JP3826442B2 - Manufacturing method of steel plate for can making with good workability and no rough skin - Google Patents

Manufacturing method of steel plate for can making with good workability and no rough skin Download PDF

Info

Publication number
JP3826442B2
JP3826442B2 JP18564596A JP18564596A JP3826442B2 JP 3826442 B2 JP3826442 B2 JP 3826442B2 JP 18564596 A JP18564596 A JP 18564596A JP 18564596 A JP18564596 A JP 18564596A JP 3826442 B2 JP3826442 B2 JP 3826442B2
Authority
JP
Japan
Prior art keywords
rolling
less
rolled
temperature
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18564596A
Other languages
Japanese (ja)
Other versions
JPH108142A (en
Inventor
金晴 奥田
章男 登坂
古君  修
誠 荒谷
英雄 久々湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP18564596A priority Critical patent/JP3826442B2/en
Publication of JPH108142A publication Critical patent/JPH108142A/en
Application granted granted Critical
Publication of JP3826442B2 publication Critical patent/JP3826442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Control Of Metal Rolling (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、加工性が良好でかつ肌荒れのない製缶用鋼板の製造方法に係り、特に極薄ブリキ原板やティンフリースチールなどの製缶用鋼板の製造方法に関するものである。
【0002】
【従来の技術】
飲料缶、18リットル缶、ペール缶等の容器缶は、その製法から、2ピース缶と3ピース缶に大別できる。2ピース缶はすずめっき、クロムめっきなどを施した表面処理鋼板に、DWI加工、DRD加工等を施して缶底と缶胴を一体成形し、これに蓋を取り付けた2物品からなる缶である。一方、3ピース缶は表面処理鋼板を円筒状、または角筒状に曲げて端部同士を接合した後、これに天蓋と底蓋を取り付けた3物品からなる缶である。
【0003】
これらの缶を製造するために用いられる製缶用鋼板は、まず第一に安価であることが必要であり、そのためその生産は一般に生産効率が高く、歩留まりや表面品質に優れた連続焼鈍法を用いて行われる。
そのための技術として、例えば、特公昭63−10213号公報記載の技術が提案され、さらに軟質な鋼板を連続焼鈍で製造するための方法として、例えば特公昭61−207520号公報、特公平1−52452号公報記載の提案も行われている。これらの技術においては、素材として低炭素鋼板を用い、更に焼鈍後の加工硬化の組合せで種々の硬さの製缶用鋼板を作り分けている。
【0004】
また、近年においては、缶の上蓋の縮径(ネックイン)成形の強化が行われ、それに耐えうる良好な加工性を有する製缶用鋼板として極低炭素鋼板が多く用いられる様になった。しかしながら、通常の低炭素鋼板(C含有量0.02重量%以上)に比べて、結晶粒径が大きくなりやすく、そのため缶成形後の肌あれなどの問題を生じる。この問題を解決するためには、極低炭素鋼板の組織を均一で微細にすればよい。そのための方法として、その素材である熱延鋼板の組織を均一微細にする方法が一般的に知られている。
ところで、極低炭素鋼の熱延組織の均一化は、その変態点以上の温度で圧延を行うことによって達成できるが、圧延温度が非常に高くなりロールの損耗の増大などを招き、経済的でないばかりでなく、結晶粒の微細化は行われない。
一方、特公平3−260016号公報、特公平5−117759号公報に見られるように圧延後α−γ昇温を行い、変態による再結晶を利用して微細化を図る手段もあるが、コストが高くなり、また加工歪による析出物の析出の駆動力が使えないなどの欠点があり、特に冷延焼鈍後の組織の均一微細化への効果は少い。
【0005】
【発明が解決しようとする課題】
本発明の目的は、ネックイン加工等、厳しい条件下での加工を行う場合にも良好な加工性を有し、製缶用鋼板としての十分な使用特性を有する鋼板を、低コストで製造する方法を提案するところにある。また、本発明は極低炭素鋼の熱延鋼板の組織を効率的に均一微細にする有効な方法を提案するところにある。そしてそれによって、最終製品たる製缶用鋼板の組織を均一微細にする方法を提案するところにある。
【0006】
【課題を解決するための手段】
本発明者等は、上記の目的を達成するために、鋼組成及び製造条件を検討し、以下のとおり本発明を完成した。
すなわち、本発明は、
重量比で C :0.0005〜0.0150%
Si:0.2%以下
Mn:0.05〜0.6%
P :0.02%以下
S :0.02%以下
Al:0.15%以下
N :0.02%以下を含み、さらに必要に応じて
Nb:0.003〜0.020%
Ti:0.003〜0.020%
B :0.0002〜0.0020%
Cu:0.5%以下
Ni:0.5%以下
Cr:0.5%以下
Mo:0.2%%以下の1種又は2種以上を含み、残部はFeおよび可避不純物よりなる組成の鋼スラブに、
熱間粗圧延を全圧下量80%以上、そのうち、最終パスを20%以上とする条件下で行い、
仕上熱間圧延を、被圧延材の温度が仕上圧延機列のいずれかの圧延スタンド通過の際、圧延加工に伴う発熱により逆変態させ、仕上圧延温度がAr3−50℃以上となるように終了し、
550〜750℃の温度で巻取って熱間圧延鋼帯を得、
該熱間圧延鋼帯に対してスケール除去、冷間圧延、再結晶焼鈍および30%以下の調質圧延を行うことを特徴とする加工性の良好でかつ肌荒れのない製缶用鋼板の製造方法
にある。
本発明の課題の他の解決手段及び具体的態様などは、請求項2以下及び実施例において詳しく説明する。
【0007】
【発明の実施の形態】
(1)組成
まず、組成の限定理由について説明する。
C:0.0005〜0.0150%
本発明においては、極低炭素鋼が対象になる。通常の低炭素鋼では近年の製缶用鋼板に求められる加工性の厳しい要求を満たすことができないからであり、また通常の熱間圧延工程によっても組織の均一化・微細化が達成可能であり、強いて本発明を適用する必要がないからである。ここに極低炭素鋼とは、Cが0.0150重量%以下の鋼をいうが、好ましくは0.005%以下とするのが、加工性の面で好ましい。なお、成形性に優れた鋼板を得るためにはC量がより低いことが望ましいが、本発明の圧延条件を適用してもなお結晶粒径が粗大になること、および製鋼過程における脱炭のコストを考慮し下限は0.0005%とする。
【0008】
他の組成については通常の製缶用鋼板に要求される性質を満たすよう合金元素の範囲が定められる。
Si:0.2%以下
Siは鋼板の表面性状を劣化させるとともに、鋼を硬化させ、熱間圧延工程を困難にし、最終製品としての鋼を硬化させる。したがって、0.2%以下とする。特に表面性状の要求が厳格な用途では、0.050%以下とすることが好ましい。
【0009】
Mn:0.6%以下
Mnは熱間脆性を回避するこするために添加されるが、0.60%を越えると、変態点が低下し過ぎて、好ましい熱延板を得ることが困難になる。したがってMn含有量を0.05〜0.6%とする。
【0010】
P:0.02%以下
P含有量は耐食性の改善効果がからみれば低い方が好ましいが、過度の低減は製造コストの増加につながる。したがって、これらの兼ね合いからP含有量を0.02%以下とした。なお、加工性を顕著に改善するためには、0.010%以下が好ましい。
【0011】
S:0.02%以下
Sは伸びフランジ性に代表される局部延性を低下させる原因となるので、0.02%以下に制限する。なお、加工性を顕著に改善するためには、0.010%以下にすることが好ましい。
【0012】
sol.Al:0.15%以下
sol.Alは脱酸に必要な元素であるが、0.15%をこえると脱酸効果が飽和するだけでなく、介在物が発生し、成形性に悪影響をおよぼす。このためsol.Alの含有量は0.15%未満とする。なお、安定した製造条件を確保するためには、0.030〜0.10%の範囲とすることが好ましい。
【0013】
N:0.010%以下
Nは固溶状態で残存させた場合、鋼を適当に硬化させ、強度と加工性のバランスを向上させる。したがって、伸びを低下させず、また、スラブ割れの原因とならない範囲で、すなわち、0.02%以下の範囲で適宜添加される。なお、加工性を特に考慮した場合には、0.010%以下にすることが好ましい。
【0014】
以上の基本組成のほか、本発明においては、以下の諸元素が鋼板の用途、性能に応じて適宜添加される。
Nb:0.003〜0.020%以下
Nbは鋼板中のCを固着し、時効性を低減し、鋼の軟質化に有用な元素であり、さらに、熱間圧延のγ領域にて、再結晶を適度に抑制し、微細な組織を得ることを可能にする。したがってその効果が有効に現れる範囲内、すなわち、0.003〜0.015%の範囲で適宜添加される。
【0015】
Ti:0.003〜0.020%
TiはNbと同様の効果をもたらし、Nbとの複合添加により、成形性を向上させる。しかし、0.020%以上添加するとその効果は飽和し、コスト増加となるだけである。このため、Tiの含有量を0.003〜0.020%とする。
【0016】
B:0.0002〜0.0020%
Bは、熱延条件と併せて熱延板の組織の微細化に有用な元素である。さらに2次加工脆性を防止させる役目も果たす。しかし、過剰に添加すると熱間圧延時にオーステナイトの細結晶を遅らせ、圧延時の負荷を大きし、しかも焼鈍材の材質、特に伸びを劣化させるので、その含有量は0.0002〜0.0020%とする。
【0017】
Cu,Ni,Cr,Mo
これらの元素はMnと同様、固溶強化元素であり、変態点を低下させ,組織の微細化に有用な元素である。しかし、過剰な添加は鋼のコストアップ、熱延板の硬質化による冷間圧延の負荷上昇を伴うため、上限を0.5%以下とする。なお、Moについてはコストを考慮して0.2%以下とする。
【0018】
(2)粗圧延条件
通常の条件にしたがい、スラブ加熱が行われ、粗圧延が行われる。粗圧延の圧下率は、合計80%以上にする。これは仕上圧延機入側の組織を均一である程度細粒にしておくためである。特に最終パスの圧下量は組織の均一化に影響を与えるため、20%以上とする。
なお、スラブ加熱温度は高すぎると熱延板の粒径を細かくし、最終製品を硬質化し、局部変形能を低下させるので好ましくない。そのため1250℃以下とし、成形性と軟質化を両立させる。
【0019】
(3)仕上圧延
