JP5655839B2 - Hot-rolled steel sheet used as a base material for steel sheet for can and manufacturing method thereof - Google Patents

Hot-rolled steel sheet used as a base material for steel sheet for can and manufacturing method thereof Download PDF

Info

Publication number
JP5655839B2
JP5655839B2 JP2012236774A JP2012236774A JP5655839B2 JP 5655839 B2 JP5655839 B2 JP 5655839B2 JP 2012236774 A JP2012236774 A JP 2012236774A JP 2012236774 A JP2012236774 A JP 2012236774A JP 5655839 B2 JP5655839 B2 JP 5655839B2
Authority
JP
Japan
Prior art keywords
less
hot
steel sheet
strength
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012236774A
Other languages
Japanese (ja)
Other versions
JP2013032596A (en
Inventor
友佳 西原
友佳 西原
克己 小島
克己 小島
岩佐 浩樹
浩樹 岩佐
山下 陽俊
陽俊 山下
飯住 健爾
健爾 飯住
省三 荻本
省三 荻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012236774A priority Critical patent/JP5655839B2/en
Publication of JP2013032596A publication Critical patent/JP2013032596A/en
Application granted granted Critical
Publication of JP5655839B2 publication Critical patent/JP5655839B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、缶用鋼板、およびその母材に用いる熱延鋼板、ならびにそれらの製造方法に関するものであり、詳しくは、高延性、高強度、かつ、異方性(Δr)が小さい缶用鋼板、およびその母材に用いる熱延鋼板、ならびにそれらの製造方法に関するものである。   The present invention relates to a steel plate for cans, a hot-rolled steel plate used as a base material thereof, and a method for producing the same, and more specifically, a steel plate for cans having high ductility, high strength, and small anisotropy (Δr). , And a hot-rolled steel sheet used for the base material, and a manufacturing method thereof.

近年、スチール缶の需要を拡大するため、製缶コストの低減、ボトル缶や異形缶のような新規缶種の市場投入などの策がとられている。
製缶コストの低減策としては、素材の低コスト化が挙げられ、絞り加工を行う2ピース缶はもとより、単純な円筒成形が主体の3ピース缶であっても、使用する鋼板の薄肉化が進められている。
ただし、単に鋼板を薄肉化すると缶体強度が低下するので、DRD缶や溶接缶の缶胴部のような高強度材が用いられている箇所には単に薄肉化したのみの鋼板を用いることができず、高強度で極薄の缶用鋼板が望まれていた。
現在、極薄で硬質な缶用鋼板は、焼鈍後に2次冷延を施すDuble Reduce法(以下、DR法と称す)で製造されている。DR法で製造した鋼板は高強度かつ降伏伸びが小さいという特徴がある。ボトム加工を伴うDRD缶用途では、スレッチャーストレインの発生を防止するためにできるだけ降伏伸びが小さいことが望ましく、その点でDR法は有効である。しかし、DRD缶では耳発生が小さいことが求められるが、DR法では異方性が大きくなる傾向があるため耳が発生し易く、耳発生防止のために異方性(Δr)を小さくするという課題がある。
一方、最近市場に投入されている異形缶のような高い加工度の缶胴加工を伴う缶には、延性に乏しいDR材は加工性に劣るため適用が難しい。加えて、DR材は通常の焼鈍後調圧する鋼板に比べて、製造工程も増えるためコストが高い。
In recent years, in order to expand the demand for steel cans, measures have been taken such as reducing can manufacturing costs and introducing new can types such as bottle cans and deformed cans to the market.
As a measure to reduce can manufacturing costs, the cost of materials can be reduced, and not only two-piece cans that are drawn, but also three-piece cans mainly made of simple cylindrical molding, the use of thinner steel sheets can be achieved. It is being advanced.
However, simply reducing the thickness of the steel sheet reduces the strength of the can, so it is recommended to use a steel sheet that has only been reduced in thickness where high-strength materials such as DRD cans and can bodies of welded cans are used. However, a high strength and extremely thin steel plate for cans has been desired.
Currently, ultra-thin and hard steel plates for cans are manufactured by the Duble Reduce method (hereinafter referred to as DR method) in which secondary cold rolling is performed after annealing. Steel sheets manufactured by the DR method are characterized by high strength and low yield elongation. In a DRD can application involving bottom processing, it is desirable that the yield elongation is as small as possible in order to prevent the occurrence of a threshold strain, and the DR method is effective in that respect. However, DRD cans are required to have low ear generation, but the DR method tends to increase anisotropy, so ears are likely to occur, and anisotropy (Δr) is reduced to prevent ear generation. There are challenges.
On the other hand, DR materials having poor ductility are difficult to apply to cans with cans having a high degree of processing, such as deformed cans that have recently been put on the market, because of poor workability. In addition, the DR material is expensive because the number of manufacturing steps is increased as compared with a steel plate that is pressure-regulated after normal annealing.

こうしたDR材の欠点を回避するため、二次冷延を省略して、種々の強化法を用いて一次冷圧および焼鈍工程で特性を制御するSingle Reduce法(SR法)により高強度鋼板を製造する方法、耳発生率の小さい鋼板の製造方法が下記特許に提案されている。   In order to avoid the disadvantages of DR materials, secondary cold rolling is omitted, and high strength steel sheets are manufactured by the Single Reduce method (SR method), which controls the properties in the primary cold pressure and annealing processes using various strengthening methods. The following patents propose a method for manufacturing a steel plate with a low ear occurrence rate.

特許文献1では、C、Nを多量に添加して焼付け硬化させることで、DR並みの高強度缶用鋼板が得ることが提案されている。塗装焼付け処理後の降伏応力が550MPa以上と高く、Nの添加量、熱処理で得られる硬度を調整している。
特許文献2でも、特許文献1と同様に、塗装後焼付け処理によって高強度化している。
特許文献3では、Nb炭化物による析出強化やPによる固溶強化を複合的に組み合わせることで高い強度―延性バランスを備えた鋼板を提案している。
特許文献4では、降伏伸びを1.0%以下にすることでストレッチャーストレインの発生を防止し、かつT6相当の強度レベルの鋼を得る製造方法が提案されている。
特許文献5では、ストレッチャ−ストレイン発生がなく、耳発生率の低い極薄鋼板が提案されている。
特許文献6は、変態強化を利用して高強度鋼板を得る発明であり、低炭素鋼をα+γ域で熱間圧延し、高速で冷却し、焼鈍の加熱速度を規定することで、引張強度600MPa、全伸び30%以上を有する鋼板が提案されている。
Patent Document 1 proposes that a steel plate for high strength can similar to DR can be obtained by adding a large amount of C and N and bake hardening. The yield stress after paint baking is as high as 550MPa or more, and the amount of N added and the hardness obtained by heat treatment are adjusted.
Also in Patent Document 2, as in Patent Document 1, the strength is increased by baking after coating.
Patent Document 3 proposes a steel sheet having a high strength-ductility balance by a combination of precipitation strengthening by Nb carbide and solid solution strengthening by P.
Patent Document 4 proposes a manufacturing method in which the yield elongation is 1.0% or less to prevent the occurrence of stretcher strain and to obtain a steel having a strength level equivalent to T6.
Patent Document 5 proposes an ultrathin steel plate that does not generate stretcher strain and has a low ear generation rate.
Patent Document 6 is an invention for obtaining a high-strength steel sheet using transformation strengthening, and hot rolling low carbon steel in an α + γ region, cooling at a high speed, and defining a heating rate for annealing, thereby providing a tensile strength of 600 MPa. A steel sheet having a total elongation of 30% or more has been proposed.

