongation), and corrosion resistance, but cannot produce a steel sheet that satisfies all of the above characteristics.
 例えば、特許文献1に記載の方法は、強度上昇には有効な方法ではあるが、鋼中の固溶C、固溶N量が多いことから、降伏伸びが大きくなる。降伏伸びは固溶Cや固溶Nが転位を固着することで可動転位が減少するために発生する。降伏伸びが大きい場合のひずみ領域では、局所的な降伏現象が起きて不均一変形するためにストレッチャーストレインと呼ばれるシワが生じて外観を損なうことがある。 For example, although the method described in Patent Document 1 is an effective method for increasing the strength, since the amount of solute C and solute N in the steel is large, the yield elongation increases. Yield elongation occurs because solute C or solute N adheres to dislocations, thereby reducing movable dislocations. In a strain region where the yield elongation is large, a local yield phenomenon occurs, causing uneven deformation, and thus wrinkles called stretcher strains may occur, thereby impairing the appearance.
 特許文献2では析出強化により高強度化を実現しており、強度と延性バランスのとれた鋼が提案されているが、降伏伸びについて考慮されておらず、特許文献2に記載の製造方法では本発明で目標とする、降伏伸びの値は得られない。 In Patent Document 2, high strength is realized by precipitation strengthening, and steel with a balance between strength and ductility is proposed, but yield elongation is not taken into consideration, and the manufacturing method described in Patent Document 2 is The yield elongation value targeted by the invention cannot be obtained.
 特許文献3では、固溶強化による高強度化を提案している。この文献に記載の技術では、一般に耐食性を阻害する元素として知られているP、Mnが過剰に添加されているため、耐食性を阻害する恐れが高い。 Patent Document 3 proposes high strength by solid solution strengthening. In the technique described in this document, since P and Mn, which are generally known as elements that inhibit corrosion resistance, are added in excess, there is a high risk of inhibiting corrosion resistance.
 本発明は、かかる事情に鑑みなされたもので、塗装焼付け後に450~600MPaの上降伏強度、13%以上の全伸びなる特性を有し、さらに腐食性の強い内容物に対しても耐食性が良好な高加工性高強度缶用鋼板およびその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and has an upper yield strength of 450 to 600 MPa after coating and baking, a total elongation of 13% or more, and good corrosion resistance even for highly corrosive contents. An object of the present invention is to provide a steel sheet for cans with high workability and high strength and a method for producing the same.
 本発明者らは、上記課題を解決するために鋭意研究を行った。その結果、以下の知見を得た。 The present inventors have conducted intensive research to solve the above problems. As a result, the following knowledge was obtained.
 析出強化、固溶強化、加工強化の複合的な組み合わせに着目し、析出強化および固溶強化のバランスを図ることで伸びを損なわず高強度化できる。 Focusing on the combined combination of precipitation strengthening, solid solution strengthening, and work strengthening, the balance between precipitation strengthening and solid solution strengthening can increase the strength without impairing the elongation.
 さらに、2次冷間圧延における圧下率を1~19%とし、従来の2次冷間圧延での圧下率より低い圧下率での加工強化により、全伸びを低下させることなく高強度化できる。 Furthermore, the reduction rate in the secondary cold rolling is set to 1 to 19%, and the work strength at a reduction rate lower than that in the conventional secondary cold rolling can enhance the strength without reducing the total elongation.
 また、耐食性に支障のない範囲の元素添加量で原板の成分設計を行ったことで、腐食性の強い内容物に対しても良好な耐食性を示す。 In addition, by designing the composition of the original plate with the element addition amount in a range that does not affect the corrosion resistance, it shows good corrosion resistance even for highly corrosive contents.
 本発明は、上記知見に基づき成分、製造方法をトータルで管理することで、高加工性高強度缶用鋼板およびその製造方法を完成するに至った。 The present invention has completed the high-workability and high-strength steel plate and its manufacturing method by comprehensively managing the components and the manufacturing method based on the above findings.
 本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。 The present invention has been made based on the above findings, and the gist thereof is as follows.
 [1]質量%で、C:0.020%超え0.130%以下、Si:0.04%以下、Mn:0.10~1.20%、P:0.100%以下、S:0.030%以下、Al:0.10%以下、N:0.0120%超え0.020%以下、Nb:0.004~0.040%を含有し、残部が鉄および不可避的不純物からなる成分組成を有し、析出Nb量とトータルNb量の比が、析出Nb量/トータルNb量≧0.30であり、Nb析出物平均粒径が20nm以下であり、フェライト平均結晶粒径が7.0μm以下であり、塗装焼付け処理後の上降伏強度が450~630MPa、全伸びが13%以上であることを特徴とする高加工性高強度缶用鋼板。 [1] By mass%, C: more than 0.020% and 0.130% or less, Si: 0.04% or less, Mn: 0.10 to 1.20%, P: 0.100% or less, S: 0 .030% or less, Al: 0.10% or less, N: 0.0120% to 0.020% or less, Nb: 0.004 to 0.040%, the balance being iron and inevitable impurities The ratio of the precipitated Nb amount to the total Nb amount is the ratio of precipitated Nb amount / total Nb amount ≧ 0.30, the Nb precipitate average particle size is 20 nm or less, and the ferrite average crystal particle size is 7. A high workability high strength steel sheet for cans, characterized by having an upper yield strength of 450 to 630 MPa and a total elongation of 13% or more.
 [2]板厚方向に表面~1/8深さ位置までの領域におけるNb析出物の体積率と、表面から3/8深さ位置~4/8深さ位置までの領域におけるNb析出物の体積率の比が、下記の式1を満たすことを特徴とする[1]に記載の高加工性高強度缶用鋼板。
(3/8~4/8のNb析出物体積率)/(表面~1/8のNb析出物体積率)≧1.10   (式1)
 [3][1]または[2]に記載の高加工性高強度缶用鋼板の製造方法であって、鋼を、仕上げ圧延温度がAr3変態点以上990℃以下の条件で圧延し、巻き取り温度が400℃以上600℃未満の条件で巻き取る熱間圧延工程と、前記熱間圧延工程後に、酸洗し、圧下率が80%以上の条件で圧延する1次冷間圧延工程と、前記1次冷間圧延工程後に、均熱温度が650~780℃、均熱時間が10s以上55s以下の条件で連続焼鈍する焼鈍工程と、前記焼鈍工程後に、圧下率が1~19%の条件で圧延する2次冷間圧延工程とを有することを特徴とする高加工性高強度缶用鋼板の製造方法。
[2] The volume ratio of Nb precipitates in the region from the surface to 1/8 depth position in the plate thickness direction, and the Nb precipitates in the region from the surface to 3/8 depth position to 4/8 depth position. The high workability steel plate for cans according to [1], wherein the ratio of volume ratios satisfies the following formula 1.
(Nb precipitate volume ratio of 3/8 to 4/8) / (Nb precipitate volume ratio of surface to 1/8) ≧ 1.10.
[3] A method for producing a steel plate for high workability and high strength can according to [1] or [2], wherein the steel is rolled under a condition that the finish rolling temperature is not less than Ar3 transformation point and not more than 990 ° C. A hot rolling step of winding at a temperature of 400 ° C. or higher and lower than 600 ° C., a primary cold rolling step of pickling after the hot rolling step and rolling at a rolling reduction of 80% or higher, After the primary cold rolling process, an annealing process in which the soaking temperature is 650 to 780 ° C. and the soaking time is 10 seconds to 55 seconds, and after the annealing process, the rolling reduction is 1 to 19%. A method for producing a steel sheet for high workability and high strength cans, comprising a secondary cold rolling step for rolling.
 本発明によれば、450~630MPaの上降伏強度、13%以上の全伸びを有する高加工性高強度用鋼板が得られる。詳細には、本発明では、Nbによる析出強化、Nによる固溶強化及び焼鈍後に圧下率1~19%という低圧下率で2次冷間圧延を行うことによる加工強化により、他の特性に害を与えることなく、複合強化し強度を上昇させる。その結果、全伸びが13%以上でありながら最終製品で上降伏強度が450~630MPaになる。 According to the present invention, a high workability high strength steel sheet having an upper yield strength of 450 to 630 MPa and a total elongation of 13% or more can be obtained. More specifically, in the present invention, precipitation strengthening by Nb, solid solution strengthening by N, and work strengthening by performing secondary cold rolling at a low pressure reduction rate of 1 to 19% after annealing are harmful to other characteristics. Strengthening the composite without increasing the strength. As a result, the final yield is 450 to 630 MPa in the final product while the total elongation is 13% or more.
 さらに、本発明であれば、原板の高強度化により、溶接缶を薄ゲージ化(薄肉化)しても高い缶体強度を確保することが可能となる。本発明の高加工性高強度鋼板を、ボトム部の耐圧強度を必要とする2ピース缶用途に適用しても、現行ゲージのまま高い耐圧強度を得ることが可能となる。また、延性を高くすることにより、溶接缶で用いられる拡缶加工のような強い缶胴加工やフランジ加工を行うことも可能となる。 Furthermore, according to the present invention, by increasing the strength of the original plate, it is possible to ensure high strength of the can even if the welded can is made thinner (thinned). Even if the high workability high strength steel sheet of the present invention is applied to a two-piece can application that requires the pressure resistance of the bottom portion, it is possible to obtain a high pressure resistance with the current gauge. In addition, by increasing ductility, it is possible to perform strong can barrel processing and flange processing such as can expansion processing used in welded cans.
 さらに、本発明であれば、耐食性に支障を生じないように、成分組成が設定されている。その結果、本発明の高加工性高強度缶用鋼板は、強度、加工性、耐食性いずれにおいても優れる。 Furthermore, in the present invention, the component composition is set so that the corrosion resistance is not hindered. As a result, the steel sheet for high workability and high strength can of the present invention is excellent in any of strength, workability and corrosion resistance.
 以下、本発明の実施形態について説明する。なお、本発明は以下の実施形態に限定されない。 Hereinafter, embodiments of the present invention will be described. In addition, this invention is not limited to the following embodiment.
 本発明の高加工性高強度缶用鋼板は、上降伏強度が(以下、U-YPと称することもある)450~630MPa、全伸びが13%以上であり、優れた耐食性を有する。また、本発明の高加工性高強度缶用鋼板では、時効性を小さくできる。 The steel sheet for high workability and high strength can of the present invention has an excellent yield resistance with an upper yield strength (hereinafter sometimes referred to as U-YP) of 450 to 630 MPa and a total elongation of 13% or more. Moreover, in the high workability high strength steel plate for cans of the present invention, aging can be reduced.
 本発明では、Nbを析出強化元素として添加し、Nを固溶強化元素として添加し、焼鈍後に圧下率1~19%の2次冷間圧延を行うことによる加工強化で上降伏強度を上記の範囲にすることを可能とする。さらに、特定の成分系にて上記の方法で上降伏強度を高めれば、全伸びも高い状態になる。優れた上降伏強度を有するとともに全伸びが高いことが、本発明の特徴であり、最も重要な要件である。このように、析出強化元素、固溶強化元素を添加しつつ、全伸びを高い状態にできるように、成分組成、組織、製造条件を適正化することで、上降伏強度が450~630MPa、全伸びが13%以上の高加工性高強度缶用鋼板が得られる。 In the present invention, Nb is added as a precipitation strengthening element, N is added as a solid solution strengthening element, and the upper yield strength is increased by work strengthening by performing secondary cold rolling with a rolling reduction of 1 to 19% after annealing. It can be made into a range. Furthermore, if the upper yield strength is increased by the above-described method in a specific component system, the total elongation is also high. Having excellent upper yield strength and high overall elongation is a feature of the present invention and is the most important requirement. Thus, by adding the precipitation strengthening element and the solid solution strengthening element and optimizing the component composition, structure, and production conditions so that the total elongation can be made high, the upper yield strength is 450 to 630 MPa, A steel with high workability and high strength cans having an elongation of 13% or more is obtained.
 次に、本発明の高加工性高強度缶用鋼板(本明細書において、高加工性高強度缶用鋼板を缶用鋼板という場合がある。)の成分組成について説明する。本発明の高加工性高強度缶用鋼板は、質量%で、C:0.020%超え0.130%以下、Si:0.04%以下、Mn:0.10~1.20%、P:0.100%以下、S:0.030%以下、Al:0.10%以下、N:0.0120%超え0.020%以下、Nb:0.004~0.040%を含有し、残部が鉄および不可避的不純物からなる成分組成を有する。以下、各成分について説明する。なお、本明細書において、成分組成の説明における「%」は「質量%」を意味する。 Next, the component composition of the steel plate for high workability and high strength can of the present invention (in this specification, the steel plate for high workability and high strength can may be referred to as a steel plate for cans) will be described. The steel sheet for high workability and high strength can of the present invention is in mass%, C: more than 0.020% and 0.130% or less, Si: 0.04% or less, Mn: 0.10 to 1.20%, P : 0.100% or less, S: 0.030% or less, Al: 0.10% or less, N: more than 0.0120% and 0.020% or less, Nb: 0.004 to 0.040%, The balance has a composition composed of iron and inevitable impurities. Hereinafter, each component will be described. In the present specification, “%” in the description of the component composition means “% by mass”.
 C:0.020%超え0.130%以下
 本発明の缶用鋼板においては、連続焼鈍後に所定以上の上降伏強度(450~630MPa)を達成すると同時に13%以上の全伸びを有することが必須である。そのためにはフェライト平均結晶粒径を7.0μm以下にすること、Nb添加で生成するNbCによる析出強化を利用することが重要となる。フェライト平均結晶粒径を上記範囲に調整するとともに、NbCによる析出強化を利用するためには、缶用鋼板のC含有量が重要となる。具体的には、C含有量を0.020%超えとすることが必要である。C含有量が0.040%を超えると熱延板の強度が上昇し、冷間圧延時の変形抵抗が増加するため、圧延後に表面欠陥が発生しやすくなる場合がある。また、この欠陥を低減させるために圧延速度を小さくする必要がある。但し、上降伏強度を600MPa以上にする場合にはC含有量を0.070%以上とするのが望ましい。一方、C含有量が0.130%を超えると、鋼の溶製中冷却過程の中で亜包晶割れを起こす。このため、C含有量の上限は0.130%とする。なお、上記の通り、C含有量が0.040%を超えると熱延板の強度が上昇し、冷間圧延時の変形抵抗が増加する傾向にあり、圧延後の表面欠陥を回避するために圧延速度を小さくする必要が発生する場合があるため、製造しやすさの観点からは、C含有量は0.020%超え~0.040%とすることが好ましい。
C: 0.020% to 0.130% or less In the steel sheet for cans according to the present invention, it is essential that the upper yield strength (450 to 630 MPa) is not less than a predetermined value after continuous annealing and at the same time the total elongation is 13% or more. It is. For that purpose, it is important to make the ferrite average crystal grain size 7.0 μm or less and to utilize precipitation strengthening by NbC generated by adding Nb. In order to adjust the ferrite average crystal grain size to the above range and utilize precipitation strengthening by NbC, the C content of the steel plate for cans is important. Specifically, the C content needs to exceed 0.020%. If the C content exceeds 0.040%, the strength of the hot-rolled sheet increases and the deformation resistance during cold rolling increases, so that surface defects may easily occur after rolling. Moreover, in order to reduce this defect, it is necessary to make rolling speed small. However, when the upper yield strength is 600 MPa or more, the C content is preferably 0.070% or more. On the other hand, if the C content exceeds 0.130%, subperitectic cracking occurs during the cooling process during steel melting. For this reason, the upper limit of the C content is 0.130%. As described above, when the C content exceeds 0.040%, the strength of the hot-rolled sheet increases, and the deformation resistance during cold rolling tends to increase, so as to avoid surface defects after rolling. Since it may be necessary to reduce the rolling speed, the C content is preferably more than 0.020% to 0.040% from the viewpoint of ease of manufacture.
 Si:0.04%以下
 Siは固溶強化により鋼を高強度化させる元素である。しかし、Si含有量が0.04%を超えると耐食性が著しく損なわれる。よって、Si含有量は0.04%以下とする。なお、本発明ではSi以外の元素や製造条件の調整により上降伏強度を高めているため、Siによる固溶強化を利用する必要がない。このため、本発明においてはSiを含まなくてもよい。
Si: 0.04% or less Si is an element that increases the strength of steel by solid solution strengthening. However, if the Si content exceeds 0.04%, the corrosion resistance is significantly impaired. Therefore, the Si content is set to 0.04% or less. In the present invention, since the upper yield strength is increased by adjusting elements other than Si and manufacturing conditions, it is not necessary to use solid solution strengthening by Si. For this reason, in this invention, it is not necessary to contain Si.
 Mn:0.10~1.20%
 Mnは固溶強化により鋼の強度を増加させ、フェライト平均結晶粒径も小さくする。フェライト平均結晶粒径を小さくする効果が顕著に生じるのはMn含有量が0.10%以上である。また、目標の上降伏強度を確保するにはMn含有量を0.10%以上にする必要がある。よって、Mn含有量の下限を0.10%とする。一方、Mn含有量が1.20%を超えると耐食性、表面特性が劣る。よって、Mn含有量の上限を1.20%とする。
Mn: 0.10 to 1.20%
Mn increases the strength of the steel by solid solution strengthening and also reduces the ferrite average crystal grain size. The effect of reducing the average ferrite grain size is noticeably produced when the Mn content is 0.10% or more. Moreover, in order to ensure the target upper yield strength, the Mn content must be 0.10% or more. Therefore, the lower limit of the Mn content is 0.10%. On the other hand, if the Mn content exceeds 1.20%, the corrosion resistance and surface characteristics are inferior. Therefore, the upper limit of the Mn content is 1.20%.
 P:0.100%以下
 Pは固溶強化能が大きい元素ではある。しかし、Pの含有量が0.100%を超えると耐食性が劣る。このため、P含有量は0.100%以下とする。
P: 0.100% or less P is an element having a large solid solution strengthening ability. However, if the P content exceeds 0.100%, the corrosion resistance is poor. For this reason, the P content is 0.100% or less.
 S:0.030%以下
 なお、本発明の高加工性高強度缶用鋼板は、Sを含まなくてもよいが、本特許を実施する上ではSを0.030%以下とすることが好ましい。本発明の缶用鋼板はNb、C、N含有量が高いため、連続鋳造時矯正帯でスラブエッジが割れやすくなる。スラブ割れを防止する点からS含有量は0.030%以下にすることが望ましい。好ましくはS含有量は0.020%以下である。より好ましくは、S含有量は0.010%以下である。
S: 0.030% or less In addition, although the steel plate for high workability and high strength cans of the present invention may not contain S, it is preferable to set S to 0.030% or less when implementing this patent. . Since the steel plate for cans of the present invention has a high Nb, C, and N content, the slab edge tends to break in the straightening zone during continuous casting. From the viewpoint of preventing slab cracking, the S content is preferably 0.030% or less. Preferably, the S content is 0.020% or less. More preferably, the S content is 0.010% or less.
 Al:0.10%以下
 Al含有量を増加すると、再結晶温度の上昇がもたらされるため、Al含有量の増加分だけ焼鈍温度を高く設定する必要がある。本発明においては、上降伏強度を増加させるために添加する他の元素の影響で再結晶温度が上昇し、焼鈍温度を高く設定しなければならない。そこで、Alによる再結晶温度の上昇を極力回避することが必要である。そこで、Al含有量を0.10%以下とする。なお、Alは脱酸剤として添加することが好ましく、この効果を得るためにはAl含有量を0.010%以上とすることが好ましい。
Al: 0.10% or less Increasing the Al content results in an increase in the recrystallization temperature. Therefore, it is necessary to set the annealing temperature as high as the increase in the Al content. In the present invention, the recrystallization temperature rises due to the influence of other elements added to increase the upper yield strength, and the annealing temperature must be set high. Therefore, it is necessary to avoid the increase in the recrystallization temperature due to Al as much as possible. Therefore, the Al content is set to 0.10% or less. Al is preferably added as a deoxidizer, and in order to obtain this effect, the Al content is preferably 0.010% or more.
 N:0.0120%超え0.020%以下
 Nは固溶強化を増加させるために必要な元素である。一方、N含有量が多すぎると、連続鋳造時の温度が低下する下部矯正帯でスラブ割れが生じやすくなる。よって、N含有量は0.020%以下とする。一方、固溶強化の効果を発揮させるためには、N含有量を0.0120%超えとする必要がある。
N: 0.0120% to 0.020% or less N is an element necessary for increasing solid solution strengthening. On the other hand, when there is too much N content, it will become easy to produce a slab crack in the lower correction zone where the temperature at the time of continuous casting falls. Therefore, the N content is 0.020% or less. On the other hand, in order to exert the effect of solid solution strengthening, the N content needs to be over 0.0120%.
 Nb:0.004~0.040%
 Nbは、本発明においては重要な添加元素である。Nbは炭化物生成能の高い元素であり、微細な炭化物を析出させる。これにより、上降伏強度が上昇する。本発明では、Nb含有量によって上降伏強度や表面性状を調整することができる。Nb含有量が0.004%以上のときにこの効果が生じるため、Nb含有量の下限は0.004%に限定する。一方、Nbは再結晶温度の上昇をもたらすので、Nb含有量が0.040%超えると、650~780℃の焼鈍温度、10s以上55s以下の均熱時間での連続焼鈍では未再結晶が一部残存するなど、焼鈍し難くなる。このため、Nb含有量の上限を0.040%に限定する。なお、Nb含有量は、冷間圧延時の変形抵抗増加を抑制する観点から0.004~0.020%とすることが好ましい。
Nb: 0.004 to 0.040%
Nb is an important additive element in the present invention. Nb is an element having a high carbide generating ability and precipitates fine carbides. As a result, the upper yield strength increases. In the present invention, the upper yield strength and surface properties can be adjusted by the Nb content. Since this effect occurs when the Nb content is 0.004% or more, the lower limit of the Nb content is limited to 0.004%. On the other hand, Nb increases the recrystallization temperature. Therefore, if the Nb content exceeds 0.040%, non-recrystallization is not achieved in continuous annealing at an annealing temperature of 650 to 780 ° C. and a soaking time of 10 to 55 seconds. It becomes difficult to anneal, such as remaining part. For this reason, the upper limit of Nb content is limited to 0.040%. The Nb content is preferably 0.004 to 0.020% from the viewpoint of suppressing an increase in deformation resistance during cold rolling.
 上記必須成分及び任意成分以外の残部はFeおよび不可避的不純物とする。 The remainder other than the above essential components and optional components is Fe and inevitable impurities.
 次に本発明の缶用鋼板の組織について説明する。 Next, the structure of the steel plate for cans of the present invention will be described.
 フェライト平均結晶粒径:7.0μm以下
 本発明の缶用鋼板の組織はフェライト単相組織である。フェライト平均結晶粒径は、上降伏強度だけでなく、絞り加工時の表面性状にも影響する。最終製品のフェライト平均結晶粒径が7.0μmを超えると、絞り加工後、一部で肌荒れ現象が発生し、表面外観の美麗さが失われる。このため、フェライト平均結晶粒径は7.0μm以下とした。また、フェライト平均結晶粒径を細粒化するためには、連続焼鈍時の均熱温度を低下させてフェライト結晶の粒成長を抑制するか、粒界移動をピンニングする微細析出物を形成する元素を多量に添加することが必要で製造コストが増加するという理由でフェライト平均結晶粒径は5.0μm以上であることが好ましい。なお、フェライト平均結晶粒径は、塗装焼付け後において上記範囲にあればよいが、塗装焼付け処理前後でフェライト平均結晶粒径は変化しないので、塗装焼付け処理前後どちらにおいて測定してもよい。本発明において、塗装焼付け処理とは、塗装焼付け、ラミネートの際の加熱に相当する処理のことであり、具体的には170~265℃、12秒~30分の範囲での熱処理を指す。なお、後述する実施例では標準的な条件として210℃、20分の熱処理を実施している。
Average ferrite grain size: 7.0 μm or less The structure of the steel sheet for cans of the present invention is a ferrite single-phase structure. The average ferrite grain size affects not only the upper yield strength but also the surface properties during drawing. If the ferrite average crystal grain size of the final product exceeds 7.0 μm, after the drawing process, a rough skin phenomenon occurs in part and the beauty of the surface appearance is lost. Therefore, the ferrite average crystal grain size is set to 7.0 μm or less. In order to reduce the average grain size of ferrite, the element that forms fine precipitates that suppress the grain growth of ferrite crystals by reducing the soaking temperature during continuous annealing or pin the grain boundary migration. The ferrite average crystal grain size is preferably 5.0 μm or more because the production cost is increased because it is necessary to add a large amount of. The ferrite average crystal grain size may be in the above range after coating baking, but since the ferrite average crystal grain size does not change before and after the coating baking process, it may be measured either before or after the coating baking process. In the present invention, the coating baking process is a process corresponding to heating during coating baking and laminating, and specifically refers to heat treatment in the range of 170 to 265 ° C. for 12 seconds to 30 minutes. In the examples described later, heat treatment is performed at 210 ° C. for 20 minutes as a standard condition.
 また、フェライト平均結晶粒径の制御は、成分組成、冷間圧延の圧下率、焼鈍温度により行う。具体的には、上記成分組成を採用するとともに、後述する製造条件を採用することで7.0μm以下のフェライト平均結晶粒径が得られる。連続焼鈍での均熱温度を高くするとフェライト平均結晶粒径は大きくなり、均熱温度を低くするとフェライト平均結晶粒径は小さくなる。 Also, the ferrite average crystal grain size is controlled by the component composition, the cold rolling reduction ratio, and the annealing temperature. Specifically, the ferrite average crystal grain size of 7.0 μm or less can be obtained by adopting the above component composition and adopting the production conditions described later. Increasing the soaking temperature in continuous annealing increases the average ferrite grain size, and decreasing the soaking temperature decreases the average ferrite grain size.
 析出Nb量/トータルNb量≧0.30
 析出Nb量とトータルNb量との比(析出Nb量/トータルNb量)を0.30以上とすることで、全伸びや耐食性を改善しつつ、目標の上降伏強度450~630MPaを実現できる。また、析出Nb量が多くなると、析出Nbの粒径が粗大化するという理由で、析出Nb量/トータルNb量は0.9以下であることが好ましい。なお、析出Nb量/トータルNb量は、塗装焼付け後において上記範囲にあればよい。塗装焼付け処理前後で析出Nb量/トータルNb量は変化しないので、塗装焼付け処理前後どちらにおいて測定してもよい。塗装焼付け処理については、上記と同様であるため説明を省略する。
Precipitation Nb amount / Total Nb amount ≧ 0.30
By setting the ratio of the precipitated Nb amount to the total Nb amount (precipitated Nb amount / total Nb amount) to be 0.30 or more, the target upper yield strength of 450 to 630 MPa can be realized while improving the total elongation and corrosion resistance. Further, the amount of precipitated Nb / total Nb amount is preferably 0.9 or less because the particle size of the precipitated Nb becomes coarse when the amount of precipitated Nb increases. The deposited Nb amount / total Nb amount may be within the above range after baking. Since the deposited Nb amount / total Nb amount does not change before and after the paint baking process, it may be measured before or after the paint baking process. Since the paint baking process is the same as described above, the description thereof is omitted.