粗圧延に続いて仕上圧延が行われる。仕上熱間圧延は、被圧延材の温度が一旦Ar3点以下の温度となった後、仕上圧延機列のいずれかの圧延スタンド通過の際、圧延加工に伴う発熱によりα相からγ相変態点の逆変態が生ずるように行い、仕上圧延温度がAr3−50℃以上となるように終了し、550〜750℃の温度で巻取って熱間圧延鋼帯を得るような条件下で行われる。
本発明においては、この仕上圧延工程において、α−γ逆変態を行わせ、熱延鋼板の組織を均一・微細化することに最大の特徴がある。
本発明の復熱による逆変態を伴った仕上圧延工程は具体的には以下のように行われる。
【0020】
図1、図2は仕上圧延機列の圧延機F1〜F7を被圧延材が通過する時の鋼板表面温度の変化を模式的に示したものである。
図1においては、粗圧延機から出た被圧延材は、一旦Ar3以下に冷却され、その後、仕上圧延機に導かれる。すなわち、仕上圧延機入側温度(FET)はAr3以下である。
仕上圧延機で圧延される際、圧延によるエネルギー等によって被圧延材の温度が上昇する。その程度は、圧下量、圧下速度によって異なるが、圧延速度1200mpm、圧下量50%(原板厚30mm)で30℃程度である。図1に示した場合では、仕上圧延機入側において、860℃(Ar3以下40℃)にあった被圧延材がF1通過時880℃となり、さらにF2通過時900℃となって、所望の逆変態が行われる。さらに同様の工程を繰返すことによって、F4スタンドにおいても復熱による逆変態が繰返される。
【0021】
この逆変態の繰返しとそれに続く熱間圧延による歪の導入によって、熱延鋼板お組織は均一・微細化され、その結果はそれに続く冷間圧延後にも持ち来され、製缶用鋼板の組織を均一・微細にするのに寄与する。
具体的に示せば、本発明による工程を採った場合には、熱延板の結晶粒径は、平均10.5〜11程度であるのに対し、従来の方法(復熱のない場合)は8.5〜9.5程度であった。
【0022】
図2に示す場合においては、被圧延材はAr3以上の温度で仕上圧延機列に入る。そして、F1〜F2間で冷却水によって冷却され、一旦Ar3以下に低下する。その後F2〜F3スタンドで強圧下が行われ、復熱、逆変態が行われる。
この場合においても、図1に示す場合と同様に、組織の均一・微細な熱延鋼板が得られる。
【0023】
本発明の場合においては、被圧延材の温度制御および圧下の条件設定が特に重要である。例えば、図1に示す場合においては、仕上圧延機列に入る前の被圧延材の温度は続く熱間圧延による復熱で逆変態を生じる範囲に設定しなければならない。一般に大圧下(圧下率60%)を行ったとき、圧延による温度上昇は、変態熱を見込んで30℃程度であるから、F1およびF2スタンドでの圧下発熱を利用するとして、Ar3以下30〜40℃程度に仕上圧延機入側温度を調節しなければならない。
【0024】
圧延による発熱は圧下エネルギーによるもののほか、圧延時の摩擦エネルギーによるものが利用できる。これらによる発熱量、温度上昇は経験的積み上げによって求めらる。
本発明においては、変態を繰返すためにスタンド間での急冷又は保温を適切に行うことが重要である。すなわち、図1に示す場合においては、F1〜F2間においては冷却水を停止し、保熱を図る必要があるのに対し、図2に示す例では、F1〜F2間は冷却を強化し、Ar3以下に冷却しなければならない。
なお、スタンド間の温度は、スタンド間に放射温度計を設置し測定するのが好ましい。その際、冷却水を止めれば測定精度の確保が可能である。
【0025】
熱延の仕上温度はAr3−50℃以上となるように終了する必要がある。これは熱延板の組織、粒径を均一微細にさせるためである。それ以下の温度では、巻取の温度によっては加工組織が残存して冷間圧延性を悪化させること、更に加工性に悪影響をおよぼす再結晶組織となることから望ましくない。また、加工歪がなくとも組織が粗大となって強度−加工性バランスが悪くなるので好ましくない。
【0026】
なお、圧延はシートバー接合を行って粗圧延と仕上圧延を連続的に行うのが望ましい。特に本発明では、圧延過程における複熱を利用するため、その効果が鋼帯全体にわたって一様に現れるようにするために、シートバー接合を行う連続圧延を行うのが好ましい。
【0027】
巻取温度は720℃以上になるとスケール厚みが顕著に増大し、酸洗時の脱スケール性が悪化する。また550℃以下で巻き取ると、析出物が十分に析出せず、再結晶組織に悪影響をおよぼす。このため、巻取温度を550〜750℃とする。
【0028】
(4)冷間圧延等
熱延鋼板は酸洗後冷間圧延に付される。冷間圧延率は、70〜95%の圧下率で行う。本発明鋼は、先に示した加工発熱による変態を繰返しても熱延板の結晶粒径ががかなり大きいため、70%以上冷間圧延を行わないと焼鈍後、最終製品の粒径が粗大となりやすい。なお、最終製品の異方性を劣化させないように冷間圧延率の上限は95%にする。
【0029】
冷間圧延後、常法に従い焼鈍が行われる。焼鈍は生産性の面から連続焼鈍により再結晶温度以上で行われる。
その後、目的の調質度に調整する目的と、対ストレッチャーストレインの目的から、調質圧延が行われる。調質圧延にはスキンパス又は二次圧延があるが製缶用鋼板の所望特性に応じて使いわければよい。一般に圧下率は30%以下とし、加工性と強度のバランスを維持し、また面内異方性の悪化を防止する。
【0030】
【実施例】
以下、本発明を実施例により説明する。
【実施例1】
重量比で
C:0.004%,Si:0.04%,Mn:0.25%,P:0.007%,Al:0.05%,S:0.006%,N:0.008%を含有し、他はFeおよび不可避不純物からなる鋼を溶製し、これを連続鋳造法によってスラブとした。
このスラブを1200℃に加熱後、全圧下率90%、最終パス圧下率25%の条件で粗圧延を行い、厚さ40mmのシートバーを得た。
粗圧延されたシートバーを接合した後、完全連続圧延によって仕上圧延を行った。圧延条件は以下のとおりである。なお、この場合においてAr3変態点は880℃、α−γ逆変態温度は890℃であった。