特開2001−107186号公報Japanese Patent Laid-Open No. 2001-107186 特開平11−199991号公報JP-A-11-199991 特開2005−336610号公報JP 2005-336610 A 特開昭59−129733号公報JP 59-129733 A 特開平11-222647号公報Japanese Patent Laid-Open No. 11-222647 特開2003−34825号公報Japanese Patent Laid-Open No. 2003-34825

まず、薄ゲージ化するために強度確保は必須であり、例えばDR材と同じ板厚(0.15〜0.18mm程度)鋼で現行の缶体強度を得るためには降伏強度を500MPa以上にする必要がある。また、拡缶加工のような高い缶胴加工を行う缶体、高いフランジ加工を行う缶体には、高延性の鋼板を適用する必要がある。そして、DRD缶などの2ピース缶に耳発生率が高い鋼を適用するとトリム代が増加して歩留まりが低下するため、耳発生が小さい、つまり異方性の小さい鋼板が望まれている。
上記特性を鑑みた場合、前述の従来技術では、強度、延性、異方性の中のいずれかを満たす鋼板を製造することは可能であるが、全てを満足する鋼板は製造できない。
例えば、特許文献1に記載のC、Nを多量に添加して焼付け硬化性により強度を上昇させる方法は、強度上昇には有効な方法ではある。しかしながら、特許文献1で得られた組織は異方性を劣化させる未再結晶組織を有するため、特許文献1では本発明で目標とする異方性は得られない。
特許文献2では、焼付け処理により時効硬化させることを挙げているが、実施例に記載されている鋼の降伏強度は430MPa程度までであり、本発明で目標とする500MPa以上は得られない。
特許文献3では析出強化、固溶強化による複合強化による高強度化することを挙げているが、一般に析出強化を利用した鋼は異方性に劣り、特に特許文献3で提案されている熱延条件では、本発明で目標とする異方性は得られない。
特許文献4では、降伏伸びがほぼ0になるT6レベルの鋼を記載しているものの、10%以上の圧延率で調質圧延を行う必要があり、実質的にDR材と同様な製造方法であり、高コストである。また、T6を超える鋼を製造する記述はみられない。また、明細書中には延性に関して記載されていないが、10%以上の圧下率で圧延を行うと延性には劣ることが予想される。
特許文献5では、成分、熱延条件などの製造条件を制御することで、耳発生を抑制する鋼板の製造方法が示されているが、実施例に記載されている鋼の降伏強度は380MPa程度までであり、本発明が目標とする500MPa以上には到達していない。
特許文献6で提案されている高速冷却による高強度化は、操業上コスト高になる。
First, it is essential to secure strength in order to reduce the gauge. For example, to obtain the current can strength of steel with the same thickness (about 0.15-0.18 mm) as that of DR material, the yield strength must be 500 MPa or more. is there. Moreover, it is necessary to apply a highly ductile steel plate to a can body that performs high can body processing such as can expansion processing and a can body that performs high flange processing. When steel with a high ear generation rate is applied to a two-piece can such as a DRD can, the trim margin is increased and the yield is lowered. Therefore, a steel plate with small ear generation, that is, low anisotropy is desired.
In view of the above characteristics, in the above-described conventional technology, it is possible to manufacture a steel plate that satisfies any of strength, ductility, and anisotropy, but it is not possible to manufacture a steel plate that satisfies all of the requirements.
For example, the method of adding a large amount of C and N described in Patent Document 1 to increase the strength by bake hardenability is an effective method for increasing the strength. However, since the structure obtained in Patent Document 1 has an unrecrystallized structure that deteriorates anisotropy, Patent Document 1 cannot obtain the anisotropy targeted in the present invention.
Patent Document 2 mentions age hardening by baking treatment, but the yield strength of steel described in the examples is up to about 430 MPa, and the target 500 MPa or more cannot be obtained.
Patent Document 3 mentions that strengthening by precipitation strengthening and composite strengthening by solid solution strengthening, but generally steel using precipitation strengthening is inferior in anisotropy, especially hot rolling proposed in Patent Document 3. Under the conditions, the target anisotropy in the present invention cannot be obtained.
Although Patent Document 4 describes a T6 level steel with a yield elongation of almost 0, it is necessary to perform temper rolling at a rolling rate of 10% or more, and the manufacturing method is substantially the same as that of DR material. Yes, high cost. In addition, there is no description of producing steel exceeding T6. Further, although it is not described in the specification regarding ductility, it is expected that the ductility is inferior when rolling is performed at a rolling reduction of 10% or more.
Patent Document 5 discloses a method for producing a steel sheet that suppresses the generation of ears by controlling production conditions such as components and hot rolling conditions, but the yield strength of the steel described in the examples is about 380 MPa. However, the target of 500 MPa or higher is not reached.
The increase in strength by high-speed cooling proposed in Patent Document 6 is costly in operation.

本発明は、かかる事情に鑑みなされたもので、塗装焼付け後に500MPa以上の降伏強度、0.9以上の降伏比、10%以上の全伸びを有し、さらにはΔrが−0.50〜0となる缶用鋼板およびその母材となる熱延鋼板ならびにそれらの製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and for cans having a yield strength of 500 MPa or more, a yield ratio of 0.9 or more, a total elongation of 10% or more, and Δr of −0.50 to 0 after baking. An object of the present invention is to provide a steel sheet, a hot-rolled steel sheet as a base material thereof, and a production method thereof.

本発明者らは、上記課題を解決するために鋭意研究を行った。その結果、以下の知見を得た。
固溶強化、析出強化、結晶粒微細化強化、時効硬化の複合的な組み合わせに着目し、固溶強化元素を用いて固溶強化し、Nb、P、Mnによる固溶強化、析出強化および結晶粒微細化強化を図ることで複合強化し、高伸びを維持しつつ高強度化でき、さらに、鋼中の固溶C,固溶Nを利用することで、塗装焼付け後に時効硬化による強度増加を図る。そして、組織を実質的なフェライト単相とし、フェライト平均結晶粒径を規定することで高い強度−延性バランスを保ち、500MPa以上の降伏強度、10%以上の全伸びが得られる。特に、本特許では析出強化を利用する際に課題となる異方性の劣化に着目し、熱延条件を適切に制御することで異方性を改善し、Δrを−0.50〜0とすることが可能となる。
本発明では、上記知見に基づき成分、製造方法をトータルで管理することで、高強度高延性缶用鋼板およびその製造方法を完成するに至った。
The inventors of the present invention have intensively studied to solve the above problems. As a result, the following knowledge was obtained.
Focusing on the combined combination of solid solution strengthening, precipitation strengthening, grain refinement strengthening, age hardening, solid solution strengthening using solid solution strengthening elements, solid solution strengthening by Nb, P, Mn, precipitation strengthening and crystal By strengthening the grain by strengthening the grain, it is possible to increase the strength while maintaining high elongation. Furthermore, by using the solid solution C and solid solution N in the steel, the strength can be increased by age hardening after paint baking. Plan. And by making the structure into a substantially single ferrite phase and defining the ferrite average crystal grain size, a high strength-ductility balance is maintained, and a yield strength of 500 MPa or more and a total elongation of 10% or more are obtained. In particular, in this patent, paying attention to the deterioration of anisotropy which becomes a problem when using precipitation strengthening, the anisotropy is improved by appropriately controlling the hot rolling conditions, and Δr is set to −0.50 to 0. Is possible.
In this invention, it came to complete the steel plate for high strength and high ductility cans, and its manufacturing method by managing a component and a manufacturing method in total based on the said knowledge.

本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]質量%で、C:0.01〜0.12%、Si:0.005〜0. 5%、Mn:0.3〜1.5%、P:0.005〜0.2%、Al:0.10%以下、N: 0.012%以下、Nb:0.005〜0.10%を含有し、残部が鉄および不可避的不純物からなる組成と、実質的にフェライト単相組織を有し、フェライト平均結晶粒径が7μm以下であり、塗装焼付け処理後の、降伏強度が500MPa以上、降伏比0.9以上、全伸びが10%以上、Δrが−0.50〜0である缶用鋼板。
[2]前記[1]に記載の缶用鋼板を製造するに際し、質量%で、C:0.01〜0.12%、Si:0.005〜0. 5%、Mn:0.3〜1.5%、P:0.005〜0.2%、Al:0.10%以下、N:0.012%以下、Nb:0.005〜0.10%を含有し、残部が鉄および不可避的不純物からなる鋼を、870℃以上の仕上げ温度で熱間圧延し、巻取りまで40℃/s以下の平均冷却速度で冷却し、620℃以上の巻取り温度で巻取り、酸洗し、次いで、80%以上の圧下率で冷間圧延を行った後に、650〜750℃の均熱温度、40s以下の均熱時間の条件で連続焼鈍を行い、1.5%以下の調圧率で調質圧延を行うことを特徴とする缶用鋼板の製造方法。
[3]質量%で、C:0.01〜0.12%、Si:0.005〜0.5%、Mn:0.3〜1.5%、P:0.005〜0.2%、Al:0.10%以下、N: 0.012%以下、Nb:0.005〜0.10%を含有し、残部が鉄および不可避的不純物からなる組成と、実質的にフェライト単相組織を有し、フェライト平均結晶粒径が6μm以上である、缶用鋼板母材に用いる熱延鋼板。
[4]前記[3]に記載の熱延鋼板を製造するに際し、質量%でC:0.01〜0.12%、Si:0.005〜0. 5%、Mn:0.3〜1.5%、P:0.005〜0.2%、Al:0.10%以下、N:0.012%以下、Nb:0.005〜0.10%を含有し、残部が鉄および不可避的不純物からなる鋼を、870℃以上の仕上げ温度で熱間圧延し、巻取りまで40℃/s以下の平均冷却速度で冷却し、620℃以上の巻取り温度で巻取ることを特徴とする、缶用鋼板母材に用いる熱延鋼板の製造方法。
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。また、本発明において、塗装焼付け処理とは、塗装焼付け相当の210℃、20分の熱処理を施す処理のことである。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] By mass%, C: 0.01 to 0.12%, Si: 0.005 to 0.5%, Mn: 0.3 to 1.5%, P: 0.005 to 0.2%, Al: 0.10% or less, N: 0.012% or less, Nb : 0.005 to 0.10%, with the balance consisting of iron and unavoidable impurities, and substantially having a ferrite single-phase structure, with a ferrite average crystal grain size of 7 μm or less, yield after coating baking Steel plate for cans having a strength of 500 MPa or more, a yield ratio of 0.9 or more, total elongation of 10% or more, and Δr of −0.50 to 0.
[2] When producing the steel plate for cans according to [1], in mass%, C: 0.01 to 0.12%, Si: 0.005 to 0.5%, Mn: 0.3 to 1.5%, P: 0.005 to 0.2 %, Al: 0.10% or less, N: 0.012% or less, Nb: 0.005 to 0.10%, with the balance being iron and unavoidable impurities, hot rolled at a finishing temperature of 870 ° C or higher and wound After cooling at an average cooling rate of 40 ° C./s or less, winding at a winding temperature of 620 ° C. or more, pickling, and then cold rolling at a reduction rate of 80% or more, then 650 to 750 ° C. A method for producing a steel plate for cans, comprising performing continuous annealing at a soaking temperature of 40 s or less and a soaking time of 40 s or less and temper rolling at a pressure regulation rate of 1.5% or less.
[3] By mass%, C: 0.01 to 0.12%, Si: 0.005 to 0.5%, Mn: 0.3 to 1.5%, P: 0.005 to 0.2%, Al: 0.10% or less, N: 0.012% or less, Nb: 0.005 Hot-rolling used for steel plate base materials for cans, containing ~ 0.10%, the balance being composed of iron and inevitable impurities, and having a substantially single-phase ferrite structure and an average ferrite grain size of 6 μm or more steel sheet.
[4] When manufacturing the hot-rolled steel sheet according to [3], C: 0.01 to 0.12%, Si: 0.005 to 0.5%, Mn: 0.3 to 1.5%, P: 0.005 to 0.2% in mass%. , Al: 0.10% or less, N: 0.012% or less, Nb: 0.005 to 0.10%, with the balance being iron and inevitable impurities hot-rolled at a finishing temperature of 870 ° C or higher until winding A method for producing a hot-rolled steel sheet used for a steel plate base material for cans, wherein the steel sheet is cooled at an average cooling rate of 40 ° C / s or less and wound at a winding temperature of 620 ° C or more.
In the present specification, “%” indicating the component of steel is “% by mass”. Further, in the present invention, the coating baking process is a process of performing a heat treatment at 210 ° C. for 20 minutes, which is equivalent to a coating baking.

本発明によれば、500MPa以上の降伏強度、0.9以上の降伏比、10%以上の全伸びを有し、さらにはΔrが−0.50〜0となる高強度高延性缶用鋼板が得られる。
詳細には、本発明は、固溶強化元素を用いて固溶強化し、さらに、Nb、P、Mnによる固溶強化、析出強化および細粒化強化を行うことにより、複合強化し高伸びを維持しつつ強度を上昇させたので、焼鈍工程後の調質圧延は圧下率1.5%以下で、確実に降伏強度が500MPa以上の鋼板が製造できる。
その結果、原板(鋼板)の高強度化により、溶接缶を薄ゲージ化しても高い缶体強度を確保することが可能となる。また、ボトム部の耐圧強度を必要とする陽圧缶用途に関しても、現行ゲージのまま高い耐圧強度を得ることが可能となる。さらに、延性を高くすることにより、拡缶加工のような高い缶胴加工を行うことも可能となる。
また、絞り缶用途では缶のトリム代を小さくして歩留まりを上げるために耳発生を防止する必要がある。本発明では、仕上げ温度を870℃以上、巻取りまでの冷却速度を40℃/s以下、巻取り温度を620℃以上にすることでΔrを−0.50〜0の範囲に抑え、耳発生を防止することができる。
According to the present invention, a high strength and high ductility steel plate for cans having a yield strength of 500 MPa or more, a yield ratio of 0.9 or more, a total elongation of 10% or more, and Δr of −0.50 to 0 can be obtained.
More specifically, the present invention strengthens a solid solution by using a solid solution strengthening element, and further strengthens the composite by strengthening the solution by Nb, P, Mn, precipitation strengthening and fine grain strengthening. Since the strength was increased while maintaining, the temper rolling after the annealing step can produce a steel sheet having a reduction rate of 1.5% or less and a yield strength of 500 MPa or more.
As a result, by increasing the strength of the original plate (steel plate), it becomes possible to ensure high strength of the can even if the welded can is made thinner. In addition, with respect to a positive pressure can application that requires the pressure resistance of the bottom portion, it is possible to obtain a high pressure resistance with the current gauge. Furthermore, by increasing the ductility, it becomes possible to perform high can body processing such as can expansion processing.
Further, in the case of a drawn can, it is necessary to prevent the occurrence of ears in order to reduce the trim margin of the can and increase the yield. In the present invention, the finishing temperature is 870 ° C. or higher, the cooling rate until winding is 40 ° C./s or lower, and the winding temperature is 620 ° C. or higher, so that Δr is suppressed to a range of −0.50 to 0 to prevent generation of ears. can do.

異方性(Δr)と熱延材のフェライト平均結晶粒径との関係を示す図である。It is a figure which shows the relationship between anisotropy ((DELTA) r) and the ferrite average crystal grain diameter of a hot rolled material.

以下、本発明を詳細に説明する。
本発明の缶用鋼板は、降伏強度500MPa以上、降伏比0.9以上、全伸び10%以上、Δr−0.50〜0の高強度高延性缶用鋼板である。通常、DR法を用いて高強度化した鋼板では、数%しか伸びを示さない。これに対して、本発明は、Nb、P、Mnにより固溶強化、析出強化、微細化強化した鋼板を連続焼鈍により製造することで、高伸びを維持しつつ高強度化することを特徴とする。また、固溶C、N量を鋼中に残存することで、塗装焼付け処理などの製缶工程で必須の熱処理により30MPa以上の時効硬化を生じさせ、YPを増加させることで、絞り缶での底部の耐圧強度および溶接缶のデント強度を上昇することを可能にした。なお、時効硬化させる熱処理として、塗装焼付け処理でなく、ラミネート処理を行ってもよい。さらには、熱延時の仕上げ温度を870℃以上、その後の冷却速度を40℃/s以下に、巻取り温度を620℃以上にすることでΔrを−0.50〜0の範囲の値を得る。これらは、本発明の特徴であり、最も重要な要件である。このように、固溶強化元素、析出強化元素、微細化強化元素を中心とする成分、組織、そして、製造条件を適正化することで、降伏強度が500MPa以上、降伏比が0.9以上で、全伸びが10%以上、かつ、Δrが−0.50〜0を有する缶用鋼板が得られることになる。
Hereinafter, the present invention will be described in detail.
The steel sheet for cans of the present invention is a steel sheet for high strength and high ductility cans having a yield strength of 500 MPa or more, a yield ratio of 0.9 or more, a total elongation of 10% or more, and Δr−0.50 to 0. Normally, a steel sheet that has been strengthened using the DR method exhibits only a few percent elongation. On the other hand, the present invention is characterized by increasing the strength while maintaining high elongation by manufacturing a steel plate that is solid solution strengthened, precipitation strengthened, refined strengthened by Nb, P, Mn by continuous annealing. To do. In addition, by leaving solid solution C and N in steel, age hardening of 30 MPa or more is caused by heat treatment essential in can manufacturing processes such as paint baking, and by increasing YP, It was possible to increase the pressure resistance of the bottom and the dent strength of the weld can. In addition, as a heat treatment for age hardening, a lamination process may be performed instead of a paint baking process. Furthermore, by setting the finishing temperature at the time of hot rolling to 870 ° C. or higher, the subsequent cooling rate to 40 ° C./s or lower, and the coiling temperature to 620 ° C. or higher, Δr has a value in the range of −0.50 to 0. These are features of the present invention and are the most important requirements. In this way, by optimizing the components, structures, and production conditions centering on solid solution strengthening elements, precipitation strengthening elements, and refinement strengthening elements, the yield strength is 500 MPa or more, the yield ratio is 0.9 or more, A steel plate for cans having an elongation of 10% or more and Δr of −0.50 to 0 is obtained.

次に、本発明の缶用鋼板の成分組成について説明する。
C:0.01〜0.12%
本発明の缶用鋼板においては、連続焼鈍、調質圧延後に所定以上の強度(降伏強度500MPa以上)を達成すると同時に10%以上の全伸びを有することが必須であり、そのためにはフェライト平均結晶粒径が7μm以下になることが必要である。これらの特性を満たす鋼板を製造するに際しては、C添加量が重要である。特に鋼板の強度とフェライト平均結晶粒径には、炭化物の量や密度が大きく関わってくるので、析出に利用される炭素量を確保する必要がある。さらに、粒界に炭化物を析出させることで、Pの粒界偏析が比較的抑制され、Pの固溶強化を最大限に利用できる効果もある。以上より、C添加量の下限は0.01%に限定する。一方、C添加量が0.12%を超えると、鋼の溶製中冷却過程の中で亜包晶割れを起こすため、上限は0.12%に限定する。望ましくは0.04%以上0.10%以下である。
Next, the component composition of the steel plate for cans of this invention is demonstrated.
C: 0.01-0.12%
In the steel plate for cans of the present invention, it is essential to achieve a strength of not less than a predetermined value (yield strength of 500 MPa or more) after continuous annealing and temper rolling, and at the same time to have a total elongation of 10% or more. The particle size needs to be 7 μm or less. In producing a steel sheet satisfying these characteristics, the amount of C added is important. In particular, since the amount and density of carbides are greatly related to the strength of the steel sheet and the average grain size of ferrite, it is necessary to secure the amount of carbon used for precipitation. Further, by precipitating carbides at the grain boundaries, the grain boundary segregation of P is relatively suppressed, and there is an effect that the solid solution strengthening of P can be utilized to the maximum. From the above, the lower limit of the C addition amount is limited to 0.01%. On the other hand, if the amount of C added exceeds 0.12%, subperitectic cracks occur during the cooling process during steel melting, so the upper limit is limited to 0.12%. Desirably, it is 0.04% or more and 0.10% or less.

Si:0.005〜0.5%
Siは固溶強化により鋼を高強度化させる元素であるが、多量に添加すると耐食性が著しく損なわれる。よって、Si添加量の上限は0.5%に限定する。一方、高い耐食性が要求される用途ではSiを極力低くする必要があるため、下限は0.005%に限定する。
Si: 0.005-0.5%
Si is an element that increases the strength of steel by solid solution strengthening, but if added in a large amount, corrosion resistance is significantly impaired. Therefore, the upper limit of Si addition amount is limited to 0.5%. On the other hand, in applications where high corrosion resistance is required, Si needs to be as low as possible, so the lower limit is limited to 0.005%.

Mn:0.3〜1.5%
Mnは固溶強化により鋼の強度を増加させ、結晶粒径も小さくする。結晶粒径を小さくする効果が顕著に生じてくるのはMn添加量が0.3%以上であり、目標強度を確保するには少なくとも0.3%のMn添加量が必要とされる。よって、Mn添加量の下限は0.3%に限定する。一方、Mnを多量に含有すると耐食性が劣る。よって、上限は1.5%に限定する。
Mn: 0.3-1.5%
Mn increases the strength of the steel by solid solution strengthening and also reduces the crystal grain size. The effect of reducing the crystal grain size is remarkably produced when the Mn addition amount is 0.3% or more, and at least 0.3% Mn addition amount is required to secure the target strength. Therefore, the lower limit of the Mn addition amount is limited to 0.3%. On the other hand, if Mn is contained in a large amount, the corrosion resistance is poor. Therefore, the upper limit is limited to 1.5%.

P:0.005%〜0.2%
Pは固溶強化能が大きい元素であるが、多量に添加すると耐食性が著しく損なわれる。よって、上限は0.2%に限定する。一方、高い耐食性が要求される用途では極力P添加量を低くする必要があるため、下限は0.005%に限定する。
P: 0.005% to 0.2%
P is an element having a large solid solution strengthening ability, but if added in a large amount, the corrosion resistance is remarkably impaired. Therefore, the upper limit is limited to 0.2%. On the other hand, in applications where high corrosion resistance is required, it is necessary to reduce the P addition amount as much as possible, so the lower limit is limited to 0.005%.

Al:0.10%以下
Al含有量が増加すると、再結晶温度の上昇がもたらされるので、焼鈍温度を高くする必要がある。本発明においては、強度を増加させるために添加した他の元素で再結晶温度の上昇がもたらされ焼鈍温度が高くなるので、Alによる再結晶温度の上昇は極力回避することが得策である。よって、Al含有量の上限は0.10%に限定する。
Al: 0.10% or less An increase in the Al content results in an increase in the recrystallization temperature. Therefore, it is necessary to increase the annealing temperature. In the present invention, other elements added to increase the strength increase the recrystallization temperature and increase the annealing temperature. Therefore, it is best to avoid the increase of the recrystallization temperature due to Al as much as possible. Therefore, the upper limit of the Al content is limited to 0.10%.

N:0.012%以下
Nは時効硬化を増加させるために必要な元素である。時効硬化の効果を発揮させるためには、0.005%以上添加するのが望ましい。一方、多量に添加すると、熱間延性が劣化し、連続鋳造時に矯正帯でスラブ割れが生じやすくなる。よって、N含有量の上限は0.012%に限定する。
N: 0.012% or less N is an element necessary for increasing age hardening. In order to exert the effect of age hardening, it is desirable to add 0.005% or more. On the other hand, when it is added in a large amount, hot ductility is deteriorated, and slab cracking is likely to occur in the straightening band during continuous casting. Therefore, the upper limit of N content is limited to 0.012%.

Nb:0.005%〜0.10%
Nbは、本発明においては重要な添加元素である。Nbは炭化物生成能の高い元素であり、微細な炭化物を析出させて強度を上昇させる。また、細粒化することで強度を上昇させる。粒径は強度だけでなく、絞り加工時の表面性状にも影響する。最終製品のフェライト平均結晶粒径が7μmを超えると、絞り加工後、一部で肌荒れ現象が発生し、表面外観の美麗さが失われる。Nb添加量によって強度や表面性状を調整することができ、0.005%を超えるときにこの効果が生じる。よって、下限は0.005%に限定する。一方、Nbは再結晶温度の上昇をもたらすので、0.10%超えで含有させると、本発明で記載している650〜750℃の均熱温度、40s以下の均熱時間で行う連続焼鈍では未再結晶が一部残存するなど、焼鈍し難くなる。焼鈍温度を高くすることで、再結晶組織は得られるが、鋼中の元素が表層濃化するため、表面性状が劣る。よって、Nb添加量の上限は0.10%に限定する。
Nb: 0.005% to 0.10%
Nb is an important additive element in the present invention. Nb is an element having a high ability to generate carbides, and precipitates fine carbides to increase the strength. Moreover, strength is raised by making it fine. The particle size affects not only the strength but also the surface properties during drawing. If the average grain size of ferrite in the final product exceeds 7 μm, after the drawing process, a rough skin phenomenon will occur in part and the appearance of the surface will be lost. The strength and surface properties can be adjusted by the amount of Nb added, and this effect is produced when it exceeds 0.005%. Therefore, the lower limit is limited to 0.005%. On the other hand, Nb brings about an increase in recrystallization temperature. Therefore, if it is contained in an amount exceeding 0.10%, it is not regenerated by continuous annealing performed at a soaking temperature of 650 to 750 ° C. and a soaking time of 40 s or less described in the present invention. It becomes difficult to anneal, for example, some crystals remain. By increasing the annealing temperature, a recrystallized structure can be obtained, but the surface properties are inferior because the elements in the steel are concentrated on the surface layer. Therefore, the upper limit of Nb addition amount is limited to 0.10%.

残部はFeおよび不可避不純物とする。   The balance is Fe and inevitable impurities.

次に本発明の缶用鋼板の組織について説明する。
フェライト単相組織、フェライト平均結晶粒径:7μm以下
まず、本発明では実質的にフェライト単相組織とする。セメンタイト等を1%程度含む場合でも、本発明の作用効果を奏する限り、実質的にフェライト単相組織であると判断する。
また、フェライト平均結晶粒径が7μmを超えると、製缶後の表面外観の美麗さが失われる。これは肌荒れ現象のような表面の粗度の極端な変化に対応するものと考えられる。特にこの現象は、2ピース缶の缶胴部、拡缶加工を行う3ピース缶の缶胴部において確認される。以上より、フェライト平均結晶粒径は7μm以下とする。
なお、フェライト結晶粒径は、JIS G0551で規定されている切断法を用いて測定する。
また、フェライト平均結晶粒径は、成分、冷間圧延率、焼鈍温度により目標値に制御する。
具体的には、C:0.01〜0.12%、Si:0.005〜0. 5%、Mn:0.3〜1.5%、P:0.005〜0.2%、Al:0.10%以下、N:0.012%以下、Nb:0.005〜0.10%を添加して、870℃以上の仕上げ温度で熱間圧延し、巻取りまで40℃/s以下の速度で冷却して、620℃以上の温度範囲でコイルに巻き取ったのち、酸洗を経て80%以上の冷間圧延を行った後に、均熱温度が650〜750℃、均熱時間が40s以下の条件で連続焼鈍を行うことで、7μm以下の結晶粒径が得られる。
Next, the structure of the steel plate for cans of the present invention will be described.
Ferrite single phase structure, ferrite average crystal grain size: 7 μm or less First, in the present invention, a ferrite single phase structure is substantially formed. Even when containing about 1% of cementite or the like, it is determined that the ferrite single phase structure is substantially obtained as long as the effects of the present invention are exhibited.
On the other hand, when the average ferrite grain size exceeds 7 μm, the beauty of the surface appearance after canning is lost. This is considered to correspond to an extreme change in surface roughness such as a rough skin phenomenon. In particular, this phenomenon is confirmed in the can body of a two-piece can and the can body of a three-piece can that performs canning processing. From the above, the ferrite average crystal grain size is set to 7 μm or less.
The ferrite crystal grain size is measured using a cutting method defined in JIS G0551.
Further, the ferrite average crystal grain size is controlled to a target value by the component, the cold rolling rate, and the annealing temperature.
Specifically, C: 0.01 to 0.12%, Si: 0.005 to 0.5%, Mn: 0.3 to 1.5%, P: 0.005 to 0.2%, Al: 0.10% or less, N: 0.012% or less, Nb: 0.005 Add ~ 0.10%, hot-roll at a finishing temperature of 870 ° C or higher, cool at a rate of 40 ° C / s or lower until winding, wind up on a coil in a temperature range of 620 ° C or higher, and then acid After performing cold rolling of 80% or more after washing, a crystal grain size of 7 μm or less is obtained by performing continuous annealing under conditions of a soaking temperature of 650 to 750 ° C. and a soaking time of 40 s or less.

降伏強度(以下、YPと称することもある):500MPa以上
降伏強度は溶接缶のデント強度を確保する上での重要な因子となる。一般に、デント強度は板厚と降伏強度の関係式で表される。従来DR材が用いられていた用途に本発明を適用する場合、DR材の板厚0.15〜0.17mmでデント強度を確保するため、降伏強度を500MPa以上とする。
Yield strength (hereinafter sometimes referred to as YP): 500 MPa or more Yield strength is an important factor in securing the dent strength of a welded can. Generally, the dent strength is expressed by a relational expression between the plate thickness and the yield strength. When the present invention is applied to an application in which a conventional DR material has been used, the yield strength is set to 500 MPa or more in order to ensure the dent strength with a plate thickness of the DR material of 0.15 to 0.17 mm.

降伏比:0.9以上(降伏強度/引張強度で、以下、YRと称することもある)
引張強度を高くすると、熱延や冷延時の変形抵抗が高くなり圧延の操業性が低下する。一方、缶体強度の観点から降伏強度を500MPa以上に確保する必要がある。つまり、降伏強度を高く引張強度を小さくする必要があり、操業に支障なく上記特性を得るための条件として降伏比を0.9以上とした。
なお、YP、TSは成分、冷間圧延率、焼鈍温度により目標値に制御する。
具体的には、C:0.01〜0.12%、Si:0.005〜0. 5%、Mn:0.3〜1.5%、P:0.005〜0.2%、Al:0.10%以下、N:0.012%以下、Nb:0.005〜0.10%を添加して、870℃以上の仕上げ温度で熱間圧延し、巻取りまで40℃/s以下の速度で冷却して、620℃以上の温度範囲でコイルに巻き取ったのち、酸洗を経て80%以上の冷間圧延を行った後に、均熱温度が650〜750℃、均熱時間が40s以下の条件で連続焼鈍を行うことで、目標値に制御する。
Yield ratio: 0.9 or more (yield strength / tensile strength, hereinafter sometimes referred to as YR)
When the tensile strength is increased, the deformation resistance at the time of hot rolling or cold rolling increases, and the operability of rolling decreases. On the other hand, it is necessary to secure a yield strength of 500 MPa or more from the viewpoint of can strength. That is, it is necessary to increase the yield strength and decrease the tensile strength, and the yield ratio was set to 0.9 or more as a condition for obtaining the above characteristics without hindering operation.
YP and TS are controlled to target values based on the components, the cold rolling rate, and the annealing temperature.
Specifically, C: 0.01 to 0.12%, Si: 0.005 to 0.5%, Mn: 0.3 to 1.5%, P: 0.005 to 0.2%, Al: 0.10% or less, N: 0.012% or less, Nb: 0.005 Add ~ 0.10%, hot-roll at a finishing temperature of 870 ° C or higher, cool at a rate of 40 ° C / s or lower until winding, wind up on a coil in a temperature range of 620 ° C or higher, and then acid After performing cold rolling of 80% or more after washing, the temperature is controlled to a target value by performing continuous annealing under conditions of a soaking temperature of 650 to 750 ° C. and a soaking time of 40 seconds or less.

全伸び:10%以上
全伸びが10%を下回ると、例えば、拡缶加工のような高い缶胴加工を伴う缶への適用が困難になる。よって、全伸びは10%以上とする。
Total elongation: When the total elongation is 10% or more and less than 10%, for example, it becomes difficult to apply to cans with high can body processing such as can expansion processing. Therefore, the total elongation is 10% or more.

Δr:−0.50〜0
本発明では、異方性の指標として、下記式にて表されるΔrを用いることとする。
Δr=(r0+r90−2×r45)/4
r0は圧延方向に引張試験を行った時、r45は圧延方向と45°方向に引張試験を行った時、r90は圧延方向と90°方向に引張試験を行った時のr値を示す。
Δrが−0.50未満の鋼板では、例えば、DRD缶に加工した際、耳発生が大きいためトリム代が大きくなり歩留まりが低下する。歩留まりの観点から耳発生量を抑制するために、Δrは−0.50〜0の範囲にする必要がある。また、|Δr|が大きいとDRD缶、溶接缶のフランジ部で周方向の板厚分布に起因してフランジしわが発生するため、Δr(−0.45〜0)の鋼を用いることが望ましい。さらに、缶の真円度を必要とする場合、周方向の板厚分布を極力抑制する必要があるため、Δrは−0.30〜0とすることが望ましい。
なお、Δrは熱間圧延時の仕上げ温度、仕上げ後の冷却速度、巻取り温度により目標値に制御する。具体的には、Δrは870℃以上の仕上げ温度で熱間圧延し、巻取りまで40℃/s以下の速度で冷却して、620℃以上の温度範囲でコイルに巻き取ることで目標値に制御する。
Δr: −0.50 to 0
In the present invention, Δr represented by the following formula is used as an anisotropy index.
Δr = (r0 + r90−2 × r45) / 4
r0 indicates the r value when the tensile test is performed in the rolling direction, r45 indicates the r value when the tensile test is performed in the rolling direction and the 45 ° direction, and r90 indicates the tensile value when the tensile test is performed in the rolling direction and the 90 ° direction.
For a steel sheet with an Δr of less than −0.50, for example, when it is processed into a DRD can, the generation of ears is large, so that the trim margin increases and the yield decreases. In order to suppress the ear generation amount from the viewpoint of yield, Δr needs to be in the range of −0.50 to 0. Further, when | Δr | is large, flange wrinkles are generated due to the plate thickness distribution in the circumferential direction at the flange portions of the DRD can and the weld can. Therefore, it is desirable to use steel of Δr (−0.45 to 0). Furthermore, when the roundness of the can is required, it is necessary to suppress the plate thickness distribution in the circumferential direction as much as possible.
In addition, (DELTA) r is controlled to a target value with the finishing temperature at the time of hot rolling, the cooling rate after finishing, and coiling temperature. Specifically, Δr is set to the target value by hot rolling at a finishing temperature of 870 ° C or higher, cooling at a rate of 40 ° C / s or lower until winding, and winding the coil in a temperature range of 620 ° C or higher. Control.

熱延鋼板組織:フェライト単相組織、平均結晶粒径6μm以上
本発明では熱延鋼板での組織は、実質的にフェライト単相組織とする。セメンタイト等を1%程度含む場合でも、本発明の作用効果を奏する限り、実質的にフェライト単相組織であると判断する。
連続焼鈍、調圧後の異方性は、熱延鋼板段階でのフェライト粒径の影響を大きく受ける。例えば、図1は、実施例に示す鋼1にて冷間圧延圧下率:90%、均熱温度:710℃、均熱時間:30sの連続焼鈍を行って得られた冷延鋼板の異方性と熱延鋼板段階(熱延材)でのフェライト平均結晶粒径の関係を示している。図1によると、熱延材のフェライト平均結晶粒径が6μm未満では、Δrは−0.50未満となり、所望の異方性の値を得ることができない。従って、熱延材でのフェライト平均結晶粒径は6μm以上にするのが好ましい。Δrが−0.45〜0の鋼を用いようとする場合は、熱延材でのフェライト平均結晶粒径は7μm以上にすることがより好ましい。
なお、結晶粒径は成分、熱延時のFT、CTまでの冷却速度、CTにより目標値に制御する。
なお、板厚、時効指数は請求項で特に限定していないが、本特許を実施する上で望ましい条件は以下に示す範囲である。
缶用鋼板の好適板厚:0.2mm以下、熱延鋼板の好適板厚:2mm以下
本発明は主には絞り缶、溶接缶のゲージダウンへの適用を目的としているため、板厚は主に0.2mm以下で利用される。冷間圧延の操業性を損なわずに、本発明で提案されている強度レベルの鋼を0.2mm以下の板厚にするには、90%以下の圧延率で圧延することが望ましいため、熱延材の板厚は2mm以下にすることが好ましい。
Hot-rolled steel sheet structure: ferrite single-phase structure, average crystal grain size of 6 μm or more In the present invention, the structure of the hot-rolled steel sheet is substantially a ferrite single-phase structure. Even when containing about 1% of cementite or the like, it is determined that the ferrite single phase structure is substantially obtained as long as the effects of the present invention are exhibited.
The anisotropy after continuous annealing and pressure adjustment is greatly affected by the ferrite grain size at the hot-rolled steel sheet stage. For example, Fig. 1 shows the anisotropy of cold-rolled steel sheets obtained by continuous annealing of Steel 1 shown in the Example with a cold rolling reduction of 90%, a soaking temperature of 710 ° C, and a soaking time of 30 s. And the average ferrite grain size at the hot-rolled steel sheet stage (hot-rolled material). According to FIG. 1, when the ferrite average crystal grain size of the hot-rolled material is less than 6 μm, Δr is less than −0.50, and a desired anisotropy value cannot be obtained. Therefore, it is preferable that the average grain size of ferrite in the hot-rolled material is 6 μm or more. When steel with Δr of −0.45 to 0 is to be used, the ferrite average crystal grain size in the hot rolled material is more preferably 7 μm or more.
The crystal grain size is controlled to a target value by the component, FT during hot rolling, the cooling rate to CT, and CT.
In addition, although plate | board thickness and an aging index | exponent are not specifically limited by a claim, the conditions desirable for implementing this patent are the ranges shown below.
Preferred thickness of steel plate for cans: 0.2 mm or less, preferred thickness of hot-rolled steel plate: 2 mm or less The present invention is mainly intended for application to gauge down of drawn cans and welded cans. Used at 0.2 mm or less. In order to reduce the thickness of the steel of the strength level proposed in the present invention to 0.2 mm or less without impairing the operability of cold rolling, it is desirable to roll at a rolling rate of 90% or less. The thickness of the material is preferably 2 mm or less.

時効指数:30MPa以上
塗装焼付け後やラミネート処理後に降伏強度500MPaを確実に得るため、時効指数を30MPa以上とするのが望ましい。なお、本発明において、時効指数とは、8%予歪み付与後、100℃−60分の加熱処理をしたときの時効硬化量を示す。
Aging index: 30 MPa or more In order to reliably obtain a yield strength of 500 MPa after baking and laminating, it is desirable to set the aging index to 30 MPa or more. In the present invention, the aging index indicates the amount of age hardening when heat treatment is performed at 100 ° C. for 60 minutes after 8% pre-strain is applied.

次に本発明の缶用鋼板の製造方法について説明する。
上述した化学成分に調整された溶鋼を、転炉等を用いた通常公知の溶製方法により溶製し、次に連続鋳造法等の通常用いられる鋳造方法で圧延素材とする。
次に、上記により得られた圧延素材を用いて熱間圧延により、熱延板とする。圧延開始時には、圧延素材が、1250℃以上になるのが好ましい。仕上げ温度は870℃以上とする。また、巻取りまで40℃/s以下の速度で冷却し、620℃以上の巻取り温度で巻取る。なお、異方性の観点から、ここで得られた熱延材のフェライト平均結晶粒径は6μm以上にする。次いで、酸洗し、80%以上の圧下率で冷間圧延を行った後に、650〜750℃の均熱温度、40s以下の均熱時間の条件で連続焼鈍を行い、1.5%以下の調圧率で調質圧延を行う。
Next, the manufacturing method of the steel plate for cans of this invention is demonstrated.
The molten steel adjusted to the above-described chemical composition is melted by a generally known melting method using a converter or the like, and then made into a rolled material by a commonly used casting method such as a continuous casting method.
Next, it is set as a hot-rolled sheet by hot rolling using the rolling raw material obtained by the above. At the start of rolling, the rolled material is preferably 1250 ° C. or higher. The finishing temperature is 870 ° C or higher. Moreover, it cools at a speed | rate of 40 degrees C / s or less until winding, and winds at the winding temperature of 620 degreeC or more. From the viewpoint of anisotropy, the ferrite average crystal grain size of the hot rolled material obtained here is 6 μm or more. Next, after pickling and cold rolling at a reduction rate of 80% or more, continuous annealing is performed under conditions of a soaking temperature of 650 to 750 ° C. and a soaking time of 40 s or less, and a pressure regulation of 1.5% or less is performed. Temper rolling at a rate.

熱間圧延仕上げ温度:870℃以上
熱間圧延における仕上げ圧延温度は、異方性を制御する上で重要な項目になる。Nb添加鋼でΔrを−0.50以上に確保するためには、熱延材のフェライト平均結晶粒径を6μm以上にすることと集合組織を制御する必要がある。これを得るため、熱延仕上げ温度は870℃以上とする。
Hot rolling finish temperature: 870 ° C. or higher The finish rolling temperature in hot rolling is an important item in controlling anisotropy. In order to secure Δr of −0.50 or more in the Nb-added steel, it is necessary to control the texture of the hot rolled material to have an average grain size of ferrite of 6 μm or more and to control the texture. In order to obtain this, the hot rolling finishing temperature is 870 ° C. or higher.

仕上げ圧延後、巻取りまでの平均冷却速度:40℃/s以下
異方性は熱延材のフェライト平均結晶粒径の影響を大きく受ける。前述したように、Δrを−0.50〜0の範囲内にするには、熱延材のフェライト平均結晶粒径は6μm以上にする必要がある。熱延材のフェライト平均結晶粒径を6μm以上にするためには、熱延後の冷却速度を小さくする必要があり、その条件として、仕上げ後の平均冷却速度を40℃/s以下とする。
Δrが−0.45〜0の鋼を幅方向全体で確実に得るためには、熱延材のフェライト平均結晶粒径を7μm以上にすることが好ましく、そのためには平均冷却速度を30℃/s以下にする必要がある。
また、Δrが−0.30〜0の鋼を幅方向全体で確実に得るためには、熱延材のフェライト平均結晶粒径を8μm以上にすることが好ましく、そのためには平均冷却速度は20℃/s以下にする必要がある。
Average cooling rate from finish rolling to winding: 40 ° C./s or less Anisotropy is greatly affected by the average ferrite grain size of the hot rolled material. As described above, in order to make Δr in the range of −0.50 to 0, the ferrite average crystal grain size of the hot-rolled material needs to be 6 μm or more. In order to make the ferrite average crystal grain size of the hot-rolled material 6 μm or more, it is necessary to reduce the cooling rate after hot rolling, and the condition is that the average cooling rate after finishing is 40 ° C./s or less.
In order to reliably obtain a steel having Δr of −0.45 to 0 in the entire width direction, it is preferable that the ferrite average crystal grain size of the hot-rolled material is 7 μm or more. For this purpose, the average cooling rate is 30 ° C./s or less. It is necessary to.
In order to reliably obtain a steel having Δr of −0.30 to 0 in the entire width direction, it is preferable that the average grain size of ferrite of the hot-rolled material is 8 μm or more. For this purpose, the average cooling rate is 20 ° C. / s or less is required.

巻取り温度:620℃以上
熱延材のフェライト平均結晶粒径を6μm以上にするためには、巻取り温度を高くする必要があり、その条件として巻取り温度を620℃以上とする。また、Δrが−0.30〜0の鋼を得るためには、巻取り温度は700℃以上にする必要がある。
Winding temperature: 620 ° C. or higher In order to obtain a ferrite average crystal grain size of 6 μm or more in a hot-rolled material, it is necessary to increase the winding temperature. Moreover, in order to obtain steel with Δr of −0.30 to 0, the coiling temperature needs to be 700 ° C. or higher.

冷間圧延率(圧下率):80%以上
冷間圧延における圧下率は、本発明において重要な条件の一つである。冷間圧延での圧下率が80%未満では、降伏強度が500MPa以上の鋼板を製造することは困難である。さらに、DR材並みの板厚(0.17mm程度)を得るためには、80%未満の圧下率では、少なくとも熱延板の板厚を1mm以下にする必要があり、操業上困難である。よって、圧下率は80%以上とする。
Cold rolling rate (rolling rate): 80% or more The rolling rate in cold rolling is one of the important conditions in the present invention. If the rolling reduction in cold rolling is less than 80%, it is difficult to produce a steel plate having a yield strength of 500 MPa or more. Furthermore, in order to obtain a plate thickness comparable to that of the DR material (about 0.17 mm), at a rolling reduction of less than 80%, at least the plate thickness of the hot-rolled plate needs to be 1 mm or less, which is difficult in operation. Therefore, the rolling reduction is 80% or more.

焼鈍条件:均熱温度650℃〜750℃、均熱時間40s以下
焼鈍は連続焼鈍を用いる。均熱温度は、良好な加工性を確保するため、鋼板の再結晶温度以上とする必要があり、かつ、組織をより均一にするためには、650℃以上の温度で均熱する必要がある。一方で、750℃超えで連続焼鈍するためには、鋼板の破断を防止するために極力速度を落とす必要があり、生産性が低下する。生産性を低下させない条件として750℃以下とする。均熱時間についても40s以上になるような速度では生産性を確保できないため、均熱時間は40s以下とする。
Annealing conditions: Soaking temperature: 650 ° C. to 750 ° C., soaking time: 40 s or less. The soaking temperature needs to be equal to or higher than the recrystallization temperature of the steel sheet in order to ensure good workability, and soaking is necessary at a temperature of 650 ° C. or more to make the structure more uniform. . On the other hand, in order to perform continuous annealing at a temperature exceeding 750 ° C., it is necessary to reduce the speed as much as possible in order to prevent the steel sheet from being broken, and productivity is lowered. 750 ° C. or less is a condition that does not reduce productivity. Since the productivity cannot be ensured at a speed at which the soaking time is 40 s or more, the soaking time is 40 s or less.

調圧率:1.5%以下
調圧率が高くなるとDR材と同様に、加工時に導入される歪が多くなるため延性が低下する。本発明では極薄材で全伸び10%以上を確保する必要があるため、調圧率は1.5%以下とする。
Pressure regulation rate: 1.5% or less When the pressure regulation rate is increased, the ductility is lowered due to an increase in strain introduced during processing, as in the case of DR material. In the present invention, since it is necessary to ensure a total elongation of 10% or more with an ultrathin material, the pressure regulation rate is 1.5% or less.

表1に示す成分組成を含有し、残部がFe及び不可避不純物からなる鋼を実機転炉で溶製し、鋼スラブを得た。得られた鋼スラブを1250℃で再加熱した後、仕上げ圧延温度880℃〜900℃の範囲で熱間圧延し、巻取りまで平均冷却速度20〜40℃/sで冷却し、巻取り温度620〜700℃の範囲で巻取った。次いで、酸洗後、90%以上の圧下率で冷間圧延し、0.17〜0.2mmの薄鋼板を製造した。得られた薄鋼板を、加熱速度15℃/secで690〜750℃に到達させ、690℃〜750℃、20秒間の連続焼鈍を行った。次いで、冷却後、圧下率が1.5%以下になるように調質圧延を施し、通常のクロム鍍金を連続的に施して、ティンフリースチールを得た。なお、均熱温度はNb添加量によって調整し、690℃から750℃の範囲とした。   Steel containing the composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in an actual converter to obtain a steel slab. The obtained steel slab was reheated at 1250 ° C., then hot-rolled at a finish rolling temperature of 880 ° C. to 900 ° C., cooled at an average cooling rate of 20-40 ° C./s until winding, and a winding temperature of 620 It wound up in the range of -700 degreeC. Then, after pickling, it was cold-rolled at a rolling reduction of 90% or more to produce a thin steel plate of 0.17 to 0.2 mm. The obtained thin steel sheet was made to reach 690 to 750 ° C. at a heating rate of 15 ° C./sec and subjected to continuous annealing at 690 ° C. to 750 ° C. for 20 seconds. Next, after cooling, temper rolling was performed so that the rolling reduction was 1.5% or less, and normal chrome plating was continuously applied to obtain tin-free steel. The soaking temperature was adjusted according to the amount of Nb added and was in the range of 690 ° C to 750 ° C.

Figure 0005655839
Figure 0005655839

以上により得られためっき鋼板(ティンフリースチール)に対して、210℃、20分の塗装焼付け処理を行った後、引張試験を行い、結晶組織と平均結晶粒径について調査した。調査方法は以下の通りである。   The plated steel sheet (tin-free steel) obtained as described above was subjected to a paint baking process at 210 ° C. for 20 minutes, and then a tensile test was performed to investigate the crystal structure and the average crystal grain size. The survey method is as follows.

引張試験は、JIS5号サイズの引張試験片を用いて、降伏伸び、引張強さ、伸びを測定し、強度および延性を評価した。r値測定はJIS5号ハーフサイズの引張試験片(幅12.5mm、平行部35mm、標点間距離20mm)を用いて行い、下記の方法でΔrを測定した。
Δr=(r0+r90−2r45)/4
なお、r0は圧延方向に引張試験を行った時、r45は圧延方向と45°方向に引張試験を行った時、r90は圧延方向と90°方向に引張試験を行った時のr値を示す。
結晶組織は、サンプルを研磨して、ナイタルで結晶粒界を腐食させて、光学顕微鏡で観察した。平均結晶粒径は、上記のようにして観察した結晶組織について、JIS G0551の切断法を用いて測定した。
得られた結果を表2に示す。
In the tensile test, yield elongation, tensile strength, and elongation were measured using a JIS5 size tensile test piece to evaluate strength and ductility. The r value was measured using a JIS No. 5 half-size tensile test piece (width 12.5 mm, parallel part 35 mm, distance between gauge points 20 mm), and Δr was measured by the following method.
Δr = (r0 + r90-2r45) / 4
In addition, r0 indicates the r value when the tensile test is performed in the rolling direction, r45 indicates the tensile value when the tensile test is performed in the rolling direction and 45 ° direction, and r90 indicates the r value when the tensile test is performed in the rolling direction and 90 ° direction. .
The crystal structure was observed with an optical microscope after the sample was polished, the grain boundaries were corroded with nital. The average crystal grain size was measured using the cutting method of JIS G0551 for the crystal structure observed as described above.
The results obtained are shown in Table 2.

Figure 0005655839
Figure 0005655839

表2より、本発明の熱延鋼板を母材に用いた缶用鋼板(No1〜6)は、焼鈍材(めっき鋼板)組織のフェライト平均結晶粒径が7μm以下であり、混粒組織を含まない均一かつ微細なフェライト単層組織であり、強度および延性の両者に優れていることが認められる。
一方、比較例(No7)は異方性が、比較例(No8)は強度が不足している。
From Table 2, the steel plate for cans (No. 1-6) using the hot-rolled steel sheet of the present invention as the base material has an average grain size of ferrite of the annealed material (plated steel sheet) structure of 7 μm or less and includes a mixed grain structure. No uniform and fine ferrite single layer structure, and it is recognized that both the strength and ductility are excellent.
On the other hand, the comparative example (No7) has anisotropy, and the comparative example (No8) has insufficient strength.

表3に示す成分組成を含有し、残部がFeおよび不可避不純物からなる鋼を実機転炉で溶製し、鋼スラブを得た。得られた鋼スラブを1250℃で再加熱した後、仕上げ圧延温度を830〜900℃で熱間圧延し、巻取りまでの平均冷却速度を18〜45℃/sで冷却し、巻取り温度を580〜700℃の範囲で巻取った。次いで、90%以上の圧下率で冷間圧延して、0.15〜0.18mmの薄鋼板を製造した。得られた薄鋼板を、加熱速度20℃/secで710〜730℃に到達させ、710〜730℃、20〜30秒間の連続焼鈍を行った。次いで、冷却後、圧下率が1.5%以下になるように調質圧延を施し、通常のクロム鍍金を連続的に施して、ティンフリースチールを得た。詳細な製造条件を表4に示す。   Steel containing the composition shown in Table 3 and the balance being Fe and inevitable impurities was melted in an actual converter to obtain a steel slab. The obtained steel slab is reheated at 1250 ° C, then hot rolled at a finish rolling temperature of 830-900 ° C, the average cooling rate until winding is cooled at 18-45 ° C / s, and the winding temperature is set to It wound up in the range of 580-700 degreeC. Subsequently, it cold-rolled with the rolling reduction of 90% or more, and manufactured the 0.15-0.18 mm thin steel plate. The obtained thin steel sheet was allowed to reach 710 to 730 ° C. at a heating rate of 20 ° C./sec, and subjected to continuous annealing at 710 to 730 ° C. for 20 to 30 seconds. Next, after cooling, temper rolling was performed so that the rolling reduction was 1.5% or less, and normal chrome plating was continuously applied to obtain tin-free steel. Detailed manufacturing conditions are shown in Table 4.

Figure 0005655839
Figure 0005655839

Figure 0005655839
Figure 0005655839

以上により得られためっき鋼板(ティンフリースチール)に対して、210℃、20分の塗装焼付け処理を行った後、引張試験を行い、結晶組織と平均結晶粒径について調査した。
なお、各試験及び調査方法は実施例1と同様の方法である。
得られた結果を表5に示す。
The plated steel sheet (tin-free steel) obtained as described above was subjected to a paint baking process at 210 ° C. for 20 minutes, and then a tensile test was performed to investigate the crystal structure and the average crystal grain size.
Each test and investigation method are the same as those in Example 1.
The results obtained are shown in Table 5.

Figure 0005655839
Figure 0005655839

表5より、本発明例(No9〜12)では、仕上げ圧延後の冷却速度を小さくして巻取り温度を高くすることで、異方性が小さく、延性が高い高強度鋼板が得られた。
一方、比較例(No13〜15)では、強度、延性については目標値に到達するものの、仕上げ圧延温度が低い、巻取り温度が低い、もしくは仕上げ圧延後の冷却速度が大きいため、異方性の大きい鋼板となっている。
From Table 5, in the inventive examples (Nos. 9 to 12), a high strength steel sheet having small anisotropy and high ductility was obtained by decreasing the cooling rate after finish rolling and increasing the coiling temperature.
On the other hand, in the comparative examples (No. 13 to 15), although the strength and ductility reach the target values, the finish rolling temperature is low, the coiling temperature is low, or the cooling rate after finish rolling is large, so It is a large steel plate.

また、これらの鋼板に対して絞り加工すると、本発明例(No9〜12)では、鋼板の表面性状が良好で、肌荒れは認められず、耳の発生量も小さい。一方、Δrが−0.50以下になる比較例では、鋼板に関しては、耳発生量が大きくなっている。   Further, when drawing these steel sheets, in the present invention examples (Nos. 9 to 12), the surface properties of the steel sheets are good, no rough skin is observed, and the amount of ears generated is small. On the other hand, in the comparative example in which Δr is −0.50 or less, the ear generation amount is large for the steel sheet.

本発明によれば、強度、延性、異方性のいずれの特性にも優れた鋼板が得られるため、高加工度の缶胴加工を伴う3ピース缶、陽圧缶のように耐圧強度を必要とする2ピース缶を中心に缶用鋼板として最適である。   According to the present invention, a steel sheet having excellent strength, ductility, and anisotropy can be obtained. Therefore, pressure resistance is required like a three-piece can with a high degree of canning and a positive pressure can. It is most suitable as a steel plate for cans centering on 2-piece cans.

Claims (2)

質量%で、C:0.02〜0.12%、Si:0.005〜0.5%、Mn:0.3〜1.5%、P:0.005〜0.2%、Al:0.10%以下、N: 0.012%以下、Nb:0.005〜0.10%を含有し、残部が鉄および不可避的不純物からなる組成と、実質的にフェライト単相組織を有し、フェライト平均結晶粒径が6μm以上である、塗装焼付け処理後の、降伏強度が500MPa以上、降伏比0.9以上、全伸びが10%以上、Δrが−0.50〜0である缶用鋼板母材に用いる熱延鋼板。 By mass%, C: 0.02-0.12%, Si: 0.005-0.5%, Mn: 0.3-1.5%, P: 0.005-0.2%, Al: 0.10% or less, N: 0.012% or less, Nb: 0.005-0.10% And the balance consisting of iron and inevitable impurities, and substantially having a ferrite single-phase structure, the average grain size of ferrite is 6 μm or more , the yield strength after paint baking is 500 MPa or more, A hot-rolled steel sheet used for a steel plate base material for cans having a yield ratio of 0.9 or more, total elongation of 10% or more, and Δr of −0.50 to 0 . 請求項1に記載の熱延鋼板を製造するに際し、
質量%でC:0.02〜0.12%、Si:0.005〜0. 5%、Mn:0.3〜1.5%、P:0.005〜0.2%、Al:0.10%以下、N:0.012%以下、Nb:0.005〜0.10%を含有し、残部が鉄および不可避的不純物からなる鋼を、
870℃以上の仕上げ温度で熱間圧延し、
巻取りまで40℃/s以下の平均冷却速度で冷却し、
620℃以上の巻取り温度で巻取ることを特徴とする、塗装焼付け処理後の、降伏強度が500MPa以上、降伏比0.9以上、全伸びが10%以上、Δrが−0.50〜0である缶用鋼板母材に用いる熱延鋼板の製造方法。
In producing the hot-rolled steel sheet according to claim 1,
C: 0.02 to 0.12% by mass, Si: 0.005 to 0.5%, Mn: 0.3 to 1.5%, P: 0.005 to 0.2%, Al: 0.10% or less, N: 0.012% or less, Nb: 0.005 to 0.10 Containing steel and the balance being iron and inevitable impurities,
Hot rolled at a finishing temperature of 870 ° C or higher,
Cooling at an average cooling rate of 40 ° C / s or less until winding,
For cans with a yield strength of 500 MPa or more, a yield ratio of 0.9 or more, a total elongation of 10% or more, and Δr of -0.50 to 0 after coating and baking, characterized by winding at a winding temperature of 620 ° C or higher A method for producing a hot-rolled steel sheet used for a steel sheet base material .
JP2012236774A 2012-10-26 2012-10-26 Hot-rolled steel sheet used as a base material for steel sheet for can and manufacturing method thereof Active JP5655839B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012236774A JP5655839B2 (en) 2012-10-26 2012-10-26 Hot-rolled steel sheet used as a base material for steel sheet for can and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012236774A JP5655839B2 (en) 2012-10-26 2012-10-26 Hot-rolled steel sheet used as a base material for steel sheet for can and manufacturing method thereof

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007049652A Division JP5162924B2 (en) 2007-02-28 2007-02-28 Steel plate for can and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013032596A JP2013032596A (en) 2013-02-14
JP5655839B2 true JP5655839B2 (en) 2015-01-21

Family

ID=47788673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012236774A Active JP5655839B2 (en) 2012-10-26 2012-10-26 Hot-rolled steel sheet used as a base material for steel sheet for can and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5655839B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5939368B1 (en) * 2014-08-29 2016-06-22 Jfeスチール株式会社 Steel plate for can and manufacturing method thereof
NZ744555A (en) * 2016-02-29 2019-07-26 Jfe Steel Corp Steel sheet for can and method for manufacturing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303931B2 (en) * 1992-10-06 2002-07-22 川崎製鉄株式会社 High-strength steel sheet for baking having hardenability and its manufacturing method
JP2623432B2 (en) * 1993-07-14 1997-06-25 東洋鋼鈑株式会社 Steel sheet suitable for thinned deep-drawing can and its manufacturing method
JPH08325670A (en) * 1995-03-29 1996-12-10 Kawasaki Steel Corp Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production
JP3812248B2 (en) * 1999-02-15 2006-08-23 Jfeスチール株式会社 High-strength cold-rolled steel sheet with excellent surface properties and press formability and method for producing the same
JP4453258B2 (en) * 2003-01-31 2010-04-21 Jfeスチール株式会社 Hot-rolled steel sheet excellent in rotating ironing workability and manufacturing method thereof

Also Published As

Publication number Publication date
JP2013032596A (en) 2013-02-14

Similar Documents

Publication Publication Date Title
JP5162924B2 (en) Steel plate for can and manufacturing method thereof
JP5135868B2 (en) Steel plate for can and manufacturing method thereof
JP4525450B2 (en) High strength and high ductility steel sheet for cans and method for producing the same
JP6274302B2 (en) Steel plate for 2-piece can and manufacturing method thereof
JP5939368B1 (en) Steel plate for can and manufacturing method thereof
JP6455640B1 (en) Steel plate for 2-piece can and manufacturing method thereof
JP6028884B1 (en) Steel plate for cans and method for producing steel plate for cans
JP6540769B2 (en) High strength ultra thin steel plate and method of manufacturing the same
JP4858126B2 (en) Steel sheet for high strength and high ductility can and method for producing the same
WO2013183274A1 (en) Three-piece can and method for producing same
WO2012124823A1 (en) Steel sheet for aerosol can bottom having high pressure resistance and excellent workability and method for producing same
JP2023507810A (en) Tin-plated base plate for processing and method for producing the same
JP5655839B2 (en) Hot-rolled steel sheet used as a base material for steel sheet for can and manufacturing method thereof
JP2005320633A (en) Steel sheet for two-piece contoured can, and manufacturing method therefor
JP2010196096A (en) Cold rolled steel sheet having excellent balance in strength and ductility after press working and coating baking, and method for producing the same
JP5929739B2 (en) Steel plate for aerosol can bottom and manufacturing method thereof
JP4962527B2 (en) Cold-rolled steel sheet excellent in formability, shape freezing property, surface appearance, and method for producing the same
JP3707260B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
JP3682683B2 (en) Method for producing steel plate for two-piece can with excellent in-plane anisotropic uniformity in coil
JP3675190B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
JP2008190008A (en) Manufacturing method of hot-rolled steel sheet having excellent aging resistance
JP2009155692A (en) Cold-rolled steel sheet having low intra-plane anisotropy and excellent strain-aging property, and producing method therefor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140128

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20140303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141110

R150 Certificate of patent or registration of utility model

Ref document number: 5655839

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250