 析出Nb量/トータルNb量≧0.30を満たすように調整する方法としては、例えば、連続焼鈍時の均熱温度を上げることでNb析出量を増やすことができる。 As a method for adjusting so as to satisfy the amount of precipitated Nb / total Nb ≧ 0.30, for example, the amount of precipitated Nb can be increased by increasing the soaking temperature during continuous annealing.
 Nb析出物平均粒径:20nm以下
 Nb析出物平均粒径が20nmより大きくなると、析出物による転位のピン止めによる強度上昇の効果は期待できない。このため、全伸びや耐食性を改善しつつ、所定の強度を得るためにNb析出物平均粒径は20nm以下とする。なお、Nb析出物平均粒径は実施例に記載の方法で測定された値を採用する。ここで、Nb析出物平均粒径は、塗装焼付け後においてNb析出物平均粒径が上記範囲にあればよい。塗装焼付け処理前後でNb析出物平均粒径は変化しないので、塗装焼付け処理前後どちらにおいて測定してもよい。塗装焼付け処理については、上記と同様であるため説明を省略する。
Average particle size of Nb precipitates: 20 nm or less When the average particle size of Nb precipitates is larger than 20 nm, the effect of increasing strength due to dislocation pinning by precipitates cannot be expected. For this reason, in order to obtain a predetermined strength while improving the total elongation and corrosion resistance, the Nb precipitate average particle size is set to 20 nm or less. In addition, the value measured by the method as described in an Example is employ | adopted for Nb precipitate average particle diameter. Here, the Nb precipitate average particle diameter may be within the above range after the coating baking. Since the average particle size of Nb precipitates does not change before and after the paint baking process, it may be measured before or after the paint baking process. Since the paint baking process is the same as described above, the description thereof is omitted.
 Nb析出物平均粒径を20nm以下に調整する方法としては、例えば、Nb析出物平均粒径を下げたい場合は、連続焼鈍の均熱時間を短くしてNb析出物の成長を抑制すればよい。 As a method for adjusting the average particle size of Nb precipitates to 20 nm or less, for example, when it is desired to reduce the average particle size of Nb precipitates, the soaking time of continuous annealing may be shortened to suppress the growth of Nb precipitates. .
 (3/8~4/8のNb析出物体積率)/(表面~1/8のNb析出物体積率)≧1.10
 板厚方向に表面~1/8深さ位置までの領域におけるNb析出物の体積率と、表面から3/8深さ位置~4/8深さ位置までの領域におけるNb析出物の体積率の比が1.10以下になることで、表面から3/8深さ位置~4/8深さ位置までの領域におけるNb析出物の密度を増やし、中心層で析出強化量を増して上降伏強度をより上昇させる。また、表面~1/8深さ位置までの領域ではNb析出物の密度を減らしてより良好な全伸びを得る。このように、板厚方向で材質差をつけることで、高加工性と高強度を極めて優れた状態で両立させることができる。また、上記体積比率の比は、塗装焼付け後において、上記体積比率の比が上記範囲にあることを意味する。塗装焼付け処理については、上記と同様であるため説明を省略する。
(3/8 to 4/8 Nb precipitate volume fraction) / (surface to 1/8 Nb precipitate volume fraction) ≧ 1.10.
The volume fraction of Nb precipitates in the region from the surface to the 1/8 depth position in the plate thickness direction, and the volume fraction of Nb precipitates in the region from the surface to the 3/8 depth position to the 4/8 depth position. When the ratio is 1.10 or less, the density of Nb precipitates in the region from the 3/8 depth position to the 4/8 depth position from the surface is increased, and the amount of precipitation strengthening is increased in the central layer to increase the upper yield strength. Raise more. In the region from the surface to the 1 / 8th depth, the density of Nb precipitates is reduced to obtain a better overall elongation. Thus, by making a material difference in the plate thickness direction, both high workability and high strength can be achieved in an extremely excellent state. The ratio of the volume ratio means that the ratio of the volume ratio is in the above range after baking. Since the paint baking process is the same as described above, the description thereof is omitted.
 板厚方向に表面~1/8深さ位置までの領域におけるNb析出物の体積率は、例えば、熱延の最終仕上げ圧延の温度を低くして表層を粗粒化させ表層の結晶粒内のNb析出を促進するという方法で調整すれば大きな値になり、最終仕上げ圧延の温度を高くして表層を細粒化させ表層の結晶粒内のNb析出を抑制すれば小さな値になる。 The volume ratio of Nb precipitates in the region from the surface to the 1 / 8th depth position in the plate thickness direction can be obtained by, for example, lowering the temperature of the final finish rolling in hot rolling to roughen the surface layer, If adjusted by a method of promoting Nb precipitation, the value becomes large, and if the temperature of the final finish rolling is increased to refine the surface layer and suppress Nb precipitation in the crystal grains of the surface layer, the value becomes small.
 表面から3/8深さ位置~4/8深さ位置までの領域におけるNb析出物の体積率は、例えば、熱延の巻き取り温度を高くしてNb析出物を成長させれば大きな値になり、熱延の巻き取り温度を低くしてNb析出物の成長を抑制すれば小さな値になる。 The volume fraction of Nb precipitates in the region from the 3/8 depth position to the 4/8 depth position from the surface becomes large if, for example, the Nb precipitate is grown by increasing the coiling temperature of hot rolling. Thus, if the coiling temperature of hot rolling is lowered to suppress the growth of Nb precipitates, the value becomes small.
 上降伏強度:450~630MPa
 0.2mm程度の板厚材について、溶接缶のパネリング強度、デント強度、2ピース缶の耐圧強度を確保するために、上降伏強度を450MPa以上とする。一方、630MPa超えの上降伏強度を得ようとすると多量の元素添加が必要となる。多量の元素添加は、本発明の缶用鋼板の耐食性を阻害する危険がある。そこで、上降伏強度は630MPa以下とする。上降伏強度は、上記成分組成を採用するとともに、後述する製造条件を採用することで目標値に制御することができる。なお、本発明においては、塗装焼付け後において上降伏強度が上記範囲にあることを意味する。塗装焼付け処理については、上記と同様であるため説明を省略する。
Upper yield strength: 450-630MPa
For the plate thickness of about 0.2 mm, the upper yield strength is set to 450 MPa or more in order to ensure the paneling strength and dent strength of the welded can and the pressure strength of the two-piece can. On the other hand, in order to obtain an upper yield strength exceeding 630 MPa, a large amount of element addition is required. Addition of a large amount of element has a risk of inhibiting the corrosion resistance of the steel sheet for cans of the present invention. Therefore, the upper yield strength is 630 MPa or less. The upper yield strength can be controlled to a target value by employing the above component composition and employing the manufacturing conditions described later. In the present invention, it means that the upper yield strength is in the above range after baking. Since the paint baking process is the same as described above, the description thereof is omitted.
 全伸び:13%以上
 全伸びが13%を下回ると、例えば、拡缶加工のような缶胴加工により成形される缶の製造に、本発明の缶用鋼板を適用することが困難になる。また、全伸びが13%を下回ると、缶のフランジ加工時にクラックが発生するために、缶の製造に本発明の缶用鋼板を適用することが困難になる。従って、全伸びの下限は13%とする。なお、全伸びは成分組成を特定の範囲とし、焼鈍後の2次冷間圧延の圧下率を特定の範囲にすることにより目標値に制御する。なお、本発明においては塗装焼付け後の全伸びが上記範囲にあることを意味する。塗装焼付け処理については、上記と同様であるため説明を省略する。なお、本発明において、全伸びは、通常35%以下である。
Total elongation: 13% or more When the total elongation is less than 13%, for example, it becomes difficult to apply the steel plate for cans of the present invention to the production of cans formed by can barrel processing such as can expansion processing. On the other hand, if the total elongation is less than 13%, cracks are generated during the flange processing of the can, making it difficult to apply the steel plate for cans of the present invention to the production of the can. Therefore, the lower limit of total elongation is 13%. The total elongation is controlled to a target value by setting the component composition in a specific range and setting the rolling reduction ratio of secondary cold rolling after annealing in a specific range. In the present invention, it means that the total elongation after baking is in the above range. Since the paint baking process is the same as described above, the description thereof is omitted. In the present invention, the total elongation is usually 35% or less.
 次に、本発明の缶用鋼板を好適に製造できる製造方法の一例について説明する。本発明の缶用鋼板は、熱間圧延工程と、1次冷間圧延工程と、焼鈍工程と、2次冷間圧延工程とを有する方法で製造される。以下、各製造工程について説明する。 Next, an example of a production method capable of suitably producing the steel plate for cans of the present invention will be described. The steel plate for cans of this invention is manufactured by the method which has a hot rolling process, a primary cold rolling process, an annealing process, and a secondary cold rolling process. Hereinafter, each manufacturing process will be described.
 熱間圧延工程
 熱間圧延工程とは、鋼(例えば、スラブ)を、仕上げ温度がAr3変態点以上990℃以下の条件で熱間圧延し、巻き取り温度が400℃以上600℃未満の条件で巻き取る工程である。
Hot rolling process The hot rolling process is a process in which steel (for example, slab) is hot-rolled under conditions where the finishing temperature is Ar3 transformation point or higher and 990 ° C or lower, and the winding temperature is 400 ° C or higher and lower than 600 ° C. This is a winding process.
 原料となる鋼について説明する。鋼は、上述成分組成に調整された溶鋼を、転炉等を用いた通常公知の溶製方法により溶製し、次に連続鋳造法等の通常用いられる鋳造方法で圧延素材とすることで得られる。以下、圧延素材が原料の鋼を意味する。 The steel used as a raw material will be described. Steel is obtained by melting molten steel adjusted to the above-described component composition by a generally known melting method using a converter or the like, and then using a casting method such as a continuous casting method as a rolling material. It is done. Hereinafter, the rolling material means steel as a raw material.
 上記により得られた圧延素材に対して熱間圧延を施し、熱延板を製造する。熱間圧延の圧延開始時には、圧延素材の温度を1230℃以上にするのが好ましい。 The hot rolled sheet is manufactured by subjecting the rolled material obtained as described above to hot rolling. At the start of hot rolling, the temperature of the rolled material is preferably set to 1230 ° C. or higher.
 また、熱間圧延における仕上げ温度はAr3変態点以上とする。熱間圧延における仕上げ圧延温度は、上降伏強度を確保する上で重要因子となる。仕上げ温度がAr3変態点未満では、γ+αの2相域熱延により粒成長するため、上降伏強度が低下し、耐圧強度が不足する。よって、熱間圧延仕上げ温度は、Ar3変態点以上に限定した。なお、仕上げ圧延温度を990℃超とした場合、全伸びが不足し、成形性が劣化する。また、高温でのスケール発生を防止する観点からも、仕上げ圧延温度は990℃を上限とする。 Also, the finishing temperature in the hot rolling is not less than the Ar3 transformation point. The finish rolling temperature in hot rolling is an important factor in securing the upper yield strength. When the finishing temperature is lower than the Ar3 transformation point, grain growth is caused by two-phase hot rolling of γ + α, so that the upper yield strength is lowered and the pressure strength is insufficient. Therefore, the hot rolling finishing temperature is limited to the Ar3 transformation point or higher. When the finish rolling temperature is higher than 990 ° C., the total elongation is insufficient and the formability deteriorates. Also, from the viewpoint of preventing scale generation at high temperatures, the finish rolling temperature is 990 ° C. as the upper limit.
 熱間圧延工程における巻取り温度は、本発明で重要となる上降伏強度、全伸びを目標値に制御する上で重要因子である。巻取り温度を600℃以上にすると、固溶強化のために添加したNがAlNとなって析出して、固溶N量が低下し、その結果、上降伏強度が低下する。このため、巻取り温度を600℃未満とした。また、巻取り温度を400℃未満にすると、全伸びが低下し、成形性が劣化するため巻取り温度は400℃以上とする。なお、巻取り温度を下げるために急冷した場合、冷却が不均一になり板形状が劣化するため、製造効率の観点からも、巻取り温度は400℃を下限とする。また、Nb析出物制御の観点から、巻き取り後の冷却速度は徐冷となることが好ましく、11.5℃/時間以下での冷却が好ましく、6.3℃/時間以下での冷却がさらに好ましく、1.7℃/時間以下での冷却がさらに好ましい。このような冷却後に、200℃以下になってから次工程の処理を行うことが好ましく、100℃以下がさらに好ましく、50℃以下がさらに好ましい。 The coiling temperature in the hot rolling process is an important factor in controlling the upper yield strength and the total elongation, which are important in the present invention, to the target values. When the coiling temperature is set to 600 ° C. or higher, N added for solid solution strengthening is precipitated as AlN, so that the amount of solid solution N decreases, and as a result, the upper yield strength decreases. For this reason, the coiling temperature was set to less than 600 ° C. Further, when the winding temperature is less than 400 ° C., the total elongation is lowered and the moldability is deteriorated, so the winding temperature is set to 400 ° C. or more. In addition, when it cools rapidly in order to lower coiling temperature, since cooling will become non-uniform | heterogenous and plate shape will deteriorate, coiling temperature makes 400 degreeC a minimum from a viewpoint of manufacturing efficiency. Further, from the viewpoint of controlling Nb precipitates, the cooling rate after winding is preferably slow cooling, preferably cooling at 11.5 ° C./hour or less, and further cooling at 6.3 ° C./hour or less. Preferably, cooling at 1.7 ° C./hour or less is more preferable. After such cooling, it is preferable to perform the next step after the temperature reaches 200 ° C. or lower, more preferably 100 ° C. or lower, and further preferably 50 ° C. or lower.
 1次冷間圧延工程
 1次冷間圧延工程とは、熱間圧延工程後に、鋼板(熱延板)を、酸洗し、圧下率が80%以上の条件で圧延する工程である。
Primary cold rolling step The primary cold rolling step is a step of pickling a steel plate (hot-rolled plate) after the hot rolling step and rolling under a condition where the rolling reduction is 80% or more.
 酸洗は表層スケールが除去できればよく、特に条件は規定しない。通常行われる方法により、酸洗することができる。 Pickling is not particularly limited as long as the surface scale can be removed. Pickling can be performed by a commonly performed method.
 1次冷間圧延における圧下率は、本発明において重要な条件の一つである。1次冷間圧延での圧下率が80%未満では、上降伏強度が450MPa以上の鋼板を製造することは困難である。さらに、本工程での圧下率を80%未満とした場合、DR材並みの板厚(0.17mm程度)を得るためには、少なくとも熱延板の板厚を1mm以下にする必要がある。しかし、操業上、熱延板の板厚を1mm以下とすることは困難である。従って、本工程での圧下率は80%以上とする。 The rolling reduction in primary cold rolling is one of the important conditions in the present invention. If the rolling reduction in primary cold rolling is less than 80%, it is difficult to produce a steel sheet having an upper yield strength of 450 MPa or more. Further, when the reduction ratio in this step is less than 80%, at least the thickness of the hot-rolled plate needs to be 1 mm or less in order to obtain a plate thickness (about 0.17 mm) comparable to that of the DR material. However, in operation, it is difficult to set the thickness of the hot-rolled sheet to 1 mm or less. Therefore, the rolling reduction in this step is 80% or more.
 焼鈍工程
 焼鈍工程とは、鋼板(冷延板)を、1次冷間圧延工程後に、均熱温度が650~780℃、均熱時間が10s以上55s以下の条件で連続焼鈍する工程である。
Annealing Step An annealing step is a step in which a steel plate (cold rolled plate) is continuously annealed after the primary cold rolling step under conditions of a soaking temperature of 650 to 780 ° C. and a soaking time of 10 s to 55 s.
 焼鈍は連続焼鈍を用いる。均熱温度は、良好な加工性を確保するため、鋼板の再結晶温度以上とする必要があり、かつ、組織をより均一にして全伸びも確保するためには、均熱温度を650℃以上に限定する。一方、均熱温度が780℃超えの場合、フェライト結晶粒径が大きくなり、上降伏強度が低下し、耐圧強度が不足する。また、780℃超えの条件で連続焼鈍するためには、鋼板の破断を防止するために極力搬送速度を落とす必要があり、生産性が低下する。このため、均熱温度を650~780℃の範囲とする。 For annealing, continuous annealing is used. The soaking temperature needs to be equal to or higher than the recrystallization temperature of the steel sheet in order to ensure good workability, and in order to make the structure more uniform and ensure the total elongation, the soaking temperature is 650 ° C. or more. Limited to. On the other hand, when the soaking temperature exceeds 780 ° C., the ferrite crystal grain size is increased, the upper yield strength is lowered, and the pressure resistance is insufficient. Moreover, in order to carry out the continuous annealing on the conditions exceeding 780 degreeC, in order to prevent the fracture | rupture of a steel plate, it is necessary to reduce a conveyance speed as much as possible, and productivity falls. For this reason, the soaking temperature is set to a range of 650 to 780 ° C.
 均熱時間が55s超えになるような速度では、Nb析出物粒径が大きくなりすぎて上降伏強度が低下し、耐圧強度が不足するし、生産性も確保できないため、均熱時間は55s以下とする。均熱時間10s未満では、高速通板時に加熱ムラが生じ、Nb析出形態が所望の形態にならずに全伸びが劣化し、また、炉内の張力が不安定になり板が破断するおそれがあるため、均熱時間は10s以上とする。 At a speed at which the soaking time exceeds 55 s, the Nb precipitate particle size becomes too large, the upper yield strength decreases, the pressure strength is insufficient, and the productivity cannot be ensured, so the soaking time is 55 s or less. And If the soaking time is less than 10 s, heating unevenness occurs during high-speed plate feeding, the Nb precipitation form does not become the desired form, the total elongation deteriorates, and the tension in the furnace becomes unstable and the plate may break. Therefore, the soaking time is 10 s or more.
 2次冷間圧延工程
 2次冷間圧延工程とは、上記焼鈍工程後に、鋼板(焼鈍板)を、圧下率が1~19%の条件で圧延する工程である。
Secondary cold rolling step The secondary cold rolling step is a step of rolling the steel plate (annealed plate) under the condition of a rolling reduction of 1 to 19% after the annealing step.
 焼鈍後の2次冷間圧延での圧下率を通常のDR材製造条件と同様にすると、加工時に導入される歪が多くなるため全伸びが低下する。本発明では極薄材で全伸び13%以上を確保する必要があるため、2次冷間圧延での圧下率は19%以下とする。また、鋼板の表面粗さを調整するためにロールの凹凸を鋼板に転写させるという理由で2次冷間圧延の圧下率は1%以上にする必要がある。なお、2次冷間圧延の圧下率は圧延時における鋼板とロールのスリップ防止と全伸びの確保の観点から4~12%が好ましい。 If the rolling reduction in the secondary cold rolling after annealing is made the same as the normal DR material manufacturing conditions, the strain introduced at the time of processing increases, so the total elongation decreases. In the present invention, since it is necessary to ensure a total elongation of 13% or more with an ultrathin material, the reduction ratio in the secondary cold rolling is set to 19% or less. Moreover, in order to adjust the surface roughness of the steel sheet, the rolling reduction of the secondary cold rolling needs to be 1% or more because the unevenness of the roll is transferred to the steel sheet. The rolling reduction in secondary cold rolling is preferably 4 to 12% from the viewpoint of preventing slippage of the steel sheet and roll during rolling and ensuring the total elongation.
 表1に示す成分組成を含有し、残部がFe及び不可避不純物からなる鋼を実機転炉で溶製し、鋼スラブを得た。得られた鋼スラブを再加熱した後、熱間圧延し、巻取った。次いで、酸洗後、1次冷間圧延し、薄鋼板を製造した。なお、酸洗前の鋼板温度はコイルの全長で25~60℃での範囲であった。得られた薄鋼板を、加熱速度15℃/secで加熱した。その後、連続焼鈍を行った。次いで、冷却後、二次冷間圧延を施し、通常のSn鍍金を連続的に施して、ぶりきを得た。なお、詳細な製造条件を表2に示す。なお、Ar3変態点は冷却時にγ→α変態して体積変化が最も大きくなる温度を測定して算出した。 Steel containing the composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in an actual converter to obtain a steel slab. The obtained steel slab was reheated, then hot rolled and wound up. Then, after pickling, primary cold rolling was performed to produce a thin steel plate. The steel plate temperature before pickling was in the range of 25 to 60 ° C. over the entire length of the coil. The obtained thin steel sheet was heated at a heating rate of 15 ° C./sec. Then, continuous annealing was performed. Next, after cooling, secondary cold rolling was performed, and normal Sn plating was continuously performed to obtain tinplate. Detailed production conditions are shown in Table 2. Note that the Ar3 transformation point was calculated by measuring the temperature at which the volume change was greatest due to the γ → α transformation during cooling.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 以上により得られためっき鋼板(ぶりき)に対して、210℃、20分の塗装焼付け処理に相当する熱処理を行った後、引張試験を行い上降伏強度及び全伸びを測定し、また、結晶組織と平均結晶粒径についても調査した。調査方法は以下の通りである。 The plated steel plate obtained above is subjected to a heat treatment corresponding to a coating baking process at 210 ° C. for 20 minutes, and then subjected to a tensile test to measure the upper yield strength and the total elongation. The texture and average crystal grain size were also investigated. The survey method is as follows.
 引張試験は、JIS5号サイズの引張試験片を用いて行い、上降伏強度(U-YP)、全伸び(El)を測定し、強度、延性および時効性を評価した。時効性は、加工成形時のストレッチャーストレインの発生に寄与する降伏伸びにより評価した。降伏伸びが4%以下であれば加工時のストレッチャーストレインの発生を抑制することができる。得られた結果を表3に示す。 The tensile test was performed using a JIS No. 5 size tensile test piece, and the upper yield strength (U-YP) and total elongation (El) were measured to evaluate the strength, ductility and aging. Aging was evaluated by the yield elongation that contributes to the generation of stretcher strain during processing. If the yield elongation is 4% or less, the occurrence of stretcher strain during processing can be suppressed. The obtained results are shown in Table 3.
 結晶組織は、サンプルを研磨して、ナイタルで結晶粒界を腐食させて、光学顕微鏡で観察した。 The crystal structure was observed with an optical microscope by polishing the sample, corroding the crystal grain boundary with nital.
 フェライト平均結晶粒径は、上記のようにして観察した結晶組織について、JIS G5503の切断法を用いて測定した。得られた結果を表3に示す。 The ferrite average crystal grain size was measured using the cutting method of JIS G5503 for the crystal structure observed as described above. The obtained results are shown in Table 3.
 また、析出Nb量は、10%アセチルアセトン-1%塩化テトラメチルアンモニウム-メタノール液を用い、電解抽出した後に酸溶解し、ICP測定でNbを定量した。トータルNb量については試料を直接酸溶解し、ICPで測定した。また、Nb析出物平均粒径はTEMで測定した。得られた結果を表3に示す。 The amount of precipitated Nb was 10% acetylacetone-1% tetramethylammonium chloride-methanol solution, electrolytically extracted and then dissolved in acid, and Nb was quantified by ICP measurement. The total Nb amount was measured by ICP after directly dissolving the sample in acid. Moreover, the Nb precipitate average particle diameter was measured by TEM. The obtained results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 板厚方向に表面~1/8深さ位置までの領域におけるNb析出物の体積率、表面から3/8深さ位置~4/8深さ位置までの領域におけるNb析出物の体積率を各深さ位置で各10視野をTEMで100,000倍にて観察した写真より析出物の粒径と個数を測定し、体積率に換算するという方法で測定した。測定結果を表4に示した。 The volume ratio of Nb precipitates in the region from the surface to 1/8 depth position in the plate thickness direction, and the volume ratio of Nb precipitates in the region from the surface to 3/8 depth position to 4/8 depth position, respectively. It measured by the method of measuring the particle size and number of precipitates from the photograph which observed each 10 visual field at depth position by TEM by 100,000 times, and converting into a volume ratio. The measurement results are shown in Table 4.
 耐圧強度の測定は、板厚0.26mmのサンプル(めっき鋼板)を63mmΦの蓋に成形したのち、63mmΦの溶接缶胴に巻締めて取り付け、缶内部に圧縮空気を導入し、缶蓋が変形したときの圧力を測定した。内部の圧力が0.20MPaでも缶蓋が変形しなかったときを「○」、0.20MPa未満で缶蓋が変形したときを「×」とした。結果を表4に示した。 For the measurement of pressure strength, a 0.26mm thick plate (plated steel plate) is molded into a 63mmΦ lid, and then wrapped around a 63mmΦ welded can body, compressed air is introduced into the can, and the can lid is deformed. The pressure when measured was measured. The case where the can lid was not deformed even when the internal pressure was 0.20 MPa was designated as “◯”, and the case where the can lid was deformed at less than 0.20 MPa was designated as “x”. The results are shown in Table 4.
 成形性は、板厚0.26mmのサンプルを用いJIS B 7729に規定された試験機を用いて、JIS Z 2247に規定された方法で評価した。エリクセン値(貫通割れ発生時の成形高さ)が6.5mm以上を「○」、6.5mm未満を「×」とした。結果を表4に示した。 Formability was evaluated by a method specified in JIS Z 2247 using a test machine specified in JIS B 7729 using a sample having a thickness of 0.26 mm. The Erichsen value (molding height at the time of the occurrence of through cracking) was 6.5 mm or more as “◯”, and less than 6.5 mm as “x”. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表3より、本発明例は、組織が平均結晶粒径7.0μm以下であり、微細なフェライト組織であるため、上降伏強度が大きく、強度および延性の両者に優れていることが認められる。また、本発明では表1に成分組成に調整されているため耐食性も優れる。 From Table 3, it can be seen that the example of the present invention has an average crystal grain size of 7.0 μm or less and a fine ferrite structure, and therefore has a high upper yield strength and is excellent in both strength and ductility. Moreover, in this invention, since it is adjusted to the component composition in Table 1, corrosion resistance is also excellent.
 また、比較例では、本願の請求範囲のいずれかの条件がはずれているため、本願の所望の特性が得られない。 Moreover, in the comparative example, any of the conditions in the claims of the present application is out of order, so that the desired characteristics of the present application cannot be obtained.
 本発明によれば、強度、延性、耐食性いずれの特性にも優れた鋼板が得られるため、高加工度の缶胴加工を伴う3ピース缶、ボトム部が数%加工される2ピース缶を中心に缶用鋼板として最適である。 According to the present invention, since a steel sheet having excellent strength, ductility, and corrosion resistance can be obtained, a three-piece can with a high degree of processing can body processing, and a two-piece can with a bottom portion of several percent processed. It is most suitable as a steel plate for cans.

Claims (3)

  1.  質量%で、C:0.020%超え0.130%以下、Si:0.04%以下、Mn:0.10~1.20%、P:0.100%以下、S:0.030%以下、Al:0.10%以下、N:0.0120%超え0.020%以下、Nb:0.004~0.040%を含有し、残部が鉄および不可避的不純物からなる成分組成を有し、
     析出Nb量とトータルNb量の比が、析出Nb量/トータルNb量≧0.30であり、
     Nb析出物平均粒径が20nm以下であり、
     フェライト平均結晶粒径が7.0μm以下であり、
     塗装焼付け処理後の上降伏強度が450~630MPa、全伸びが13%以上であることを特徴とする缶用鋼板。
    C: 0.020% to 0.130% or less, Si: 0.04% or less, Mn: 0.10 to 1.20%, P: 0.100% or less, S: 0.030% In the following, Al: 0.10% or less, N: 0.0120% to 0.020% or less, Nb: 0.004 to 0.040%, with the balance being composed of iron and inevitable impurities And
    The ratio of the amount of precipitated Nb to the amount of total Nb is the amount of precipitated Nb / the total amount of Nb ≧ 0.30.
    Nb precipitate average particle size is 20 nm or less,
    The ferrite average crystal grain size is 7.0 μm or less,
    A steel plate for cans, characterized by having an upper yield strength of 450 to 630 MPa and a total elongation of 13% or more after paint baking.
  2.  板厚方向に表面~1/8深さ位置までの領域におけるNb析出物の体積率と、表面から3/8深さ位置~4/8深さ位置までの領域におけるNb析出物の体積率の比が、下記の式1を満たすことを特徴とする請求項1に記載の缶用鋼板。
    (3/8~4/8のNb析出物体積率)/(表面~1/8のNb析出物体積率)≧1.10   (式1)
    The volume fraction of Nb precipitates in the region from the surface to the 1/8 depth position in the plate thickness direction, and the volume fraction of Nb precipitates in the region from the surface to the 3/8 depth position to the 4/8 depth position. The steel sheet for cans according to claim 1, wherein the ratio satisfies the following formula 1.
    (Nb precipitate volume ratio of 3/8 to 4/8) / (Nb precipitate volume ratio of surface to 1/8) ≧ 1.10.
  3.  請求項1または2に記載の缶用鋼板の製造方法であって、
     鋼を、仕上げ圧延温度がAr3変態点以上990℃以下の条件で圧延し、巻き取り温度が400℃以上600℃未満の条件で巻き取る熱間圧延工程と、
     前記熱間圧延工程後に、酸洗し、圧下率が80%以上の条件で圧延する1次冷間圧延工程と、
     前記1次冷間圧延工程後に、均熱温度が650~780℃、均熱時間が10s以上55s以下の条件で連続焼鈍する焼鈍工程と、
     前記焼鈍工程後に、圧下率が1~19%の条件で圧延する2次冷間圧延工程とを有することを特徴とする缶用鋼板の製造方法。
    It is a manufacturing method of the steel plate for cans according to claim 1 or 2,
    A hot rolling step in which the steel is rolled under a condition where the finish rolling temperature is not lower than the Ar3 transformation point and not higher than 990 ° C. and the winding temperature is not lower than 400 ° C. and lower than 600 ° C .;
    After the hot rolling step, pickling and primary cold rolling step of rolling under a condition where the rolling reduction is 80% or more,
    After the primary cold rolling step, an annealing step in which the soaking temperature is 650 to 780 ° C. and the soaking time is continuously annealed under the conditions of 10 s to 55 s;
    A method for producing a steel plate for cans, comprising a secondary cold rolling step of rolling under a condition of a rolling reduction of 1 to 19% after the annealing step.
PCT/JP2015/004269 2014-08-29 2015-08-25 Steel sheet for cans and method for producing same WO2016031234A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177005192A KR101923839B1 (en) 2014-08-29 2015-08-25 Steel sheets for cans and methods for manufacturing the same
MYPI2017700598A MY177004A (en) 2014-08-29 2015-08-25 Steel sheets for cans and methods for manufacturing the same
CN201580045669.5A CN106605006B (en) 2014-08-29 2015-08-25 Steel plate for tanks and its manufacturing method
JP2016501260A JP5939368B1 (en) 2014-08-29 2015-08-25 Steel plate for can and manufacturing method thereof
PH12017500200A PH12017500200B1 (en) 2014-08-29 2017-02-02 Steel sheets for cans and methods for manufacturing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014175303 2014-08-29
JP2014-175303 2014-08-29

Publications (1)

Publication Number Publication Date
WO2016031234A1 true WO2016031234A1 (en) 2016-03-03

Family

ID=55399148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/004269 WO2016031234A1 (en) 2014-08-29 2015-08-25 Steel sheet for cans and method for producing same

Country Status (7)

Country Link
JP (1) JP5939368B1 (en)
KR (1) KR101923839B1 (en)
CN (1) CN106605006B (en)
MY (1) MY177004A (en)
PH (1) PH12017500200B1 (en)
TW (1) TWI593811B (en)
WO (1) WO2016031234A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059196A (en) * 2016-10-04 2018-04-12 Jfeスチール株式会社 High strength ultrathin steel sheet and manufacturing method therefor
CN110494581A (en) * 2017-03-27 2019-11-22 杰富意钢铁株式会社 Two panels steel plate for tanks and its manufacturing method
WO2020045449A1 (en) * 2018-08-30 2020-03-05 Jfeスチール株式会社 Steel sheet for can, and method for producing same
CN113166835A (en) * 2018-11-21 2021-07-23 杰富意钢铁株式会社 Steel sheet for can and method for producing same
EP3875611A1 (en) * 2020-03-06 2021-09-08 ThyssenKrupp Rasselstein GmbH Cold-rolled steel sheet product for packages

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6813132B2 (en) * 2018-12-20 2021-01-13 Jfeスチール株式会社 Steel sheet for cans and its manufacturing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734194A (en) * 1993-07-14 1995-02-03 Toyo Kohan Co Ltd Steel sheet suitable for application to thinned deep-drawn can and its production
JPH08325670A (en) * 1995-03-29 1996-12-10 Kawasaki Steel Corp Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production
WO2005103316A1 (en) * 2004-04-27 2005-11-03 Jfe Steel Corporation Steel sheet for can and method for production thereof
WO2008105524A1 (en) * 2007-02-28 2008-09-04 Jfe Steel Corporation Steel sheet for cans, hot-rolled steel sheet to be used as the base metal and processes for production of both
WO2009123356A1 (en) * 2008-04-03 2009-10-08 Jfeスチール株式会社 High-strength steel plate for a can and method for manufacturing said high-strength steel plate
JP2012072439A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp High-strength high-processable can steel sheet and method for production thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5587027A (en) * 1994-02-17 1996-12-24 Kawasaki Steel Corporation Method of manufacturing canning steel sheet with non-aging property and superior workability
JP4244486B2 (en) 1999-08-05 2009-03-25 Jfeスチール株式会社 Steel plate for high-strength can and manufacturing method thereof
JP3812279B2 (en) * 2000-04-21 2006-08-23 Jfeスチール株式会社 High yield ratio type high-tensile hot dip galvanized steel sheet excellent in workability and strain age hardening characteristics and method for producing the same
JP3887009B2 (en) 2002-12-05 2007-02-28 東洋鋼鈑株式会社 Steel plate for thinned deep-drawn ironing can and manufacturing method thereof
JP4525450B2 (en) * 2004-04-27 2010-08-18 Jfeスチール株式会社 High strength and high ductility steel sheet for cans and method for producing the same
JP5810714B2 (en) * 2011-07-29 2015-11-11 Jfeスチール株式会社 High-strength, high-formability steel plate for cans and method for producing the same
JP5655839B2 (en) * 2012-10-26 2015-01-21 Jfeスチール株式会社 Hot-rolled steel sheet used as a base material for steel sheet for can and manufacturing method thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0734194A (en) * 1993-07-14 1995-02-03 Toyo Kohan Co Ltd Steel sheet suitable for application to thinned deep-drawn can and its production
JPH08325670A (en) * 1995-03-29 1996-12-10 Kawasaki Steel Corp Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production
WO2005103316A1 (en) * 2004-04-27 2005-11-03 Jfe Steel Corporation Steel sheet for can and method for production thereof
WO2008105524A1 (en) * 2007-02-28 2008-09-04 Jfe Steel Corporation Steel sheet for cans, hot-rolled steel sheet to be used as the base metal and processes for production of both
WO2009123356A1 (en) * 2008-04-03 2009-10-08 Jfeスチール株式会社 High-strength steel plate for a can and method for manufacturing said high-strength steel plate
JP2012072439A (en) * 2010-09-29 2012-04-12 Jfe Steel Corp High-strength high-processable can steel sheet and method for production thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018059196A (en) * 2016-10-04 2018-04-12 Jfeスチール株式会社 High strength ultrathin steel sheet and manufacturing method therefor
CN110494581A (en) * 2017-03-27 2019-11-22 杰富意钢铁株式会社 Two panels steel plate for tanks and its manufacturing method
CN110494581B (en) * 2017-03-27 2021-07-09 杰富意钢铁株式会社 Two-piece steel sheet for can and method for producing same
US11486018B2 (en) 2017-03-27 2022-11-01 Jfe Steel Corporation Steel sheet for two-piece can and manufacturing method therefor
WO2020045449A1 (en) * 2018-08-30 2020-03-05 Jfeスチール株式会社 Steel sheet for can, and method for producing same
JPWO2020045449A1 (en) * 2018-08-30 2020-09-03 Jfeスチール株式会社 Steel sheet for cans and its manufacturing method
CN113166835A (en) * 2018-11-21 2021-07-23 杰富意钢铁株式会社 Steel sheet for can and method for producing same
CN113166835B (en) * 2018-11-21 2023-08-18 杰富意钢铁株式会社 Steel sheet for cans and method for producing same
EP3875611A1 (en) * 2020-03-06 2021-09-08 ThyssenKrupp Rasselstein GmbH Cold-rolled steel sheet product for packages
WO2021175562A1 (en) * 2020-03-06 2021-09-10 Thyssenkrupp Rasselstein Gmbh Cold rolled flat steel product for packaging

Also Published As

Publication number Publication date
JP5939368B1 (en) 2016-06-22
KR101923839B1 (en) 2018-11-29
PH12017500200A1 (en) 2017-07-10
MY177004A (en) 2020-09-01
PH12017500200B1 (en) 2017-07-10
KR20170029635A (en) 2017-03-15
CN106605006A (en) 2017-04-26
TWI593811B (en) 2017-08-01
TW201610180A (en) 2016-03-16
JPWO2016031234A1 (en) 2017-04-27
CN106605006B (en) 2018-11-06

Similar Documents

Publication Publication Date Title
JP4917186B2 (en) Hot-rolled steel sheet, hot-dip galvanized steel sheet excellent in punching workability and fatigue characteristics, and manufacturing method thereof
JP5162924B2 (en) Steel plate for can and manufacturing method thereof
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
JP5939368B1 (en) Steel plate for can and manufacturing method thereof
JP5453884B2 (en) Steel plate for high-strength container and manufacturing method thereof
JP4525450B2 (en) High strength and high ductility steel sheet for cans and method for producing the same
JP6028884B1 (en) Steel plate for cans and method for producing steel plate for cans
JP6455640B1 (en) Steel plate for 2-piece can and manufacturing method thereof
JP6540769B2 (en) High strength ultra thin steel plate and method of manufacturing the same
JP4858126B2 (en) Steel sheet for high strength and high ductility can and method for producing the same
CN109440004B (en) Steel sheet for can and method for producing same
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
JP6455639B1 (en) Steel plate for 2-piece can and manufacturing method thereof
JP6421773B2 (en) Steel plate for can and manufacturing method thereof
JP6361553B2 (en) Steel plate for high workability and high strength can and manufacturing method thereof
TW201732054A (en) Steel sheet for cans and manufacturing method therefor
JP5655839B2 (en) Hot-rolled steel sheet used as a base material for steel sheet for can and manufacturing method thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016501260

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15835973

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12017500200

Country of ref document: PH

ENP Entry into the national phase

Ref document number: 20177005192

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15835973

Country of ref document: EP

Kind code of ref document: A1