Figure 0003826442
かくして得た熱延板を酸洗し、圧下率83%の冷間圧延、750℃の再結晶焼鈍後、2%の調質圧延を行い、得られた製品の特性を調査した。その結果は以下のとおりである。
結晶粒度:10.8
組織の均一性:良好
硬さ:58(ロックウエル硬さ、HR30T)
r値:塑性ひずみ15%の測定値
平均r値:1.8(平均r値=(rL+rC+2rD)/4)
Δr値:0.1(Δr=(rL+rC−2rD)/2)
肌あれ:なし
フランジ成形性:フランジ割れなし
(肌あれ及びフランジ成形性は、通常の条件で#25相当のすずめっきを行い、これをロールフォーミング、拘束シーム溶接で3ピース缶胴部相当に成形し、これにネッキング成形を施し、肌荒れの有無の判定を行った。)
【0031】
【実施例2】
また、前記例と同一の成分組成のスラブを、前記例と同一の条件にて粗圧延を終了し、仕上圧延を
Figure 0003826442
巻取温度:600℃の条件で行い、得られた熱延板を前記例と同様に冷間圧延、再結晶焼鈍、調質圧延を行ったところ、その材質特性は以下のとおりであった。
結晶粒度:10.9
組織の均一性:良好
硬さ:59(ロックウエル硬さ、HR30T)
r値:
平均r値:1.9(平均r値=(rL+rC+2rD)/4)
Δr値:+0.05(Δr=(rL+rC−2rD)/2)
肌あれ:なし
フランジ割れ:なし
(製品特性値の測定条件は、前記例と同様である)
【0032】
【比較例】
さらに、前記例と同一の成分組成のスラブを、前記例と同一の条件にて粗圧延を終了し、仕上圧延を
Figure 0003826442
巻取温度:600℃の条件で行い、得られた熱延板を前記例と同様に冷間圧延、再結晶焼鈍、調質圧延を行ったところ、その材質特性は以下のとおりであった。
結晶粒度:8
組織の均一性:混粒組織
硬さ:55(ロックウエル硬さ、HR30T)
r値:
平均r値:1.4(平均r値=(rL+rC+2rD)/4)
Δr値:−0.3(Δr=(rL+rC−2rD)/2)
肌あれ:あり
フランジ割れ:一部発生
また、引張試験した際、リジングと思われる模様が発生した。
(製品特性値の測定条件は、前記例と同様である)
【0033】
上記実施例1および2さらに比較例に示すように、本発明にしたがい仕上圧延過程において加工発熱による逆変態を行わせたものは、熱延板の組織、ひいては最終製品である製缶用鋼板の組織が微細・均一であり、厳しい加工を行っても肌あれなどの欠陥を生ずることがなかった。
これに対し、比較例に示すように本発明を適用しない場合、すなわち、復熱を活用しない場合は、最終製品の特性値が缶用鋼板として望ましくないものになる。
【0034】
【発明の効果】
以上のように、本発明により極低炭素鋼板の結晶組織を効率的かつ経済的に均一微細化することができ、加工性のよい製缶用鋼板の提供が可能になる。
【図面の簡単な説明】
【図1】本発明による仕上圧延機における圧延スタンドと圧延材の温度の関係図である。
【図2】本発明による仕上圧延機における圧延スタンドと圧延材の温度の他の関係図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a steel plate for can making having good workability and no rough skin, and particularly relates to a method for producing a steel plate for can making such as an ultrathin tin plate or tin-free steel.
[0002]
[Prior art]
Container cans such as beverage cans, 18 liter cans, and pail cans can be roughly classified into two-piece cans and three-piece cans from the production method. A two-piece can is a can consisting of two articles with a tin bottom and a can body formed integrally by applying DWI processing, DRD processing, etc. to a surface-treated steel plate subjected to tin plating, chrome plating, etc. . On the other hand, a three-piece can is a can made of three articles in which a surface-treated steel plate is bent into a cylindrical shape or a rectangular tube shape and ends are joined to each other, and then a canopy and a bottom lid are attached thereto.
[0003]
First of all, the steel sheet for making cans used to manufacture these cans needs to be inexpensive, so that the production is generally high in production efficiency, and the continuous annealing method with excellent yield and surface quality is used. Is done using.
For this purpose, for example, a technique described in Japanese Patent Publication No. 63-10213 is proposed, and as a method for producing a soft steel plate by continuous annealing, for example, Japanese Patent Publication No. 61-207520, Japanese Patent Publication No. 1-52452 is disclosed. Proposals described in this publication have also been made. In these technologies, a low carbon steel plate is used as a raw material, and steel plates for can making having various hardnesses are made by a combination of work hardening after annealing.
[0004]
In recent years, the diameter of the upper lid of the can has been strengthened by reducing the diameter (neck-in), and very low carbon steel plates have come to be frequently used as steel plates for cans having good workability that can withstand them. However, compared with a normal low carbon steel plate (C content of 0.02% by weight or more), the crystal grain size tends to be large, which causes problems such as rough skin after can molding. In order to solve this problem, the structure of the ultra-low carbon steel sheet may be made uniform and fine. As a method for that purpose, a method of making the structure of the hot-rolled steel sheet, which is the material, uniform and fine is generally known.
By the way, the homogenization of the hot-rolled structure of the ultra-low carbon steel can be achieved by rolling at a temperature equal to or higher than the transformation point, but the rolling temperature becomes very high, resulting in an increase in wear of the roll, which is not economical. In addition, the crystal grains are not refined.
On the other hand, as shown in Japanese Patent Publication No. 3-260016 and Japanese Patent Publication No. 5-117759, there is also a means of increasing the temperature by α-γ after rolling and miniaturizing by utilizing recrystallization due to transformation. And the driving force for precipitation of precipitates due to processing strain cannot be used, and the effect on uniform refinement of the structure after cold rolling annealing is particularly small.
[0005]
[Problems to be solved by the invention]
The object of the present invention is to produce a steel sheet that has good workability even when processing under severe conditions such as neck-in processing and has sufficient use characteristics as a steel sheet for can manufacturing at low cost. Proposed method. The present invention also proposes an effective method for efficiently and uniformly making the structure of a hot rolled steel sheet of extremely low carbon steel. And it is in the place which proposes the method of making the structure | tissue of the steel plate for can manufacturing which is a final product uniform fine.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present inventors have studied the steel composition and production conditions, and completed the present invention as follows.
That is, the present invention
C: 0.0005 to 0.0150% by weight ratio
Si: 0.2% or less Mn: 0.05 to 0.6%
P: 0.02% or less S: 0.02% or less Al: 0.15% or less N: 0.02% or less, and Nb: 0.003-0.020% as necessary
Ti: 0.003-0.020%
B: 0.0002 to 0.0020%
Cu: 0.5% or less, Ni: 0.5% or less, Cr: 0.5% or less, Mo: 0.2 %% or less To steel slab,
Hot rough rolling is performed under the condition that the total reduction amount is 80% or more, of which the final pass is 20% or more,
Finish hot rolling is reverse transformed by the heat generated by the rolling process when the temperature of the material to be rolled passes through one of the rolling stands of the finish rolling mill so that the finish rolling temperature becomes Ar 3 -50 ° C or higher. Exit
Winding at a temperature of 550 to 750 ° C. to obtain a hot rolled steel strip,
A method for producing a steel plate for can making having good workability and no roughening, characterized by performing scale removal, cold rolling, recrystallization annealing and temper rolling of 30% or less on the hot-rolled steel strip It is in.
Other solutions and specific embodiments of the problems of the present invention will be described in detail in claims 2 and below and in the examples.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
(1) Composition First, the reasons for limiting the composition will be described.
C: 0.0005 to 0.0150%
In the present invention, ultra-low carbon steel is an object. This is because normal low-carbon steel cannot meet the strict requirements for workability required for steel sheets for cans in recent years, and the structure can be homogenized and refined by the normal hot rolling process. This is because it is not necessary to apply the present invention. Here, the ultra-low carbon steel refers to a steel having C of 0.0150% by weight or less, and preferably 0.005% or less from the viewpoint of workability. In order to obtain a steel sheet with excellent formability, it is desirable that the C content be lower. However, even when the rolling conditions of the present invention are applied, the crystal grain size is still coarse, and decarburization in the steelmaking process Considering the cost, the lower limit is made 0.0005%.
[0008]
For other compositions, the range of alloying elements is determined so as to satisfy the properties required for ordinary steel plates for canning.
Si: 0.2% or less Si deteriorates the surface properties of the steel sheet, hardens the steel, makes the hot rolling process difficult, and hardens the steel as the final product. Therefore, it is 0.2% or less. Particularly in applications where the demand for surface properties is strict, it is preferably 0.050% or less.
[0009]
Mn: 0.6% or less Mn is added in order to avoid hot brittleness, but if it exceeds 0.60%, the transformation point is too low and it is difficult to obtain a preferable hot rolled sheet. Become. Therefore, the Mn content is set to 0.05 to 0.6%.
[0010]
P: 0.02% or less P content is preferably as low as possible in view of the effect of improving corrosion resistance, but excessive reduction leads to an increase in production cost. Therefore, the P content is set to 0.02% or less because of these factors. In order to significantly improve the workability, 0.010% or less is preferable.
[0011]
S: 0.02% or less S is a cause of lowering the local ductility represented by stretch flangeability, so is limited to 0.02% or less. In order to remarkably improve the workability, it is preferably 0.010% or less.
[0012]
sol. Al: 0.15% or less sol. Al is an element necessary for deoxidation, but if it exceeds 0.15%, not only the deoxidation effect is saturated but also inclusions are generated, which adversely affects the formability. For this reason, sol. The Al content is less than 0.15%. In addition, in order to ensure the stable manufacturing conditions, it is preferable to set it as 0.030 to 0.10% of range.
[0013]
N: 0.010% or less When N is left in a solid solution state, the steel is appropriately hardened to improve the balance between strength and workability. Therefore, it is added as appropriate within a range that does not decrease elongation and does not cause slab cracking, that is, within a range of 0.02% or less. In addition, when workability is particularly taken into consideration, it is preferably 0.010% or less.
[0014]
In addition to the above basic composition, in the present invention, the following elements are appropriately added according to the use and performance of the steel sheet.
Nb: 0.003 to 0.020% or less Nb adheres C in the steel sheet, reduces aging, is a useful element for softening the steel, and re-appears in the hot rolling γ region. Crystals are moderately suppressed and a fine structure can be obtained. Therefore, it is appropriately added within a range where the effect is effectively exhibited, that is, within a range of 0.003 to 0.015%.
[0015]
Ti: 0.003-0.020%
Ti brings about the same effect as Nb, and improves the formability by the combined addition with Nb. However, when 0.020% or more is added, the effect is saturated and only the cost is increased. For this reason, content of Ti shall be 0.003-0.020%.
[0016]
B: 0.0002 to 0.0020%
B is an element useful for refining the structure of a hot-rolled sheet in combination with hot-rolling conditions. Furthermore, it plays the role of preventing secondary processing brittleness. However, if added excessively, the fine crystals of austenite are delayed during hot rolling, the load during rolling is increased, and the material of the annealed material, particularly the elongation, is deteriorated, so the content is 0.0002 to 0.0020%. And
[0017]
Cu, Ni, Cr, Mo
These elements, like Mn, are solid solution strengthening elements, and are elements useful for reducing the transformation point and making the structure finer. However, excessive addition is accompanied by an increase in the cost of steel and an increase in cold rolling load due to the hardened hot-rolled sheet, so the upper limit is made 0.5% or less. Note that Mo is made 0.2% or less in consideration of cost.
[0018]
(2) Rough rolling conditions According to normal conditions, slab heating is performed and rough rolling is performed. The rolling reduction of rough rolling is 80% or more in total. This is because the structure on the finishing rolling mill entrance side is made uniform and fine to some extent. In particular, the amount of reduction in the final pass affects the homogenization of the tissue, so it is 20% or more.
If the slab heating temperature is too high, it is not preferable because the grain size of the hot-rolled sheet is reduced, the final product is hardened, and the local deformability is lowered. Therefore, the temperature is set to 1250 ° C. or lower so as to achieve both formability and softening.
[0019]
(3) The finish rolling is performed following the finish rolling rough rolling. In finish hot rolling, after the temperature of the material to be rolled once becomes a temperature of Ar 3 point or less, when it passes through one of the rolling stands in the finish rolling mill row, heat generation due to the rolling process causes transformation from α phase to γ phase. Performed so that the reverse transformation of the point occurs, finishes so that the finish rolling temperature becomes Ar 3 −50 ° C. or higher, and winds at a temperature of 550 to 750 ° C. to obtain a hot rolled steel strip. Is called.
In the present invention, in the finish rolling step, the greatest feature is that α-γ reverse transformation is performed to make the structure of the hot-rolled steel sheet uniform and fine.
The finish rolling process accompanied by reverse transformation by recuperation according to the present invention is specifically performed as follows.
[0020]
1 and 2 schematically show changes in the steel sheet surface temperature when the material to be rolled passes through the rolling mills F1 to F7 of the finish rolling mill row.
In FIG. 1, the material to be rolled out from the roughing mill is once cooled to Ar 3 or less and then guided to the finishing mill. That is, the finishing mill entry side temperature (FET) is Ar 3 or less.
When rolled by a finish rolling mill, the temperature of the material to be rolled rises due to energy and the like due to rolling. The degree varies depending on the reduction amount and reduction rate, but is about 30 ° C. at a rolling speed of 1200 mpm and a reduction amount of 50% (original plate thickness 30 mm). In the case shown in FIG. 1, the material to be rolled at 860 ° C. (Ar 3 or less 40 ° C.) is 880 ° C. when passing through F1 and further 900 ° C. when passing through F2 on the entrance side of the finishing mill. Reverse transformation takes place. Further, by repeating the same process, reverse transformation by recuperation is repeated also in the F4 stand.
[0021]
By repeating this reverse transformation and the subsequent introduction of strain due to hot rolling, the structure of the hot-rolled steel sheet is made uniform and refined, and the result is brought after the subsequent cold rolling, and the structure of the steel sheet for can making is changed. Contributes to uniform and fine.
Specifically, when the process according to the present invention is employed, the average grain size of the hot-rolled sheet is about 10.5 to 11, whereas the conventional method (when there is no recuperation) is It was about 8.5 to 9.5.
[0022]
In the case shown in FIG. 2, the material to be rolled enters the finish rolling mill at a temperature of Ar 3 or higher. Then, it is cooled by the cooling water between the f1 to f2, once reduced to Ar 3 below. After that, strong pressure reduction is performed at the F2 to F3 stands, and recuperation and reverse transformation are performed.
Also in this case, similarly to the case shown in FIG. 1, a hot rolled steel sheet having a uniform and fine structure can be obtained.
[0023]
In the case of the present invention, temperature control and rolling condition setting of the material to be rolled are particularly important. For example, in the case shown in FIG. 1, the temperature of the material to be rolled before entering the finishing rolling mill row must be set in a range in which reverse transformation is caused by recuperation due to subsequent hot rolling. In general when performing atmospheric pressure (rolling reduction 60%), 30 temperature rise due to rolling, since it is about 30 ° C. in anticipation of transformation heat, the use of the rolling heat generation in the F1 and F2 stand, Ar 3 or less The finishing mill entry side temperature must be adjusted to about 40 ° C.
[0024]
The heat generated by rolling can be generated not only by reduction energy but also by friction energy during rolling. The calorific value and temperature rise due to these are obtained by empirical accumulation.
In the present invention, in order to repeat the transformation, it is important to appropriately cool or keep warm between the stands. That is, in the case shown in FIG. 1, it is necessary to stop the cooling water between F1 and F2 and to keep the heat, whereas in the example shown in FIG. It must be cooled to below Ar 3 .
The temperature between the stands is preferably measured by installing a radiation thermometer between the stands. At that time, if the cooling water is stopped, the measurement accuracy can be ensured.
[0025]
It is necessary to finish the hot rolling finishing temperature to be Ar 3 -50 ° C or higher. This is to make the structure and particle size of the hot rolled sheet uniform and fine. Below that temperature, depending on the coiling temperature, the processed structure remains, which deteriorates the cold rolling property, and further becomes a recrystallized structure that adversely affects the workability. Further, even if there is no processing strain, the structure becomes coarse and the strength-workability balance is deteriorated.
[0026]
In addition, as for rolling, it is desirable to perform rough rolling and finish rolling continuously by performing sheet bar joining. In particular, in the present invention, since double heat in the rolling process is used, it is preferable to perform continuous rolling in which sheet bar bonding is performed so that the effect appears uniformly over the entire steel strip.
[0027]
When the coiling temperature is 720 ° C. or higher, the scale thickness increases remarkably, and the descaling property during pickling deteriorates. Moreover, when it winds up at 550 degrees C or less, a precipitate will not fully precipitate and it will have a bad influence on a recrystallized structure. For this reason, winding temperature shall be 550-750 degreeC.
[0028]
(4) Hot rolled steel sheets such as cold rolled are subjected to cold rolling after pickling. The cold rolling rate is performed at a reduction rate of 70 to 95%. In the steel according to the present invention, the crystal grain size of the hot-rolled sheet is considerably large even when the transformation due to the heat generated by the processing is repeated as described above. It is easy to become. The upper limit of the cold rolling rate is set to 95% so as not to deteriorate the anisotropy of the final product.
[0029]
After cold rolling, annealing is performed according to a conventional method. Annealing is performed above the recrystallization temperature by continuous annealing in terms of productivity.
Thereafter, temper rolling is performed for the purpose of adjusting to the desired tempering degree and for the purpose of anti-stretcher strain. Although temper rolling includes skin pass or secondary rolling, it may be used depending on the desired characteristics of the steel plate for canning. In general, the rolling reduction is 30% or less to maintain a balance between workability and strength, and prevent deterioration of in-plane anisotropy.
[0030]
【Example】
Hereinafter, the present invention will be described with reference to examples.
[Example 1]
By weight ratio: C: 0.004%, Si: 0.04%, Mn: 0.25%, P: 0.007%, Al: 0.05%, S: 0.006%, N: 0.008 %, And other steels made of Fe and inevitable impurities were melted and made into slabs by a continuous casting method.
After heating this slab to 1200 ° C., rough rolling was performed under the conditions of a total rolling reduction rate of 90% and a final pass rolling reduction rate of 25% to obtain a sheet bar having a thickness of 40 mm.
After the roughly rolled sheet bars were joined, finish rolling was performed by complete continuous rolling. The rolling conditions are as follows. In this case, the Ar 3 transformation point was 880 ° C., and the α-γ reverse transformation temperature was 890 ° C.
Figure 0003826442
The hot-rolled sheet thus obtained was pickled, cold-rolled at a reduction rate of 83%, recrystallized and annealed at 750 ° C., subjected to temper rolling at 2%, and the properties of the obtained product were investigated. The results are as follows.
Crystal grain size: 10.8
Uniformity of tissue: Good hardness: 58 (Rockwell hardness, HR30T)
r value: measured value of plastic strain 15% average r value: 1.8 (average r value = (r L + r C + 2r D ) / 4)
Δr value: 0.1 (Δr = (r L + r C −2r D ) / 2)
Skin roughness: None Flange formability: No flange cracking (Skin roughness and flange formability are tin plating equivalent to # 25 under normal conditions, and this is formed into the equivalent of a 3-piece can body by roll forming and constraining seam welding. This was then subjected to necking molding to determine the presence or absence of rough skin.)
[0031]
[Example 2]
In addition, the slab having the same composition as in the above example is subjected to rough rolling under the same conditions as in the above example, and finish rolling is performed.
Figure 0003826442
When the coiling temperature was 600 ° C. and the obtained hot-rolled sheet was subjected to cold rolling, recrystallization annealing, and temper rolling in the same manner as in the above example, the material properties were as follows.
Crystal grain size: 10.9
Uniformity of tissue: Good hardness: 59 (Rockwell hardness, HR30T)
r value:
Average r value: 1.9 (average r value = (r L + r C + 2r D ) / 4)
Δr value: +0.05 (Δr = (r L + r C −2r D ) / 2)
Skin roughness: None Flange cracking: None (Product characteristic value measurement conditions are the same as in the above example)
[0032]
[Comparative example]
Further, the slab having the same component composition as in the above example is subjected to rough rolling under the same conditions as in the above example, and finish rolling is performed.
Figure 0003826442
When the coiling temperature was 600 ° C. and the obtained hot-rolled sheet was subjected to cold rolling, recrystallization annealing, and temper rolling in the same manner as in the above example, the material properties were as follows.
Crystal grain size: 8
Uniformity of tissue: Mixed grain hardness: 55 (Rockwell hardness, HR30T)
r value:
Average r value: 1.4 (average r value = (r L + r C + 2r D ) / 4)
Δr value: −0.3 (Δr = (r L + r C −2r D ) / 2)
Skin roughness: Yes Flange cracking: Partial occurrence In addition, a pattern that appeared to be ridging occurred during a tensile test.
(Measurement conditions for product characteristic values are the same as in the above example)
[0033]
As shown in Examples 1 and 2 and Comparative Example above, in accordance with the present invention, the material subjected to reverse transformation by processing heat generation in the finish rolling process is the structure of the hot-rolled sheet, and consequently the steel plate for can manufacturing that is the final product. The structure was fine and uniform, and no severe defects such as rough skin were produced even after severe processing.
On the other hand, as shown in the comparative example, when the present invention is not applied, that is, when recuperation is not used, the characteristic value of the final product becomes undesirable as a steel plate for cans.
[0034]
【The invention's effect】
As described above, according to the present invention, it is possible to efficiently and economically refine the crystal structure of an ultra-low carbon steel plate, and to provide a steel plate for can manufacturing with good workability.
[Brief description of the drawings]
FIG. 1 is a diagram showing the relationship between the temperature of a rolling stand and rolled material in a finishing mill according to the present invention.
FIG. 2 is another relationship diagram of the temperature of the rolling stand and the rolled material in the finishing mill according to the present invention.

Claims (3)

重量比で C: 0.0005〜0.0150%
Si:0.2%以下
Mn:0.05〜0.6%
P: 0.02%以下
S: 0.02%以下
Al:0.15%以下
N: 0.02%以下を含み、さらに必要に応じて
Nb:0.003〜0.020%
Ti:0.003〜0.020%
B: 0.0002〜0.0020%
Cu:0.5%以下
Ni:0.5%以下
Cr:0.5%以下
Mo:0.2%以下の1種又は2種以上を含み、残部はFeおよび可避不純物よりなる組成の鋼スラブに、
熱間粗圧延を全圧下量80%以上、そのうち、最終パスを20%以上とする条件下で行い、
仕上熱間圧延を、被圧延材の温度が仕上圧延機列のいずれかの圧延スタンド通過の際、圧延加工に伴う発熱により逆変態させ、仕上圧延温度がAr3−50℃以上となるように終了し、
550〜750℃の温度で巻取って熱間圧延鋼帯を得、
該熱間圧延鋼帯に対してスケール除去、冷間圧延、再結晶焼鈍および30%以下の調質圧延を行うことを特徴とする加工性が良好でかつ肌荒れのない製缶用鋼板の製造方法
By weight ratio C: 0.0005 to 0.0150%
Si: 0.2% or less Mn: 0.05 to 0.6%
P: 0.02% or less S: 0.02% or less Al: 0.15% or less N: 0.02% or less Nb: 0.003 to 0.020% as necessary
Ti: 0.003-0.020%
B: 0.0002 to 0.0020%
Cu: 0.5% or less Ni: 0.5% or less Cr: 0.5% or less Mo: 0.2% or less One or two or more of steels, with the balance being composed of Fe and inevitable impurities To the slab,
Hot rough rolling is performed under the condition that the total reduction amount is 80% or more, of which the final pass is 20% or more,
Finish hot rolling is reverse transformed by the heat generated by the rolling process when the temperature of the material to be rolled passes through one of the rolling stands of the finish rolling mill so that the finish rolling temperature becomes Ar 3 -50 ° C or higher. Exit
Winding at a temperature of 550 to 750 ° C. to obtain a hot rolled steel strip,
A method for producing a steel plate for can making having good workability and no roughening, characterized by performing scale removal, cold rolling, recrystallization annealing and temper rolling of 30% or less on the hot rolled steel strip
請求項1において、仕上熱間圧延圧延機列の入側において、被圧延材の温度をAr3点以下に冷却し、いずれかの仕上圧延機を通過の際、圧延加工に伴う発熱により逆変態させことを特徴とする加工性の良好でかつ肌荒れのない製缶用鋼板の製造方法In claim 1, on the entry side of the finish hot rolling mill train, the temperature of the material to be rolled is cooled to Ar 3 point or less, and when passing through any finishing mill, reverse transformation is caused by heat generated by the rolling process. Method for producing steel plate for can making having good workability and no rough skin, characterized in that 請求項1において、仕上熱間圧延圧延機列の入側における被圧延材の温度をAr3点以上とし、いずれかの仕上圧延機を通過後において一旦Ar3以下に冷却し、その後それに続く圧延機を通過の際の際、圧延加工に伴う発熱により逆変態させることを特徴とする加工性の良好でかつ肌荒れのない製缶用鋼板の製造方法In Claim 1, the temperature of the material to be rolled on the entry side of the finish hot rolling mill row is set to Ar 3 point or higher, and after passing through any finish rolling mill, is once cooled to Ar 3 or lower and then rolled. A method for producing a steel plate for can making having good workability and no rough skin, characterized in that reverse transformation is caused by heat generated during rolling when passing through the machine.
JP18564596A 1996-06-26 1996-06-26 Manufacturing method of steel plate for can making with good workability and no rough skin Expired - Fee Related JP3826442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18564596A JP3826442B2 (en) 1996-06-26 1996-06-26 Manufacturing method of steel plate for can making with good workability and no rough skin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18564596A JP3826442B2 (en) 1996-06-26 1996-06-26 Manufacturing method of steel plate for can making with good workability and no rough skin

Publications (2)

Publication Number Publication Date
JPH108142A JPH108142A (en) 1998-01-13
JP3826442B2 true JP3826442B2 (en) 2006-09-27

Family

ID=16174402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18564596A Expired - Fee Related JP3826442B2 (en) 1996-06-26 1996-06-26 Manufacturing method of steel plate for can making with good workability and no rough skin

Country Status (1)

Country Link
JP (1) JP3826442B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020046663A (en) * 2000-12-15 2002-06-21 이구택 A method for manufacturing steel sheet for can with superior workability
KR100940664B1 (en) * 2002-11-25 2010-02-05 주식회사 포스코 A method for manufacturing steel sheets for dummy with excellent weldability and repeated heat treatment property
JP2007326846A (en) * 2006-05-11 2007-12-20 Institute Of Physical & Chemical Research Azobenzene derivative, fluorescent particle and method for producing the fluorescent particle
JP4848984B2 (en) * 2007-03-22 2011-12-28 住友金属工業株式会社 Manufacturing method and manufacturing apparatus for hot-rolled steel sheet
JP5958038B2 (en) 2011-04-21 2016-07-27 Jfeスチール株式会社 Steel plate for cans with high buckling strength of can body against external pressure, excellent formability and surface properties after forming, and method for producing the same
JP5935541B2 (en) * 2012-06-28 2016-06-15 Jfeスチール株式会社 Manufacturing method of hot-rolled steel sheet
CN102806233B (en) * 2012-08-14 2014-11-26 南京钢铁股份有限公司 Controlled rolling and controlled cooling process for manufacturing double-phase steel by single-shelf steckel mill
CN105463321A (en) * 2015-12-08 2016-04-06 武汉钢铁(集团)公司 Batch annealing process plane isotropy steel and manufacturing method thereof
CN109013715B (en) * 2018-07-26 2020-04-21 南京钢铁股份有限公司 Rolling method for reducing hot-rolled hardness and bending degree of 42CrMo

Also Published As

Publication number Publication date
JPH108142A (en) 1998-01-13

Similar Documents

Publication Publication Date Title
US6364968B1 (en) High-strength hot-rolled steel sheet having excellent stretch flangeability, and method of producing the same
US5853503A (en) Hot rolled steel sheets and method of producing the same
US6171416B1 (en) Method of producing can steel strip
US5759306A (en) Method for making a steel sheet suitable as a material for can making
JP3826442B2 (en) Manufacturing method of steel plate for can making with good workability and no rough skin
EP0659890B1 (en) Method of manufacturing small planar anisotropic high-strength thin can steel plate
JP4788030B2 (en) Steel plate for lightweight two-piece can and manufacturing method thereof
JP3726371B2 (en) Steel plate for cans with high age-hardening properties and excellent material stability and method for producing the same
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
CN108570603A (en) A kind of aerosol can ferrostan and its production method
JP3108330B2 (en) Manufacturing method of steel sheet for high strength cans
JP3596037B2 (en) Manufacturing method of steel plate for can-making
JPH0582458B2 (en)
JP3700280B2 (en) Manufacturing method of steel plate for cans
JP4810766B2 (en) Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can
JP3707260B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
JPH09316543A (en) Production of steel sheet for can, excellent in formability
JPH08127816A (en) Production of starting steel sheet for vessel, excellent in wrinkling resistance
JPH08269568A (en) Production of steel sheet for can making excellent in flange formability
JPH06306536A (en) Surface treated original sheet for di can excellent in pressure withstanding strength and necked-in property and its production
JP2004218018A (en) High-strength cold-rolled steel sheet which is excellent in workability and strain age-hardening property, high-strength plated steel sheet and their production methods
JP3257390B2 (en) Method for producing two-piece steel sheet with small in-plane anisotropy
JPH07228921A (en) Production of starting sheet for surface treated steel sheet, excellent in workability
JP3407531B2 (en) Method for producing ultra-thin steel sheet for two-piece can with small in-plane anisotropy
JP3596036B2 (en) Manufacturing method of steel plate for can-making

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050324

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060613

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060626

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100714

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110714

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120714

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130714

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees