JP4810766B2 - Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can - Google Patents

Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can Download PDF

Info

Publication number
JP4810766B2
JP4810766B2 JP2001204410A JP2001204410A JP4810766B2 JP 4810766 B2 JP4810766 B2 JP 4810766B2 JP 2001204410 A JP2001204410 A JP 2001204410A JP 2001204410 A JP2001204410 A JP 2001204410A JP 4810766 B2 JP4810766 B2 JP 4810766B2
Authority
JP
Japan
Prior art keywords
less
rolling
rolled
cold
sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001204410A
Other languages
Japanese (ja)
Other versions
JP2003013146A (en
Inventor
誠 荒谷
由紀夫 小幡
覚 佐藤
英雄 久々湊
金晴 奥田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2001204410A priority Critical patent/JP4810766B2/en
Publication of JP2003013146A publication Critical patent/JP2003013146A/en
Application granted granted Critical
Publication of JP4810766B2 publication Critical patent/JP4810766B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Metal Rolling (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、軽量2ピース缶用鋼板に係り、とくにr値の面内異方性が小さく、加工−塗装焼付け相当(210 ℃×20min )処理後の引張強さが430MPa以上を有する板厚0.20mm以下の高強度缶用極薄冷延鋼板に関する。
【0002】
【従来の技術】
清涼飲料水、ビール等の飲料缶や、食缶等の各種缶容器は、その部品構造から、缶胴と上蓋からなる2ピース缶と、缶胴および上蓋、底蓋からなる3ピース缶に大別される。とくに、2ピース缶の缶胴に用いられる鋼板は、深絞り加工(カップ成形)や、それに続く缶高さを得るためのしごき加工や、ネック縮径加工、フランジ加工、ドーム加工など各種の過酷な成形に耐えられる特性が要求される。さらに、最近では、缶の軽量化を目的として、素材である鋼板の薄肉化が指向され板厚0.20mm以下の鋼板に対する要求が強くなってきている。
【0003】
素材である鋼板を薄肉化した場合にも、缶強度として所定以上の強度を維持する必要があるため、素材である鋼板を高強度化することが前提となり、できれば製缶加工時は軟質で、内容物充填時には硬質化していることが望まれる。
また、素材の鋼板をカップ形状に深絞り加工する際に、薄肉鋼板を使用すると高張力鋼板を用いても剛性が不足し、しわが発生しやすくなる。この傾向は、限界絞り率(LDR )が大きくなる、すなわちブランク径が大きくなるに従いより顕著となる。しわ発生を少なくするには、しわ抑え力(BHF )を大きくすることが考えられる。しかし、BHF が大きくなると、加工時にパンチ肩部で破断しやすくなるとともに、カップ円周方向に発生する耳のうち大きいものが引き伸ばされたり(耳立ち)、引きちぎられたり(耳切れ)するという問題がある。この問題を解決するために、r値の面内異方性の少ない、すなわちΔrの小さい鋼板が望まれている。
【0004】
またさらに、最近では、2ピース缶を、炭酸飲料用に加えてコーヒー飲料用等として適用することが指向されている。コーヒー飲料用とした場合には、缶内容物の変質調査の目的で打検検査が行われることから、缶底部の形状をドーム形状からフラット(平底)形状とすることが求められる。缶底部をフラット形状とすると、耐圧強度を維持するため、さらなる高強度を得ることができる材質の缶用鋼板が望まれている。
【0005】
薄肉の缶用鋼板を得るためには、
▲1▼冷延圧下率を増加する、
▲2▼冷延母板の板厚、すなわち熱延板の板厚を薄くする、
という2つの手段が考えれられる。しかし、冷間圧下率の増加は、r値の面内異方性を増大し、絞り成形時の耳発生を大きくする。また、熱延板の板厚を薄くすると、幅方向、長さ方向の熱間圧延温度のばらつきが大きくなるとともに熱間圧延の生産性も低下するという問題がある。
【0006】
このような問題に対し、例えば、特開昭59-38336号公報には、C:0.10%以下、Si:0.06%以下、Mn:0.50%以下、P:0.03%以下、S:0.03%以下、Al:0.15%以下、N:0.008 %以下を含有する連鋳鋼片を、Ar3以上の仕上げ温度で熱間圧延を行い、640 〜 700℃で巻き取り、圧下率80〜95%で冷間圧延し、650 ℃以上で20秒以上の連続焼鈍を行ったのち500 ℃以下まで10〜500 ℃/sで冷却し、500 〜350 ℃の温度に20秒以上保持し室温に冷却する加工性に優れ、面内異方性の小さい缶用極薄鋼板の製造方法が開示されている。
【0007】
また、特開平9-241756号公報には、冷延前の平均結晶粒径を30μm 以上とした熱延鋼板に、冷延圧下率70〜98%の冷間圧延を施し、再結晶温度以上800 ℃以下で3min以上の焼鈍を施したのち、さらに冷延圧下率1 〜70%の再冷延を施し、最終製品までの通算冷延圧下率を88〜98%とする絞り成形時のイヤリング発生が著しく小さい容器用鋼板の製造方法が開示されている。
【0008】
しかしながら、特開昭59-38336号公報、特開平9-241756号公報に記載された技術では、絞り加工時の耳発生は減少するが、鋼板の薄肉化に伴う耐圧強度の低下に対しては、考慮されていないという問題を残していた。
また、特開平4-350146号公報には、C:0.02〜0.08%、Si:0.02%以下、Mn:0.05〜0.30%、P:0.025 %以下、S:0.025 %以下、Al:0.02〜0.15%、N:0.003 〜0.02%の成分と、残部は鉄および不可避的不純物とからなる連鋳スラブを熱間圧延し、570 〜 670℃で巻き取り、かつ(Ntotal −NasAlN )量を0.003 〜0.010 %とした2ピース缶用鋼板が開示されている。特開平4-350146号公報に開示された技術では、多段ネックインを行ってもしわが発生せず、蓋巻き締め時にも割れの発生がなく、レトルト殺菌を行っても缶底部の耐圧強度は低下しないとしている。
【0009】
また、特開平10-110238 号公報には、C:0.005 〜0.05%、Al:0.08%以下、N:0.012 %以下を含有する連鋳片を、熱間圧延し、連続焼鈍法を施したのち、5 %以上15%未満の圧下率の調質圧延を行い、固溶C+固溶N≧50ppm とする溶接缶胴用鋼板の製造方法が提案されている。
しかしながら、特開平4-350146号公報に記載された技術では、板厚0.20mm以下の薄肉化を行おうとすると、r値の面内異方性が大きくなる場合があるという問題があった。また、特開平10-110238 号公報に記載された技術でもやはり、r値の面内異方性が大きくなるという問題があった。
【0010】
【発明が解決しようとする課題】
本発明は、上記した従来技術の問題点を解決し、軽量2ピース飲料缶用として好適な優れた深絞り加工性を有し、耳の発生が少なく、さらに10%加工歪を付与しさらに塗装焼付処理相当熱処理を施した後に引張強さ430MPa以上の高強度となり高い缶体耐圧強度を得ることができる板厚0.20mm以下の高強度極薄缶用鋼板の製造方法を提案することを目的とする。
【0011】
【課題を解決するための手段】
本発明者らは、上記した課題を達成するために、深絞り加工性、耳発生、製缶後の缶強度におよぼす各種要因の影響について鋭意研究した。
その結果、本発明者らは、加工−焼付け塗装が施された後の缶底部の鋼板強度が、2ピース缶の耐圧強度を決定しており、鋼板が、加工歪10%付与−焼付け塗装相当処理(210 ℃×20min の熱処理)後の引張強さが430MPa以上となる特性を有していれば、缶底部をフラット形状としても、レトルト処理(120 ℃×90min 程度の熱処理)時や、あるいは窒素を充填し、内圧をかけた陽圧缶の缶落下時等にバックリングが発生する問題は解決できることを見出した。このような特性を鋼板に具備させるには、鋼組成のうち、N含有量を0.0090〜0.0140質量%と適正化することが重要であることを見いだした。
【0012】
また、本発明者らは、深絞り加工性を良好とし、耳発生を少なくするために、r値を1.0 〜1.5 と適正値としたうえで、r値の面内異方性Δrを0±0.3 と小さくする必要があることを知見した。Δrを小さくするためには、熱間圧延条件、冷間圧下率の適正化が重要であることを見いだした。
つぎに、本発明者らが行った実験結果について説明する。
【0013】
質量%で、0.045 %C−0.21%Mn−0.037 %Al−0.0113%Nの鋼素材を1200℃に加熱し、仕上圧延出側温度FDT、巻取温度CTを変化した熱間圧延により熱延板とし、該熱延板に一次圧延(冷間)を施し冷延板としたのち、焼鈍温度:700 ℃で連続焼鈍し冷却した。その後、1.5 %の調質圧延を施して、Δrを求めた。
【0014】
図1に、ΔrとFDT、CTとの関係を示す。図1から、FDTを860 ℃以上かつCTを620 ℃以上の高温とすることにより、Δrを0±0.3 の範囲にできることがわかる。
図2に、Δrにおよぼす一次圧延(冷間)の圧下率の影響を示す。図2から、一次圧延(冷間)の圧下率を90%以下とすることにより、Δrが−0,3 より小さく、0に近くなることがわかる。
【0015】
すなわち、本発明者らは、これらの結果から、強度を可能な限り低減し、r値を1.0 以上と高くし、かつΔrを0±0.3 とするためには、熱間圧延の仕上げ圧延終了温度と巻取温度を高くし、一次圧延の圧下率を低くすることが重要となるという知見を得た。
本発明は、上記した知見に基づいて、さらに検討を加えて完成されたものである。
【0016】
すなわち、本発明は、鋼素材を、加熱し、粗圧延および仕上圧延により熱延板とする熱間圧延工程と、該熱延板を巻き取る巻取り工程とを有し、さらに該熱延板を冷間圧延し冷延板とする1次圧延工程と、該冷延板を焼鈍し冷延焼鈍板とする焼鈍工程と、該冷延焼鈍板を調質圧延する調質圧延工程とを有する板厚0.20mm以下の缶用極薄冷延鋼板の製造方法において、前記鋼素材の組成を、質量%で、C:0.1 %以下、N:0.0090〜0.0140%、Si:0.03%以下、Mn:0.05〜0.60%、P:0.02%以下、S:0.02%以下、Al:0.02〜0.20%、O:0.01%以下を含み、あるいはさらに次A群〜C群
A群:Cu:0.001 〜 0.5%、Ni:0.01〜 0.5%、Cr:0.01〜 0.5%、Mo:0.001 〜
0.5%のうちから選ばれた1種または2種以上、
B群:Ca:0.005 %以下、Nb:0.10%以下、Ti:0.20%以下のうちから選ばれた1種
または2種以上、
C群:B:0.005 %以上
のうちの1群または2群以上を含み、残部Feおよび不可避的不純物からなる組成とし、前記熱間圧延工程の仕上圧延終了温度FDTを860 ℃以上とし、前記巻取り工程の巻取り温度CTを620 ℃〜710 ℃とし、前記1次圧延工程の冷間圧延圧下率を90%以下とし、前記焼鈍工程を、焼鈍温度をAc1変態点未満とする連続焼鈍とすることを特徴とする平均r値が1.0 〜1.5 でありr値の面内異方性Δrが0±0.3 と小さく、塗装焼付処理相当の熱処理後の引張強さが430 MPa 以上となる板厚0.20mm以下の高強度2ピース缶用極薄冷延鋼板の製造方法であり、本発明では、前記調質圧延の、圧下率を2%以下とすることが好ましい。
【0017】
【発明の実施の形態】
まず、本発明に使用する鋼素材組成の限定理由について説明する。
本発明の鋼素材は、低炭素アルミキルド鋼であり、その組成は下記のとおりとするのが好ましい。
C:0.1 %以下
Cは、結晶粒を微細化するとともに、固溶強化により鋼の強度を増加させる重要な元素であるが、一方では、炭化物を形成し、鋼板の延性、ひいては加工性を低下させる。このため、Cは0.1 %以下に限定する。なお、C含有量が低すぎるとr値の面内異方性Δrが大きくなり、また、時効後の引張強さ430MPa以上を確保し難しくなるため、Cは0.015 %以上とすることが好ましい。また、r値の確保及び、r値の面内異方性Δrを小さくするために、Cは0.015 〜0.05%とするのが好ましい。なお、より好ましくは0.03〜0.05%である。
【0018】
N:0.0090〜0.0140%
Nは、固溶NあるいはAlN 等の析出物として鋼板中に存在し、フランジ加工やネック加工に悪影響を与えずr値やΔrを確保したうえで加工歪10%付与−焼付け塗装相当処理後の引張強さを高める効果を有する。本発明では、成形後の缶強度を高く保つ必要から、歪時効後の引張強さを高めるため、N含有量は0.0090%以上とする。なお、0.0140%を超えて含有すると、鋳片内にAr気泡やN2気泡が残存することに起因するヘゲ等の表面欠陥が多発する。このようなことから、Nは0.0090〜0.0140%とした。
【0019】
Si:0.03%以下
Siは、固溶強化により鋼の強度を増加させる元素であるが、多量の添加は加工性、表面処理性の劣化、耐食性の劣化等の問題を生じる。このため、本発明ではできるだけ低減するのが望ましいが、0.03%までは許容できる。
Mn:0.05〜0.60%
Mnは、Sによる熱間割れを防止する有効な元素であり、この効果を得るため、0.05%以上の含有が必要である。一方、多量の含有は不経済であり耐食性を劣化させるとともに、強度ばらつきを増大させる傾向となる。このため、本発明では、Mnは0.05〜0.60%に限定する。なお、好ましくは0.15〜0.40%である。
【0020】
P:0.02%以下
Pは、鋼を著しく硬質化させ、フランジ加工性やネック加工性を劣化させ、さらに耐食性を著しく劣化させる。このため、本発明では、Pは0.02%以下に限定するのが好ましい。
S:0.02%以下
Sは、鋼中では介在物として存在し、鋼板の延性を低下させ、さらに耐食性を劣化させる元素であり、本発明ではできるだけ低減するのが好ましが、0.02%までは許容できる。なお、好ましくは0.015 %以下である。
【0021】
Al:0.02〜0.20%
Alは、脱酸剤として作用し、鋼の清浄度を高くするために必要な元素であり、0.02%以上の含有を必要とする。しかし過剰の含有は経済的に好ましくないばかりか、再結晶粒径の成長を抑制し、r値を低下させるので、その含有量は0.20 %以下とする必要がある。このため、本発明ではAlは0.02〜0.20%に限定した。なお、好ましくは、0.03〜0.10%である。
【0022】
O:0.01%以下
Oは、鋼中では酸化物として存在し、延性の低下、耐食性の劣化をもたらすため、できるだけ低減するのが好ましいが、本発明では、0.01%まで許容できる。なお、とくに薄肉鋼板とするためには、好ましくは0.005 %以下とするのが好ましい。
【0023】
本発明では上記した組成に加えて、必要に応じ、次A群〜C群
A群:Cu:0.001 〜0.5 %、Ni:0.01〜0.5 %、Cr:0.01〜0.5 %、Mo:0.00
1 〜0.5 %のうちから選ばれた1種または2種以上、
B群:Ca:0.005 %以下、Nb:0.10%以下、Ti:0.20%以下のうちから選ばれ
た1種または2種以上、
C群:B:0.005 %以上
のうちの1種または2種以上を含有することができる。
【0024】
A群:Cu:0.001 〜0.5 %、Ni:0.01〜0.5 %、Cr:0.01〜0.5 %、Mo:0.001 〜0.5 %、のうちから選ばれた1種または2種以上
Cu、Ni、CrおよびMoは、鋼の延性を劣化させることなく、強度を増加させることができるので、適宜強度調整のため選択して含有できる。また、これらの元素は鋼板の耐食性を向上させる効果も有する。これらの効果が発揮されるためには、Cu、Moでは少なくとも0.001 %、Ni、Crでは少なくとも0.01 %含有することが好ましい。しかし、0.5 %を超えて含有しても、効果が飽和し、コストの上昇を招くので、含有量の上限をいずれの元素とも0.5 %とすることが好ましい。なお、これらの元素の効果は単独で添加しても、複合添加しても、同様に発揮される。
【0025】
B群:Ca:0.005 %以下、Nb:0.10%以下、Ti:0.20%以下のうちから選ばれ
た1種または2種以上、
Ca、NbおよびTiは、いずれも鋼の清浄度の向上に有用な元素であり、必要に応じて選択して含有できる。上記した効果を得るためにはCaは0.002 %以上、Nbは0.001 %以上、Tiは0.001 %以上含有することが好ましい。しかし、0.005 %を超えるCaの過剰な含有は不経済となるばかりでなく、生成される非金属介在物は、融点が低下し、軟質になり、圧延工程で長く伸びて製缶加工の不良につながる。このため、Caは0.005 %以下とすることが好ましい。
【0026】
Nbは、0.10%を超えて過多に含有すると、Nb系析出物による結晶粒界のピン止め効果により再結晶温度が上昇して、連続焼鈍炉の通板作業性が悪くなり、また細粒になる。このため、Nb含有量は0.10%以下とすることが好ましい。
Tiは、0.20%を超えて過多に含有すると、鋭利で硬質な析出物が発生し、耐食性を悪くするとともに、製缶加工時のすり疵発生の原因にもなる。従って、Ti含有量は0.2 %以下とすることが好ましい。
【0027】
C群:B:0.005 %以下
Bは、粒界脆化の改善に有効な元素であり、必要に応じ含有できる。例えば、缶が低温で保管され脆化割れを生じることが懸念されるような用途においても良好な品質を得るためには、Bを含有することが有効である。ただしBは、連続焼鈍時、再結晶粒界に偏析し再結晶を遅らせるので、その含有量は0.005 %以下とすることが好ましい。なお、B含有量の下限は効果を発揮するのに必要な0.0001%とするのが好ましい。
【0028】
なお、上記した成分以外の残部はFeおよび不可避的不純物である。
上記した組成の鋼素材を、通常公知の溶製方法で溶製し、連続鋳造法等の公知の鋳造方法で清浄度の高いスラブ等の鋼素材とする。
本発明では、鋼素材を、加熱し、粗圧延によりシートバーとし、シートバーを仕上圧延により熱延板とする熱間圧延工程と、該熱延板を巻き取る巻取り工程とにより、コイル状に巻き取った熱延板とする。
【0029】
粗圧延においては、加熱温度、圧延条件はとくに限定する必要はなく、所定の寸法形状のシートバーとすることができればよい。なお、鋼素材の加熱温度は1100〜1250℃とするのが好ましい。加熱温度が1100℃未満では、粗圧延における圧延負荷が増大するとともに、仕上げ圧延終了温度を所定の温度範囲とすることが難しくなる。また、加熱温度が1250℃を超えると、表面スケールの形成が著しくなり、スケールロスが大きく経済的に不利となるとともに、仕上げ圧延で除去しにくいスケールが残存し表面欠陥を発生しやすくなる。また、結晶粒の粗大化が顕著となる。
【0030】
粗圧延でシートバーとしたのち、該シートバーに仕上圧延を施し熱延板とする。仕上圧延の仕上圧延終了温度FDTを860 ℃以上とする。
FDTが860 ℃未満では、r値の面内異方性が大きくなり、深絞り加工時に耳の発生が顕著となる。一方、FDTが高温となりすぎると、スケールの発生が顕著となり、スケール除去等その後の工程に支障を生じることが懸念されるため、FDTは940 ℃以下とすることが好ましい。なお、より好ましくは870 〜910 ℃である。熱間圧延工程後は、通常の空冷としてもあるいは水冷を行っても所定の巻取温度となるように調整すればなんら問題はない。
【0031】
また、本発明では、粗圧延工程でシートバーとされたのち、仕上圧延工程前に、シートバーの先端部と、該シートバーに先行するシートバーの後端部とを接合した後、仕上げ圧延することができる。このようにシートバー同士を接合することにより、特に本発明のように極薄熱延鋼板で問題となる長手方向の形状の乱れを防止しやすく、製品の歩留りを向上できる。
【0032】
また、粗圧延工程と仕上げ圧延との間でシートバーの長手方向端部を全幅にわたって加熱昇温すること、あるいは幅方向端部を全長にわたって加熱昇温することが好ましい。シートバー長手方向端部あるいは幅方向の端部は温度低下しやすく、この部分を加熱昇温して、シートバー内の温度の均一化を図ることにより、歩留りが向上する。なお、加熱方法としては、誘導加熱方式のものとすることが好ましい。
【0033】
ついで、熱延板は巻取り工程でコイル状に巻き取られるが、巻取温度CTは620 ℃〜710 ℃とする。
CTが620 ℃未満では、r値が低下するうえ、Δrが大きくなり、r値の面内異方性が大きく、深絞り加工時の耳発生が顕著となる。一方、CTが710 ℃を超えると、炭化物の凝集粗大化に伴い熱延板の結晶粒が粗大化し、引張強さTSが低下して、所望の強度が得られなくなる。このため、CTは620 ℃〜710 ℃に限定した。なお、好ましくは630 〜710 ℃である。
【0034】
熱延板の板厚は、冷延板の母板として、冷延板(製品板)の板厚に依存して決定されるが、0.20mm厚以下の薄物冷延板とするためには、面内異方性を小さくすること、r値を向上させることを考慮すると、2mm以下とするのが好ましい。
ついで、上記した工程により製造された熱延板は、塩酸酸洗等常法で脱スケールしたのち、冷間圧延を施し冷延板とする1次圧延工程と、該冷延板を焼鈍し冷延焼鈍板とする焼鈍工程と、該冷延焼鈍板を調質圧延する調質圧延工程とを順次施される。
【0035】
1次圧延工程では、所望の冷延板の寸法形状とすることができればよいがΔrを小さくするためには、1次圧延(冷間)の圧下率は90%以下、好ましくは80%以上とする。このような冷間圧延圧下率とするためには、熱延板の板厚を薄くすることが好ましい。1次圧延圧下率が90%を超えると、図2に示したように、r値の面内異方性Δrが大きくなる。一方、80%未満では、板厚0.2mm 以下の極薄缶用鋼板とするには、熱延板の板厚を極度に薄くする必要があるためr値のばらつきが大きくなりやすくなるため、80%以上とすることが好ましい。
【0036】
ついで、冷延板は焼鈍工程で焼鈍される。焼鈍工程は連続焼鈍炉で行うのが好ましい。焼鈍は、鋼板に成形性を付与するために行うものであり、本発明では焼鈍温度をAc1変態点未満とする連続焼鈍とする。焼鈍温度がAc1変態点以上となると、結晶粒が粗大化し強度が得られない。なお、焼鈍温度は670 〜720 ℃とするのが加工性および強度確保の点から好ましい。焼鈍温度での均熱時間は操業の安定性から1s以上あれば十分である。また、焼鈍工程後の冷却は通常の連続焼鈍と同じ程度の冷却として、とくに限定されない。
【0037】
焼鈍工程を経た冷延焼鈍板は、調質圧延工程で冷間圧延により調質圧延される。調質圧延は圧下率:2%以下とする。本発明における調質圧延は、通常公知の鋼板の形状の調整、可動転位の導入、表面粗さの調整等を目的とするため圧下率:2%以下のSR(single cold-reducing)とした。圧下率が2%を超えると加工硬化により鋼板強度が増加しすぎて、加工性が低下する。
【0038】
このようにして製造された冷延焼鈍板は、防錆処理後、そのまま製品板(コイル)としてもよい。あるいはさらに、酸洗処理を施し、さらに錫めっき、クロムめっき、ニッケルめっき等の表面処理層を少なくとも片面に形成する表面処理を施し、製品板としてもよい。製品板は、さらに塗油されるのが好ましい。また、塗油剤としては、DOS (Di-octyl sebacate )、ATBC(Acetyl tri-butyl citrate)が好ましい。
【0039】
上記した製造方法で製造された缶用極薄冷延鋼板は、平均r値:1.0 〜1.5 、Δr:0 ±0.3 を有する面内異方性の小さな鋼板である。平均r値が、1.0 未満では、深絞り加工性が劣化し、必要とする缶高さを得にくいという問題があり、一方、平均r値が1.5 を超えると、缶高さ方向の伸びが大きくなる。
なお、平均r値およびΔrは、圧延方向(L方向)、圧延方向から45°(D方向)、圧延方向から直角方向(C方向)について、それぞれr値(rL 、rD 、rC )を測定し、平均r値=(rL +rC +2rD )/4、Δr=(rL +rC −2rD )/4により求めるものとする。
【0040】
さらに、本発明の製造方法で製造された缶用極薄冷延鋼板は、製造後の調質度はT3〜T4程度であり、前記のように適度の平均r値と小さなΔrを有するため、製缶性は良好である。さらに、10%加工歪を付与し210 ℃で20min の熱処理を施した後の引張強さが430MPa以上である。このような特性を有することにより、缶体の耐圧強度が高く、軽量化を達成できる極薄缶用鋼板となる。
【0041】
【実施例】
表1に示す組成の鋼を転炉で、溶製したのち、垂直曲げ方式の連続鋳造機で圧延素材(スラブ)とした。ついで、これら圧延素材に、表2に示す条件で熱間圧延を施し熱延板とした。なお、1部の鋼板ではシートバー接合、シートバー加熱を実施した。その後、これら熱延板に酸洗による脱スケール処理を施し、さらに表2に示す条件で冷間圧延を施し、ついで表2に示す条件で焼鈍あるいはさらに調質圧延を行い、極薄冷延鋼板とした。
【0042】
得られた極薄冷延鋼板について、硬さ試験、r値の測定を実施した。なお、缶底部の耐圧強度評価としては、前述のように圧延して10%の歪を付与し、さらに塗装焼付け処理に相当する210 ℃×20分の時効処理を行い、引張試験により引張強度を評価した。
(i)硬さ試験
これら冷延鋼板について、JIS G 3303の規定に準拠してHR30T硬さから調質度を決定した。
(ii)r値の測定
幅方向の中央部から圧延方向(L)、圧延方向から45°方向(D)、および圧延方向から直角方向(C)に、JIS 5号引張試験片を採取し、歪速度40%/min で引張試験を実施し、塑性歪法(JIS G 3135−1986解説 18p)により、幅方向と板厚方向の対数歪の比からr値を求めた。平均r値は、平均r値=(rL +rC +2rD )/4で、また、Δrは、Δr=(rL +rC −2rD )/2により算出した。
(iii )歪時効後の引張特性試験
これら冷延鋼板の幅方向中央部から圧延方向および圧延直角方向に、試験片を採取し、冷間圧延で圧下率10%の歪を付加したのち、210 ℃×20min の塗装焼付処理相当の熱処理を施し、その後、引張試験を行い引張強さTSを測定し、2方向の平均値を求めた。
【0043】
これらの結果を表3に示す。
【0044】
【表1】

Figure 0004810766
【0045】
【表2】
Figure 0004810766
【0046】
【表3】
Figure 0004810766
【0047】
本発明例は、r値が1.0 以上と高く、Δrが±0.3 の範囲内となり、r値の異方性が小さく、加工性に優れ、かつ歪時効硬化特性も大きく、10%予成形−塗装焼付処理相当熱処理を施したのち、引張強さTS:430MPa以上を十分に満足する鋼板となっている。本発明の範囲を外れる比較例では、Δrが大きくなり、異方性が強いか、あるいは歪時効硬化特性が不足した鋼板となっている。本発明例は、製缶時の耳発生の問題もなく、缶底部の耐圧強度も高くなった。また、ネック・フランジ加工性についても、高強度薄肉材であるにもかかわらず、不良の発生は認められず、良好であった。
【0048】
また、これら本発明例の鋼板を用いて電気錫めっき処理を施した後、1stカップ成形、DI成形、4段ネック成形を行ってフラット底形状の250gストレッチドロー・アイオニング成形缶とした。その結果、本発明例の鋼板はいずれも、カップ成形性、アイアニング性、ボトム成形性とも問題なく、多段ネック、フランジ加工を施しても、ネックしわやフランジ割れの発生もなく、しかも板厚が薄いにも関らず、缶強度が確保できる特性を有していることがわかった。
【0049】
【発明の効果】
本発明によれば、軽量飲料缶用として好適な、耳発生も少なく、所望の缶体の耐圧強度を確保できる、2ピース缶用極薄鋼板を、安価に製造でき、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】冷延鋼板のΔrと熱間仕上圧延終了温度FDT、巻取温度CTとの関係を示すグラフである。
【図2】冷延鋼板のΔrにおよぼす一次圧延(冷間)の圧下率の影響を示すグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a light steel plate for two-piece cans, and particularly has a sheet thickness of 0.20 having a small in-plane anisotropy of r value and a tensile strength after processing-paint baking (210 ° C. × 20 min) equivalent to 430 MPa or more. The present invention relates to an ultra-thin cold-rolled steel sheet for high-strength cans of mm or less.
[0002]
[Prior art]
Soft drinks, beverage cans such as beer, and various can containers such as food cans are divided into two-piece cans consisting of a can body and top lid, and three-piece cans consisting of a can body, top lid, and bottom lid. Separated. In particular, the steel plate used for the can body of a two-piece can is a variety of harsh processes such as deep drawing (cup forming), subsequent ironing to obtain the can height, neck diameter reduction processing, flange processing, dome processing, etc. Characteristics that can withstand proper molding are required. Furthermore, recently, for the purpose of reducing the weight of the can, the demand for a steel plate having a thickness of 0.20 mm or less has been increasing due to the trend toward thinning of the steel plate.
[0003]
Even when the steel plate is made thinner, it is necessary to maintain a strength higher than the specified strength as the can strength, so it is assumed that the steel plate as the material has a higher strength. It is desirable that the contents are hardened when filling the contents.
In addition, when deep drawing a raw steel plate into a cup shape, if a thin steel plate is used, even if a high strength steel plate is used, the rigidity is insufficient and wrinkles are likely to occur. This tendency becomes more remarkable as the limit drawing ratio (LDR) increases, that is, as the blank diameter increases. In order to reduce the generation of wrinkles, it is conceivable to increase the wrinkle restraining force (BHF). However, when the BHF becomes large, the punch shoulders are likely to break during processing, and the larger ears that occur in the circumferential direction of the cup are stretched (ear standing) or torn (ear cuts). is there. In order to solve this problem, a steel sheet having a small in-plane anisotropy of r value, that is, a small Δr is desired.
[0004]
Furthermore, recently, it has been directed to apply a two-piece can for coffee drinks in addition to carbonated drinks. When it is used for coffee drinks, since the inspection inspection is performed for the purpose of alteration inspection of the contents of the can, it is required to change the shape of the bottom of the can from a dome shape to a flat (flat bottom) shape. When the bottom of the can has a flat shape, a steel plate for cans made of a material capable of obtaining further high strength is desired in order to maintain pressure resistance.
[0005]
In order to obtain a thin steel plate for cans,
(1) Increase the cold rolling reduction ratio,
(2) Decreasing the thickness of the cold-rolled mother plate, that is, the thickness of the hot-rolled plate,
Two means are conceivable. However, the increase in the cold rolling reduction increases the in-plane anisotropy of the r value, and increases the generation of ears during drawing. Further, when the thickness of the hot-rolled sheet is reduced, there is a problem that the variation in hot rolling temperature in the width direction and the length direction is increased and the productivity of hot rolling is also reduced.
[0006]
For example, JP-A-59-38336 discloses C: 0.10% or less, Si: 0.06% or less, Mn: 0.50% or less, P: 0.03% or less, S: 0.03% or less. A continuous cast steel slab containing Al: 0.15% or less and N: 0.008% or less is hot-rolled at a finishing temperature of Ar 3 or higher, wound at 640 to 700 ° C, and cold-rolled at a reduction rate of 80 to 95%. And after continuous annealing at 650 ° C or higher for 20 seconds or longer, cooling to 500 ° C or lower at 10 to 500 ° C / s, holding at a temperature of 500 to 350 ° C for 20 seconds or longer, and excellent workability A method for producing an ultrathin steel sheet for cans with small in-plane anisotropy is disclosed.
[0007]
Japanese Patent Laid-Open No. 9-241756 discloses that a hot rolled steel sheet having an average crystal grain size before cold rolling of 30 μm or more is subjected to cold rolling at a cold rolling reduction ratio of 70 to 98%, and a recrystallization temperature of 800 or more. After annealing for 3 min or more at ℃ or lower, re-rolling is further performed with a cold rolling reduction ratio of 1 to 70% and the total cold rolling reduction ratio to the final product is 88 to 98%. Discloses a method for producing a steel plate for containers, which is extremely small.
[0008]
However, in the techniques described in JP-A-59-38336 and JP-A-9-241756, the generation of ears at the time of drawing is reduced, but with respect to the decrease in pressure resistance accompanying the thinning of the steel sheet. Had left the issue of not being considered.
JP-A-4-350146 discloses C: 0.02 to 0.08%, Si: 0.02% or less, Mn: 0.05 to 0.30%, P: 0.025% or less, S: 0.025% or less, Al: 0.02 to 0.15% , N: 0.003 to 0.02% of the component, and the balance is hot-rolled continuously cast slab composed of iron and inevitable impurities, wound up at 570 to 670 ° C., and the amount of (N total −N as AlN) is 0.003. A steel plate for a two-piece can with a content of ˜0.010% is disclosed. In the technique disclosed in Japanese Patent Laid-Open No. 4-350146, wrinkles do not occur even when multi-stage neck-in is performed, cracks do not occur when the lid is tightened, and the pressure-resistant strength of the bottom of the can decreases even if retort sterilization is performed. Not to do.
[0009]
Japanese Patent Application Laid-Open No. 10-110238 discloses that a continuous cast piece containing C: 0.005 to 0.05%, Al: 0.08% or less, N: 0.012% or less is hot-rolled and subjected to a continuous annealing method. A method of manufacturing a steel sheet for a welded can body has been proposed in which temper rolling is performed at a rolling reduction of 5% or more and less than 15%, and solute C + solid solution N ≧ 50 ppm.
However, the technique described in Japanese Patent Laid-Open No. 4-350146 has a problem that in-plane anisotropy of the r value may increase when the thickness is reduced to 0.20 mm or less. Further, the technique described in Japanese Patent Laid-Open No. 10-110238 also has a problem that the in-plane anisotropy of the r value increases.
[0010]
[Problems to be solved by the invention]
The present invention solves the above-mentioned problems of the prior art, has an excellent deep drawing processability suitable for a lightweight two-piece beverage can, has few ears, and further imparts 10% processing strain and further paints. The purpose is to propose a method for manufacturing a high strength ultra-thin steel plate with a thickness of 0.20 mm or less that can achieve high strength of the can body with high tensile strength of 430 MPa or higher after heat treatment equivalent to baking treatment. To do.
[0011]
[Means for Solving the Problems]
In order to achieve the above-mentioned problems, the present inventors diligently studied the influence of various factors on deep drawing processability, ear generation, and can strength after canning.
As a result, the present inventors have determined that the steel plate strength at the bottom of the can after the processing-baking coating is applied determines the pressure resistance of the two-piece can, and the steel plate is equivalent to a processing strain of 10% -baking coating. If the tensile strength after treatment (heat treatment at 210 ° C x 20min) is 430MPa or more, even if the bottom of the can is flat, during retort treatment (heat treatment at 120 ° C x 90min), or It has been found that the problem of buckling occurring when a positive pressure can filled with nitrogen and under pressure is dropped can be solved. It was found that it is important to optimize the N content to 0.0090 to 0.0140 mass% in the steel composition in order to provide such a steel sheet with such characteristics.
[0012]
Further, the present inventors set the r value to an appropriate value of 1.0 to 1.5 and improve the in-plane anisotropy Δr of the r value to 0 ± in order to improve the deep drawing workability and reduce the generation of ears. It was found that it was necessary to reduce it to 0.3. In order to reduce Δr, it has been found that it is important to optimize hot rolling conditions and cold rolling reduction.
Next, the results of experiments conducted by the inventors will be described.
[0013]
Hot-rolled sheet by hot rolling with 0.045% C-0.21% Mn-0.037% Al-0.0113% N steel material in mass%, heated to 1200 ° C and changing finish rolling exit temperature FDT and coiling temperature CT The hot-rolled sheet was subjected to primary rolling (cold) to form a cold-rolled sheet, and then annealed at 700 ° C. and cooled. Thereafter, 1.5% temper rolling was performed to obtain Δr.
[0014]
FIG. 1 shows the relationship between Δr, FDT, and CT. From FIG. 1, it can be seen that Δr can be in the range of 0 ± 0.3 by setting the FDT to 860 ° C. or higher and CT to 620 ° C. or higher.
FIG. 2 shows the influence of the rolling reduction of primary rolling (cold) on Δr. From FIG. 2, it can be seen that Δr is smaller than −0,3 and close to 0 by setting the rolling reduction of primary rolling (cold) to 90% or less.
[0015]
That is, from these results, the inventors have determined that in order to reduce the strength as much as possible, increase the r value to 1.0 or more, and set Δr to 0 ± 0.3, the finish rolling finish temperature of hot rolling They found that it is important to increase the coiling temperature and lower the rolling reduction of primary rolling.
The present invention has been completed based on the above findings and further studies.
[0016]
That is, the present invention includes a hot rolling process in which a steel material is heated and hot rolled into a hot rolled sheet by rough rolling and finish rolling, and a winding process in which the hot rolled sheet is wound, and the hot rolled sheet A cold rolling to produce a cold rolled sheet, an annealing process to anneal the cold rolled sheet to a cold rolled annealed sheet, and a temper rolling process to temper roll the cold rolled annealed sheet In the manufacturing method of the ultra-thin cold-rolled steel sheet for cans having a sheet thickness of 0.20 mm or less, the composition of the steel material is, by mass%, C: 0.1% or less, N: 0.0090-0.0140%, Si: 0.03% or less, Mn: 0.05 to 0.60%, P: 0.02% or less, S: 0.02% or less, Al: 0.02 to 0.20%, O: 0.01% or less, or further, Group A to Group C Group A: Cu: 0.001 to 0.5%, Ni: 0.01-0.5%, Cr: 0.01-0.5%, Mo: 0.001-
One or more selected from 0.5%,
Group B: Ca: 0.005% or less, Nb: 0.10% or less, Ti: 0.2% or less selected from one or more,
Group C: B: see contains more than one group or two groups of 0.005% or more, a composition comprising the balance Fe and unavoidable impurities, the finish rolling end temperature FDT of the hot rolling step was 860 ° C. or higher, the Continuous annealing in which the coiling temperature CT in the winding process is 620 ° C. to 710 ° C., the cold rolling reduction in the primary rolling process is 90% or less, and the annealing process is less than the Ac 1 transformation point. A plate having an average r value of 1.0 to 1.5, an in-plane anisotropy Δr of r value as small as 0 ± 0.3, and a tensile strength after heat treatment equivalent to a paint baking process of 430 MPa or more This is a method for producing an ultra-thin cold-rolled steel sheet for a high-strength two-piece can with a thickness of 0.20 mm or less. In the present invention, it is preferable that the rolling reduction of the temper rolling is 2% or less.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
First, the reasons for limiting the steel material composition used in the present invention will be described.
The steel material of the present invention is a low carbon aluminum killed steel, and its composition is preferably as follows.
C: 0.1% or less C is an important element that refines the crystal grains and increases the strength of the steel by solid solution strengthening. On the other hand, it forms carbides and decreases the ductility of the steel sheet and, consequently, the workability. Let For this reason, C is limited to 0.1% or less. If the C content is too low, the in-plane anisotropy Δr of the r value becomes large, and it becomes difficult to ensure a tensile strength of 430 MPa or more after aging, so C is preferably 0.015% or more. In order to secure the r value and reduce the in-plane anisotropy Δr of the r value, C is preferably 0.015 to 0.05%. In addition, More preferably, it is 0.03-0.05%.
[0018]
N: 0.0090-0.0140%
N is present in the steel sheet as precipitates such as solute N or AlN, and after imparting 10% processing strain after baking processing equivalent treatment after securing r value and Δr without adversely affecting flange processing and neck processing. Has the effect of increasing the tensile strength. In the present invention, since the strength of the can after molding needs to be kept high, the N content is made 0.0090% or more in order to increase the tensile strength after strain aging. If the content exceeds 0.0140%, surface defects such as bulges due to Ar bubbles and N 2 bubbles remaining in the slab frequently occur. For these reasons, N is set to 0.0090-0.0140%.
[0019]
Si: 0.03% or less
Si is an element that increases the strength of steel by solid solution strengthening, but addition of a large amount causes problems such as deterioration in workability, surface treatment property, and corrosion resistance. For this reason, it is desirable to reduce as much as possible in the present invention, but it is acceptable up to 0.03%.
Mn: 0.05-0.60%
Mn is an effective element for preventing hot cracking due to S, and in order to obtain this effect, it is necessary to contain 0.05% or more. On the other hand, a large amount is uneconomical and tends to deteriorate the corrosion resistance and increase the strength variation. For this reason, in this invention, Mn is limited to 0.05 to 0.60%. In addition, Preferably it is 0.15-0.40%.
[0020]
P: 0.02% or less P significantly hardens steel, deteriorates flange workability and neck workability, and remarkably deteriorates corrosion resistance. For this reason, in the present invention, P is preferably limited to 0.02% or less.
S: 0.02% or less S is an element that exists as an inclusion in steel and lowers the ductility of the steel sheet and further deteriorates the corrosion resistance. In the present invention, S is preferably reduced as much as possible, but is acceptable up to 0.02%. it can. In addition, Preferably it is 0.015% or less.
[0021]
Al: 0.02-0.20%
Al acts as a deoxidizer and is an element necessary for increasing the cleanliness of steel, and it needs to be contained in an amount of 0.02% or more. However, excessive content is not economically preferable, and it suppresses the growth of the recrystallized grain size and lowers the r value. Therefore, the content needs to be 0.20% or less. For this reason, in the present invention, Al is limited to 0.02 to 0.20%. In addition, Preferably, it is 0.03-0.10%.
[0022]
O: 0.01% or less O is present as an oxide in steel and causes reduction in ductility and deterioration in corrosion resistance. Therefore, it is preferable to reduce it as much as possible, but in the present invention, up to 0.01% is acceptable. In particular, in order to obtain a thin steel plate, the content is preferably 0.005% or less.
[0023]
In the present invention, in addition to the above-described composition, the following group A to group C, group A: Cu: 0.001 to 0.5%, Ni: 0.01 to 0.5%, Cr: 0.01 to 0.5%, Mo: 0.00
One or more selected from 1 to 0.5%,
Group B: Ca: 0.005% or less, Nb: 0.10% or less, Ti: 0.2% or less selected from one or more,
Group C: B: One or more of 0.005% or more may be contained.
[0024]
Group A: Cu: 0.001 to 0.5%, Ni: 0.01 to 0.5%, Cr: 0.01 to 0.5%, Mo: 0.001 to 0.5%, one or more selected from the group
Since Cu, Ni, Cr and Mo can increase the strength without deteriorating the ductility of the steel, they can be appropriately selected and contained for adjusting the strength. These elements also have the effect of improving the corrosion resistance of the steel sheet. In order to exert these effects, it is preferable to contain at least 0.001% for Cu and Mo and at least 0.01% for Ni and Cr. However, even if the content exceeds 0.5%, the effect is saturated and the cost is increased. Therefore, the upper limit of the content is preferably 0.5% for both elements. In addition, the effect of these elements is demonstrated similarly even if it adds individually or in combination.
[0025]
Group B: Ca: 0.005% or less, Nb: 0.10% or less, Ti: 0.2% or less selected from one or more,
Ca, Nb and Ti are all elements useful for improving the cleanliness of steel, and can be selected and contained as necessary. In order to obtain the above-described effects, it is preferable to contain 0.002% or more of Ca, 0.001% or more of Nb, and 0.001% or more of Ti. However, an excessive Ca content exceeding 0.005% is not only uneconomical, but the non-metallic inclusions produced have a low melting point and become soft, and are elongated in the rolling process, resulting in poor can manufacturing. Connected. Therefore, Ca is preferably 0.005% or less.
[0026]
If Nb exceeds 0.10%, the recrystallization temperature rises due to the pinning effect of the grain boundaries due to the Nb-based precipitates, the workability of the continuous annealing furnace becomes poor, and the fine grains are reduced. Become. For this reason, it is preferable that Nb content shall be 0.10% or less.
If Ti is contained excessively in excess of 0.20%, sharp and hard precipitates are generated, which deteriorates the corrosion resistance and also causes creases during canning. Therefore, the Ti content is preferably 0.2% or less.
[0027]
Group C: B: 0.005% or less B is an element effective for improving grain boundary embrittlement, and can be contained if necessary. For example, it is effective to contain B in order to obtain good quality even in applications where the can is stored at a low temperature and an embrittlement crack may occur. However, B segregates at the recrystallized grain boundary during the continuous annealing and delays the recrystallization. Therefore, the content is preferably 0.005% or less. In addition, it is preferable that the lower limit of the B content is 0.0001% necessary for exhibiting the effect.
[0028]
The balance other than the above components is Fe and inevitable impurities.
The steel material having the above composition is melted by a generally known melting method to obtain a steel material such as a slab having a high cleanliness by a known casting method such as a continuous casting method.
In the present invention, a steel material is heated and turned into a sheet bar by rough rolling, and a hot rolling process in which the sheet bar is hot rolled by finish rolling, and a winding process for winding the hot rolled sheet to form a coil. A hot-rolled sheet wound around
[0029]
In rough rolling, the heating temperature and rolling conditions are not particularly limited, and it is sufficient that the sheet bar can have a predetermined size and shape. In addition, it is preferable that the heating temperature of a steel raw material shall be 1100-1250 degreeC. When the heating temperature is less than 1100 ° C., the rolling load in the rough rolling increases and it becomes difficult to set the finish rolling end temperature within a predetermined temperature range. On the other hand, when the heating temperature exceeds 1250 ° C., the formation of surface scale becomes remarkable, resulting in large scale loss and economical disadvantage, and a scale that is difficult to remove by finish rolling remains and tends to cause surface defects. Further, the coarsening of crystal grains becomes remarkable.
[0030]
After forming a sheet bar by rough rolling, the sheet bar is finish-rolled to obtain a hot-rolled sheet. The finish rolling finish temperature FDT of finish rolling is set to 860 ° C or higher.
When the FDT is less than 860 ° C., the in-plane anisotropy of the r value increases, and the occurrence of ears becomes prominent during deep drawing. On the other hand, if the FDT is too high, the generation of scale becomes remarkable, and there is a concern that the subsequent steps such as scale removal may be hindered. Therefore, the FDT is preferably 940 ° C. or lower. More preferably, the temperature is 870 to 910 ° C. After the hot rolling process, there is no problem as long as it is adjusted to a predetermined coiling temperature regardless of whether it is ordinary air cooling or water cooling.
[0031]
Further, in the present invention, after being formed into a sheet bar in the rough rolling step, before the finish rolling step, the front end portion of the sheet bar and the rear end portion of the sheet bar preceding the sheet bar are joined, and then finish rolling. can do. By joining the sheet bars in this manner, it is possible to easily prevent the disturbance of the shape in the longitudinal direction, which is a problem particularly in the ultrathin hot-rolled steel sheet as in the present invention, and the yield of products can be improved.
[0032]
Moreover, it is preferable to heat and heat the longitudinal direction edge part of a sheet bar over the full width between rough rolling processes and finish rolling, or to heat and heat the width direction edge part over the full length. The end of the sheet bar in the longitudinal direction or the end in the width direction tends to decrease in temperature, and the yield is improved by heating the temperature of this part to equalize the temperature in the sheet bar. Note that the heating method is preferably an induction heating method.
[0033]
Next, the hot-rolled sheet is wound in a coil shape in the winding process, and the winding temperature CT is set to 620 ° C to 710 ° C.
When CT is less than 620 ° C., the r value decreases, Δr increases, the in-plane anisotropy of the r value increases, and the occurrence of ears during deep drawing becomes significant. On the other hand, when CT exceeds 710 ° C., the crystal grains of the hot-rolled sheet become coarse as the carbides become coarse and coarse, the tensile strength TS decreases, and the desired strength cannot be obtained. For this reason, CT was limited to 620 ° C to 710 ° C. In addition, Preferably it is 630-710 degreeC.
[0034]
The thickness of the hot-rolled plate is determined depending on the thickness of the cold-rolled plate (product plate) as the base plate of the cold-rolled plate, but to make a thin cold-rolled plate with a thickness of 0.20 mm or less, In consideration of reducing the in-plane anisotropy and improving the r value, it is preferably 2 mm or less.
Next, the hot-rolled sheet manufactured by the above-described process is descaled by a conventional method such as hydrochloric acid pickling, and then cold-rolled to form a cold-rolled sheet, and the cold-rolled sheet is annealed and cooled. An annealing process for making a fired annealed sheet and a temper rolling process for temper rolling the cold rolled annealed sheet are sequentially performed.
[0035]
In the primary rolling process, it is sufficient if the desired cold rolled sheet size and shape can be obtained, but in order to reduce Δr, the reduction ratio of primary rolling (cold) is 90% or less, preferably 80% or more. To do. In order to achieve such a cold rolling reduction, it is preferable to reduce the thickness of the hot rolled sheet. When the primary rolling reduction exceeds 90%, the in-plane anisotropy Δr of the r value increases as shown in FIG. On the other hand, if it is less than 80%, in order to make a steel sheet for an ultra-thin can with a thickness of 0.2 mm or less, it is necessary to extremely reduce the thickness of the hot-rolled sheet. % Or more is preferable.
[0036]
Next, the cold rolled sheet is annealed in an annealing process. The annealing process is preferably performed in a continuous annealing furnace. Annealing is performed for imparting formability to the steel sheet, and in the present invention, the annealing temperature is set to a continuous annealing with an Ac 1 transformation point lower than the annealing temperature. If the annealing temperature is equal to or higher than the Ac 1 transformation point, the crystal grains become coarse and the strength cannot be obtained. The annealing temperature is preferably 670 to 720 ° C. from the viewpoint of workability and ensuring strength. It is sufficient that the soaking time at the annealing temperature is 1 s or more in view of operational stability. In addition, the cooling after the annealing step is not particularly limited as the same level of cooling as in the normal continuous annealing.
[0037]
Cold-rolled annealed sheets having passed through the annealing step, temper rolling step Ru is temper rolled by cold rolling at. Temper rolling reduction rate: you 2% or less. In the temper rolling in the present invention, SR (single cold-reducing) with a rolling reduction of 2% or less is used for the purpose of adjusting the shape of a generally known steel sheet, introducing movable dislocations, adjusting the surface roughness, and the like. If the rolling reduction exceeds 2%, the steel sheet strength increases excessively due to work hardening, and the workability deteriorates.
[0038]
The cold-rolled annealed plate thus manufactured may be used as a product plate (coil) after the rust prevention treatment. Alternatively, pickling treatment may be performed, and surface treatment such as tin plating, chromium plating, nickel plating, or the like may be performed on at least one surface to form a product plate. The product plate is preferably further oiled. Further, as the oil coating agent, DOS (Di-octyl sebacate) and ATBC (Acetyl tri-butyl citrate) are preferable.
[0039]
The ultra-thin cold-rolled steel sheet for cans manufactured by the above-described manufacturing method is a steel sheet having a small in-plane anisotropy having an average r value: 1.0 to 1.5 and Δr: 0 ± 0.3. If the average r value is less than 1.0, there is a problem that the deep drawing processability deteriorates and it is difficult to obtain the required can height. On the other hand, if the average r value exceeds 1.5, the elongation in the can height direction is large. Become.
The average r value and Δr are the r value (r L , r D , r C ) in the rolling direction (L direction), 45 ° from the rolling direction (D direction), and perpendicular to the rolling direction (C direction), respectively. And the average r value = (r L + r C + 2r D ) / 4 and Δr = (r L + r C −2r D ) / 4.
[0040]
Furthermore, the ultra-thin cold-rolled steel sheet for cans produced by the production method of the present invention has a tempering degree after production of about T3 to T4, and has an appropriate average r value and a small Δr as described above. Can-making ability is good. Further, the tensile strength after applying 10% processing strain and heat treatment at 210 ° C. for 20 minutes is 430 MPa or more. By having such properties, the can body has a high pressure resistance and can achieve a light weight steel sheet for cans.
[0041]
【Example】
Steel having the composition shown in Table 1 was melted in a converter and then used as a rolling material (slab) with a vertical bending type continuous casting machine. Subsequently, these rolled materials were hot rolled under the conditions shown in Table 2 to obtain hot rolled sheets. In addition, sheet bar joining and sheet bar heating were performed on one part of the steel plate. After that, these hot-rolled sheets were descaled by pickling, further cold-rolled under the conditions shown in Table 2, and then annealed or further temper-rolled under the conditions shown in Table 2 to obtain an ultra-thin cold-rolled steel sheet. It was.
[0042]
About the obtained ultra-thin cold-rolled steel sheet, the hardness test and the measurement of r value were implemented. In addition, for the evaluation of the pressure strength of the bottom of the can, it was rolled as described above to give a strain of 10%, and further subjected to an aging treatment of 210 ° C. × 20 minutes corresponding to a paint baking process, and the tensile strength was determined by a tensile test. evaluated.
(I) Hardness test Regarding these cold-rolled steel sheets, the tempering degree was determined from the HR30T hardness in accordance with the provisions of JIS G 3303.
(Ii) JIS No. 5 tensile test specimens were sampled in the rolling direction (L) from the central part in the measurement width direction of the r value, 45 ° direction (D) from the rolling direction, and perpendicular direction (C) from the rolling direction, A tensile test was performed at a strain rate of 40% / min, and an r value was obtained from the ratio of logarithmic strains in the width direction and the plate thickness direction by the plastic strain method (JIS G 3135-1986, 18p). The average r value was calculated as follows: average r value = (r L + r C + 2r D ) / 4, and Δr was calculated by Δr = (r L + r C −2r D ) / 2.
(Iii) Tensile property test after strain aging Samples were taken from the center in the width direction of these cold-rolled steel sheets in the rolling direction and in the direction perpendicular to the rolling direction, and after adding a strain with a rolling reduction of 10% by cold rolling, 210 A heat treatment equivalent to a baking process at 20 ° C. was performed, and then a tensile test was performed to measure the tensile strength TS to obtain an average value in two directions.
[0043]
These results are shown in Table 3.
[0044]
[Table 1]
Figure 0004810766
[0045]
[Table 2]
Figure 0004810766
[0046]
[Table 3]
Figure 0004810766
[0047]
In the present invention example, the r value is as high as 1.0 or more, Δr is in the range of ± 0.3, the r value is small, the workability is excellent, and the strain age hardening property is large, and 10% preform-paint After the heat treatment equivalent to the baking treatment, the steel sheet sufficiently satisfies the tensile strength TS: 430 MPa or more. In a comparative example outside the scope of the present invention, Δr is large and the anisotropy is strong, or the steel sheet has insufficient strain age hardening characteristics. In the present invention example, there was no problem of the occurrence of ears during can making, and the pressure resistance at the bottom of the can was also increased. In addition, the workability of the neck and flange was good because no defects were observed despite the fact that it was a high-strength thin-walled material.
[0048]
In addition, after the electrotin plating process was performed using the steel plates of the present invention examples, 1st cup molding, DI molding, and four-stage neck molding were performed to obtain a 250 g stretch draw / ioning molded can having a flat bottom shape. As a result, all of the steel sheets of the present invention have no problems with cup formability, ironing ability, and bottom formability, and even when subjected to multi-stage neck and flange processing, neck wrinkles and flange cracks do not occur, and the plate thickness is Despite being thin, it was found that it has a characteristic that can strength can be secured.
[0049]
【The invention's effect】
According to the present invention, an ultrathin steel sheet for a two-piece can suitable for a lightweight beverage can, having few ears, and capable of securing the pressure resistance of a desired can body can be manufactured at a low cost, and has a remarkable industrial effect. Play.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between Δr of a cold-rolled steel sheet, hot finish rolling end temperature FDT, and coiling temperature CT.
FIG. 2 is a graph showing the effect of rolling reduction of primary rolling (cold) on Δr of cold-rolled steel sheet.

Claims (2)

鋼素材を、加熱し、粗圧延および仕上圧延により熱延板とする熱間圧延工程と、該熱延板を巻き取る巻取り工程とを有し、さらに該熱延板を冷間圧延し冷延板とする1次圧延工程と、該冷延板を焼鈍し冷延焼鈍板とする焼鈍工程と、該冷延焼鈍板を調質圧延する調質圧延工程とを有する板厚0.20mm以下の缶用極薄冷延鋼板の製造方法において、
前記鋼素材の組成を、質量%で、
C:0.1 %以下、 N:0.0090〜0.0140%、
Si:0.03%以下、 Mn:0.05〜0.60%、
P:0.02%以下、 S:0.02%以下、
Al:0.02〜0.20%、 O:0.01%以下
を含み、残部Feおよび不可避的不純物からなる組成とし、
前記熱間圧延工程の仕上圧延終了温度FDTを860 ℃以上とし、前記巻取り工程の巻取温度CTを620 ℃〜710 ℃とし、前記1次圧延工程の冷間圧延圧下率を90%以下とし、
前記焼鈍工程を、焼鈍温度をAc1変態点未満とする連続焼鈍とし、
前記調質圧延の圧下率を2%以下とすることを特徴とする、平均r値が1.0 〜1.5 でありΔrが0±0.3 である板厚0.20mm以下の高強度2ピース缶用極薄冷延鋼板の製造方法。
The steel material has a hot rolling step in which the steel material is heated to obtain a hot rolled plate by rough rolling and finish rolling, and a winding step in which the hot rolled plate is wound, and the hot rolled plate is cold rolled and cooled. A sheet thickness of 0.20 mm or less, including a primary rolling process for forming a rolled sheet, an annealing process for annealing the cold rolled sheet to form a cold rolled annealed sheet, and a temper rolling process for temper rolling the cold rolled annealed sheet In the manufacturing method of ultra-thin cold-rolled steel sheet for cans,
The composition of the steel material in mass%,
C: 0.1% or less, N: 0.0090-0.0140%,
Si: 0.03% or less, Mn: 0.05 to 0.60%,
P: 0.02% or less, S: 0.02% or less,
Al: 0.02~0.20%, O: see contains 0.01% or less, a composition comprising the balance Fe and unavoidable impurities,
The finish rolling finish temperature FDT of the hot rolling process is set to 860 ° C. or more, the winding temperature CT of the winding process is set to 620 ° C. to 710 ° C., and the cold rolling reduction ratio of the primary rolling process is set to 90% or less. ,
The annealing step is continuous annealing with the annealing temperature less than the Ac 1 transformation point ,
Ultra-thin cooling for high-strength two-piece cans with an average r value of 1.0 to 1.5 and Δr of 0 ± 0.3, with a sheet thickness of 0.20 mm or less, characterized in that the rolling reduction of the temper rolling is 2% or less. A method for producing rolled steel sheets.
前記組成に加えてさらに、質量%で、下記A群〜C群のうちの1群または2群以上を有することを特徴とする請求項1に記載の2ピース缶用極薄冷延鋼板の製造方法。

A群:Cu:0.001 〜 0.5%、Ni:0.01〜 0.5%、Cr:0.01〜 0.5%、Mo:0.001 〜
0.5%のうちから選ばれた1種または2種以上、
B群:Ca:0.005 %以下、Nb:0.10%以下、Ti:0.20%以下のうちから選ばれた1種
または2種以上、
C群:B:0.005 %以上
In addition to the said composition, it has 1 group or 2 groups or more of following A group-C group by mass%, The manufacture of the ultra-thin cold-rolled steel plate for 2 piece cans of Claim 1 characterized by the above-mentioned. Method.
Group A: Cu: 0.001 to 0.5%, Ni: 0.01 to 0.5%, Cr: 0.01 to 0.5%, Mo: 0.001 to
One or more selected from 0.5%,
Group B: Ca: 0.005% or less, Nb: 0.10% or less, Ti: 0.2% or less selected from one or more,
Group C: B: 0.005% or more
JP2001204410A 2001-07-05 2001-07-05 Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can Expired - Fee Related JP4810766B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001204410A JP4810766B2 (en) 2001-07-05 2001-07-05 Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001204410A JP4810766B2 (en) 2001-07-05 2001-07-05 Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can

Publications (2)

Publication Number Publication Date
JP2003013146A JP2003013146A (en) 2003-01-15
JP4810766B2 true JP4810766B2 (en) 2011-11-09

Family

ID=19040886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001204410A Expired - Fee Related JP4810766B2 (en) 2001-07-05 2001-07-05 Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can

Country Status (1)

Country Link
JP (1) JP4810766B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY178386A (en) 2016-02-29 2020-10-11 Jfe Steel Corp Steel sheet for can and method for manufacturing the same
KR102268800B1 (en) * 2017-03-27 2021-06-23 제이에프이 스틸 가부시키가이샤 Steel plate for two-piece can and manufacturing method thereof
WO2018180403A1 (en) 2017-03-27 2018-10-04 Jfeスチール株式会社 Steel sheet for two-piece can and production method therefor
KR102549938B1 (en) * 2019-03-29 2023-06-30 제이에프이 스틸 가부시키가이샤 Steel sheet for cans and its manufacturing method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6042952A (en) * 1996-03-15 2000-03-28 Kawasaki Steel Corporation Extremely-thin steel sheets and method of producing the same
JPH11315343A (en) * 1998-03-06 1999-11-16 Kawasaki Steel Corp Slit steel strip for welded can, its manufacture, and cold rolled steel strip coil for slit steel strip

Also Published As

Publication number Publication date
JP2003013146A (en) 2003-01-15

Similar Documents

Publication Publication Date Title
JP5794004B2 (en) Steel sheet for high strength can excellent in flange workability and manufacturing method thereof
WO2010113333A1 (en) Steel sheet for high‑strength container and manufacturing method thereof
TWI643964B (en) Two-piece can steel plate and manufacturing method thereof
JP4788030B2 (en) Steel plate for lightweight two-piece can and manufacturing method thereof
JPH10280089A (en) Steel sheet for two-piece modified can, two-piece modified can body, and their manufacture
JP6288331B2 (en) Steel plate for can and manufacturing method thereof
JP3826442B2 (en) Manufacturing method of steel plate for can making with good workability and no rough skin
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
JP4810766B2 (en) Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can
JP2000017387A (en) Steel sheet for can, excellent in shape maintainability, and its production
JP2005320633A (en) Steel sheet for two-piece contoured can, and manufacturing method therefor
JP4677914B2 (en) Steel plate for soft can and method for producing the same
JP3108330B2 (en) Manufacturing method of steel sheet for high strength cans
JPH04272143A (en) Manufacture of cold rolled steel sheet for deep drawing excellent in dent resistance
JP3700280B2 (en) Manufacturing method of steel plate for cans
JP3682683B2 (en) Method for producing steel plate for two-piece can with excellent in-plane anisotropic uniformity in coil
JP3718865B2 (en) Manufacturing method of lightweight can with excellent bottom pressure strength
JP3707260B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
KR101996353B1 (en) Steel sheet for can lid and method for producing the same
JP6164273B2 (en) Steel plate for cans and method for producing steel plate for cans
JPH05247669A (en) Manufacture of high strength steel sheet for thinned and deep-drawn can
JPH08269568A (en) Production of steel sheet for can making excellent in flange formability
JP5803510B2 (en) High-strength, high-formability steel plate for cans and method for producing the same
CN113950536B (en) Steel sheet for can and method for producing same
JP2816358B2 (en) Manufacturing method of steel sheet for DI can

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110726

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110808

R150 Certificate of patent or registration of utility model

Ref document number: 4810766

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140902

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees