JP4788030B2 - Steel plate for lightweight two-piece can and manufacturing method thereof - Google Patents

Steel plate for lightweight two-piece can and manufacturing method thereof Download PDF

Info

Publication number
JP4788030B2
JP4788030B2 JP2000310788A JP2000310788A JP4788030B2 JP 4788030 B2 JP4788030 B2 JP 4788030B2 JP 2000310788 A JP2000310788 A JP 2000310788A JP 2000310788 A JP2000310788 A JP 2000310788A JP 4788030 B2 JP4788030 B2 JP 4788030B2
Authority
JP
Japan
Prior art keywords
less
rolled
cold
rolling
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000310788A
Other languages
Japanese (ja)
Other versions
JP2001335888A (en
Inventor
誠 荒谷
由紀夫 小幡
覚 佐藤
章男 登坂
金晴 奥田
英雄 久々湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2000310788A priority Critical patent/JP4788030B2/en
Publication of JP2001335888A publication Critical patent/JP2001335888A/en
Application granted granted Critical
Publication of JP4788030B2 publication Critical patent/JP4788030B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、2ピース缶用鋼板に係り、とくにカップ成形性(深絞り加工性)に優れ、加工後の缶底強度が適度に大きく、また多段ネック加工を行ってもしわの発生がない多段ネック加工性に優れ、さらに伸びフランジ加工性に優れた板厚0.20mm以下の極薄缶用鋼板に関する。
【0002】
【従来の技術】
清涼飲料水、ビール等の飲料缶や、食缶等の各種缶容器は、その部品構造から、缶胴と上蓋からなる2ピース缶と、缶胴および上蓋、底蓋からなる3ピース缶に大別される。とくに、2ピース缶の缶胴に用いられる鋼板は、深絞り加工(カップ成形)や、それに続く缶高さを得るためのしごき加工や、ネック縮径加工、フランジ加工、ドーム加工など各種の過酷な成形に耐えられる特性が要求される。さらに、最近では、缶の軽量化を目的として、素材である鋼板の薄肉化が指向されている。
【0003】
素材である鋼板を薄肉化した場合にも、缶強度として所定以上の強度を維持する必要がある。そのため、素材である鋼板は高強度化することが前提となる。
一般的な缶形状で、大きく薄肉化できるのは、製缶加工で板厚変動のほとんどない缶底部である。缶底部では、ドーム接地径を小さくする、あるいはドーム深さを大きくする等の缶形状の変更や、製缶技術の向上でさらに素材の薄肉化が可能になっている。しかし、ネック部、フランジ部では、素材を薄肉化すると、製缶加工時に肉厚が変動しさらに薄肉となり、製缶後の缶強度が不足することになる。ネック部、フランジ部での薄肉化を達成するためには、ブランク径を大きくし缶上部の肉厚が薄くならないようにする必要がある。しかし、ブランク径を大きくすると深絞り加工が難しくなり、破断等のトラブルが発生するという問題がある。このようなことから、缶軽量化のためには、薄肉で、深絞り加工性に優れた缶用鋼板が望まれる。
【0004】
また、素材の鋼板をカップ形状に深絞り加工する際に、薄肉鋼板を使用すると高張力鋼板を用いても剛性が不足し、しわが発生しやすくなる。この傾向は、限界絞り率(LDR )が大きくなる、すなわちブランク径が大きくなるに従いより顕著となる。しわ発生を少なくするには、しわ抑え力(BHF )を大きくすることが考えられる。しかし、BHF が大きくなると、耳の先端が切れやすくなるという問題がある。この問題を解決するために、r値の面内異方性の少ない、すなわちΔrの小さい鋼板が望まれている。
【0005】
薄肉の缶用鋼板を得るためには、▲1▼冷延圧下率を増加する、▲2▼冷延母板の板厚、すなわち熱延板の板厚を薄くする、という2つの手段が考えれられる。しかし、冷間圧下率の増加は、r値の面内異方性を増大し、絞り成形時の耳発生を大きくする。また、熱延板の板厚を薄くすると、幅方向、長さ方向の熱間圧延温度のばらつきが大きくなるとともに熱間圧延の生産性も低下するという問題がある。
【0006】
このような問題に対し、例えば、特許第2689148 号公報(特開平2-141535号公報)には、C:0.010 〜0.040 %、Si:0.03%以下、Mn:0.05〜0.35%、P:0.015 %以下、S:0.015 %以下、solAl :0.03〜0.15%、N:0.0025%以下、Al/N≧30を含有する鋼片を、Ar3未満の仕上げ温度で熱間圧延を行い、630 〜 750℃で巻き取り、85〜95%の圧下率で冷間圧延し、再結晶温度以上670 ℃以下で焼鈍し、ついで8 〜30%の再冷延を行う耳発生の小さい絞り缶用鋼板の製造法が開示されている。
【0007】
また、特開平9-241756号公報には、冷延前の平均結晶粒径を30μm 以上とした熱延鋼板に、冷延圧下率70〜98%の冷間圧延を施し、再結晶温度以上800 ℃以下で3min以上の焼鈍を施したのち、さらに冷延圧下率1 〜70%の再冷延を施し、最終製品までの通算冷延圧下率を88〜98%とする絞り成形時のイヤリング発生が著しく小さい容器用鋼板の製造方法が開示されている。
【0008】
しかしながら、特許第2689148 号公報(特開平2-141535号公報)、特開平9-241756号公報に記載された技術では、絞り加工時の耳発生は減少するが、缶開口部の径を縮めるネック加工におけるしわの発生や、鋼板の薄肉化に伴う耐圧強度の低下に対し、何の考慮もされていないという問題を残していた。
最近では、缶蓋強度の増加を図るため蓋の小径化が進められ、2ピース缶の缶胴ネック部は、多段ネックとなってきた。多段ネック加工では、肉厚は増加するが、それでもネックしわを発生させないためには所定以上の剛性を有することが必要となるため、高張力鋼板を使用しても素材の薄肉化には限界がある。また、高張力鋼板は一般的に降伏応力が大きく、所定の縮径とするのに困難をともなうという問題もあった。ネックしわが発生すると、蓋を2重巻き締めしたのちに内容物がもれる。一方、剛性を大きくするために高張力化すると、伸びが不足しフランジ加工に際し、割れが発生するという問題もあり、加工性の観点からは軟質な鋼板が望まれているという相矛盾する要求がある。
【0009】
ネック加工におけるしわの発生に対して、例えば、特開平6-306535号公報、特開平6-306536号公報には、C:0.0100〜0.0700%、Si:0.30%以下、Mn:0.05〜1.00%、P:0.030 %以下、S:0.025 %以下、solAl :0.002 〜0.100 %、N:0.0100%以下、B:0〜(0.0010+1.8 ×N%)%、を含有する鋳片を、熱間圧延したのち、圧下率:85〜95%の冷間圧延を行い、再結晶温度以上の再結晶焼鈍とその後の冷却により、固溶C量を調整し、さらに伸び率を調整して調質圧延を施して、鋼板の3%予歪−熱処理後のYPを34kgf/mm2 以上に、50%予歪−熱処理後のYPを62kgf/mm2 以下に調整するネックドイン性に優れたDI缶用表面処理原板の製造方法が提案されている。
【0010】
また、特開平10-280095 号公報には、C:0.01〜0.05%、N:0.004 %以下を含むスラブを鋳造し、熱間圧延におけるスラブ加熱温度を1100℃以下とする耐ネックしわ性に優れた2ピース容器用鋼板の製造方法が提案されている。
しかしながら、特開平6-306535号公報、特開平10-280095 号公報に記載された技術で得られる鋼板は、鋼板が硬質であるうえ、r値がそれほど高くなく、さらにr値の面内異方性が大きくなる場合がある。このため、絞り成形性が安定せず、缶用鋼板として安定した鋼板となっていないという問題があった。また、缶底耐圧強度は大きいがネック・フランジ加工性に劣り、板厚も0.20mm以下の達成が困難であるという問題もある。
【0011】
また、特開平10-280095 号公報に記載された技術では、熱間圧延の加熱温度が低すぎて、鋼板の全幅全長にわたって、仕上げ圧延終了温度FDTをAr3変態点以上にすることは難しく、このため、鋼板のr値が低く、絞り加工性が低下しているという問題があった。
【0012】
【発明が解決しようとする課題】
一方、缶内の圧力に対抗するため、缶底部は所定以上の耐圧強度が必要とされる。缶底部の耐圧強度は、素材の板厚、耐力(降伏応力)、缶底形状によって、決定されるが、同一形状の場合、耐圧強度は、(板厚)2 ×耐力に比例すると言われており、耐圧強度の増加には耐力の増加が必要となる。しかし、カップ形状への深絞り加工等の加工が必要なことから、製缶加工時には素材は軟質(ぶりき調質度T2〜T3相当)であることが要求される。製缶加工では、熱水洗浄、塗装、焼付け印刷等の熱処理が施され、したがって、加工時には軟質で、加工後の熱処理と加工歪を利用し、製缶後空缶となったのちに高強度となる、すなわち塗装焼付け後の歪時効硬化が大きい鋼板(ぶりき調質度T4〜T5相当)が望まれる。しかし、ネック・フランジ加工は塗装焼付け後となるため、塗装焼付け後の歪時効硬化の度合いには上限があり、従来の調質度T2〜T3程度の軟質材を製缶した時と同程度の加工性となることが望まれる。
【0013】
従来の技術で製造された鋼板では、上記したような2ピース缶の軽量化(板厚0.20mm以下)に対応して、厳しい製缶加工が可能でかつ、所望の缶各部位の形状と缶強度を十分に達成できていないという問題があった。すなわち、同一鋼板で、カップ加工時は調質度T2〜T3相当の材質で、缶底耐圧強度は空缶になった時点で調質度T4〜T5相当の材質となるように、そして、ネック、フランジ加工性は従来の調質度T2〜T3の鋼板を製缶した時と同程度の加工性になる特性を、その工程ごとに有するものを要求されている。
【0014】
本発明は、上記した従来技術の問題点を解決し、空缶重量25g 以下というような軽量飲料缶用として好適な、調質度がT2〜3の比較的軟質で、かつ深絞り加工性と、多段ネック加工性およびフランジ加工性に優れた板厚0.20mm以下の極薄2ピース缶用鋼板およびその製造方法を提案することを目的とする。
【0015】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するために、まずネック部強度、缶底部の強度に影響する要因について検討した。製缶加工時の各加工時における歪量と降伏強さとの関係を図1に示す。
2ピース缶の場合には、鋼板はまず、深絞り加工を施され、カップ状に成形される。図1に示すように、加工歪0%では、深絞り加工性の観点からは鋼板の降伏応力(降伏強さともいう、YS)は低いほうがよく、深絞り加工時のしわ発生の観点から調質度がT2〜3の比較的軟質な鋼板(降伏応力では370MPa以下)とするのが好ましい。深絞り加工時のしわは、絞り比が大きいほど、また降伏強さが高いほど発生しやすい。このため、深絞り加工性の観点からは、素材である鋼板の降伏強さには上限が必要となる。
【0016】
一方、素材が薄肉となると、曲げ剛性が低下しフランジしわが発生しやすくなる。フランジしわの発生を防止するためには、しわ抑え力を大きくする必要があるが、しわ抑え力が大きくなると、加工時にパンチ肩部で破断しやすくなるとともに、カップ円周方向に発生する耳のうち大きいものが引き伸ばされたり(耳立ち)、引きちぎられたり(耳切れ)する不具合が発生する。このような耳立ち・耳切れの不具合は素材である鋼板が軟質なほど顕著となる。このため、素材である鋼板の降伏応力(降伏強さ)に下限を設ける必要があり、250MPa以上とするのが好ましい。
【0017】
また、本発明者らは、耳発生を少なくするために、r値の面内異方性Δrが0±0.2 と小さくする必要があることを知見した。Δrが大きくなると、耳率が大きくなり特定方向の耳が極端に大きくなり、カップホルダー内が引きちぎられたり、加工機に引っ掛かり、生産性を低下するなどのトラブルが発生する。Δrを小さくするためには、鋼組成、熱間圧延温度、冷間圧下率、焼鈍温度の適正化が重要であることを見いだした。
【0018】
さらに、本発明者らは、耳立ち・耳切れの不具合を防止するためには、r値の下限を維持したまま、r値の上限値を抑え、さらに深絞り加工後の降伏応力を所定の値(耳立ち・耳切れ防止強度)以上に高くすることにより、深絞り後のカップ(缶)上端部の肉厚が厚くなり、耳の引きちぎられを防止できることを知見した。そして、r値の上限値を抑え、降伏強さを耳立ち・耳切れ防止強度以上に高くするには、再結晶焼鈍後の調質圧延によりある程度加工硬化させることが有効であることを見いだした。
【0019】
したがって、軽量2ピース缶用鋼板としては、所望の範囲の降伏応力を有し、かつ、深絞り加工性を良好とし耳発生を少なくするために、平均r値が1.0 〜1.5 と適正値とし、しかもr値の面内異方性Δrが0±0.2 と小さい鋼板とすることが必要であることになる。
絞り加工されカップ状に成形された鋼板は、ついで、缶高さを所定の高さとするため、しごき加工を施される。その後引き続いて、缶底部では10%程度の加工歪が付与されるドーム加工が施される。なお、素材の板厚が薄くなるに従って接地径を小さくする、ドーム深さを大きくするなどにより加工歪は大きくなる。したがって、ドーム加工後焼付け塗装が施された後のボトム部の鋼板の強度が、2ピース缶の耐圧強度を決定している。従来では、缶内に内容物を充填したのち、殺菌処理としてレトルト処理(120 ℃×90min 程度の熱処理)が施されていた。このレトルト処理に耐えることを前提にボトム部の鋼板強度が決定されていた。ボトム部の鋼板の強度が400MPa未満では、缶体としての耐圧強度が不足し、レトルト処理時や、あるいは窒素を充填し、内圧をかけた陽圧缶の缶落下時等にバックリングが発生する。そこで、加工歪と缶底耐圧強度との関係を研究した結果、加工歪10%付与−塗装焼付け相当処理(210 ℃×20min の熱処理)後の鋼板降伏応力(YS)が400MPa以上となる鋼板特性があれば、問題は解決できることを見出した。
【0020】
しかし、最近では、充填技術の進歩により、無菌充填が可能となり、レトルト処理に耐えうる必要はない。したがって、内容物を充填したのちの運搬中の変形のみを考慮すればよく、要求される耐圧強度も従来より低い。このため、ボトム部の鋼板に要求される強度も、レトルト処理缶用耐圧強度にくらべ低い無菌充填缶用耐圧強度となる(図1参照)。したがって、素材としての鋼板は、加工性の向上を重視し、ドーム加工後の強度が従来より軟質な鋼板でよいことになる。本発明者らが検討した結果、この特性を満たすためには加工歪10%付与、焼付塗装相当処理(210 ℃×20min の熱処理)後の鋼板のYSが370 MPa 以上であれば問題ないことを見出した。
【0021】
さらに本発明者らは、連続焼鈍に続いて、箱焼鈍を施すこと(図1中の○印)により、無菌充填缶用耐圧強度以上のドーム加工後の強度を有する鋼板が製造可能であることを見いだした。また、従来のレトルト処理缶用耐圧強度以上のドーム加工後の強度を有する鋼板は、Ac1変態点以上の高温での連続焼鈍とその後の過時効処理を組み合わすこと(図1中の□印)により、固溶Cの適切な析出と結晶粒の適切な粗大化を達成でき、製造可能となることを見いだした。
【0022】
また、缶ネック部では、深絞り加工、しごき加工後、焼付け塗装されたのちに、さらにネック縮径が施される。深絞り加工、しごき加工により、最高で35%の加工歪が付与されたことになり、加工後塗装焼付けが施される。したがって、ネック縮径時には、35%の加工と塗装焼付けが施されのちの鋼板の強度が、ネック縮径加工時の強度となることに注目して、本発明者らは鋭意研究の結果、ネック縮径加工時、鋼板のYSが620MPaを超えると、しわ折れが発生することを見出した。ネック部にしわが発生すると、内容物が漏れ、缶としては不合格となり排除される。
【0023】
このようなことから、本発明者らは、絞り加工時には適正に軟質で、10%加工歪付与−塗装焼付け処理後には370MPa以上の、あるいは400MPa以上の降伏応力と、35%加工歪付与−塗装焼付け処理後には620MPa以下の降伏応力となる鋼板が軽量缶用として好適であるということを見いだした。
本発明は、上記した知見に基づいて、さらに検討を加えて完成されたものである。
【0024】
すなわち、第1の本発明は、質量%で、C :0.01〜0.06%、N :0.0060%以下、Si:0.03%以下、Mn:0.6%以下、P :0.02%以下、S :0.02%以下、Al:0.03〜0.20%、O :0.01%以下を含み、残部Feおよび不可避的不純物からなる組成を有する低炭素アルミキルド鋼板であって、降伏応力:250〜370MPa、平均r値:1.0〜1.5を有し、r値の面内異方性Δr値が 0 ± 0.2、調質度がT2〜T3であり、かつ、10%加工歪を付与し210℃で20minの熱処理を施した後の降伏応力が370MPa以上、35%加工歪を付与し210℃で20minの熱処理を施した後の降伏応力が620MPa以下であることを特徴とする、カップ成形性、多段ネック加工性およびフランジ加工性に優れた板厚0.20mm以下の軽量2ピース缶用鋼板でありまた、前記組成に加えて、さらに、質量%で、Nb:0.10%以下、Ti:0.20%以のうちから選ばれた1種または2を含有する組成としてもよく、さらに、質量%で、Nb:0.10%以下、Ti:0.20%以下のうちから選ばれた1種または2種を含有するとともにB :0.005%以下を含有する組成としてもよい。
【0025】
また、第1の本発明では、鋼板の少なくとも片側表面に表面処理層を有することが好ましく、また、前記表面処理層が錫めっきまたはクロムめっきとするのが好ましい。
また、鋼素材を、加熱し、熱間圧延によりシートバーとする粗圧延工程と、該シートバーを熱間圧延により熱延板とする仕上げ圧延工程と、該熱延板を巻き取る巻取り工程とを有する熱延鋼板の製造方法において、前記鋼素材の組成を、質量%で、C :0.01〜0.06%、N :0.0060%以下、Si:0.03%以下、Mn:0.6%以下、P :0.02%以下、S :0.02%以下、Al:0.03〜0.20%、O :0.01%以下を含み、残部Feおよび不可避的不純物からなる組成とし、前記仕上げ圧延工程の仕上げ圧延終了温度FDTを(Ar3変態点+10℃)以上とし、前記巻取り工程の巻取り温度CTを600〜750℃とすることを特徴とする板厚2mm以下の極薄熱延鋼板(缶用極薄冷延鋼板用母板)の製造方法であり、前記組成に加えて、さらに、質量%で、Nb:0.10%以下、Ti:0.20%以下のうちから選ばれた1種または2種を含有してもよく、或いは前記組成に加えて、さらに、質量%で、Nb:0.10%以下、Ti:0.20%以下のうちから選ばれた1種または2種を含有するとともにB :0.005%以下を含有してもよい。また、前記粗圧延工程後で前記仕上げ圧延工程前に、前記シートバーの先端部と、該シートバーに先行するシートバーの後端部とを接合したのち、仕上げ圧延工程を施すことが好ましい。
【0026】
また、前記粗圧延工程後で前記仕上げ圧延工程前に、前記シートバーの長手方向端部を加熱昇温すること、あるいは前記シートバーの幅方向端部を加熱昇温することのいずれか一方あるいは両方を行うことが好ましい。
また、第の本発明では、鋼素材を、加熱し、熱間圧延によりシートバーとする熱間粗圧延工程と、該シートバーを熱間圧延により熱延板とする熱間仕上げ圧延工程と、該熱延板を巻き取る巻取り工程とを有し、さらに該熱延板を冷間圧延し冷延板とする冷延工程と、該冷延板を焼鈍し冷延焼鈍板とする焼鈍工程と、該冷延焼鈍板を調質圧延する調質圧延工程とを有する板厚0.20mm以下の缶用極薄冷延鋼板の製造方法において、前記鋼素材の組成を、質量%で、C :0.01〜0.06%、N :0.0060%以下、Si:0.03%以下、Mn:0.6%以下、P :0.02%以下、S :0.02%以下、Al:0.03〜0.20%、O :0.01%以下を含み、残部Feおよび不可避的不純物からなる組成とし、前記仕上げ圧延工程の仕上げ圧延終了温度FDTを(Ar3変態点+10℃)以上とし、前記巻取り工程の巻取り温度CTを600〜750℃とし、前記焼鈍工程を、焼鈍温度をAc1変態点以上とする連続焼鈍と、該焼鈍温度から急冷する急冷処理と、該急冷処理後、過時効処理を行う工程とするか、または焼鈍温度をAc1変態点以上とする連続焼鈍と、それに引き続き箱焼鈍を行う工程とすることを特徴とするカップ成形性、多段ネック加工性およびフランジ加工性に優れた缶用極薄冷延鋼板の製造方法である。また、前記組成に加えて、さらに、質量%で、Nb:0.10%以下、Ti:0.20%以下のうちから選ばれた1種または2種を含有してもよく、或いは前記組成に加えて、さらに、質量%で、Nb:0.10%以下、Ti:0.20%以下のうちから選ばれた1種または2種を含有するとともにB :0.005%以下を含有してもよい。また、第の本発明では、前記冷延鋼板の板厚(t mm)と前記冷延鋼板の降伏応力の目標値に相当する0.2%耐力目標値(σ0.2,MPa)とによる式、( t )2 ×σ0.2 が、8.0以下の場合には、前記連続焼鈍後に、焼鈍温度を500〜600℃とする箱焼鈍を、また、前記冷延鋼板の板厚(t mm)と0.2%耐力目標値(σ0.2,MPa)とによる式、( t )2 ×σ0.2 が、8.0超えの場合には、前記急冷処理後に、400〜550℃で40s以上の過時効処理を施すことが好ましい。
【0027】
また、第の本発明では、前記調質圧延工程での調質圧延の圧下率を1%以上15%未満とすることが好ましい。なお、第の本発明では、前記粗圧延工程後で前記仕上げ圧延工程前に、前記シートバーの先端部と、該シートバーに先行するシートバーの後端部とを接合したのち、仕上げ圧延工程を施すことが好ましい。
【0028】
また、第の本発明では、前記粗圧延工程後で前記仕上げ圧延工程前に、前記シートバーの長手方向端部を加熱昇温すること、あるいは前記シートバーの幅方向端部を加熱昇温することのいずれか一方あるいは両方を行うことが好ましい。また、第の本発明では、前記調質圧延工程後に、鋼板の少なくとも片側表面に表面処理層を形成する表面処理を行うことが好ましく、また、前記表面処理を錫めっき処理またはクロムめっき処理とするのが好ましい。
【0029】
【発明の実施の形態】
まず、本発明鋼板の限定理由について説明する。
本発明の鋼板は、低炭素アルミキルド鋼板である。その組成は下記のとおりとする
C :0.01〜0.06
Cは、結晶粒を微細化するとともに、固溶強化により鋼の強度を増加させる重要な元素であるが、一方では、炭化物を形成し、鋼板の延性、ひいては加工性を低下させる。このため、Cは0.06%以下に限定する。なお、r値の確保及び、幅方向、長さ方向のr値のばらつきを少なくするため、FDTをAr3変態点+10℃以上にすることが重要であり、これらの観点から、Cは0.01〜0.05%が適切である。また、適度な焼付硬化性の観点からは連続焼鈍(CAL)後に炭化物を微細に分布させることが重要であり、Cは0.01%以上とする。
【0030】
N:0.0060%以下
Nは、固溶Nとして鋼板中に残存した場合には時効硬化性を増加させる元素であり、本発明ではできるだけ低減するのが望ましいが、0.0060%までは許容できる。なお、好ましくは0.003 %以下である。
Si:0.03%以下
Siは、固溶強化により鋼の強度を増加させる元素であるが、多量の添加は加工性、表面処理性の劣化、耐食性の劣化等の問題を生じる。このため、本発明ではできるだけ低減するのが望ましいが、0.03%までは許容できる。
【0031】
Mn:0.6 %以下
Mnは、Sによる熱間割れを防止する有効な元素であるが、多量の含有は不経済であり耐食性を劣化させるとともに、強度ばらつきを増大させる傾向となる。このため、本発明では、Mnは0.6 %以下に限定する。なお、好ましくは0.2 〜0.4 %である。
【0032】
P:0.02%以下
Pは、鋼を著しく硬質化させ、フランジ加工性やネック加工性を劣化させ、さらに耐食性を著しく劣化させる。このため、本発明では、Pは0.02%以下に限定するのが好ましい。
S:0.02%以下
Sは、鋼中では介在物として存在し、鋼板の延性を低下させ、さらに耐食性を劣化させる元素であり、本発明ではできるだけ低減するのが好ましが、0.02%までは許容できる。このようなことから、本発明では、Sは0.02%以下とするのが好ましい。なお、好ましくは0.015 %以下である。
【0033】
Al:0.03〜0.20%
Alは、脱酸剤として作用するとともに、固溶Nと結合し、AlN を形成し、固溶N量を低減する効果を有する。このような効果は0.03%以上の含有で顕著に認められる。一方、0.20%を超える多量含有は、酸化物系介在物を増加させ表面性状を悪化させるうえ、製造コストを増加させ、経済的に不利となる。このため、Alは0.03〜0.20%の範囲に限定した。なお、好ましくは、0.03〜0.10%である。
【0034】
O:0.01%以下
Oは、鋼中では酸化物として存在し、延性の低下、耐食性の劣化をもたらすため、できるだけ低減する必要がある。本発明では、0.01%まで許容できる。なお、とくに薄肉鋼板とするためには、好ましくは0.005 %以下とするのが好ましい。
【0035】
Nb:0.10%以下、Ti:0.20%以下のうちから選ばれた1種または2種、または、Nb:0.10%以下、Ti:0.20%以下のうちから選ばれた1種または2種に加えて、さらに、B :0.005%以下
Nb、Ti、Bはいずれも、炭化物、窒化物を形成し、加工性改善に有効な元素であり、必要に応じ選択して含有できる。
Nbは、炭化物、窒化物を形成し、固溶C、固溶Nの残存量を低減し、加工性を改善する有効な元素であるが、0.10%を超えて含有すると、Nb系析出物による結晶粒界のピン止め効果により再結晶温度が上昇し、連続焼鈍炉の通板作業性が低下し、また、細粒になる。このため、Nbは0.10%以下に限定するのが好ましい。なお、このような効果を得るには、Nbは0.002%以上含有するのが望ましい。
【0036】
Tiは、炭化物、窒化物を形成し、固溶C、固溶Nの残存量を低減し、加工性を改善する有効な元素であるが、0.20%を超えて過多に含有すると、硬質な析出物が生成し、耐食性が低下するとともに、プレス加工時にすり疵が発生しやすくなる。このため、Tiは0.20%以下に限定するのが好ましい。なお、このような効果を得るには、Tiは0.01%以上含有するのが望ましい。
【0037】
Bは、炭化物、窒化物を形成し、軟質化し加工性を改善する有効な元素であるが、0.005 %を超えて含有すると、連続焼鈍時再結晶粒界に偏析し再結晶を遅延させる。このため、Bは0.005 %以下に限定するのが好ましい。なお、このような効果を得るには、Bは0.0003%以上含有するのが望ましい。また、Bは、粒界脆化の改善に有効な元素でもあり、とくに比較的C含有量が低く、炭化物形成元素を添加した場合に、再結晶粒界の強度を高め、脆化割れを防止する作用を有する。
【0038】
残部Feおよび不可避的不純物
上記した成分以外の残部はFeおよび不可避的不純物である。不可避的不純物としては、Cr:0.04%以下、Cu:0.06%以下、Ni:0.04%以下、Mo:0.05%以下が許容できる。
本発明の鋼板は、上記した組成範囲でかつ、降伏応力:250 〜370MPa、平均r値:1.0 〜1.5 を有し、r値の面内異方性Δr 値が0 ±0.2 、調質度がT2〜T3の鋼板である。
【0039】
鋼板の降伏応力YS:250 〜370MPa、調質度:T2〜T3
鋼板のYS、調質度が高くなり、硬質化すると、所定の寸法の缶体への絞り加工、しごき加工が困難となるため、鋼板の降伏応力YS:370MPa以下、調質度:T3以下とする必要がある。一方、薄肉の鋼板で深絞り加工を行う際は、しわ抑え力が大きくなり、カップ円周方向に発生する耳のうち、大きいものが引き伸ばされたり、引きちぎられたりする。鋼板が余りに軟質であると、この現象を助長するため、鋼板の降伏応力YS:250 MPa 以上、調質度:T2以上とする必要がある。
【0040】
平均r値:1.0 〜1.5 、Δr :0 ±0.2
本発明鋼板は、平均r値:1.0 〜1.5 、Δr :0 ±0.2 を有する面内異方性の小さな鋼板である。平均r値が、1.0 未満では、深絞り加工性が劣化し、必要とする缶高さを得にくいという問題があり、一方、平均r値が1.5 を超えると、缶高さ方向の伸びが大きくなりカップ側壁の板厚が薄くなり、形成された大きな耳部が引きちぎられたり、引き伸ばされたりしやすいという不具合がある。また、耳の発生を抑制するには、Δr を0 ±0.2 の範囲とr値の面内異方性を小さくするのが好ましい。
【0041】
なお、平均r値およびΔrは、圧延方向(L方向)、圧延方向から45°(D方向)、圧延方向から直角方向(C方向)について、それぞれr値(rL 、rD 、rC )を測定し、平均r値=(rL +rC +2rD )/4、Δr=(rL +rC −2rD )/2により求めるものとする。なお、調質圧延の圧下率が大きく伸びElが小さい鋼板については、JIS G 3135解説あるいはJIS Z 2254に規定する固有振動法を用いて、平均r値を測定するものとする。また、Steel. Met. Ind.,50(1973),328 に示されるように、Δrとヤング率の間にはつぎに示すような関係が認められることから、伸びElが小さい鋼板については、固有振動法を用いてΔrをも測定するものとする。
【0042】
平均r値、Δrは、短冊状試験片に励起コイルで高周波を印加し検出コイルで周波数を検出し、得られた周波数からヤング率Eの面内各方向の平均値E* と異方性ΔEを求め、次式
平均r値=101.44/(145.0 ×E* ×10-6-38.83)2 −0.564
Δr=0.031 −0.323 (145.0 ×ΔE×10-6
ここで、E* =(EL + EC + 2 ED )/4
ΔE=(EL + EC - 2 ED )/2
を用いて算出する。なお、EL 、EC 、ED は、それぞれ圧延方向(L方向)、圧延方向から直角方向(C方向)、圧延方向から45°(D方向)のヤング率(N/mm2 )である。
【0043】
さらに、本発明鋼板は、10%加工歪を付与し210 ℃で20min の熱処理を施した後の降伏応力が370MPa以上であり、35%加工歪を付与し210 ℃で20min の熱処理を施した後の降伏応力が620MPa以下である。このような適切な焼付け硬化性(BH性)を有することにより、缶体の耐圧強度が高く、かつ多段ネック縮径化が可能となり、軽量化を達成できる極薄缶用鋼板となる。
【0044】
なお、本発明者らの検討によると、製缶の際に導入される加工歪は、圧延歪で代替して評価することができる。すなわち、鋼板に圧下率10%あるいは35%の圧延を加えることにより前述のような製缶の際に導入される10%加工歪、35%加工歪に相当する歪を付与することができる。したがって本発明では、210 ℃で20min の熱処理を施した後の降伏応力は、鋼板に圧下率10%の圧延を施し210 ℃で20min の熱処理を行った後の降伏応力、あるいは鋼板に圧下率35%の圧延を施し210 ℃で20min の熱処理を行った後の降伏応力とする。
【0045】
つぎに、上記した特性を有する本発明鋼板の製造方法について説明する。
上記した組成の鋼素材を、通常公知の溶製方法で溶製し、連続鋳造法等の公知の鋳造方法で清浄度の高いスラブ等の鋼素材とする。
本発明では、鋼素材を、加熱し、熱間圧延によりシートバーとする粗圧延工程と、該シートバーを熱間圧延により熱延板とする仕上げ圧延工程と、該熱延板を巻き取る巻取り工程とにより、コイル状に巻き取った熱延板とする。
【0046】
粗圧延工程においては、加熱温度、圧延条件はとくに限定する必要はなく、所定の寸法形状のシートバーとすることができればよい。なお、鋼素材の加熱温度は1100〜1250℃とするのが好ましい。加熱温度が1100℃未満では、粗圧延における圧延負荷が増大するとともに、仕上げ圧延終了温度を所定の温度範囲とすることが難しくなる。また、加熱温度が1250℃を超えると、表面スケールの形成が著しくなり、スケールロスが大きく経済的に不利となるとともに、仕上げ圧延で除去しにくいスケールが残存し表面欠陥を発生しやすくなる。また、結晶粒の粗大化が顕著となる。
【0047】
なお、本発明では、粗圧延工程でシートバーとされたのち、仕上げ圧延工程前に、シートバーの先端部と、該シートバーに先行するシートバーの後端部とを接合した後、仕上げ圧延することが好ましい。このようにシートバー同士を接合することにより、特に本発明のように極薄熱延鋼板で問題となる長手方向の形状の乱れを防止しやすく、製品の歩留りを向上できる。
【0048】
また、粗圧延工程と仕上げ圧延との間でシートバーの長手方向端部を全幅にわたって加熱昇温すること、あるいは幅方向端部を全長にわたって加熱昇温することが好ましい。シートバー長手方向端部あるいは幅方向の端部は温度低下しやすく、この部分を加熱昇温して、シートバー内の温度の均一化を図ることにより、変態点との関係で規制される仕上げ圧延温度を長手方向、幅方向にわたって確保しやすく、歩留りが向上する。なお、加熱方法としては、誘導加熱方式のものとすることが好ましい。
【0049】
また、前述のように、粗圧延工程でシートバーとされたのち、仕上げ圧延工程前にシートバーの先端部と該シートバーの後端部とを接合した後仕上げ圧延を行う場合は、接合した後に、接合前のシートバーの長手方向端部に相当する接合部近傍を加熱昇温して均熱化したのち、あるいはさらに幅方向端部を加熱昇温した後に仕上圧延することが、歩留り向上の観点からより好ましい。
【0050】
このように、仕上げ圧延工程前に、シートバーの均熱化加熱を行うことにより、シートバーの幅方向端部、長さ方向端部の温度を上昇することができ、鋼板の全幅、全長にわたり仕上げ圧延終了温度FDTを(Ar3変態点+10℃)以上とすることが容易となる。
粗圧延工程を経たシートバーは、ついで、仕上げ圧延工程で熱間圧延され、熱延板とされる。仕上げ圧延工程では、仕上げ圧延終了温度FDTを(Ar3変態点+10℃)以上とする。FDTが(Ar3変態点+10℃)未満では、AlN が析出し固溶Nが低減し、あるいは再結晶焼鈍後のr値が低下し、さらに面内異方性が大きく、Δrが大きくなる。このため、FDTは(Ar3変態点+10℃)以上に限定するのが好ましい。
【0051】
再結晶焼鈍後のr値を高くするためには、冷延圧下率が高い缶用鋼板においては冷延圧下率を小さくするのがよいといわれている。しかし、冷延圧下率を低くするために、熱延板の板厚を薄くしても、それほどr値の増加は得られなかった。その原因として、薄い熱延板を使用したことにより、熱延板の表層が板厚中央部にくらべ低温になる時間が長く、そのため、表層の圧延集合組織が、再結晶焼鈍後にr値を低下させる(110 )再結晶集合組織を形成しやすいものとなったためと考えられる。表層部にこのような圧延集合組織を形成させないためには、FDTを(Ar3変態点+10℃)以上とすることがよいことを見いだした。これにより、r値向上のために冷延圧下率を小さくする効果が顕著となる。
【0052】
また、熱延板は巻取り工程でコイル状に巻き取られるが、巻取り温度CTは600 〜750 ℃とするのが好ましい。CTが600 ℃未満では、AlN の析出量が少なく微細となり、r値が低下するうえ、降伏強さが高い硬質な鋼板となる。一方、750 ℃を超えると、炭化物の凝集粗大化に伴い、熱延板の結晶粒が粗大化するうえ、連続焼鈍−過時効処理において、固溶Cの析出サイトとしての炭化物間距離が大きくなって、過時効処理を40s以上施しても、本発明に必要な歪時効特性が得られなくなり、効果も大きくならない。このため、CTは600 〜750 ℃とするのが好ましい。
【0053】
なお、巻き取り後の冷却は、空冷とするのが好ましい。また、十分に自己焼鈍したのち、水冷却してもよい。水冷却することにより、表面スケールの増大による歩留り低下を防止することもできる。なお、水冷却は、散水等の短時間冷却とすることもできる。
熱延板の板厚は、冷延板の母板として、冷延板(製品板)の板厚に依存して決定されるが、0.20mm厚以下の薄物冷延板とするためには、面内異方性を小さくすること、r値を向上させることを考慮すると、2mm以下とするのが好ましい。
【0054】
上記した工程により製造された熱延板は、塩酸酸洗で脱スケールしたのち、ついで冷間圧延により冷延板とする冷延工程と、該冷延板を焼鈍し冷延焼鈍板とする焼鈍工程と、該冷延焼鈍板を調質圧延する調質圧延工程とを施され、冷延焼鈍板とされる。
冷延工程では、所望の冷延板の寸法形状とすることができればよく、その条件をとくに限定する必要はない。しかし、大きなr値と小さいΔrを得るためには、冷間圧延の圧下率は93%以下、好ましくは91%以下とするのが好ましい。このような冷間圧延圧下率とするためには、シートバー接合して熱間圧延を行い、熱延板の板厚を薄くすることが好ましい。
【0055】
ついで、冷延板は焼鈍される。焼鈍工程は、焼鈍温度をAc1変態点以上とする連続焼鈍と、該焼鈍温度から急冷する急冷処理と、引き続き過時効処理を行う工程とするか、あるいは連続焼鈍と、それに引き続き箱焼鈍を行う工程とするのが好ましい。
連続焼鈍では、軽量飲料缶用DI(Drawing & Ironing )に必要な加工性を確保するために、Ac1変態点以上の温度で均熱するのが好ましい。焼鈍温度をAc1変態点以上とすることにより、AlN の析出が促進され炭化物が凝集して、結晶粒径が成長して、本発明に必要な歪時効性を有することができるとともにr値が高くなる(111 )再結晶集合組織を発達させることができる。このため、連続焼鈍の焼鈍温度はAc1変態点以上とするのが好ましい。なお、焼鈍温度での均熱時間は操業の安定性から1s以上であれば十分である。
【0056】
連続焼鈍後は、急冷処理を施すのが好ましい。急冷処理は連続焼鈍の出側で、冷却速度40〜70℃/sの冷却速度で過時効温度まで冷却するのが好ましい。これにより、固溶Cの析出が図られ、適切な軟質度と歪時効性を有する鋼板となる。
なお、冷延板の板厚(tmm)と0.2 %耐力目標値(σ0.2(MPa), 降伏応力の目標値ともいう)とによる式、(t)2 ×σ0.2 が、8.0 超えの場合には、連続焼鈍の出側で冷却速度40〜70℃/sでの急冷処理後、400 〜550 ℃で40s以上の過時効処理を施すのが好ましい。この過時効処理により、固溶Cが析出することになり、連続焼鈍材(CAL材)として軟質で適切な歪時効性を有する鋼板が得られるという好ましい効果を生じる。より好ましくは400 〜500 ℃で過時効処理を施す。
【0057】
一方、(t)2 ×σ0.2 が、8.0 以下の場合には、連続焼鈍−急冷処理−過時効処理に代えて、連続焼鈍−箱焼鈍法で焼鈍するのが好ましい。連続焼鈍後箱焼鈍までの間はとくに40℃/s以上の急冷処理は必要はない。箱焼鈍は、焼鈍温度として500 ℃以上で、600 ℃以下の範囲の温度に加熱したのち、500 〜400 ℃の炭化物析出温度範囲の滞留時間を1h以上確保しながら、徐冷するのが好ましい。箱焼鈍温度での保持時間は必要としない。このような条件の箱焼鈍法で焼鈍することにより、非時効性で軟質、かつr値が大きく、Δrが小さい、深絞り加工性に優れる箱焼鈍材に近い加工性を有する缶用鋼板が得られ、板厚を薄くした2ピース缶の製造が可能となる。一方、箱焼鈍の焼鈍温度が600 ℃を越えるとグラファイトが析出し、その後のめっき処理で均一なめっき層の形成が困難となる。
【0058】
(t)2 ×σ0.2 が、8.0 以下の場合には、連続焼鈍−過時効処理を施すと、深絞り加工性が劣化するということもあり、連続焼鈍−箱焼鈍とするのが好ましい。また、(t)2 ×σ0.2 が、8.0 以下の場合では、缶体の耐圧強度が、内容物充填後にレトルト処理を必要とする缶体に要求される617kPa以下となる。しかし、現在では、缶形状、缶充填方法の改善により、缶体の耐圧強度が617kPa以下となっても、無菌充填処理用として適用可能となる。
【0059】
また、箱焼鈍の雰囲気は、HNガス等の還元性雰囲気とするのが好ましい。なお、加熱速度はとくに限定する必要はなく、徐加熱とするのが好ましい。
焼鈍工程を経た冷延焼鈍板は、ついで調質圧延工程で冷間圧延により調質圧延される。この調質圧延により、加工硬化を加えて、缶底部強度を増加する。このためには、少なくとも1%以上15%未満の圧下率とするのが好ましい。調質圧延圧下率が1%未満では、缶底部の強度上昇が少なく、一方、15%以上では、鋼板が硬質となりすぎ、軽量2ピース缶として不適となる。より好ましくは、3%以上の圧下率とする。なお、従来の箱焼鈍材は、圧下率2%以下のSR(single cold-reduced product )を施し可動転位を導入している。
【0060】
このようにして製造された冷延焼鈍板は、防錆処理後、そのまま製品板(コイル)として出荷してもよい。あるいはさらに、酸洗処理を施され、さらに錫めっき、クロムめっき、ニッケルめっき等の表面処理層を少なくとも片面に形成する表面処理を施され、製品板とされる。製品板は、さらに塗油されて出荷される。なお、表面処理層の厚みは、用途にもよるが、錫めっきでは、片面当りの錫目付量11g/m2(#100 )以下とし、溶錫化処理を施すことなくノーリフロー仕上げとし、水和酸化クロム層を好ましくは1mg/m2 以下施すことにより、プレス加工での固体潤滑の効果を大きく発揮できる。また、クロムめっき(TFS)処理では、目付量は片面当り 60mg/m2以下とするのが好ましい。また、塗油剤としては、DOS (Di-octyl sebacate )、ATBC(Acetyl tri-butyl citrate)が好ましい。
【0061】
【実施例】
本発明の効果を実施例に基づいて説明する。
表1に示す成分の鋼を底吹き転炉で、非金属介在物の混入、残存を防止して溶製したのち、大型タンディシュと、垂直曲げ方式の連続鋳造機で圧延素材(スラブ)とした。ついで、これら圧延素材に、表2に示す条件で熱間圧延を施し熱延板とした。その後、これら熱延板に酸洗による脱スケール処理を施し、さらに表2に示す条件で冷間圧延を施し、ついで表2に示す条件で焼鈍および調質圧延を行い、極薄冷延鋼板とした。
【0062】
なお、鋼板No.4を除き、表2の鋼板のスラブ加熱温度は1100〜1250℃、仕上圧延温度は(Ar3変態点+10℃)以上であった。鋼板No.4はスラブ加熱温度1040℃であり、仕上圧延温度はAr3変態点の870 ℃であった。
このようにして得られた極薄冷延鋼板について、引張試験、硬さ試験、焼付硬化試験、およびr値の測定を実施した。なお、缶底部の耐圧強度評価としては、前述のように圧延して10%の歪を付与し、またネック・フランジ加工性の評価としては35%の歪を付与したのち、それぞれを塗装焼付け処理に相当する210 ℃×20min の時効処理を行い、引張試験により評価した。なお、引張試験時、明瞭な降伏点現象が認められない場合は、0.2 %耐力を降伏応力とした。
(i)引張試験
これら冷延鋼板の幅方向中央部から圧延方向、圧延方向から45°方向および圧延方向から直角方向に、JIS 5号引張試験片を採取し、歪速度40%/min で引張試験を実施し、降伏応力(0.2 %耐力)YS、引張強さTS、伸びElを測定し、3方向の平均値を求めた。
(ii)焼付硬化性試験
これら冷延鋼板の幅方向中央部から圧延方向および圧延直角方向に、試験片を採取し、冷間圧延で圧下率10%、あるいは35%の歪を付加したのち、210 ℃×20min の塗装焼付処理相当の熱処理を施し、その後、引張試験を行い降伏応力を測定し、2方向の平均値を求めた。
(iii )硬さ試験
これら冷延鋼板およびこれら冷延鋼板に塗装焼付処理相当の熱処理を施したのちの鋼板について、JIS G 3303の規定に準拠してHR30T硬さから調質度を決定した。なお、製缶後のネック・フランジ加工部の断面硬さはVickers 硬さ(荷重50g )で測定した。
(iv)r値の測定
これら冷延鋼板のうち、調質圧延の圧下率が2%以下のものは、幅方向の中央部から圧延方向(L)、圧延方向から45°方向(D)、および圧延方向から直角方向(C)に、JIS 5号引張試験片を採取し、歪速度40%/min で引張試験を実施し、塑性歪法(JIS G 3135−1986解説 18p、あるいはJIS Z 2254)により、幅方向と板厚方向の対数歪の比からr値を求めた。平均r値は、平均r値=(rL +rC +2rD )/4で、また、Δrは、Δr=(rL +rC −2rD )/2により算出した。また、調質圧延の圧下率が2%を超える場合は、前述のような固有振動法(JIS G 3135−1986解説 22p、あるいはJIS Z 2254)により、平均r値、Δr値を算出した。
【0063】
これらの結果を表3に示す。
【0064】
【表1】

Figure 0004788030
【0065】
【表2】
Figure 0004788030
【0066】
【表3】
Figure 0004788030
【0067】
また、これら鋼板を用いて表4に示す条件で鋼板に各種めっき処理を施した後1stカップ成形、DI成形、4段ネック成形を行って350ml DI缶とし、各種缶体特性を評価した。評価した結果をあわせて表4に示す。
製缶後蓋を取付け、空気で内圧をかけ、ドーム部にバックリングが発生した時の圧力を求め、缶耐圧強度とした。ネックしわは、ネックイン成形後に目視で、また、フランジ割れは、磁気センサを用いて調査した。
【0068】
【表4】
Figure 0004788030
【0069】
本発明例は、板厚が薄いにも関らず、缶底耐圧強度を高くでき、多段ネック、フランジ加工を施しても、ネックしわやフランジ割れの発生もなく、しかも缶強度が確保できる特性を有する極薄冷延鋼板となっている。これに対し、本発明の範囲を外れる比較例は、1stカップでの耳立ち、耳切れが発生したり、缶底耐圧強度が小さかったり、ネックしわやフランジ割れが発生する。
【0070】
【発明の効果】
本発明によれば、空缶重量25g 以下というような軽量飲料缶用として好適な、耳発生も少なく、所望の缶体の耐圧強度を有し、多段ネック加工も容易であり、さらにフランジ加工性に優れた極薄の2ピース缶用鋼板を、安価に製造でき、産業上格段の効果を奏する。また、無菌充填法にも適応できるという効果もある。
【0071】
さらに、3ピース缶といえども軽量化が進み、極薄鋼板を使用し多段ネック加工や拡缶加工を施されており、2ピース缶同様にしわの問題がある。本発明の缶用鋼板は、このような用途にも使用でき、缶体の軽量化を促進できるという効果もある。
また、2ピース缶用でもDWI缶(Drawn and wall ironed can )製法に限らず、SD缶(Shallow −Drawn can )製法、DRD缶(Drawn and Redrawn can )製法、DTR缶(Drawn and Thin Redrawn can)製法、DTRにwall ironed を組み合わせた製法、あるいは缶底ドーム加工を施されないものに使っても何ら差し支えなく、缶体の軽量化を促進できる。
【図面の簡単な説明】
【図1】鋼板の降伏応力YSと加工付与歪量と缶体要求強度との関係を示す説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel plate for a two-piece can, and is particularly excellent in cup formability (deep drawing workability), has a moderately large can bottom strength after processing, and does not generate wrinkles even when multi-stage neck processing is performed. The present invention relates to a steel sheet for ultra-thin cans having a thickness of 0.20 mm or less, which has excellent neck workability and stretch flangeability.
[0002]
[Prior art]
Soft drinks, beverage cans such as beer, and various can containers such as food cans are divided into two-piece cans consisting of a can body and top lid, and three-piece cans consisting of a can body, top lid, and bottom lid. Separated. In particular, the steel plate used for the can body of a two-piece can is a variety of harsh processes such as deep drawing (cup forming), subsequent ironing to obtain the can height, neck diameter reduction processing, flange processing, dome processing, etc. Characteristics that can withstand proper molding are required. Furthermore, recently, for the purpose of reducing the weight of the can, the thinning of the steel plate, which is a material, has been directed.
[0003]
Even when the steel plate as the material is thinned, it is necessary to maintain a predetermined strength or higher as the can strength. Therefore, it is a premise that the strength of the steel plate as the material is increased.
The can bottom that can be greatly reduced in thickness in the general can shape is the bottom of the can where there is almost no variation in the plate thickness. At the bottom of the can, the thickness of the material can be further reduced by changing the can shape such as reducing the dome grounding diameter or increasing the dome depth, and by improving can manufacturing technology. However, if the material of the neck portion and the flange portion is thinned, the thickness varies during can manufacturing processing, and the thickness becomes further thin, resulting in insufficient can strength after can manufacturing. In order to achieve thinning at the neck and flange, it is necessary to increase the blank diameter so that the wall thickness at the top of the can does not decrease. However, when the blank diameter is increased, deep drawing becomes difficult, and there is a problem that troubles such as fracture occur. For this reason, in order to reduce the weight of the can, a steel plate for cans that is thin and excellent in deep drawability is desired.
[0004]
In addition, when deep drawing a raw steel plate into a cup shape, if a thin steel plate is used, even if a high strength steel plate is used, the rigidity is insufficient and wrinkles are likely to occur. This tendency becomes more remarkable as the limit drawing ratio (LDR) increases, that is, as the blank diameter increases. In order to reduce the generation of wrinkles, it is conceivable to increase the wrinkle restraining force (BHF). However, there is a problem that when the BHF becomes large, the tip of the ear is easily cut. In order to solve this problem, a steel sheet having a small in-plane anisotropy of r value, that is, a small Δr is desired.
[0005]
In order to obtain a thin steel plate for cans, there are two possible methods: (1) increasing the cold rolling reduction ratio, and (2) reducing the thickness of the cold rolled base plate, that is, the thickness of the hot rolled plate. It is done. However, the increase in the cold rolling reduction increases the in-plane anisotropy of the r value, and increases the generation of ears during drawing. Further, when the thickness of the hot-rolled sheet is reduced, there is a problem that the variation in hot rolling temperature in the width direction and the length direction is increased and the productivity of hot rolling is also reduced.
[0006]
For such a problem, for example, in Japanese Patent No. 2689148 (Japanese Patent Laid-Open No. 2-141535), C: 0.010 to 0.040%, Si: 0.03% or less, Mn: 0.05 to 0.35%, P: 0.015% Hereinafter, a steel slab containing S: 0.015% or less, solAl: 0.03-0.15%, N: 0.0025% or less, Al / N ≧ 30, ArThreeHot rolling is performed at a finishing temperature of less than 630 to 750 ° C., cold rolled at a reduction of 85 to 95%, annealed at a recrystallization temperature of 670 ° C. or less, and then re-reduced to 8 to 30%. A manufacturing method of a steel plate for a drawing can with a small ear generation that performs cold rolling is disclosed.
[0007]
Japanese Patent Laid-Open No. 9-241756 discloses that a hot rolled steel sheet having an average crystal grain size before cold rolling of 30 μm or more is subjected to cold rolling at a cold rolling reduction ratio of 70 to 98%, and a recrystallization temperature of 800 or more. After annealing for 3 min or more at ℃ or lower, re-rolling is further performed with a cold rolling reduction ratio of 1 to 70% and the total cold rolling reduction ratio to the final product is 88 to 98%. Discloses a method for producing a steel plate for containers, which is extremely small.
[0008]
However, with the techniques described in Japanese Patent Nos. 2689148 (Japanese Patent Laid-Open No. 2141535) and Japanese Patent Laid-Open No. 9-241756, the generation of ears during drawing is reduced, but the neck that reduces the diameter of the can opening is reduced. There has been a problem that no consideration has been given to the generation of wrinkles in the processing and the decrease in the pressure strength accompanying the thinning of the steel sheet.
Recently, the diameter of the lid has been reduced in order to increase the strength of the can lid, and the can body neck portion of the two-piece can has become a multi-stage neck. In multi-stage neck processing, the wall thickness increases, but it is still necessary to have a certain level of rigidity in order not to generate neck wrinkles, so there is a limit to thinning the material even if high-strength steel plates are used. is there. In addition, the high-tensile steel plate generally has a large yield stress, and there is a problem that it is difficult to obtain a predetermined diameter reduction. When neck wrinkles occur, the contents will leak after the lid is double-tightened. On the other hand, when increasing the tension to increase the rigidity, there is a problem that elongation is insufficient and cracking occurs during flange processing, and there is a conflicting demand that a soft steel sheet is desired from the viewpoint of workability. is there.
[0009]
For the generation of wrinkles in neck processing, for example, JP-A-6-306535 and JP-A-6-306536 include C: 0.0100 to 0.0700%, Si: 0.30% or less, Mn: 0.05 to 1.00%, A slab containing P: 0.030% or less, S: 0.025% or less, solAl: 0.002 to 0.100%, N: 0.0100% or less, B: 0 to (0.0010 + 1.8 × N%)%, is hot-rolled. After that, cold rolling at a reduction ratio of 85 to 95% is performed, and the amount of solute C is adjusted by recrystallization annealing at a temperature higher than the recrystallization temperature and the subsequent cooling, and the elongation rate is further adjusted to perform temper rolling. 3% pre-strain of steel sheet-YP after heat treatment is 34kgf / mm2 Above, 50% pre-strain-YP after heat treatment is 62kgf / mm2 A method of manufacturing a surface treatment original plate for DI can excellent in necked-in properties to be adjusted below has been proposed.
[0010]
Japanese Patent Application Laid-Open No. 10-280095 has excellent neck wrinkle resistance in which a slab containing C: 0.01 to 0.05% and N: 0.004% or less is cast and the slab heating temperature in hot rolling is 1100 ° C. or less. In addition, a method of manufacturing a two-piece container steel sheet has been proposed.
However, the steel plates obtained by the techniques described in JP-A-6-306535 and JP-A-10-280095 are not only so hard that the steel plate is hard, but also the in-plane anisotropicity of the r value. May increase. For this reason, there was a problem that the drawability was not stable and the steel plate was not stable as a steel plate for cans. In addition, although the pressure resistance at the bottom of the can is large, the neck and flange workability is poor, and it is difficult to achieve a plate thickness of 0.20 mm or less.
[0011]
Further, in the technique described in Japanese Patent Application Laid-Open No. 10-280095, the heating temperature for hot rolling is too low, and the finish rolling finish temperature FDT is set to Ar over the entire width of the steel sheet.ThreeIt is difficult to make the temperature higher than the transformation point. For this reason, there is a problem that the r value of the steel sheet is low and the drawability is lowered.
[0012]
[Problems to be solved by the invention]
On the other hand, in order to counter the pressure in the can, the can bottom needs to have a pressure strength higher than a predetermined level. The pressure strength of the bottom of the can is determined by the material thickness, yield strength (yield stress), and the shape of the bottom of the can.2X It is said to be proportional to the yield strength, and an increase in the yield strength is required to increase the pressure resistance. However, since processing such as deep drawing into a cup shape is required, the material is required to be soft (equivalent to tinning tempering T2 to T3) during can manufacturing. In the can making process, heat treatment such as hot water washing, painting, printing by baking, etc. is applied. Therefore, it is soft at the time of processing. That is, a steel plate (equivalent to tinning tempering T4 to T5) having a large strain age hardening after baking is desired. However, since the neck and flange processing is after paint baking, there is an upper limit to the degree of strain age hardening after paint baking, which is about the same as when a conventional soft material with a refining degree of T2 to T3 can be made. It is desired to be workability.
[0013]
Steel plates manufactured with conventional technology can be made rigorously in response to the weight reduction (thickness of 0.20 mm or less) of the two-piece can as described above, and the shape and can of each desired portion of the can. There was a problem that the strength could not be sufficiently achieved. That is, the same steel plate is made of a material having a tempering degree of T2 to T3 at the time of cup processing, and the can bottom pressure strength becomes a material equivalent to a tempering degree of T4 to T5 when it becomes an empty can. In addition, the flange workability is required to have, for each process, a characteristic that provides the same level of workability as when a steel sheet having a conventional tempering degree T2 to T3 can be made.
[0014]
The present invention solves the above-mentioned problems of the prior art, is suitable for lightweight beverage cans having an empty can weight of 25 g or less, is relatively soft with a tempering degree of T2 to 3, and has a deep drawing workability. An object of the present invention is to propose a steel sheet for an ultra-thin two-piece can having a thickness of 0.20 mm or less, which is excellent in multi-stage neck workability and flange workability, and a manufacturing method thereof.
[0015]
[Means for Solving the Problems]
In order to achieve the above-described problems, the present inventors first examined factors affecting the neck portion strength and the can bottom strength. FIG. 1 shows the relationship between the amount of strain and the yield strength during each can manufacturing process.
In the case of a two-piece can, the steel sheet is first deep-drawn and formed into a cup shape. As shown in FIG. 1, at a working strain of 0%, the yield stress (also called yield strength, YS) of the steel sheet should be low from the viewpoint of deep drawing workability, and is adjusted from the viewpoint of wrinkling during deep drawing. It is preferable to use a relatively soft steel plate having a grade of T2 to 3 (with a yield stress of 370 MPa or less). Wrinkles during deep drawing are more likely to occur as the drawing ratio increases and the yield strength increases. For this reason, from the viewpoint of deep drawing workability, an upper limit is required for the yield strength of the steel plate as the material.
[0016]
On the other hand, when the material is thin, the bending rigidity is lowered and the flange wrinkle is likely to occur. In order to prevent the generation of wrinkles on the flange, it is necessary to increase the wrinkle restraining force. However, if the wrinkle restraining force is increased, the punch shoulders are easily broken during processing, and the ears generated in the circumferential direction of the cup Among them, a problem occurs in which the larger one is stretched (ear standing) or torn (ear cut). Such a problem of the ear standing / ear cutting becomes more prominent as the material steel plate becomes softer. For this reason, it is necessary to set a lower limit to the yield stress (yield strength) of the steel plate as the material, and it is preferable to set it to 250 MPa or more.
[0017]
Further, the present inventors have found that the in-plane anisotropy Δr of the r value needs to be reduced to 0 ± 0.2 in order to reduce the generation of ears. As Δr increases, the ear rate increases and the ears in a specific direction become extremely large, causing troubles such as tearing the inside of the cup holder or being caught by a processing machine, resulting in reduced productivity. It has been found that in order to reduce Δr, it is important to optimize the steel composition, the hot rolling temperature, the cold reduction rate, and the annealing temperature.
[0018]
Furthermore, in order to prevent the problem of the ear standing / ear cutting, the inventors suppress the upper limit of the r value while maintaining the lower limit of the r value, and further set the yield stress after deep drawing to a predetermined value. It has been found that by making it higher than (ear stand-off / ear-cut prevention strength), the thickness of the upper end of the cup (can) after deep drawing becomes thick, and tearing of the ear can be prevented. Then, it has been found that it is effective to work and harden to some extent by temper rolling after recrystallization annealing in order to suppress the upper limit value of r value and to increase the yield strength to a level higher than the strength of preventing ears and ears.
[0019]
Therefore, in order to have a desired range of yield stress and a good deep drawing workability and to reduce the occurrence of ears, the average r value is set to an appropriate value of 1.0 to 1.5 as a lightweight two-piece steel plate. In addition, it is necessary to use a steel plate having an in-plane anisotropy Δr of r value as small as 0 ± 0.2.
The steel sheet that has been drawn and formed into a cup shape is then subjected to ironing in order to set the can height to a predetermined height. Subsequently, the bottom of the can is subjected to dome processing that gives a processing strain of about 10%. In addition, as the plate thickness of the material decreases, the processing strain increases by decreasing the ground contact diameter or increasing the dome depth. Therefore, the strength of the steel plate at the bottom after the baking coating after dome processing is determined determines the pressure strength of the two-piece can. Conventionally, after filling the can, the retort treatment (heat treatment of about 120 ° C. × 90 min) was performed as a sterilization treatment. The steel plate strength of the bottom part was determined on the assumption that it could withstand this retort treatment. If the strength of the bottom steel plate is less than 400 MPa, the pressure resistance of the can is insufficient, and buckling occurs during retort processing or when the can of a positive pressure can that has been filled with nitrogen and applied internal pressure is dropped. . Therefore, as a result of investigating the relationship between processing strain and can bottom pressure strength, steel plate properties that yield a steel plate yield stress (YS) of 400 MPa or more after processing strain equivalent to 10%-paint baking equivalent treatment (210 ° C x 20 min heat treatment) I found that the problem could be solved.
[0020]
However, recent advances in filling technology have enabled aseptic filling and do not need to withstand retorting. Therefore, it is only necessary to consider deformation during transportation after filling the contents, and the required pressure strength is lower than in the past. For this reason, the strength required for the steel plate at the bottom is also the pressure resistance for aseptic filling cans lower than the pressure resistance for retort processing cans (see FIG. 1). Therefore, the steel plate as a raw material attaches importance to the improvement of workability, and a steel plate whose strength after dome processing is softer than before may be used. As a result of investigations by the present inventors, in order to satisfy this characteristic, there is no problem if the YS of the steel sheet after 10% processing strain is applied and baking coating equivalent treatment (210 ° C x 20 min heat treatment) is 370 MPa or more. I found it.
[0021]
Furthermore, the present inventors can manufacture a steel sheet having a strength after dome processing that is equal to or higher than the pressure resistance strength for aseptic filling cans by performing box annealing (circle mark in FIG. 1) following continuous annealing. I found. Further, a steel plate having a strength after dome processing that is equal to or higher than the pressure resistance strength for a conventional retort processing can is1Combining continuous annealing at a high temperature above the transformation point and subsequent overaging treatment (marked with □ in FIG. 1) can achieve appropriate precipitation of solute C and appropriate coarsening of crystal grains, and can be manufactured. I found out that
[0022]
Further, in the can neck portion, after deep drawing processing and ironing processing, after being baked and coated, the neck diameter is further reduced. By deep drawing and ironing, a maximum processing strain of 35% is given, and post-processing paint baking is performed. Therefore, when the neck diameter is reduced, the inventors have paid attention to the fact that the strength of the steel sheet after 35% processing and paint baking is the strength at the time of neck diameter reduction processing. It has been found that when the YS of the steel sheet exceeds 620 MPa during the diameter reduction process, wrinkling is generated. If wrinkles occur in the neck, the contents leak and the can is rejected and eliminated.
[0023]
For this reason, the inventors of the present invention are appropriately soft at the time of drawing, and imparting 10% processing strain--after the baking process, yield stress of 370 MPa or more, or 400 MPa or more, and 35% processing strain imparting-painting. It has been found that a steel sheet having a yield stress of 620 MPa or less after baking is suitable for a lightweight can.
The present invention has been completed based on the above findings and further studies.
[0024]
  That is, the first aspect of the present invention isIn mass%, C: 0.01 to 0.06%, N: 0.0060% or less, Si: 0.03% or less, Mn: 0.6% or less, P: 0.02% or less, S: 0.02% or less, Al: 0.03-0.20%, O: Contains 0.01% or less, and has a composition consisting of the balance Fe and inevitable impuritiesLow-carbon aluminum killed steel sheet with yield stress: 250 to 370 MPa, average r value: 1.0 to 1.5, r value in-plane anisotropy Δr value of 0 ± 0.2, tempering degree T2 to T3 In addition, the yield stress after applying 20% heat treatment at 210 ° C with 10% processing strain is 370MPa or more, and the yield stress after applying heat treatment at 210 ° C and 20min at 210 ° C is 620MPa or less. It is characterized byCup moldingSteel plate for lightweight two-piece cans with a thickness of 0.20mm or less, which has excellent workability, multi-stage neck workability and flange workability,Further, in addition to the above composition, in terms of mass%, Nb: 0.10% or less, Ti: 0.20% or lessunder1 or 2 selected fromseedIt may be a composition containingFurthermore, it is good also as a composition which contains 1 type or 2 types chosen from Nb: 0.10% or less and Ti: 0.20% or less, and B: 0.005% or less by the mass%.
[0025]
  In the first aspect of the present invention, it is preferable to have a surface treatment layer on at least one surface of the steel sheet, and the surface treatment layer is preferably tin plating or chrome plating.
  Also,steelIt comprises a rough rolling process in which a material is heated to form a sheet bar by hot rolling, a finish rolling process in which the sheet bar is hot rolled by hot rolling, and a winding process to wind the hot rolled sheet In the method for producing a hot-rolled steel sheet, the composition of the steel material is, in mass%, C: 0.01 to 0.06%, N: 0.0060% or less, Si: 0.03% or less, Mn: 0.6% or less, P: 0.02% or less, S: 0.02% or less, Al: 0.03-0.20%, O: 0.01% or less, and the composition comprising the balance Fe and inevitable impurities, and the finish rolling finish temperature FDT of the finish rolling process is (ArThreeAn ultra-thin hot-rolled steel sheet with a thickness of 2 mm or less (base plate for ultra-thin cold-rolled steel sheet for cans), characterized by having a transformation point + 10 ° C. or higher and a winding temperature CT in the winding process of 600 to 750 ° C. In addition to the composition described above, the composition may further contain one or two selected from mass%, Nb: 0.10% or less, Ti: 0.20% or less, or In addition to the composition, Nb: 0.10% or less and Ti: 0.20% or less may be contained, and B: 0.005% or less may be contained in addition to the composition. Also,in frontAfter the rough rolling process and before the finish rolling process, it is preferable to perform the finish rolling process after joining the leading end of the sheet bar and the trailing end of the sheet bar preceding the seat bar.
[0026]
  Also,in frontAfter the rough rolling step and before the finish rolling step, either or both of heating and heating the longitudinal end of the sheet bar or heating and heating the widthwise end of the sheet bar Preferably it is done.
  The second2In the present invention, a steel raw material is heated and subjected to a hot rough rolling process in which the sheet bar is formed by hot rolling, a hot finish rolling process in which the sheet bar is formed by hot rolling, and the hot rolling. A winding step for winding the plate, and further cold-rolling the hot-rolled plate into a cold-rolled plate, annealing the cold-rolled plate into a cold-rolled annealed plate, and In the method for producing an ultra-thin cold-rolled steel sheet for cans having a sheet thickness of 0.20 mm or less having a temper rolling process for temper rolling a cold-rolled annealed sheet, the composition of the steel material is expressed by mass%, C: 0.01 to 0.06 %, N: 0.0060% or less, Si: 0.03% or less, Mn: 0.6% or less, P: 0.02% or less, S: 0.02% or less, Al: 0.03-0.20%, O: 0.01% or less, the balance Fe and The composition is composed of inevitable impurities, and the finish rolling finish temperature FDT of the finish rolling process is (ArThreeTransformation point + 10 ° C) or higher, the winding temperature CT in the winding process is 600 to 750 ° C, and the annealing temperature is set to Ac.1Continuous annealing at a transformation point or higher, quenching treatment for quenching from the annealing temperature, and a step of performing overaging treatment after the quenching treatment, or setting the annealing temperature to Ac1It is a method for producing an ultra-thin cold-rolled steel sheet for cans having excellent cup formability, multi-stage neck workability and flange workability, characterized by continuous annealing at a transformation point or higher and subsequent box annealing. . Further, in addition to the above composition, the composition may further contain one or two kinds selected from Nb: 0.10% or less, Ti: 0.20% or less in mass%, or in addition to the composition, Furthermore, it may contain 1 type or 2 types selected from Nb: 0.10% or less and Ti: 0.20% or less, and B: 0.005% or less in mass%. The second2In the present invention, the 0.2% proof stress target value (σ) corresponding to the target value of the thickness (t mm) of the cold-rolled steel sheet and the yield stress of the cold-rolled steel sheet.0.2, MPa) and (t)2 × σ0.2 However, in the case of 8.0 or less, after the continuous annealing, box annealing with an annealing temperature of 500 to 600 ° C. is performed, and the sheet thickness (t mm) of the cold-rolled steel sheet and the 0.2% yield strength target value (σ0.2, MPa) and (t)2 × σ0.2 However, if it exceeds 8.0, it is preferable to perform an overaging treatment at 400 to 550 ° C. for 40 seconds or longer after the rapid cooling treatment.
[0027]
  The second2In the present invention, it is preferable that the rolling reduction of the temper rolling in the temper rolling step is 1% or more and less than 15%. The first2In the present invention, after the rough rolling step and before the finish rolling step, the leading end of the sheet bar and the trailing end of the sheet bar preceding the sheet bar are joined.didAfter that, it is preferable to perform a finish rolling process.
[0028]
  The second2In the present invention, after the rough rolling step and before the finish rolling step, either heating the temperature of the longitudinal end of the sheet bar or heating the temperature of the widthwise end of the sheet bar. Preferably, either or both are performed. The second2In the present invention, after the temper rolling step, it is preferable to perform a surface treatment for forming a surface treatment layer on at least one surface of the steel sheet, and the surface treatment is preferably a tin plating treatment or a chrome plating treatment. .
[0029]
DETAILED DESCRIPTION OF THE INVENTION
  First, the reason for limitation of the steel sheet of the present invention will be described.
  The steel plate of the present invention is a low carbon aluminum killed steel plate. The composition is as follows:.
  C:0.01 ~0.06%
  C is an important element that refines the crystal grains and increases the strength of the steel by solid solution strengthening. On the other hand, it forms carbides and lowers the ductility of the steel sheet and thus the workability. For this reason, C is limited to 0.06% or less. In order to secure r value and reduce variation in r value in the width direction and length direction, FDT is changed to ArThreeIt is important to make the transformation point + 10 ° C. or higher. From these viewpoints, C is suitably 0.01 to 0.05%. From the viewpoint of moderate bake hardenability, it is important to finely distribute the carbide after continuous annealing (CAL), and C is 0.01% or more.The
[0030]
N: 0.0060% or less
N is an element that increases age hardenability when it remains in the steel sheet as solute N. In the present invention, it is desirable to reduce it as much as possible, but 0.0060% is acceptable. In addition, Preferably it is 0.003% or less.
Si: 0.03% or less
Si is an element that increases the strength of steel by solid solution strengthening, but addition of a large amount causes problems such as deterioration in workability, surface treatment property, and corrosion resistance. For this reason, it is desirable to reduce as much as possible in the present invention, but it is acceptable up to 0.03%.
[0031]
Mn: 0.6% or less
Mn is an effective element for preventing hot cracking due to S, but if contained in a large amount, it is uneconomical and tends to deteriorate corrosion resistance and increase strength variation. For this reason, in the present invention, Mn is limited to 0.6% or less. In addition, Preferably it is 0.2 to 0.4%.
[0032]
P: 0.02% or less
P significantly hardens the steel, deteriorates flange workability and neck workability, and further deteriorates corrosion resistance. For this reason, in the present invention, P is preferably limited to 0.02% or less.
S: 0.02% or less
S is an element that exists as an inclusion in steel and lowers the ductility of the steel sheet and further degrades the corrosion resistance. In the present invention, S is preferably reduced as much as possible, but up to 0.02% is acceptable. Therefore, in the present invention, S is preferably 0.02% or less. In addition, Preferably it is 0.015% or less.
[0033]
Al: 0.03-0.20%
Al acts as a deoxidizer and combines with solid solution N to form AlN and has the effect of reducing the amount of solid solution N. Such an effect is noticeable when the content is 0.03% or more. On the other hand, a large content exceeding 0.20% increases the oxide inclusions and deteriorates the surface properties, increases the production cost, and is economically disadvantageous. For this reason, Al was limited to the range of 0.03-0.20%. In addition, Preferably, it is 0.03-0.10%.
[0034]
O: 0.01% or less
O exists as an oxide in steel and causes reduction in ductility and deterioration in corrosion resistance. Therefore, it is necessary to reduce O as much as possible. In the present invention, it is acceptable up to 0.01%. In particular, in order to obtain a thin steel plate, the content is preferably 0.005% or less.
[0035]
  Nb: 0.10% or less, Ti: 0.20% or lessUnderOne or two selected from our houseSpecies or Nb: 0.10% or less, Ti: In addition to one or two selected from 0.20% or less, B: 0.005% or less
  Nb, Ti, and B are all elements that form carbides and nitrides and are effective in improving workability, and can be selected and contained as necessary.
  Nb is an effective element that forms carbides and nitrides, reduces the residual amount of solute C and solute N, and improves workability. However, if it contains more than 0.10%, it depends on Nb-based precipitates. The recrystallization temperature rises due to the pinning effect of the crystal grain boundaries, the workability of the continuous annealing furnace is lowered, and the grains become finer. For this reason, it is preferable to limit Nb to 0.10% or less. In order to obtain such an effect, Nb is desirably contained in an amount of 0.002% or more.
[0036]
Ti is an effective element that forms carbides and nitrides, reduces the residual amount of solid solution C and solid solution N, and improves workability. However, if it exceeds 0.20%, it is hard to precipitate. Products are generated, corrosion resistance is lowered, and scabs are easily generated during press working. For this reason, Ti is preferably limited to 0.20% or less. In addition, in order to acquire such an effect, it is desirable to contain Ti 0.01% or more.
[0037]
B is an effective element that forms carbides and nitrides and softens to improve workability. However, when it exceeds 0.005%, it segregates at the recrystallization grain boundary during continuous annealing and delays recrystallization. For this reason, B is preferably limited to 0.005% or less. In addition, in order to acquire such an effect, it is desirable to contain B 0.0003% or more. B is also an element effective in improving grain boundary embrittlement, and has a relatively low C content. In particular, when a carbide forming element is added, the strength of the recrystallized grain boundary is increased and embrittlement cracking is prevented. Have the effect of
[0038]
Remaining Fe and inevitable impurities
The balance other than the above components is Fe and inevitable impurities. As unavoidable impurities, Cr: 0.04% or less, Cu: 0.06% or less, Ni: 0.04% or less, Mo: 0.05% or less are acceptable.
The steel sheet of the present invention has the above composition range, yield stress: 250 to 370 MPa, average r value: 1.0 to 1.5, r value in-plane anisotropy Δr value of 0 ± 0.2, and tempering degree. It is a steel plate of T2 to T3.
[0039]
Yield stress YS of steel sheet: 250 to 370 MPa, tempering degree: T2 to T3
When YS and tempering degree of steel sheet increase and become hard, it becomes difficult to draw and iron into cans of predetermined dimensions. Therefore, yield stress YS of steel sheet is 370 MPa or less, and tempering degree is T3 or less. There is a need to. On the other hand, when deep drawing is performed with a thin-walled steel plate, the wrinkle restraining force increases, and the larger one of the ears generated in the cup circumferential direction is stretched or torn off. If the steel plate is too soft, this phenomenon is promoted, so that it is necessary to set the yield stress YS of the steel plate to 250 MPa or more and the tempering degree to T2 or more.
[0040]
Average r value: 1.0 to 1.5, Δr: 0 ± 0.2
The steel sheet of the present invention is a steel sheet having a small in-plane anisotropy having an average r value: 1.0 to 1.5 and Δr: 0 ± 0.2. If the average r value is less than 1.0, there is a problem that the deep drawing processability deteriorates and it is difficult to obtain the required can height. On the other hand, if the average r value exceeds 1.5, the elongation in the can height direction is large. The thickness of the side wall of the cup becomes thin, and there is a problem that the formed large ear part is easily torn or stretched. In order to suppress the generation of ears, it is preferable to reduce Δr in the range of 0 ± 0.2 and the in-plane anisotropy of the r value.
[0041]
The average r value and Δr are the r value (r) for the rolling direction (L direction), 45 ° from the rolling direction (D direction), and the perpendicular direction from the rolling direction (C direction), respectively.L, RD, RC) And average r value = (rL+ RC+ 2rD) / 4, Δr = (rL+ RC-2rD) / 2. For steel sheets with large temper rolling reduction and small elongation El, the average r value is measured using the natural vibration method specified in JIS G 3135 or JIS Z 2254. Further, as shown in Steel. Met. Ind., 50 (1973), 328, the following relationship is recognized between Δr and Young's modulus. Assume that Δr is also measured using the method.
[0042]
The average r value, Δr, is an average value E in each direction in the in-plane Young's modulus E from the obtained frequency by applying a high frequency to the strip-shaped test piece with the excitation coil and detecting the frequency with the detection coil.*And anisotropy ΔE
Average r value = 101.44 / (145.0 × E*× 10-6-38.83)2−0.564
Δr = 0.031 −0.323 (145.0 × ΔE × 10-6)
Where E*= (EL+ EC+ 2 ED) / 4
ΔE = (EL+ EC-2 ED) / 2
Calculate using. EL, EC, EDAre Young's modulus (N / mm) in the rolling direction (L direction), the direction perpendicular to the rolling direction (C direction), and 45 ° (D direction) from the rolling direction, respectively.2).
[0043]
Furthermore, the steel sheet of the present invention has a yield stress of 370 MPa or more after applying 10% processing strain and heat treatment at 210 ° C for 20 minutes, and after applying 35% processing strain and heat treatment at 210 ° C for 20 minutes. Yield stress is 620 MPa or less. By having such an appropriate bake hardenability (BH property), the can body has a high pressure resistance, can be reduced in multi-stage neck diameter, and can be an ultra-thin steel plate that can achieve weight reduction.
[0044]
According to the study by the present inventors, the processing strain introduced during can making can be evaluated by replacing with rolling strain. That is, by applying rolling with a rolling reduction of 10% or 35% to the steel sheet, it is possible to give a strain corresponding to 10% processing strain and 35% processing strain introduced at the time of can making as described above. Therefore, in the present invention, the yield stress after heat treatment at 210 ° C. for 20 min is the yield stress after rolling the steel plate at a reduction rate of 10% and heat treatment at 210 ° C. for 20 min, or the steel plate has a reduction rate of 35%. % Yield stress after heat treatment at 210 ° C for 20 min.
[0045]
Below, the manufacturing method of this invention steel plate which has the above-mentioned characteristic is demonstrated.
The steel material having the above composition is melted by a generally known melting method to obtain a steel material such as a slab having a high cleanliness by a known casting method such as a continuous casting method.
In the present invention, a steel material is heated and subjected to a rough rolling step for forming a sheet bar by hot rolling, a finish rolling step for forming the sheet bar by hot rolling, and a winding for winding the hot rolled plate. It is set as the hot-rolled board wound up in the coil shape by the removal process.
[0046]
In the rough rolling process, the heating temperature and rolling conditions are not particularly limited, and it is sufficient that the sheet bar can have a predetermined size and shape. In addition, it is preferable that the heating temperature of a steel raw material shall be 1100-1250 degreeC. When the heating temperature is less than 1100 ° C., the rolling load in the rough rolling increases and it becomes difficult to set the finish rolling end temperature within a predetermined temperature range. On the other hand, when the heating temperature exceeds 1250 ° C., the formation of surface scale becomes remarkable, resulting in large scale loss and economical disadvantage, and a scale that is difficult to remove by finish rolling remains and tends to cause surface defects. Further, the coarsening of crystal grains becomes remarkable.
[0047]
In the present invention, after being formed into a sheet bar in the rough rolling process, before the finish rolling process, the front end of the sheet bar and the rear end of the sheet bar preceding the sheet bar are joined, and then finish rolling. It is preferable to do. By joining the sheet bars in this manner, it is possible to easily prevent the disturbance of the shape in the longitudinal direction, which is a problem particularly in the ultrathin hot-rolled steel sheet as in the present invention, and the yield of products can be improved.
[0048]
Moreover, it is preferable to heat and heat the longitudinal direction edge part of a sheet bar over the full width between rough rolling processes and finish rolling, or to heat and heat the width direction edge part over the full length. The end of the sheet bar in the longitudinal direction or the end in the width direction tends to decrease in temperature, and this part is heated to raise the temperature to make the temperature inside the sheet bar uniform, and the finish regulated in relation to the transformation point It is easy to secure the rolling temperature in the longitudinal direction and the width direction, and the yield is improved. Note that the heating method is preferably an induction heating method.
[0049]
In addition, as described above, after being formed into a sheet bar in the rough rolling process, when the finish rolling is performed after the front end portion of the sheet bar and the rear end portion of the sheet bar are joined before the finish rolling step, they are joined. The yield can be improved by heating and heating the vicinity of the joint corresponding to the longitudinal direction end of the sheet bar before joining, or finishing and rolling after heating and heating the end in the width direction. From the viewpoint of
[0050]
Thus, by performing soaking of the sheet bar before the finish rolling step, the temperature of the end portion in the width direction and the end portion in the length direction of the sheet bar can be increased. Finish rolling finish temperature FDT (ArThree(Transformation point + 10 ° C.) or higher.
The sheet bar that has undergone the rough rolling process is then hot-rolled in a finish rolling process to form a hot-rolled sheet. In the finish rolling process, the finish rolling end temperature FDT is set to (ArThreeTransformation point + 10 ° C) or higher. FDT is (ArThreeIf the transformation point is less than + 10 ° C., AlN precipitates and solute N decreases, or the r value after recrystallization annealing decreases, and the in-plane anisotropy increases and Δr increases. For this reason, FDT is (ArThree(Transformation point + 10 ° C.) or more is preferable.
[0051]
In order to increase the r value after recrystallization annealing, it is said that it is better to reduce the cold rolling reduction ratio in a steel sheet for cans having a high cold rolling reduction ratio. However, even if the thickness of the hot-rolled sheet is reduced in order to reduce the cold rolling reduction ratio, the increase of the r value was not obtained so much. The reason for this is that by using a thin hot-rolled sheet, the surface layer of the hot-rolled sheet takes a longer time to be lower than the central part of the plate thickness, so the rolled texture of the surface layer decreases the r value after recrystallization annealing. This is probably because the (110) recrystallized texture is easily formed. In order not to form such a rolling texture in the surface layer part, FDT (ArThreeIt was found that the transformation point + 10 ° C or higher is good. Thereby, the effect of reducing the cold rolling reduction ratio for improving the r value becomes significant.
[0052]
Moreover, although a hot-rolled sheet is wound up in a coil shape at a winding-up process, it is preferable that winding-up temperature CT shall be 600-750 degreeC. When CT is less than 600 ° C., the amount of AlN deposited is small and fine, the r value is lowered, and a hard steel sheet with high yield strength is obtained. On the other hand, when the temperature exceeds 750 ° C., the crystal grains of the hot-rolled sheet become coarser as the carbides become coarser, and the distance between carbides as the precipitation site of the solid solution C increases in the continuous annealing-overaging process. Even if the overaging treatment is performed for 40 seconds or longer, the strain aging characteristics necessary for the present invention cannot be obtained, and the effect is not increased. For this reason, CT is preferably 600 to 750 ° C.
[0053]
The cooling after winding is preferably air cooling. Further, after sufficient self-annealing, water cooling may be performed. By cooling with water, it is possible to prevent a decrease in yield due to an increase in surface scale. The water cooling can be a short-time cooling such as watering.
The thickness of the hot-rolled plate is determined depending on the thickness of the cold-rolled plate (product plate) as the base plate of the cold-rolled plate, but to make a thin cold-rolled plate with a thickness of 0.20 mm or less, In consideration of reducing the in-plane anisotropy and improving the r value, it is preferably 2 mm or less.
[0054]
The hot-rolled sheet manufactured by the above-described process is descaled by hydrochloric acid pickling, and then cold-rolled by cold rolling, and annealed to cold-roll and anneal the cold-rolled sheet. A process and a temper rolling step of temper rolling the cold-rolled annealed sheet are performed to obtain a cold-rolled annealed sheet.
In the cold rolling process, it is only necessary to obtain the desired dimension and shape of the cold rolled sheet, and the conditions are not particularly limited. However, in order to obtain a large r value and a small Δr, the reduction ratio of the cold rolling is preferably 93% or less, and preferably 91% or less. In order to obtain such a cold rolling reduction ratio, it is preferable to perform sheet rolling and hot rolling to reduce the thickness of the hot rolled sheet.
[0055]
The cold rolled sheet is then annealed. In the annealing process, the annealing temperature is set to Ac1It is preferable to perform a continuous annealing at a transformation point or higher, a rapid cooling process for quenching from the annealing temperature, and a process for subsequent overaging, or a process for continuous annealing and subsequent box annealing.
In continuous annealing, in order to ensure the workability required for DI (Drawing & Ironing) for lightweight beverage cans, Ac1It is preferable to soak at a temperature above the transformation point. Set the annealing temperature to Ac1By setting the transformation point or more, precipitation of AlN is promoted, carbides aggregate, the crystal grain size grows, and the strain aging necessary for the present invention can be obtained and the r value becomes high (111). A recrystallized texture can be developed. Therefore, the annealing temperature for continuous annealing is Ac.1It is preferable to set it above the transformation point. It should be noted that the soaking time at the annealing temperature is sufficient if it is 1 s or more in view of operational stability.
[0056]
It is preferable to perform a rapid cooling treatment after the continuous annealing. The rapid cooling treatment is preferably performed at the outlet side of the continuous annealing and is cooled to the overaging temperature at a cooling rate of 40 to 70 ° C./s. Thereby, precipitation of solid solution C is achieved and it becomes a steel plate which has appropriate softness and strain aging.
Note that the thickness (tmm) of the cold-rolled sheet and the 0.2% yield strength target value (σ0.2(MPa), also called the yield stress target value), (t)2× σ0.2However, when it exceeds 8.0, it is preferable to carry out an overaging treatment at 400 to 550 ° C. for 40 seconds or more after a rapid cooling treatment at a cooling rate of 40 to 70 ° C./s on the continuous annealing side. By this overaging treatment, solid solution C is precipitated, and a preferable effect is obtained that a steel sheet having a soft and appropriate strain aging property can be obtained as a continuous annealing material (CAL material). More preferably, an overaging treatment is performed at 400 to 500 ° C.
[0057]
Meanwhile, (t)2× σ0.2However, in the case of 8.0 or less, it is preferable to anneal by a continuous annealing-box annealing method instead of continuous annealing-rapid cooling treatment-overaging treatment. A rapid cooling process of 40 ° C./s or more is not particularly required between the continuous annealing and the box annealing. In the box annealing, it is preferable that the annealing temperature is 500 ° C. or more and heated to a temperature in the range of 600 ° C. or less, and then slowly cooled while ensuring a residence time in the carbide precipitation temperature range of 500 to 400 ° C. for 1 h or more. No holding time is required at the box annealing temperature. By annealing with the box annealing method under such conditions, a steel plate for cans that is non-aged and soft, has a large r value, a small Δr, and a workability close to that of a box annealed material excellent in deep drawing workability is obtained. This makes it possible to manufacture a two-piece can with a reduced plate thickness. On the other hand, when the annealing temperature of box annealing exceeds 600 ° C., graphite is precipitated, and it is difficult to form a uniform plating layer by subsequent plating treatment.
[0058]
(T)2× σ0.2However, in the case of 8.0 or less, when continuous annealing-overaging treatment is performed, deep drawing workability may be deteriorated, and it is preferable to perform continuous annealing-box annealing. (T)2× σ0.2However, in the case of 8.0 or less, the pressure resistance of the can body is 617 kPa or less required for the can body that requires retorting after filling the contents. However, at present, by improving the can shape and can filling method, even if the pressure resistance of the can is 617 kPa or less, it can be applied for aseptic filling treatment.
[0059]
The atmosphere for box annealing is preferably a reducing atmosphere such as HN gas. Note that the heating rate is not particularly limited, and it is preferably a gradual heating.
The cold-rolled annealed plate that has undergone the annealing step is then temper-rolled by cold rolling in the temper rolling step. This temper rolling adds work hardening and increases the strength of the bottom of the can. For this purpose, it is preferable that the rolling reduction is at least 1% and less than 15%. If the temper rolling reduction is less than 1%, the strength of the bottom of the can is not increased. On the other hand, if it is 15% or more, the steel sheet becomes too hard, making it unsuitable as a lightweight two-piece can. More preferably, the rolling reduction is 3% or more. The conventional box annealed material is subjected to SR (single cold-reduced product) with a rolling reduction of 2% or less to introduce movable dislocations.
[0060]
The cold-rolled annealed plate thus manufactured may be shipped as a product plate (coil) as it is after the rust prevention treatment. Alternatively, a pickling treatment is performed, and a surface treatment for forming a surface treatment layer such as tin plating, chromium plating, nickel plating or the like is formed on at least one surface to obtain a product plate. The product plate is further oiled and shipped. The thickness of the surface treatment layer depends on the application, but with tin plating, the tin weight per side is 11 g / m.2(# 100) The following, no reflow finish without applying tinning treatment, preferably hydrated chromium oxide layer 1mg / m2By applying as follows, the effect of solid lubrication in press working can be greatly exhibited. In addition, in the chromium plating (TFS) treatment, the basis weight is 60 mg / m per side.2The following is preferable. Further, as the oil coating agent, DOS (Di-octyl sebacate) and ATBC (Acetyl tri-butyl citrate) are preferable.
[0061]
【Example】
The effect of this invention is demonstrated based on an Example.
The steels with the components shown in Table 1 were melted in a bottom-blowing converter to prevent non-metallic inclusions from entering and remaining, and then rolled into a rolling material (slab) using a large tundish and a vertical bending type continuous casting machine. . Subsequently, these rolled materials were hot rolled under the conditions shown in Table 2 to obtain hot rolled sheets. Thereafter, the hot-rolled sheets are subjected to descaling by pickling, further subjected to cold rolling under the conditions shown in Table 2, and then subjected to annealing and temper rolling under the conditions shown in Table 2, did.
[0062]
Except steel plate No. 4, the slab heating temperature of the steel plate in Table 2 is 1100-1250 ° C, and the finish rolling temperature is (ArThree(Transformation point + 10 ° C.) or higher. Steel plate No. 4 has a slab heating temperature of 1040 ° C, and the finish rolling temperature is Ar.ThreeThe transformation point was 870 ° C.
The ultra-thin cold-rolled steel sheet thus obtained was subjected to a tensile test, a hardness test, a bake hardening test, and an r value measurement. In order to evaluate the pressure strength of the bottom of the can, it was rolled as described above to give 10% strain, and for the evaluation of neck / flange workability, 35% strain was applied, and then each was subjected to paint baking treatment. An aging treatment of 210 ° C. × 20 min corresponding to was performed and evaluated by a tensile test. In the tensile test, if no clear yield point phenomenon was observed, the 0.2% proof stress was taken as the yield stress.
(I) Tensile test
JIS No. 5 tensile test specimens were collected from the center in the width direction of these cold rolled steel sheets in the rolling direction, in the direction of 45 ° from the rolling direction and in the direction perpendicular to the rolling direction, and subjected to a tensile test at a strain rate of 40% / min. Yield stress (0.2% yield strength) YS, tensile strength TS, and elongation El were measured, and an average value in three directions was determined.
(Ii) Bake hardenability test
Specimens were taken from the center of the cold rolled steel sheet in the width direction and in the direction perpendicular to the rolling direction, and after cold rolling, a strain of 10% or 35% reduction was applied, followed by coating baking at 210 ° C for 20 min. A heat treatment corresponding to the treatment was performed, and then a tensile test was performed to measure a yield stress, and an average value in two directions was obtained.
(Iii) Hardness test
The tempering degree was determined from the HR30T hardness of these cold-rolled steel sheets and the steel sheets after these cold-rolled steel sheets were subjected to a heat treatment equivalent to a paint baking process in accordance with the provisions of JIS G 3303. In addition, the cross-sectional hardness of the neck flange processing part after can making was measured by Vickers hardness (load 50g).
(Iv) Measurement of r value
Among these cold-rolled steel sheets, those with a temper rolling reduction of 2% or less are from the center in the width direction to the rolling direction (L), from the rolling direction to 45 ° direction (D), and perpendicular to the rolling direction ( C), take a JIS No. 5 tensile specimen, conduct a tensile test at a strain rate of 40% / min, and use the plastic strain method (JIS G 3135-1986 commentary 18p or JIS Z 2254) to determine the width direction and the plate. The r value was determined from the logarithmic strain ratio in the thickness direction. The average r value is the average r value = (rL+ RC+ 2rD) / 4, and Δr is Δr = (rL+ RC-2rD) / 2. Further, when the rolling reduction of the temper rolling exceeded 2%, the average r value and Δr value were calculated by the natural vibration method (JIS G 3135-1986 commentary 22p or JIS Z 2254) as described above.
[0063]
These results are shown in Table 3.
[0064]
[Table 1]
Figure 0004788030
[0065]
[Table 2]
Figure 0004788030
[0066]
[Table 3]
Figure 0004788030
[0067]
Moreover, after performing various plating processes on the steel plate using these steel plates under the conditions shown in Table 4, 1st cup molding, DI molding, and four-stage neck molding were performed to obtain 350 ml DI cans, and various can body characteristics were evaluated. The evaluation results are shown in Table 4.
After the can was made, a lid was attached, internal pressure was applied with air, and the pressure when buckling occurred in the dome was determined to obtain the can pressure resistance. Neck wrinkles were visually observed after neck-in molding, and flange cracks were examined using a magnetic sensor.
[0068]
[Table 4]
Figure 0004788030
[0069]
Although the present invention example has a thin plate thickness, it can increase the pressure resistance of the bottom of the can, and even if it is subjected to multi-stage neck and flange processing, there is no occurrence of neck wrinkles or flange cracks, and can strength can be secured It is an ultra-thin cold-rolled steel sheet. On the other hand, in the comparative example that is out of the scope of the present invention, the ears and ears are cut off at the 1st cup, the can bottom pressure resistance is small, neck wrinkles and flange cracks are generated.
[0070]
【The invention's effect】
According to the present invention, it is suitable for a lightweight beverage can having an empty can weight of 25 g or less, has little ear generation, has a desired pressure resistance of a can body, is easy to perform a multistage neck processing, and further has a flange workability. It is possible to manufacture an extremely thin steel plate for a two-piece can that is excellent in manufacturing at low cost, and has a remarkable industrial effect. In addition, there is an effect that it can be applied to an aseptic filling method.
[0071]
Furthermore, even 3-piece cans have been reduced in weight, and have been subjected to multi-stage neck processing and can-expansion processing using ultra-thin steel plates, and have wrinkling problems similar to 2-piece cans. The steel plate for cans of the present invention can be used for such applications, and has the effect of promoting the weight reduction of the can body.
Also for 2-piece cans, not only DWI can (Drawn and wall ironed can) manufacturing method, but also SD can (Shallow-Drawn can) manufacturing method, DRD can (Drawn and Redrawn can) manufacturing method, DTR can (Drawn and Thin Redrawn can) It can be used for manufacturing methods, manufacturing methods combining DTR with wall ironed, or those that are not subjected to can bottom dome processing, and can reduce the weight of the can body.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram showing a relationship among a yield stress YS of a steel sheet, a strain imparted by processing, and a required strength of a can body.

Claims (8)

質量%で、
C :0.01〜0.06%、 N :0.0060%以下、
Si:0.03%以下、 Mn:0.6%以下、
P :0.02%以下、 S :0.02%以下、
Al:0.03〜0.20%、 O :0.01%以下
を含み、残部Feおよび不可避的不純物からなる組成を有する低炭素アルミキルド鋼板であって、降伏応力:250〜370MPa、平均r値:1.0〜1.5を有し、r値の面内異方性 Δrが 0 ± 0.2、調質度がT2〜T3であり、かつ、10%加工歪を付与し210℃で20minの熱処理を施した後の降伏応力が370MPa以上、35%加工歪を付与し210℃で20minの熱処理を施した後の降伏応力が620MPa以下であることを特徴とするカップ成形性、多段ネック加工性およびフランジ加工性に優れた板厚0.20mm以下の軽量2ピース缶用鋼板。
% By mass
C: 0.01 to 0.06%, N: 0.0060% or less,
Si: 0.03% or less, Mn: 0.6% or less,
P: 0.02% or less, S: 0.02% or less,
Al: 0.03-0.20%, O: 0.01% or less, low-carbon aluminum killed steel sheet having a composition composed of the balance Fe and inevitable impurities, yield stress: 250-370 MPa, average r value: 1.0-1.5 The in-plane anisotropy of the r value is 0 ± 0.2, the tempering degree is T2 to T3, 10% working strain is applied, and the yield stress after heat treatment at 210 ° C. for 20 minutes is 370 MPa. As described above, the yield stress after applying 35% processing strain and heat treatment at 210 ° C for 20min is 620MPa or less. Thickness 0.20 with excellent cup formability, multi-stage neck workability and flange workability Steel plate for lightweight 2-piece cans up to mm.
前記組成に加えて、さらに、質量%で、
Nb:0.10%以下、Ti:0.20%以下のうちから選ばれた1種または2種を含有する組成を有することを特徴とする請求項1に記載の軽量2ピース缶用鋼板。
In addition to the above composition,
The steel plate for lightweight two-piece cans according to claim 1, wherein the steel plate has a composition containing one or two selected from Nb: 0.10% or less and Ti: 0.20% or less.
前記組成に加えて、さらに、質量%で、
B :0.005%以下を含有する組成を有することを特徴とする請求項2に記載の軽量2ピース缶用鋼板。
In addition to the above composition,
B: The steel plate for lightweight two-piece cans according to claim 2, having a composition containing 0.005% or less.
鋼板の少なくとも片側表面に表面処理層を有することを特徴とする請求項1ないし3のいずれかに記載の軽量2ピース缶用鋼板。  The steel plate for lightweight two-piece cans according to any one of claims 1 to 3, further comprising a surface treatment layer on at least one surface of the steel plate. 前記表面処理層が錫めっきまたはクロムめっきであることを特徴とする請求項4に記載の軽量2ピース缶用鋼板。  The lightweight steel plate for a two-piece can according to claim 4, wherein the surface treatment layer is tin plating or chrome plating. 鋼素材を、加熱し、熱間圧延によりシートバーとする熱間粗圧延工程と、該シートバーを熱間圧延により熱延板とする熱間仕上げ圧延工程と、該熱延板を巻き取る巻取り工程とを有し、さらに該熱延板を冷間圧延し冷延板とする冷延工程と、該冷延板を焼鈍し冷延焼鈍板とする焼鈍工程と、該冷延焼鈍板を調質圧延する調質圧延工程とを有する板厚0.20mm以下の缶用極薄冷延鋼板の製造方法において、
前記鋼素材の組成を、質量%で、
C :0.01〜0.06%、 N :0.0060%以下、
Si:0.03%以下、 Mn:0.6%以下、
P :0.02%以下、 S :0.02%以下、
Al:0.03〜0.20%、 O :0.01%以下
を含み、残部Feおよび不可避的不純物からなる組成とし、
前記仕上げ圧延工程の仕上げ圧延終了温度FDTを(Ar3変態点+10℃)以上とし、前記巻取り工程の巻取り温度CTを600〜750℃とし、
前記冷延鋼板の板厚(t mm)と0.2%耐力目標値(σ 0.2 ,MPa)とによる式、 ( t ) 2 ×σ 0.2 が、8.0超えの場合には、前記焼鈍工程を、焼鈍温度をAc1変態点以上とする連続焼鈍と、該焼鈍温度から急冷する急冷処理と、該急冷処理後に、400〜550℃で40s以上の過時効処理を行う工程と
前記冷延鋼板の板厚( t mm)と0.2%耐力目標値(σ 0.2 ,MPa)とによる式、( t ) 2 ×σ 0.2 が、8.0以下の場合には、前記焼鈍工程を、焼鈍温度をAc1変態点以上とする連続焼鈍と、それに引き続き焼鈍温度を500〜600℃とする箱焼鈍を行う工程とし、
前記調質圧延を、調質圧延圧下率を1%以上15%未満とすることを特徴とするカップ成形性、多段ネック加工性およびフランジ加工性に優れた缶用極薄冷延鋼板の製造方法。
A hot rough rolling step in which a steel material is heated to form a sheet bar by hot rolling, a hot finish rolling step in which the sheet bar is hot rolled by hot rolling, and a winding for winding the hot rolled plate A cold rolling process in which the hot-rolled sheet is cold-rolled into a cold-rolled sheet, an annealing process in which the cold-rolled sheet is annealed to form a cold-rolled annealed sheet, and the cold-rolled annealed plate In the method for producing an ultrathin cold-rolled steel sheet for cans having a sheet thickness of 0.20 mm or less having a temper rolling process for temper rolling,
The composition of the steel material in mass%,
C: 0.01 to 0.06%, N: 0.0060% or less,
Si: 0.03% or less, Mn: 0.6% or less,
P: 0.02% or less, S: 0.02% or less,
Al: 0.03-0.20%, O: 0.01% or less, the composition consisting of the balance Fe and inevitable impurities,
The finish rolling finish temperature FDT of the finish rolling process is (Ar 3 transformation point + 10 ° C.) or higher, and the winding temperature CT of the winding process is 600 to 750 ° C.,
When the thickness of the cold-rolled steel sheet (t mm) and 0.2% yield strength target value (σ 0.2 , MPa), (t) 2 × σ 0.2 exceeds 8.0, the annealing step is performed at the annealing temperature. was a continuous annealing to Ac 1 transformation point or higher, and fast cooling by quenching from該焼blunt temperature, after the quench treatment, a step of performing overaging over 40s at 400 to 550 ° C.,
When the thickness of the cold-rolled steel sheet (t mm) and the 0.2% yield strength target value (σ 0.2 , MPa), (t) 2 × σ 0.2 is 8.0 or less, the annealing step is performed at the annealing temperature. Is a step of performing box annealing with an annealing temperature of 500 to 600 ° C., followed by continuous annealing with an Ac 1 transformation point or higher ,
The method for producing an ultra-thin cold-rolled steel sheet for cans excellent in cup formability, multi-stage neck workability and flange workability, characterized in that the temper rolling has a temper rolling reduction ratio of 1% or more and less than 15%. .
前記組成に加えて、さらに、質量%で、
Nb:0.10%以下、Ti:0.20%以下のうちから選ばれた1種または2種を含有する組成を有することを特徴とする請求項に記載の缶用極薄冷延鋼板の製造方法。
In addition to the above composition,
It has a composition containing 1 type or 2 types chosen from Nb: 0.10% or less and Ti: 0.20% or less, The manufacturing method of the ultra-thin cold-rolled steel sheet for cans of Claim 6 characterized by the above-mentioned.
前記組成に加えて、さらに、質量%で、
B :0.005%以下を含有する組成を有することを特徴とする請求項に記載の缶用極薄冷延鋼板の製造方法
In addition to the above composition,
B: It has a composition containing 0.005% or less, The manufacturing method of the ultra-thin cold-rolled steel plate for cans of Claim 7 characterized by the above-mentioned .
JP2000310788A 2000-03-23 2000-10-11 Steel plate for lightweight two-piece can and manufacturing method thereof Expired - Fee Related JP4788030B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000310788A JP4788030B2 (en) 2000-03-23 2000-10-11 Steel plate for lightweight two-piece can and manufacturing method thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000081955 2000-03-23
JP2000081955 2000-03-23
JP2000-81955 2000-03-23
JP2000310788A JP4788030B2 (en) 2000-03-23 2000-10-11 Steel plate for lightweight two-piece can and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2001335888A JP2001335888A (en) 2001-12-04
JP4788030B2 true JP4788030B2 (en) 2011-10-05

Family

ID=26588159

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000310788A Expired - Fee Related JP4788030B2 (en) 2000-03-23 2000-10-11 Steel plate for lightweight two-piece can and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4788030B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110863151A (en) * 2019-10-24 2020-03-06 邯郸钢铁集团有限责任公司 One-steel multi-stage multi-thickness hot-rolled dual-phase steel and production method thereof

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4604883B2 (en) * 2005-06-30 2011-01-05 Jfeスチール株式会社 Steel plate with small anisotropy and method for producing the same
JP4552775B2 (en) * 2005-06-30 2010-09-29 Jfeスチール株式会社 Steel plate with small anisotropy and method for producing the same
JP4760455B2 (en) * 2006-03-09 2011-08-31 Jfeスチール株式会社 Cold rolled steel sheet having high average r value and small in-plane anisotropy and method for producing the same
JP4858126B2 (en) * 2006-11-30 2012-01-18 Jfeスチール株式会社 Steel sheet for high strength and high ductility can and method for producing the same
JP5477002B2 (en) * 2010-01-13 2014-04-23 新日鐵住金株式会社 Cold rolled steel sheet
JP5884161B2 (en) * 2011-12-07 2016-03-15 Jfeスチール株式会社 Steel plate for cans and method for producing steel plate for cans
JP5708775B2 (en) * 2013-12-12 2015-04-30 新日鐵住金株式会社 Structural member
JP5765411B2 (en) * 2013-12-12 2015-08-19 新日鐵住金株式会社 Cold rolled steel sheet manufacturing method
KR20180061449A (en) * 2016-11-28 2018-06-08 현대제철 주식회사 Manufacturing method for ultra low carbon cold rolled steel plate and ultra low carbon cold rolled steel plate thereof
KR102268800B1 (en) * 2017-03-27 2021-06-23 제이에프이 스틸 가부시키가이샤 Steel plate for two-piece can and manufacturing method thereof
MY194622A (en) * 2017-03-27 2022-12-07 Jfe Steel Corp Steel sheet for two-piece can and manufacturing method thefefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5938336A (en) * 1982-08-26 1984-03-02 Kawasaki Steel Corp Production of ultra thin steel sheet for can having high yield strength and drawability
JP3247139B2 (en) * 1992-04-06 2002-01-15 川崎製鉄株式会社 Steel plate for can with excellent corrosion resistance and method for producing the same
JP3303938B2 (en) * 1993-04-26 2002-07-22 新日本製鐵株式会社 Surface treated base plate for DI can with excellent pressure resistance and necked-in properties
US6042952A (en) * 1996-03-15 2000-03-28 Kawasaki Steel Corporation Extremely-thin steel sheets and method of producing the same
JP3341578B2 (en) * 1996-04-15 2002-11-05 日本鋼管株式会社 Method for producing steel sheet for two-piece dry battery can with excellent sealing property of the tightened part
JP3728911B2 (en) * 1998-01-31 2005-12-21 Jfeスチール株式会社 Raw material for surface-treated steel sheet having excellent aging resistance and low ear occurrence rate, and method for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110863151A (en) * 2019-10-24 2020-03-06 邯郸钢铁集团有限责任公司 One-steel multi-stage multi-thickness hot-rolled dual-phase steel and production method thereof

Also Published As

Publication number Publication date
JP2001335888A (en) 2001-12-04

Similar Documents

Publication Publication Date Title
JP5958038B2 (en) Steel plate for cans with high buckling strength of can body against external pressure, excellent formability and surface properties after forming, and method for producing the same
TWI643964B (en) Two-piece can steel plate and manufacturing method thereof
JP4788030B2 (en) Steel plate for lightweight two-piece can and manufacturing method thereof
JP2001107186A (en) High strength steel sheet for can and its producing method
WO2003031670A1 (en) Steel sheet for container and method of producing the same
JP4284815B2 (en) Steel plate for high-strength can and manufacturing method thereof
JP3826442B2 (en) Manufacturing method of steel plate for can making with good workability and no rough skin
US20220074031A1 (en) Steel sheet for cans and method of producing same
JP2000017387A (en) Steel sheet for can, excellent in shape maintainability, and its production
JP3829621B2 (en) High-tensile cold-rolled steel sheet and its manufacturing method
JP3915146B2 (en) Method for producing a steel plate for a two-piece can with excellent non-earring properties and rough skin resistance
JP2009174055A (en) Mother sheet for high strength extra-thin cold rolled steel sheet, and method for producing the same
JP4810766B2 (en) Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can
JP4677914B2 (en) Steel plate for soft can and method for producing the same
JP3596037B2 (en) Manufacturing method of steel plate for can-making
JP3700280B2 (en) Manufacturing method of steel plate for cans
JP3023385B2 (en) Manufacturing method of steel sheet for cans
JP3707260B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
JP3682683B2 (en) Method for producing steel plate for two-piece can with excellent in-plane anisotropic uniformity in coil
KR102587650B1 (en) Steel sheet for cans and method of producing same
JPH08269568A (en) Production of steel sheet for can making excellent in flange formability
JP2816358B2 (en) Manufacturing method of steel sheet for DI can
JP5803510B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
JP3609883B2 (en) Method for producing steel plate for containers with extremely small earrings during drawing
JP2002003994A (en) High strength steel sheet and high strength galvanized steel sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070927

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091027

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110621

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110704

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4788030

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees