JP4858126B2 - Steel sheet for high strength and high ductility can and method for producing the same - Google Patents
Steel sheet for high strength and high ductility can and method for producing the same Download PDFInfo
- Publication number
- JP4858126B2 JP4858126B2 JP2006323465A JP2006323465A JP4858126B2 JP 4858126 B2 JP4858126 B2 JP 4858126B2 JP 2006323465 A JP2006323465 A JP 2006323465A JP 2006323465 A JP2006323465 A JP 2006323465A JP 4858126 B2 JP4858126 B2 JP 4858126B2
- Authority
- JP
- Japan
- Prior art keywords
- less
- steel
- strength
- temperature
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 103
- 239000010959 steel Substances 0.000 title claims description 103
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 238000000137 annealing Methods 0.000 claims description 45
- 238000005096 rolling process Methods 0.000 claims description 35
- 238000001816 cooling Methods 0.000 claims description 32
- 238000004804 winding Methods 0.000 claims description 22
- 229910000859 α-Fe Inorganic materials 0.000 claims description 22
- 239000013078 crystal Substances 0.000 claims description 19
- 238000005097 cold rolling Methods 0.000 claims description 12
- 230000009467 reduction Effects 0.000 claims description 12
- 238000002791 soaking Methods 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 11
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 230000033228 biological regulation Effects 0.000 claims description 7
- 239000012535 impurity Substances 0.000 claims description 7
- 229910052742 iron Inorganic materials 0.000 claims description 4
- 238000005554 pickling Methods 0.000 claims description 3
- 238000005728 strengthening Methods 0.000 description 25
- 238000000034 method Methods 0.000 description 23
- 239000000463 material Substances 0.000 description 19
- 239000006104 solid solution Substances 0.000 description 14
- 238000005098 hot rolling Methods 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 9
- 210000005069 ears Anatomy 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- 239000000203 mixture Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000001953 recrystallisation Methods 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 230000007423 decrease Effects 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 4
- 239000005029 tin-free steel Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 230000032683 aging Effects 0.000 description 3
- 230000001276 controlling effect Effects 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 150000001247 metal acetylides Chemical class 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002344 surface layer Substances 0.000 description 3
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 2
- 238000003483 aging Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000009749 continuous casting Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000007747 plating Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000003796 beauty Effects 0.000 description 1
- 238000009924 canning Methods 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は、高加工度の缶胴加工を伴う3ピース缶、ボトム部が数%加工される2ピース缶等の素材として用いられる缶用鋼板およびその製造方法に関するものであり、詳しくは、降伏伸びが小さく、かつ、異方性(Δr)が小さい缶用鋼板およびその製造方法に関するものである。 The present invention relates to a steel plate for cans used as a raw material for a three-piece can with a high degree of can body processing, a two-piece can whose bottom portion is processed by several percent, and a manufacturing method thereof. The present invention relates to a steel plate for cans having a small elongation and a small anisotropy (Δr) and a method for producing the same.
近年、缶用鋼板としてのスチール缶の需要を拡大するため、製缶コストの低減、ボトル缶や異形缶のような新規缶種の市場投入などの策がとられている。
製缶コストの低減策としては、素材の低コスト化が挙げられ、絞り加工を行う2ピース缶はもとより、単純な円筒成形が主体の3ピース缶であっても、使用する鋼板の薄肉化が進められている。
ただし、単に鋼板を薄肉化すると缶体強度が低下するので、DRD缶や溶接缶の缶胴部のような高強度材が用いられている箇所には薄肉化した鋼板を用いることができず、高強度で極薄の缶用鋼板が望まれていた。
現在、極薄で硬質な缶用鋼板は、焼鈍後に2次冷延を施すDuble Reduce法(以下、DR法と称す)で製造されている。DR法を利用して製造した鋼板は高強度かつ降伏伸びが小さいという特徴がある。ボトム加工を伴うDRD缶用途では、スレッチャーストレインの発生を防止するためにできるだけ降伏伸びが小さいことが望ましく、その点でDR法は有効である。しかし、DRD缶では耳割れ発生が小さいことが求められるが、DR法では異方性が大きくなる傾向があるため耳割れが発生し、耳割れ発生防止のために異方性(Δr)を小さくするという課題がある。
一方、最近市場に投入されている異形缶のような高い加工度の缶胴加工を伴う缶には、延性に乏しいDR材は加工性に劣るため適用が難しい。加えて、DR材は通常の焼鈍後調圧する鋼板に比べて、製造工程も増えるためコストが高い。
In recent years, in order to increase the demand for steel cans as steel plates for cans, measures have been taken such as reducing can manufacturing costs and introducing new can types such as bottle cans and deformed cans to the market.
As a measure to reduce can manufacturing costs, the cost of materials can be reduced, and not only two-piece cans that are drawn, but also three-piece cans mainly made of simple cylindrical molding, the use of thinner steel sheets can be achieved. It is being advanced.
However, simply reducing the thickness of the steel sheet reduces the strength of the can body, so it is not possible to use a thinned steel sheet in places where high-strength materials such as DRD cans and can bodies of welded cans are used, A high strength and extremely thin steel plate for cans has been desired.
Currently, ultra-thin and hard steel plates for cans are manufactured by the Duble Reduce method (hereinafter referred to as DR method) in which secondary cold rolling is performed after annealing. Steel sheets manufactured using the DR method are characterized by high strength and low yield elongation. In a DRD can application involving bottom processing, it is desirable that the yield elongation is as small as possible in order to prevent the occurrence of a threshold strain, and the DR method is effective in that respect. However, DRD cans are required to have small ear cracks, but the DR method tends to increase anisotropy, so ear cracks occur, and anisotropy (Δr) is reduced to prevent ear cracks. There is a problem of doing.
On the other hand, DR materials having poor ductility are difficult to apply to cans with cans having a high degree of processing, such as deformed cans that have recently been put on the market, because of poor workability. In addition, the DR material is expensive because the number of manufacturing steps is increased as compared with a steel plate that is pressure-regulated after normal annealing.
こうしたDR材の欠点を回避するため、二次冷延を省略して、種々の強化法を用いて一次冷圧および焼鈍工程で特性を制御するSingle Reduce法(SR法)により高強度鋼板を製造する方法、さらに降伏伸びの小さい高強度鋼板を製造する方法、もしくは耳発生率の小さい鋼板の製造方法が下記特許に提案されている。 In order to avoid the disadvantages of DR materials, secondary cold rolling is omitted, and high strength steel sheets are manufactured by the Single Reduce method (SR method), which controls the properties in the primary cold pressure and annealing processes using various strengthening methods. The following patents propose a method for producing a high-strength steel plate having a small yield elongation, or a method for producing a steel plate having a low ear generation rate.
特許文献1では、C、Nを多量に添加して焼付け硬化させることで、DR並みの高強度缶用鋼板が得ることが提案されている。塗装焼付処理後の降伏応力が550MPa以上と高く、Nの添加量、熱処理で得られる硬度を調整できるとしている。
特許文献2でも、特許文献1と同様に、塗装後焼付け処理によって+50MPa程度高強度化している。
特許文献3では、Nb炭化物による析出強化やPによる固溶強化を複合的に組み合わせることで強度―延性バランスがとれた鋼板を提案している。
特許文献4では、降伏伸びを1.0%以下にすることでストレッチャーストレインの発生を防止し、かつT6相当の強度レベルの鋼を得る製造方法が提案されている。
特許文献5では、DI缶のフランジ加工性を高め、耳発生を防止するために箱焼鈍を利用する方法が提案されている。
特許文献6は、変態強化を利用して高強度鋼板を得る発明であり、低炭素鋼をα+γ域で熱間圧延し、高速で冷却し、焼鈍の加熱速度を規定することで、引張強度600MPa、全伸び30%以上を有する鋼板が提案されている。
In Patent Document 2, as in Patent Document 1, the strength is increased by about +50 MPa by post-coating baking treatment.
Patent Document 3 proposes a steel sheet having a balance between strength and ductility by combining precipitation strengthening with Nb carbide and solid solution strengthening with P in a composite manner.
Patent Document 4 proposes a manufacturing method in which the yield elongation is 1.0% or less to prevent the occurrence of stretcher strain and to obtain a steel having a strength level equivalent to T6.
Patent Document 5 proposes a method using box annealing in order to improve the flange processability of the DI can and prevent the occurrence of ears.
Patent Document 6 is an invention for obtaining a high-strength steel sheet using transformation strengthening, and hot rolling low carbon steel in an α + γ region, cooling at a high speed, and defining a heating rate for annealing, thereby providing a tensile strength of 600 MPa. A steel sheet having a total elongation of 30% or more has been proposed.
まず、薄ゲージ化するために強度確保は必須であり、0.18mm以下の板厚で現行の缶体強度を得るためには引張強度を500MPa以上にする必要がある。また、拡缶加工のような高い缶胴加工を行う缶体、高いフランジ加工を行う缶体に鋼板を用いる場合には、高延性の鋼を適用する必要がある。さらに、数%の引張加工度に相当するボトム加工を伴うDRD缶に降伏伸びが発生する材料を適用するとストレッチャーストレインが発生して外観上好ましくないため、降伏伸びが生じない鋼板が望ましい。そして、DRD缶に耳発生率が高い鋼を適用するとトリム代が増加して歩留まりが低下する。そのため、耳発生が小さい、つまり異方性の小さい鋼板が望ましい。
上記特性を鑑みた場合、前述の従来技術では、強度、延性、降伏伸び、異方性の中のいずれかを満たす鋼板を製造することは可能であるが、全てを満足する鋼板は製造できない。
例えば、特許文献1に記載のC、Nを多量に添加して焼付硬化性により強度を上昇させる方法は、強度上昇には有効な方法ではあるが、調圧後の歪時効の懸念があり、ストレッチャ-ストレインが発生して缶の外観を損ねる恐れがある。
特許文献2では、焼付け処理により時効硬化させることと過時効処理により降伏伸びを小さくすることを挙げているが、ここで示す過時効処理で得られた鋼板ではストレッチャーストレインを完全に抑制できない。
特許文献3では降伏伸びに関して記載されていないが、低炭素鋼を連続焼鈍により製造しており、さらに過時効処理を行っていないため、数%の降伏伸びが生じることが予想される。
特許文献4では、降伏伸びがほぼ0になるT6レベルの鋼を記載しているものの、10%以上の圧延率で調質圧延を行う必要があり、実質的にDR材と同様な製造方法である。また、T6を超える鋼を製造する記述はみられない。また、明細書中には延性に関して記載されていないが、10%以上の圧下率で圧延を行うと延性には劣ることが予想される。
特許文献5では、箱焼鈍を用いることによりフランジ加工性の高く、耳発生を抑制する鋼板の製造方法が示されている。しかし、本発明が目標とする500MPa以上の強度には到達していない。
特許文献6で提案されている高速冷却による高強度化は、操業上コスト高になる。
First, it is essential to secure strength in order to reduce the gauge, and in order to obtain the current can strength with a plate thickness of 0.18 mm or less, the tensile strength must be 500 MPa or more. Moreover, when using a steel plate for a can body that performs high can body processing such as can expansion processing or a can body that performs high flange processing, it is necessary to apply high ductility steel. Furthermore, if a material that yields yield is applied to a DRD can with bottom processing corresponding to several percent of the degree of tensile work, a stretcher strain is generated, which is not preferable in appearance. Therefore, a steel plate that does not yield yield is desirable. When steel with a high ear occurrence rate is applied to the DRD can, the trim margin increases and the yield decreases. Therefore, a steel plate with small ear generation, that is, low anisotropy is desirable.
In view of the above characteristics, in the above-described conventional technology, it is possible to manufacture a steel plate that satisfies any of strength, ductility, yield elongation, and anisotropy, but it is not possible to manufacture a steel plate that satisfies all of the requirements.
For example, the method of increasing the strength by bake hardenability by adding a large amount of C, N described in Patent Document 1 is an effective method for increasing the strength, but there is a concern of strain aging after pressure adjustment, Stretcher strain may occur and damage the can's appearance.
Patent Document 2 mentions age hardening by baking and reducing yield elongation by overaging, but the steel plate obtained by the overaging shown here cannot completely suppress stretcher strain.
Although Patent Document 3 does not describe the yield elongation, it is expected that yield elongation of several percent occurs because low carbon steel is manufactured by continuous annealing and is not over-aged.
Although Patent Document 4 describes a T6 level steel with a yield elongation of almost 0, it is necessary to perform temper rolling at a rolling rate of 10% or more, and the manufacturing method is substantially the same as that of DR material. is there. In addition, there is no description of producing steel exceeding T6. Further, although it is not described in the specification regarding ductility, it is expected that the ductility is inferior when rolling is performed at a rolling reduction of 10% or more.
Patent Document 5 discloses a method of manufacturing a steel sheet that has high flange workability and suppresses the generation of ears by using box annealing. However, the strength of 500 MPa or more targeted by the present invention has not been reached.
The increase in strength by high-speed cooling proposed in Patent Document 6 is costly in operation.
本発明は、かかる事情に鑑みなされたもので、500MPa以上の引張強度、20%以上の伸びを有し、さらには降伏伸びが1%未満で、異方性が-0.5〜0となる高強度高延性缶用鋼板およびその製造方法を提供することを目的とする。 The present invention has been made in view of such circumstances, and has a tensile strength of 500 MPa or more, an elongation of 20% or more, and a high strength at which the yield elongation is less than 1% and the anisotropy is -0.5 to 0. It aims at providing the steel plate for high ductility cans, and its manufacturing method.
本発明者らは、上記課題を解決するために鋭意研究を行った。その結果、以下の知見を得た。
固溶強化、析出強化、微細化強化の複合的な組み合わせに着目し、固溶強化元素を用いて固溶強化し、Nbによる析出強化および細粒化強化を図ることで伸びを損なわず高強度化でき、さらに、組織を実質的なフェライト単相とし、フェライト平均結晶粒径を規定することで強度−延性バランスが保て、500MPa以上の引張強度、20%以上の伸びが得られる。
さらに、冷却速度を規定した箱焼鈍を行うことで降伏伸びを1%未満にすることが可能となる。
そして、熱延条件を制御することで異方性を-0.5〜0とすることが可能となる。
本発明では、上記知見に基づき成分、製造方法をトータルで管理することで、高強度高延性缶用鋼板およびその製造方法を完成するに至った。
The inventors of the present invention have intensively studied to solve the above problems. As a result, the following knowledge was obtained.
Focusing on the combined combination of solid solution strengthening, precipitation strengthening and refinement strengthening, solid solution strengthening using solid solution strengthening elements, and strengthening by precipitation strengthening with Nb and fine grain strengthening, high strength without impairing elongation Furthermore, by making the structure a substantially single ferrite phase and defining the average grain size of ferrite, the strength-ductility balance can be maintained, and a tensile strength of 500 MPa or more and an elongation of 20% or more can be obtained.
Furthermore, it is possible to reduce the yield elongation to less than 1% by performing box annealing with a specified cooling rate.
And it becomes possible to make anisotropy -0.5-0 by controlling hot rolling conditions.
In this invention, it came to complete the steel plate for high strength and high ductility cans, and its manufacturing method by managing a component and a manufacturing method in total based on the said knowledge.
本発明は、以上の知見に基づきなされたもので、その要旨は以下のとおりである。
[1]質量%で、C:0.01〜0.12%、Si:0.01〜0. 5%、Mn:0.3〜1.5%、P:0.01〜0.2%、Al:0.1%以下、Nb:0.005〜0.1%を含有し、残部が鉄および不可避的不純物からなる組成と、実質的にフェライト単相組織を有し、フェライト平均結晶粒径が7μm以下、板厚0.18mm以下であり、引張強度が500MPa以上、全伸びが20%以上、降伏伸びが1%未満、異方性(Δr)が-0.5〜0である高強度高延性缶用鋼板。
[2]質量%で、C:0.01〜0.12%、Si:0.01〜0. 5%、Mn:0.3〜1.5%、P:0.01〜0.2%、Al:0.1%以下、Nb:0.005〜0.1%を含有し、残部が鉄および不可避的不純物からなる鋼を、
870℃以上の仕上げ温度で熱間圧延し、巻取りまで40℃/s以下の速度で冷却し、620℃以上の巻取り温度で巻取り、酸洗し、次いで、80%以上の圧下率で冷間圧延を行った後に、600〜690℃の均熱温度、20℃/h以下の冷却速度の条件で箱焼鈍を行い、1.5%以下の調圧率で調質圧延を行うことを特徴とする板厚0.18mm以下である高強度高延性缶用鋼板の製造方法。
The present invention has been made based on the above findings, and the gist thereof is as follows.
[1] By mass%, C: 0.01 to 0.12%, Si: 0.01 to 0.5%, Mn: 0.3 to 1.5%, P: 0.01 to 0.2%, Al: 0.1% or less, Nb: 0.005 to 0.1% Contained, the balance is composed of iron and inevitable impurities, and has a ferrite single phase structure substantially, ferrite average crystal grain size is 7μm or less, plate thickness is 0.18mm or less, tensile strength is 500MPa or more, all A steel sheet for high strength and high ductility cans having an elongation of 20% or more, a yield elongation of less than 1%, and an anisotropy (Δr) of −0.5 to 0.
[2] By mass%, C: 0.01 to 0.12%, Si: 0.01 to 0.5%, Mn: 0.3 to 1.5%, P: 0.01 to 0.2%, Al: 0.1% or less, Nb: 0.005 to 0.1% Containing steel, the balance being iron and inevitable impurities,
Hot-rolled at a finishing temperature of 870 ° C or higher, cooled at a rate of 40 ° C / s or lower until winding, wound at a winding temperature of 620 ° C or higher, pickled, and then at a reduction rate of 80% or higher. After cold rolling, box annealing is performed under conditions of a soaking temperature of 600 to 690 ° C. and a cooling rate of 20 ° C./h or less, and temper rolling is performed at a pressure regulation rate of 1.5% or less. The manufacturing method of the steel plate for high strength and high ductility cans which is 0.18 mm or less in thickness.
なお、本明細書において、鋼の成分を示す%は、すべて質量%である。 In the present specification, “%” indicating the component of steel is “% by mass”.
本発明によれば、500MPa以上の引張強度、20%以上の伸びを有し、さらには降伏伸びが1%未満で、異方性が-0.5〜0となる高強度高延性缶用鋼板が得られる。
詳細には、本発明は、固溶強化元素を用いて固溶強化し、さらに、Nbによる析出強化および細粒化強化を行うことにより、他の特性に弊害なく、複合強化し強度を上昇させたので、箱焼鈍を行うにも関わらず、焼鈍工程後の調質圧延は圧下率1.5%以下で、確実に引張強度が500MPa以上の鋼板が製造できる。
加えて、箱焼鈍を利用し均熱後の冷却速度を20℃/h以下にすることで、鋼中の固溶C量を低減させるため、降伏伸びが1%未満となり、絞り加工やボトム加工時に懸念されていたストレッチャーストレインを防止できる。
また、DRD缶用途では缶のトリム代を小さくして歩留まりを上げるために耳発生を防止する必要がある。本発明では、仕上げ温度を870℃以上、巻取りまでの冷却速度を40℃/s以下、巻取り温度を620℃以上にすることで異方性を-0.5〜0の範囲に抑え、耳発生を防止することができる。
また、焼鈍時の生産性についても、従来は、0.18mm以下のような極薄材に関して連続焼鈍では破断や板の形状を損ねる恐れがあり高い歩留まりを確保できない恐れがあったが、本発明の箱焼鈍では上記の恐れはなく、高い歩留まりを確保できる。
According to the present invention, a high strength and high ductility steel plate for cans having a tensile strength of 500 MPa or more, an elongation of 20% or more, a yield elongation of less than 1%, and an anisotropy of −0.5 to 0 is obtained. It is done.
More specifically, the present invention uses a solid solution strengthening element to solid solution strengthen, and further performs precipitation strengthening and fine grain strengthening with Nb, thereby strengthening the composite strength without adversely affecting other properties. Therefore, in spite of the box annealing, the temper rolling after the annealing process can reliably produce a steel sheet having a reduction rate of 1.5% or less and a tensile strength of 500 MPa or more.
In addition, by using box annealing to reduce the cooling rate after soaking to 20 ° C / h or less, the yield elongation is less than 1% to reduce the amount of solute C in the steel, drawing and bottom processing. Stretcher strain that was sometimes a concern can be prevented.
Also, in DRD can applications, it is necessary to prevent the occurrence of ears in order to reduce the trim cost of the can and increase the yield. In the present invention, by setting the finishing temperature to 870 ° C or higher, the cooling rate until winding to 40 ° C / s or lower, and the winding temperature to 620 ° C or higher, the anisotropy is suppressed to a range of -0.5 to 0, and ears are generated. Can be prevented.
Also, regarding the productivity during annealing, conventionally, with regard to ultra-thin materials such as 0.18 mm or less, continuous annealing may damage the shape of the plate and break, and there is a risk that high yield cannot be ensured. With box annealing, there is no such fear, and a high yield can be secured.
以下、本発明を詳細に説明する。
本発明の缶用鋼板は、引張強度(以下、TSと称することもある)500MPa以上、伸び20%以上、降伏伸び1%未満、異方性(以下、Δrと称することもある)-0.5〜0の高強度高延性缶用鋼板である。通常、DR法を用いて高強度化した鋼板では、数%しか伸びを生じない。それに対して、連続焼鈍、調圧により作製した鋼板は10%以上の伸びを有するが、鋼中の固溶C量が高いため、降伏伸びが数%生じる。これらに対して、本発明は、Nb、P、Mnにより固溶強化、析出強化、微細化強化した鋼板を箱焼鈍により製造することで、高伸びを維持しつつ高強度化することを特徴とする。また、箱焼鈍後の冷却速度を小さくすることで、降伏伸びを1%未満にする。さらには、熱延時の仕上げ温度を870℃以上、その後の冷却速度を40℃/s以下に、巻取り温度を620℃以上にすることでΔrを-0.5〜0の範囲の値を得る。これらは、本発明の特徴であり、最も重要な要件である。このように、固溶強化元素、析出強化元素、微細化強化元素を中心とする成分、組織、そして、製造条件を適正化することで、C、Nが添加されているにも関わらず、降伏伸びが1%未満で、Δrが-0.5〜0、かつ、20%以上もの高伸びを有する高強度鋼板が得られることになる。
Hereinafter, the present invention will be described in detail.
The steel plate for cans of the present invention has a tensile strength (hereinafter sometimes referred to as TS) of 500 MPa or more, an elongation of 20% or more, a yield elongation of less than 1%, and an anisotropy (hereinafter also referred to as Δr) -0.5 to It is a 0 steel plate for high strength and high ductility cans. Normally, a steel sheet that has been strengthened by using the DR method has an elongation of only a few percent. On the other hand, a steel sheet produced by continuous annealing and pressure regulation has an elongation of 10% or more, but because the amount of dissolved C in the steel is high, yield elongation occurs several percent. On the other hand, the present invention is characterized by increasing the strength while maintaining high elongation by manufacturing a steel plate strengthened by solid solution strengthening, precipitation strengthening, refinement strengthening by Nb, P, Mn by box annealing. To do. Moreover, yield elongation is made less than 1% by reducing the cooling rate after box annealing. Furthermore, by setting the finishing temperature during hot rolling to 870 ° C. or higher, the subsequent cooling rate to 40 ° C./s or lower, and the coiling temperature to 620 ° C. or higher, Δr can be in the range of −0.5 to 0. These are features of the present invention and are the most important requirements. In this way, by optimizing the components, structure, and manufacturing conditions centering on solid solution strengthening elements, precipitation strengthening elements, and refinement strengthening elements, yielding is achieved despite the addition of C and N. A high-strength steel sheet having an elongation of less than 1%, Δr of −0.5 to 0, and a high elongation of 20% or more can be obtained.
次に、本発明の缶用鋼板の成分組成について説明する。
C:0.01〜0.12%
本発明の缶用鋼板においては、焼鈍後に所定以上の強度(500MPa以上)を達成すると同時に20%以上の伸びを有することが必須であり、そのためには結晶粒径が7μm以下になることが必要である。これらの特性を満たす鋼板を製造する際しては、C添加量は重要なとなってくる。特に強度と粒径には、炭化物の量や密度が大きく関わってくるので、析出に利用される炭素量を確保する必要がある。従って、C含有量は0.01%以上とする。一方、C添加量が0.12%を超えると、鋼の溶製中冷却過程の中で亜包晶割れを起こすため、0.12%以下とする。望ましくは0.04%以上0.1%以下である。
Next, the component composition of the steel plate for cans of this invention is demonstrated.
C: 0.01-0.12%
In the steel sheet for cans of the present invention, it is essential to achieve a strength of not less than a predetermined value (500 MPa or more) after annealing, and at the same time to have an elongation of 20% or more. For this purpose, the crystal grain size must be 7 μm or less. It is. In the production of a steel sheet that satisfies these characteristics, the amount of C added becomes important. In particular, since the amount and density of carbides are greatly related to strength and particle size, it is necessary to secure the amount of carbon used for precipitation. Therefore, the C content is 0.01% or more. On the other hand, if the amount of C added exceeds 0.12%, subperitectic cracks occur during the cooling process during steel melting, so the content is made 0.12% or less. Desirably, it is 0.04% or more and 0.1% or less.
Si:0.01〜0.5%
Siは固溶強化により鋼を高強度化させる元素であるが、多量に添加すると耐食性が著しく損なわれる。よって、Si添加量は0.01%以上0.5%以下とする。
Si: 0.01-0.5%
Si is an element that enhances the strength of steel by solid solution strengthening, but if added in a large amount, corrosion resistance is significantly impaired. Therefore, the Si addition amount is set to 0.01% or more and 0.5% or less.
Mn:0.3〜1.5%
Mnは固溶強化により鋼の強度を増加させ、結晶粒径も小さくする。また、微細化強化としても強度を増加させる元素である。結晶粒径を小さくする効果が顕著に生じてくるのはMn添加量が0.3%以上であり、目標強度を確保するには少なくとも0.3%のMn添加量が必要とされる。よって、Mn添加量の下限は0.3%と限定する。一方、箱焼鈍を利用して製造する場合、Mnを多量に含有するとテンパーカラーが多量発生することにより耐食性が劣る。よって、上限は1.5%に限定する。
Mn: 0.3-1.5%
Mn increases the strength of the steel by solid solution strengthening and reduces the crystal grain size. In addition, it is an element that increases the strength even as it is refined. The effect of reducing the crystal grain size is remarkably produced when the Mn addition amount is 0.3% or more, and at least 0.3% Mn addition amount is required to secure the target strength. Therefore, the lower limit of the Mn addition amount is limited to 0.3%. On the other hand, when manufacturing using box annealing, if a large amount of Mn is contained, a large amount of temper color is generated, resulting in poor corrosion resistance. Therefore, the upper limit is limited to 1.5%.
P:0.01%〜0.2%
Pは固溶強化能が大きい元素で、その効果が顕著に生じるのは0.01%以上である。よって、P添加量の下限は0.01%と限定する。一方、多量に添加すると耐食性が劣化するので、上限は0.2%と限定する。
P: 0.01% ~ 0.2%
P is an element having a large solid solution strengthening ability, and the effect is noticeably caused by 0.01% or more. Therefore, the lower limit of the P addition amount is limited to 0.01%. On the other hand, since the corrosion resistance deteriorates when added in a large amount, the upper limit is limited to 0.2%.
Al:0.1%以下
Al含有量が増加すると、再結晶温度の上昇がもたらされるので、焼鈍温度を高くする必要がある。本発明においては、強度を増加させるために添加した他の元素で再結晶温度の上昇がもたらされ、焼鈍温度が高くなるので、Alによる再結晶温度の上昇は極力回避することが得策である。よって、Al含有量は0.1%以下とする。
Al: 0.1% or less
As the Al content increases, the recrystallization temperature rises, so the annealing temperature needs to be increased. In the present invention, other elements added to increase the strength increase the recrystallization temperature and increase the annealing temperature. Therefore, it is best to avoid the increase of the recrystallization temperature due to Al as much as possible. . Therefore, the Al content is 0.1% or less.
Nb:0.005%〜0.1%
Nbは、本発明においては重要な添加元素である。Nbは炭化物生成能の高い元素であり、微細な炭化物を析出させて強度を上昇させる。また、細粒化することで強度を上昇させる。粒径、粒の形は強度だけでなく、絞り加工時の表面性状にも影響する。Nb添加量によって強度や表面性状を調整することができ、0.005%を超えるときにこの効果が生じる。よって、下限を0.005%と限定する。また、0.015%以上添加した時に強度上昇率が大きくなる傾向にあるため、著しい強度上昇が必要な場合には、0.015%以上添加することが望ましい。一方、Nbは再結晶温度の上昇をもたらすので、0.1%以上含有させると、本発明で記載している600〜690℃の焼鈍温度では未再結晶が一部残存するなど、焼鈍し難くなる。焼鈍温度を高くすることで、再結晶組織は得られるが、鋼中の元素が表層濃化するため、表面性状が劣る。よって、Nb添加量の上限は0.1%と限定する。
Nb: 0.005% to 0.1%
Nb is an important additive element in the present invention. Nb is an element having a high ability to generate carbides, and precipitates fine carbides to increase the strength. Moreover, strength is raised by making it fine. The grain size and grain shape affect not only the strength but also the surface properties during drawing. The strength and surface properties can be adjusted by the amount of Nb added, and this effect occurs when the amount exceeds 0.005%. Therefore, the lower limit is limited to 0.005%. Further, since the rate of increase in strength tends to increase when 0.015% or more is added, it is desirable to add 0.015% or more when a significant increase in strength is required. On the other hand, Nb brings about an increase in the recrystallization temperature. Therefore, when it is contained in an amount of 0.1% or more, it becomes difficult to anneal, for example, a part of unrecrystallized remains at the annealing temperature of 600 to 690 ° C. described in the present invention. By increasing the annealing temperature, a recrystallized structure can be obtained, but the surface properties are inferior because the elements in the steel are concentrated on the surface layer. Therefore, the upper limit of the Nb addition amount is limited to 0.1%.
N: 0.001%以上0.012%以下(好適範囲)
N添加量の規定は特に行わない。しかし、連続鋳造時、温度が低下する下部矯正帯でスラブ割れが生じやすくなる。箱焼鈍法により製造する場合には、焼鈍中にほとんどのNがALNとして析出するため、鋼中の固溶Nがなくなり、時効硬化が得られない。ゆえに、箱焼鈍法により製造する場合には、集合組織を制御するために必要なN量のみ添加することが好ましい。よって、集合組織に影響するALNが得られるレベルのN添加量として0.001%以上0.012%以下の範囲で添加することが好ましい。極力スラブ割れが起こらないようにするためには、0.005%以下にすることが好ましい。
N: 0.001% to 0.012% (preferred range)
There is no particular restriction on the amount of N added. However, during continuous casting, slab cracking tends to occur in the lower straightening zone where the temperature decreases. In the case of manufacturing by the box annealing method, most of N is precipitated as ALN during annealing, so there is no solid solution N in the steel and age hardening cannot be obtained. Therefore, when manufacturing by a box annealing method, it is preferable to add only the N amount necessary for controlling the texture. Therefore, it is preferable to add N in a range of 0.001% or more and 0.012% or less as a N addition amount at a level at which ALN affecting the texture is obtained. In order to prevent slab cracking as much as possible, the content is preferably 0.005% or less.
残部はFeおよび不可避不純物とする。 The balance is Fe and inevitable impurities.
次に本発明の缶用鋼板の組織について説明する。
フェライト単相組織、平均結晶粒径:7μm以下
まず、本発明では実質的にフェライト単相組織とする。セメンタイト等を1%程度含む場合でも、本発明の作用効果を奏する限り、実質的にフェライト単相組織であると判断する。
また、フェライト平均結晶粒径が7μmを超えると、製缶後の表面外観の美麗さが失われる。これは肌荒れ現象のような表面の粗度の極端な変化に対応するものと考えられる。そして、この現象は、発生する部位や程度は異なるものの、特に2ピース缶において確認される。以上より、フェライト平均結晶粒径は7μm以下とする。なお、フェライト結晶粒径は、例えば、ASTMの切断法によるフェライト平均結晶粒径に準じて測定するものとする。また、フェライト平均結晶粒径は、成分、冷間圧延率、焼鈍温度により目標値に制御する。具体的には、C:0.01〜0.12%、Si:0.01〜0. 5%、Mn:0.3〜1.5%、P:0.01〜0.2%、Al:0.1%以下、N: 0.005%以下、Nb:0.005〜0.1%を添加して、870℃以上の仕上げ温度で熱間圧延し、巻取りまで40℃/s以下の速度で冷却して、620℃以上の温度範囲でコイルに巻き取ったのち、酸洗を経て80%以上の冷間圧延を行った後に、均熱温度が600〜690℃、冷却速度が20℃/h以下の条件で箱焼鈍を行うことで、7μm以下の結晶粒径が得られる。
Next, the structure of the steel plate for cans of the present invention will be described.
Ferrite single-phase structure, average crystal grain size: 7 μm or less First, in the present invention, a ferrite single-phase structure is substantially formed. Even when containing about 1% of cementite or the like, it is determined that the ferrite single phase structure is substantially obtained as long as the effects of the present invention are exhibited.
On the other hand, when the average ferrite grain size exceeds 7 μm, the beauty of the surface appearance after canning is lost. This is considered to correspond to an extreme change in surface roughness such as a rough skin phenomenon. This phenomenon is confirmed particularly in a two-piece can, although the site and degree of occurrence are different. From the above, the ferrite average crystal grain size is set to 7 μm or less. The ferrite crystal grain size is measured, for example, according to the ferrite average crystal grain size by the ASTM cutting method. Further, the ferrite average crystal grain size is controlled to a target value by the component, the cold rolling rate, and the annealing temperature. Specifically, C: 0.01 to 0.12%, Si: 0.01 to 0.5%, Mn: 0.3 to 1.5%, P: 0.01 to 0.2%, Al: 0.1% or less, N: 0.005% or less, Nb: 0.005 Add ~ 0.1%, hot-roll at a finishing temperature of 870 ° C or higher, cool at a rate of 40 ° C / s or lower until winding, wind up on a coil in a temperature range of 620 ° C or higher, and then acid After performing cold rolling of 80% or more after washing, crystal grain size of 7 μm or less is obtained by performing box annealing under conditions of soaking temperature of 600 to 690 ° C. and cooling rate of 20 ° C./h or less. It is done.
鋼の板厚:0.18mm以下
本発明において、板厚は重要な因子である。板厚が0.18mmを超える鋼板であれば、容易に連続焼鈍を行うことができるが、0.18mm以下の鋼板では連続焼鈍時に破断や板の形状が悪くなる恐れがあり、生産性が低下する。よって、本発明では、箱焼鈍による生産性向上効果を顕著に表すため板厚は0.18mm以下に限定する。
Steel plate thickness: 0.18 mm or less In the present invention, the plate thickness is an important factor. If the steel sheet has a thickness of more than 0.18 mm, continuous annealing can be easily performed. However, if the steel sheet has a thickness of 0.18 mm or less, there is a possibility that the fracture or the shape of the plate may be deteriorated during continuous annealing, resulting in a decrease in productivity. Therefore, in this invention, in order to express the productivity improvement effect by box annealing notably, board thickness is limited to 0.18 mm or less.
引張強度:500MPa以上
引張強度(TS)が500MPaに満たないと、本発明が対象とする0.18mm以下の鋼板では、缶体強度が不足して使用に際して不具合を生ずる。よって、引張強度(TS)は500Mpa以上とする。なお、TSは成分、冷間圧延率、焼鈍温度により目標値に制御する。具体的には、C:0.01〜0.12%、Si:0.01〜0. 5%、Mn:0.3〜1.5%、P:0.01〜0.2%、Nb:0.005〜0.1%を添加して、冷間圧延率を80%以上として、均熱温度が600〜690℃、冷却速度が20℃/h以下の条件で箱焼鈍を行うことで目標値に制御する。
Tensile strength: 500 MPa or more If the tensile strength (TS) is less than 500 MPa, the steel sheet of 0.18 mm or less, which is the subject of the present invention, is insufficient in strength of the can body and causes problems when used. Therefore, the tensile strength (TS) is 500 Mpa or more. TS is controlled to the target value by the component, the cold rolling rate, and the annealing temperature. Specifically, C: 0.01 to 0.12%, Si: 0.01 to 0.5%, Mn: 0.3 to 1.5%, P: 0.01 to 0.2%, Nb: 0.005 to 0.1% are added, and the cold rolling rate Is controlled to a target value by performing box annealing under conditions of a soaking temperature of 600 to 690 ° C. and a cooling rate of 20 ° C./h or less.
全伸び:20%以上
全伸びが20%を下回ると、例えば、拡缶加工のような高い缶胴加工を伴う缶への適用が困難になる。よって、全伸びは20%以上とする。
Total elongation: When the total elongation is 20% or more and less than 20%, for example, it becomes difficult to apply to a can with high can body processing such as can expansion processing. Therefore, the total elongation is 20% or more.
降伏伸び:1%未満
降伏伸びが1%以上発生する鋼板に対してDRD缶のボトム部に加工を施すと、ストレッチャーストレインが発生する。そのため、ボトム部に表面の肌荒れやリューダース帯のような模様が発生して外観が優れない。加工時にストレッチャーストレインが発生しないためには1%未満の降伏伸びとする必要がある。
Yield elongation: Less than 1% Stretcher strain occurs when the bottom part of a DRD can is processed on a steel sheet with a yield elongation of 1% or more. For this reason, a pattern such as a rough surface or a Rueders band is generated on the bottom portion, and the appearance is not excellent. In order not to generate stretcher strain during processing, it is necessary to make the yield elongation less than 1%.
異方性(Δr):-0.5〜0
本発明では、異方性の指標として、下記式にて表されるΔrを用いることとする。
Δr=(r0+r90−2×r45)/4
r0は圧延方向に引張試験を行った時、r45は圧延方向と45°方向に引張試験を行った時、r90は圧延方向と90°方向に引張試験を行った時のr値を示す。
Δrが-0.5未満の鋼板では、例えば、DRD缶に加工した際、耳発生が大きいためトリム代が大きくなり歩留まりが低下する。歩留まりの観点から耳発生量を抑制するために、Δrは-0.5〜0の範囲にする必要がある。また、耳発生を極力抑制するためには、Δrが-0.3〜0の範囲にするのが望ましい。なお、Δrは熱間圧延時の仕上げ温度、仕上げ後の冷却速度、巻取り温度により目標値に制御する。具体的には、Δrは870℃以上の仕上げ温度で熱間圧延し、巻取りまで40℃/s以下の速度で冷却して、620℃以上の温度範囲でコイルに巻き取ることで目標値に制御する。
Anisotropy (Δr): -0.5 to 0
In the present invention, Δr represented by the following formula is used as an anisotropy index.
Δr = (r 0 + r 90 −2 × r 45 ) / 4
r 0 is the tensile value in the rolling direction, r 45 is the tensile value in the rolling direction and 45 ° direction, r 90 is the r value in the rolling direction and 90 ° direction. Show.
For a steel sheet with Δr of less than −0.5, for example, when it is processed into a DRD can, the generation of ears is large, so the trim margin increases and the yield decreases. In order to suppress the ear generation amount from the viewpoint of yield, Δr needs to be in the range of −0.5 to 0. In order to suppress ear generation as much as possible, it is desirable that Δr be in the range of −0.3 to 0. In addition, (DELTA) r is controlled to a target value with the finishing temperature at the time of hot rolling, the cooling rate after finishing, and coiling temperature. Specifically, Δr is set to the target value by hot rolling at a finishing temperature of 870 ° C or higher, cooling at a rate of 40 ° C / s or lower until winding, and winding the coil in a temperature range of 620 ° C or higher. Control.
次に本発明の缶用鋼板の製造方法について説明する。
上述した化学成分に調整された溶鋼を、転炉等を用いた通常公知の溶製方法により溶製し、次に連続鋳造法等の通常用いられる鋳造方法で圧延素材とする。
次に、上記により得られた圧延素材を用いて熱間圧延により、熱延板とする。圧延開始時には、圧延素材が、1250℃以上になるのが好ましい。仕上げ温度は870℃以上とする。また、巻取りまで40℃/s以下の速度で冷却し、620℃以上の巻取り温度で巻取る。なお、異方性の観点から、ここで得られた熱延材のフェライト粒径はできるだけ7μm以上にすることが望ましい。次いで、酸洗し、80%以上の圧下率で冷間圧延を行った後に、600〜690℃の均熱温度、20℃/h以下の冷却速度の条件で箱焼鈍を行い、1.5%以下の調圧率で調質圧延を行う。
Next, the manufacturing method of the steel plate for cans of this invention is demonstrated.
The molten steel adjusted to the above-described chemical composition is melted by a generally known melting method using a converter or the like, and then made into a rolled material by a commonly used casting method such as a continuous casting method.
Next, it is set as a hot-rolled sheet by hot rolling using the rolling raw material obtained by the above. At the start of rolling, the rolled material is preferably 1250 ° C. or higher. The finishing temperature is 870 ° C or higher. Moreover, it cools at a speed | rate of 40 degrees C / s or less until winding, and winds at the winding temperature of 620 degreeC or more. From the viewpoint of anisotropy, the ferrite grain size of the hot rolled material obtained here is desirably 7 μm or more as much as possible. Next, after pickling and cold rolling at a reduction rate of 80% or more, box annealing is performed under conditions of a soaking temperature of 600 to 690 ° C. and a cooling rate of 20 ° C./h or less, and 1.5% or less. Temper rolling is performed at the pressure regulation rate.
熱間圧延仕上げ温度:870℃以上
熱間圧延における仕上げ圧延温度は、異方性を制御する上で重要な項目になる。Nb添加鋼で異方性を-0.5以上に確保するためには、熱延材のフェライト粒径を7μm以上にすることと集合組織を制御する必要がある。これを得るため、熱延仕上げ温度は870℃以上とする。
Hot rolling finish temperature: 870 ° C. or higher The finish rolling temperature in hot rolling is an important item in controlling anisotropy. In order to ensure anisotropy of −0.5 or more in Nb-added steel, it is necessary to control the texture of the hot rolled material to have a ferrite grain size of 7 μm or more. In order to obtain this, the hot rolling finishing temperature is 870 ° C. or higher.
仕上げ圧延後、巻取りまでの冷却速度:40℃/s以下
異方性は熱延材のフェライト粒径の影響を大きく受ける。Δrを-0.5〜0の範囲内にするには、熱延材のフェライト粒径は少なくとも7μm以上にする必要がある。熱延材のフェライト粒径を7μm以上にするためには、熱延後の冷却速度を小さくする必要があり、その条件として、仕上げ後の冷却速度を40℃/s以下とする。また、耳発生を極力抑制するΔrの好適範囲-0.3〜0の鋼を得るためには、冷却速度は20℃/s以下にする必要がある。
Cooling rate after finish rolling to winding: 40 ° C./s or less Anisotropy is greatly affected by the ferrite grain size of the hot rolled material. In order to make Δr in the range of −0.5 to 0, the ferrite grain size of the hot rolled material needs to be at least 7 μm or more. In order to increase the ferrite grain size of the hot-rolled material to 7 μm or more, it is necessary to reduce the cooling rate after hot rolling, and the condition is that the cooling rate after finishing is 40 ° C./s or less. Further, in order to obtain a steel having a preferable range of Δr for suppressing ear generation as much as −0.3 to 0, the cooling rate needs to be 20 ° C./s or less.
巻取り温度:620℃以上
熱延材のフェライト粒径を7μm以上にするためには、巻取り温度を高くする必要があり、その条件として巻取り温度を620℃以上とする。熱延材のフェライト粒径を全幅で確実に7μm以上にするには、巻取り温度を640℃以上にすることが望ましい。また、耳発生を極力抑制するΔrの好適範囲−0.3〜0の鋼を得るためには、巻取り温度は700℃以上にする必要がある。
Winding temperature: 620 ° C. or higher In order to increase the ferrite grain size of the hot rolled material to 7 μm or higher, it is necessary to increase the winding temperature, and the winding temperature is 620 ° C. or higher. In order to ensure that the ferrite grain size of the hot-rolled material is 7 μm or more in the full width, it is desirable that the winding temperature is 640 ° C. or more. Further, in order to obtain a steel having a preferable range of Δr for suppressing generation of ears as much as −0.3 to 0, the coiling temperature needs to be 700 ° C. or higher.
冷間圧延率(圧下率):80%以上
冷間圧延における圧下率は、本発明において重要な条件の一つである。冷間圧延での圧下率が80%未満では、TSが500MPa以上の鋼板を製造することは困難である。さらに、目的の板厚(0.18mm以下)を得るためには、80%未満の圧下率では、少なくとも熱延板の板厚を1mm以下にする必要があり、操業上困難である。よって、圧下率は80%以上とする。
Cold rolling rate (rolling rate): 80% or more The rolling rate in cold rolling is one of the important conditions in the present invention. If the rolling reduction in cold rolling is less than 80%, it is difficult to produce a steel sheet having a TS of 500 MPa or more. Furthermore, in order to obtain the target plate thickness (0.18 mm or less), at a rolling reduction of less than 80%, at least the plate thickness of the hot-rolled plate needs to be 1 mm or less, which is difficult in operation. Therefore, the rolling reduction is 80% or more.
焼鈍条件:均熱温度600℃〜690℃、冷却速度20℃/h以下
焼鈍は箱焼鈍を用いる。均熱温度は、良好な加工性を確保するため、鋼板の再結晶温度以上とする必要があり、かつ、組織をより均一にするためには、600℃以上の温度で均熱する必要がある。一方で、焼鈍温度が高温になると鋼中の添加元素が表層に濃化して形成した酸化膜によりテンパーカラーが生じる。よって、均熱温度は600℃以上690℃以下とする。鋼中添加元素の表層濃化をより抑制するためには、焼鈍温度を670℃以下にすることがより望ましい。
また、降伏伸びを1%未満にするために、鋼中の固溶Cをカーバイドとして析出させる必要がある。鋼中の固溶Cは焼鈍時からの冷却速度によって決まる。よって、冷却速度は20℃/h以下とする。
Annealing conditions: soaking temperature of 600 ° C. to 690 ° C., cooling rate of 20 ° C./h or less. Box annealing is used for annealing. The soaking temperature needs to be equal to or higher than the recrystallization temperature of the steel sheet in order to ensure good workability, and soaking is necessary at a temperature of 600 ° C. or more to make the structure more uniform. . On the other hand, when the annealing temperature becomes high, a temper color is generated by the oxide film formed by the concentration of additive elements in the steel on the surface layer. Therefore, the soaking temperature is 600 ° C. or higher and 690 ° C. or lower. In order to further suppress the surface layer concentration of the additive element in the steel, it is more desirable to set the annealing temperature to 670 ° C. or lower.
Further, in order to make the yield elongation less than 1%, it is necessary to precipitate the solid solution C in the steel as carbide. Solid solution C in steel is determined by the cooling rate from the annealing. Therefore, the cooling rate is 20 ° C./h or less.
調圧率:1.5%以下
調圧率が高くなるとDR材と同様に、加工時に導入される歪が多くなるため延性が低下する。本発明では極薄材で全伸び20%以上を確保する必要があるため、調圧率は1.5%以下とする。
Pressure regulation rate: 1.5% or less When the pressure regulation rate is increased, the ductility is lowered because the strain introduced at the time of processing increases as in the case of the DR material. In the present invention, since it is necessary to ensure a total elongation of 20% or more with an ultra-thin material, the pressure regulation rate is 1.5% or less.
表1に示す成分組成を含有し、残部がFe及び不可避不純物からなる鋼を実機転炉で溶製し、鋼スラブを得た。得られた鋼スラブを1250℃で再加熱した後、仕上げ圧延温度880℃〜900℃の範囲で熱間圧延し、巻取りまで冷却速度30℃/sで冷却し、巻取り温度620〜700℃の範囲で巻取った。次いで、酸洗後、90%以上の圧下率で冷間圧延し、0.15〜0.18mmの薄鋼板を製造した。得られた薄鋼板を、箱焼鈍炉にて加熱速度50℃/hで630〜660℃に到達させ、3hの均熱焼鈍を行った。次いで、10℃/h程度の冷却速度で冷却し、圧下率が1.5%以下になるように調質圧延を施し、通常のクロム鍍金を連続的に施して、ティンフリースチールを得た。
なお、表1に示す鋼1〜7は成分組成が本発明範囲内の本発明例である。一方、鋼8は成分組成が本発明範囲外である比較例である。
Steel containing the composition shown in Table 1 and the balance being Fe and inevitable impurities was melted in an actual converter to obtain a steel slab. The obtained steel slab was reheated at 1250 ° C, then hot-rolled at a finish rolling temperature range of 880 ° C to 900 ° C, cooled at a cooling rate of 30 ° C / s until winding, and a winding temperature of 620-700 ° C. It was wound in the range. Next, after pickling, the steel sheet was cold-rolled at a rolling reduction of 90% or more to produce a thin steel sheet having a thickness of 0.15 to 0.18 mm. The obtained thin steel sheet was allowed to reach 630 to 660 ° C. at a heating rate of 50 ° C./h in a box annealing furnace, and soaked for 3 hours. Next, it was cooled at a cooling rate of about 10 ° C./h, subjected to temper rolling so that the reduction rate was 1.5% or less, and continuously subjected to normal chrome plating to obtain tin-free steel.
Steels 1 to 7 shown in Table 1 are examples of the present invention whose component composition is within the scope of the present invention. On the other hand, Steel 8 is a comparative example whose component composition is outside the scope of the present invention.
以上により得られためっき鋼板(ティンフリースチール)に対して、引張試験を行い、結晶組織と平均結晶粒径について調査した。調査方法は以下の通りである。 A tensile test was performed on the plated steel plate (tin-free steel) obtained as described above, and the crystal structure and the average crystal grain size were investigated. The survey method is as follows.
引張試験は、JIS5号サイズの引張試験片を用いて行い、降伏伸び(YP-El)、引張強さ(TS)、伸び(El)を測定し、強度および延性、時効性を評価した。
結晶組織は、サンプルを研磨して、ナイタルで結晶粒界を腐食させて、光学顕微鏡で観察した。
平均結晶粒径は、上記のようにして観察した結晶組織について、ASTMの切断法を用いて測定した。
得られた結果を表2に示す。
The tensile test was performed using a JIS5 size tensile test piece, and the yield elongation (YP-El), tensile strength (TS), and elongation (El) were measured, and the strength, ductility, and aging were evaluated.
The crystal structure was observed with an optical microscope after the sample was polished, the grain boundaries were corroded with nital.
The average crystal grain size was measured using the ASTM cutting method for the crystal structure observed as described above.
The results obtained are shown in Table 2.
本発明例1〜7では、鋼組織が平均結晶粒径7μm以下であり、混粒組織を含まない均一かつ微細なフェライト単層組織であり、降伏伸びが発生せず、時効性、強度および延性のすべてに優れていることが認められる。
一方、比較例8においては、延性については発明鋼に比べて優れるが、強度が不足する。
In Invention Examples 1 to 7, the steel structure has an average crystal grain size of 7 μm or less, is a uniform and fine ferrite single layer structure that does not include a mixed grain structure, yield elongation does not occur, aging, strength, and ductility It is recognized that all are excellent.
On the other hand, in Comparative Example 8, the ductility is superior to the inventive steel, but the strength is insufficient.
表3に示す成分組成を含有し、残部がFeおよび不可避不純物からなる鋼を実機転炉で溶製し、鋼スラブを得た。得られた鋼スラブを1250℃で再加熱した後、仕上げ圧延温度を830〜900℃で熱間圧延し、巻取りまでの冷却速度を18〜50℃/sで冷却し、巻取り温度を580〜700℃の範囲で巻取った。次いで、90%以上の圧下率で冷間圧延して、0.15〜0.18mmの薄鋼板を製造した。得られた薄鋼板を、箱焼鈍炉にて加熱速度50℃/hで630℃(一部は700℃)に到達させ、630℃(一部は700℃)で3hの均熱焼鈍を行った。次いで、10〜100℃/h程度の冷却速度で冷却し、圧下率が1.5%以下になるように調質圧延を施し、通常のクロム鍍金を連続的に施して、ティンフリースチールを得た。詳細な製造条件を表4に示す。
なお、本発明例は条件1〜3であり、条件4~10は製造条件が本発明範囲外となる比較例である。
Steel containing the composition shown in Table 3 and the balance being Fe and inevitable impurities was melted in an actual converter to obtain a steel slab. The obtained steel slab was reheated at 1250 ° C and then hot-rolled at a finish rolling temperature of 830 to 900 ° C. The cooling rate until winding was cooled at 18 to 50 ° C / s, and the winding temperature was 580. It wound up in the range of -700 degreeC. Subsequently, it cold-rolled with the rolling reduction of 90% or more, and manufactured the 0.15-0.18 mm thin steel plate. The obtained thin steel sheet was allowed to reach 630 ° C. (partly 700 ° C.) at a heating rate of 50 ° C./h in a box annealing furnace, and subjected to soaking at 630 ° C. (partly 700 ° C.) for 3 hours. . Next, the steel was cooled at a cooling rate of about 10 to 100 ° C./h, subjected to temper rolling so that the reduction rate was 1.5% or less, and continuously subjected to ordinary chromium plating to obtain tin-free steel. Detailed manufacturing conditions are shown in Table 4.
The examples of the present invention are conditions 1 to 3, and the conditions 4 to 10 are comparative examples in which the production conditions are outside the scope of the present invention.
以上により得られためっき鋼板(ティンフリースチール)に対して、引張試験を行い、結晶組織と平均結晶粒径について調査した。
異方性(Δr)は、圧延方向(r0)、圧延方向と45°方向(r45)、圧延方向と90°方向(r90)にそれぞれ引張試験を行った時のr値を求め、Δr=(r0+r90−2×r45)/4により算出した。
それ以外は実施例1と同様の方法で調査した。
A tensile test was performed on the plated steel plate (tin-free steel) obtained as described above, and the crystal structure and the average crystal grain size were investigated.
Anisotropy (Δr) is the r value when the tensile test is performed in the rolling direction (r 0 ), the rolling direction and 45 ° direction (r 45 ), and the rolling direction and 90 ° direction (r 90 ). Δr = (r 0 + r 90 −2 × r 45 ) / 4 was calculated.
Other than that, investigation was carried out in the same manner as in Example 1.
表5より、本発明例では、仕上げ圧延後の冷却速度を小さくして巻取り温度を高くすることで異方性が小さく、また、焼鈍後の冷却速度を小さくすることで降伏伸びが小さく、延性が高い高強度鋼板が得られた。
一方、比較例(条件4、6、7)では、強度、延性、降伏伸びについては目標値に到達するものの、仕上げ圧延後の冷却速度が大きい、巻取り温度が低い、仕上圧延温度が低いため、異方性の大きい鋼板となっている。比較例(条件5、8)では、強度、延性、異方性については目標値に到達するものの、仕上げ圧延後の冷却速度が大きいもしくは冷却速度が高いため、降伏伸びの高い鋼板となる。比較例(条件9)では、強度、延性については目標値に到達するものの、仕上げ圧延温度が低く冷却速度が高いため、降伏伸びが高く異方性の大きい鋼板となる。比較例(条件10)では、延性、降伏伸び、異方性については目標値に到達するものの、均熱温度が高いため、強度が低い鋼板となる。
また、これらの鋼板に対して絞り加工すると、本発明例では、鋼板の表面性状は良好で、肌荒れやストレッチャーストレインも認められず、耳の発生量も小さい。
一方、降伏伸びが1%を超えた比較例では、微小なストレッチャーストレインが認められる。また、Δrが-0.5未満になる比較例では、耳発生量が大きくなる。
From Table 5, in the present invention, the anisotropy is small by decreasing the cooling rate after finish rolling and increasing the coiling temperature, and the yield elongation is small by decreasing the cooling rate after annealing, A high-strength steel sheet having high ductility was obtained.
On the other hand, in the comparative examples (Conditions 4, 6, and 7), the strength, ductility, and yield elongation reach the target values, but the cooling rate after finish rolling is large, the winding temperature is low, and the finish rolling temperature is low. It is a steel plate with large anisotropy. In the comparative examples (Conditions 5 and 8), although the strength, ductility, and anisotropy reach the target values, the steel sheet has a high yield elongation because the cooling rate after finish rolling is high or the cooling rate is high. In the comparative example (condition 9), although the strength and ductility reach the target values, the steel sheet has high yield elongation and large anisotropy because the finish rolling temperature is low and the cooling rate is high. In the comparative example (condition 10), although the ductility, yield elongation, and anisotropy reach the target values, the steel sheet has low strength because the soaking temperature is high.
Moreover, when these steel sheets are drawn, in the present invention example, the surface properties of the steel sheets are good, rough skin and stretcher strain are not recognized, and the amount of generated ears is small.
On the other hand, in the comparative example in which the yield elongation exceeded 1%, minute stretcher strain was observed. In the comparative example in which Δr is less than −0.5, the ear generation amount is large.
本発明によれば、強度、延性、降伏伸び、異方性のいずれの特性にも優れた鋼板が得られるため、高加工度の缶胴加工を伴う3ピース缶、ボトム部が数%加工される2ピース缶を中心に缶用鋼板として最適である。 According to the present invention, a steel plate having excellent strength, ductility, yield elongation, and anisotropic properties can be obtained. Most suitable as a steel plate for cans, mainly 2-piece cans.
Claims (2)
870℃以上の仕上げ温度で熱間圧延し、
巻取りまで40℃/s以下の速度で冷却し、
620℃以上の巻取り温度で巻取り、酸洗し、
次いで、80%以上の圧下率で冷間圧延を行った後に、
600〜690℃の均熱温度、20℃/h以下の冷却速度の条件で箱焼鈍を行い、
1.5%以下の調圧率で調質圧延を行うことを特徴とする板厚0.18mm以下である高強度高延性缶用鋼板の製造方法。 In mass%, C: 0.01 to 0.12%, Si: 0.01 to 0.5%, Mn: 0.3 to 1.5%, P: 0.01 to 0.2%, Al: 0.1% or less, Nb: 0.005 to 0.1%, Steel with the balance of iron and inevitable impurities
Hot rolled at a finishing temperature of 870 ° C or higher,
Cool down to 40 ℃ / s or less until winding
Winding at a winding temperature of 620 ° C or higher, pickling,
Next, after performing cold rolling at a rolling reduction of 80% or more,
Perform box annealing under conditions of soaking temperature of 600-690 ° C and cooling rate of 20 ° C / h or less,
A method for producing a steel sheet for high strength and high ductility cans having a sheet thickness of 0.18 mm or less, characterized by performing temper rolling at a pressure regulation rate of 1.5% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006323465A JP4858126B2 (en) | 2006-11-30 | 2006-11-30 | Steel sheet for high strength and high ductility can and method for producing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006323465A JP4858126B2 (en) | 2006-11-30 | 2006-11-30 | Steel sheet for high strength and high ductility can and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2008138234A JP2008138234A (en) | 2008-06-19 |
JP4858126B2 true JP4858126B2 (en) | 2012-01-18 |
Family
ID=39600010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006323465A Expired - Fee Related JP4858126B2 (en) | 2006-11-30 | 2006-11-30 | Steel sheet for high strength and high ductility can and method for producing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4858126B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5135868B2 (en) | 2007-04-26 | 2013-02-06 | Jfeスチール株式会社 | Steel plate for can and manufacturing method thereof |
JP5470912B2 (en) * | 2009-03-03 | 2014-04-16 | 新日鐵住金株式会社 | Annealing method that can prevent temper color |
JP5884161B2 (en) * | 2011-12-07 | 2016-03-15 | Jfeスチール株式会社 | Steel plate for cans and method for producing steel plate for cans |
WO2016152148A1 (en) * | 2015-03-25 | 2016-09-29 | Jfeスチール株式会社 | High-strength steel sheet and method for manufacturing same |
CN108779526A (en) * | 2016-02-29 | 2018-11-09 | 杰富意钢铁株式会社 | Steel plate for tanks and its manufacturing method |
WO2021009966A1 (en) * | 2019-07-18 | 2021-01-21 | Jfeスチール株式会社 | Box-type annealed dr steel sheet and method for manufacturing same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2668503B2 (en) * | 1993-07-14 | 1997-10-27 | 東洋鋼鈑株式会社 | Steel sheet suitable for thinned deep-drawing can and its manufacturing method |
JPH08325670A (en) * | 1995-03-29 | 1996-12-10 | Kawasaki Steel Corp | Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production |
JPH10280089A (en) * | 1997-04-03 | 1998-10-20 | Kawasaki Steel Corp | Steel sheet for two-piece modified can, two-piece modified can body, and their manufacture |
JP4788030B2 (en) * | 2000-03-23 | 2011-10-05 | Jfeスチール株式会社 | Steel plate for lightweight two-piece can and manufacturing method thereof |
JP4525450B2 (en) * | 2004-04-27 | 2010-08-18 | Jfeスチール株式会社 | High strength and high ductility steel sheet for cans and method for producing the same |
-
2006
- 2006-11-30 JP JP2006323465A patent/JP4858126B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2008138234A (en) | 2008-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5135868B2 (en) | Steel plate for can and manufacturing method thereof | |
JP5162924B2 (en) | Steel plate for can and manufacturing method thereof | |
TWI390052B (en) | High tensile strength steel sheet for can and its production method | |
JP4525450B2 (en) | High strength and high ductility steel sheet for cans and method for producing the same | |
KR20080038142A (en) | Soft blackplates with hardness hr 30t of 51± 3 for tinning and production method for the same | |
JP5939368B1 (en) | Steel plate for can and manufacturing method thereof | |
JP5526483B2 (en) | Steel plate for high-strength can and manufacturing method thereof | |
JP5076544B2 (en) | Manufacturing method of steel sheet for cans | |
JP4858126B2 (en) | Steel sheet for high strength and high ductility can and method for producing the same | |
KR101439613B1 (en) | The high strength high manganese steel sheet having excellent bendability and elongation and manufacturing method for the same | |
WO2016157878A1 (en) | Steel sheet for cans and method for manufacturing steel sheet for cans | |
JP2009007607A (en) | Steel sheet for extrathin vessel | |
JP5407591B2 (en) | Cold-rolled steel sheet, manufacturing method thereof, and backlight chassis | |
JP3726371B2 (en) | Steel plate for cans with high age-hardening properties and excellent material stability and method for producing the same | |
JP4265574B2 (en) | Steel plate for two-piece deformable can and manufacturing method thereof | |
JPH03277741A (en) | Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture | |
KR101543834B1 (en) | Thin, hot-rolled steel sheet having excellnet workability and anti-aging properties, and method for manufacturing the same | |
CN107541663A (en) | A kind of beverage can ferrostan and its production method | |
JP5655839B2 (en) | Hot-rolled steel sheet used as a base material for steel sheet for can and manufacturing method thereof | |
JP5929739B2 (en) | Steel plate for aerosol can bottom and manufacturing method thereof | |
KR101263612B1 (en) | Cold-rolled steel sheet with excellent formability, shape retentivity, and surface appearance and process for producing same | |
JP2007239035A (en) | Cold rolled steel sheet with excellent strain aging resistance, excellent surface roughing resistance and small in-plane anisotropy, and its manufacturing method | |
JPH06179922A (en) | Production of high tensile strength steel sheet for deep drawing | |
JP5239331B2 (en) | Cold-rolled steel sheet with small in-plane anisotropy and excellent strain aging characteristics and method for producing the same | |
JP3273383B2 (en) | Cold rolled steel sheet excellent in deep drawability and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090727 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100519 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20110829 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20111004 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111017 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4858126 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141111 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |