JP3700280B2 - Manufacturing method of steel plate for cans - Google Patents

Manufacturing method of steel plate for cans Download PDF

Info

Publication number
JP3700280B2
JP3700280B2 JP24839196A JP24839196A JP3700280B2 JP 3700280 B2 JP3700280 B2 JP 3700280B2 JP 24839196 A JP24839196 A JP 24839196A JP 24839196 A JP24839196 A JP 24839196A JP 3700280 B2 JP3700280 B2 JP 3700280B2
Authority
JP
Japan
Prior art keywords
rolling
less
steel
cans
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP24839196A
Other languages
Japanese (ja)
Other versions
JPH1088233A (en
Inventor
金晴 奥田
章男 登坂
古君  修
誠 荒谷
英雄 久々湊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP24839196A priority Critical patent/JP3700280B2/en
Publication of JPH1088233A publication Critical patent/JPH1088233A/en
Application granted granted Critical
Publication of JP3700280B2 publication Critical patent/JP3700280B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、極薄ぶりき原板やティンフリースチールなどの缶用鋼板の製造方法に関し、特にその加工性および強度特性バランスに優れるのは言うまでもなく、肌あれ等の缶用特性に優れ、しかも従来に比べて極薄で広幅の鋼板の製造を可能ならしめたものである。
【0002】
【従来の技術】
飲料缶、18リットル缶およびペール缶などの容器缶は、その製法(工程)から2ピース缶と3ピース缶に大別できる。
2ピース缶は、すずめっき、クロムめっき、化成処理、塗油などの処理を施した表面処理鋼板に、深絞り加工、DWI加工、DRD加工などの加工を施して、缶底と缶胴を一体成形し、これに蓋を取り付けた2部品からなる缶である。
また、3ピース缶は、表面処理鋼板を円筒状または角筒状に曲げて端部同士を接合して、缶胴を成形したのち、これに天蓋と底蓋を取り付けた3部品からなる缶である。
【0003】
これらの缶は、いずれも缶コストに占める素材コストの割合が高いため、素材鋼板に対するコスト低減への要求が強い。そのため、缶用鋼板の製造を、非効率的で材料の歩留りや表面品質が劣る箱焼鈍で行うのではなく、生産効率が高く、しかも歩留りや表面品質に優れた連続焼鈍で行うことが望まれる。
かような連続焼鈍技術としては、例えば、特公昭63−102113号公報に開示のような技術があり、さらにそれに改善を加えた技術も開発され、ロックウェル硬さ(HR30T)の値で表される調質度でT2(50−56)程度の軟質な缶用鋼板が得られるようになった。
さらに軟質な鋼板を連続焼鈍で製造する技術の開発も行われ、例えば特公平1-52452号公報のように、極低炭素鋼板を適用すると共に、焼鈍後の加工硬化との組み合わせで種々の硬さの缶用鋼板を製造する技術も開発されている。
【0004】
しかしながら、この種の缶用鋼板においても、より一層のコストダウンが要求されており、これに応えるためには新たな製造プロセスならびに新たな素材を開発する必要がある。
コストダウンの1手法としては、使用する鋼板の板厚の減少と上蓋の縮径(ネックイン)成形の強化が考えられる。しかしながら、板厚が減少しても缶強度は維持しなければならず、そのためには素材は高強度とせざるを得ないことから、要求される材料特性はますます厳しいものとなっており、それに耐え得る良好な加工性(例えば深絞り性)を有する缶用鋼板の製造技術が求められている。
【0005】
例えば、特開平6−306536号公報には、極低炭素鋼板を用いて強度と成形性の両者を両立させる技術が提案されている。
しかしながら、加工性に有利な極低炭素鋼板は、低炭素鋼板と比べると、粒径が大きくなり易く、缶成形後に肌あれなどの問題を生じるため、極低炭素鋼板の組織が均一かつ微細で、しかも極薄で広幅の表面処理用原板の製造技術の開発が望まれている。
【0006】
【発明が解決しようとする課題】
本発明の目的は、厳しい加工条件下であっても良好な加工性を有し、缶用鋼板としての必要特性を維持しつつ、従来とは異なるより合理的な製造方法によって、より一層の強度と加工性の向上、さらには極薄で広幅の鋼板の製造を可能ならしめようとするものである。
【0007】
【課題を解決するための手段】
さて発明者らは、上記の目的を達成すべく、鋼組成および製造条件について綿密な検討を行うと共に、缶用鋼板の必要特性についてそれを支配する因子に関し冶金学的な検討を行った結果、以下に述べる知見を得た。
(1) 従来の缶用鋼板では、自動車等に用いられる深絞り用鋼板と異なり、必ずしも高いr値は必須条件ではないとされていた。しかしながら、最近では、素材板厚の減少に伴い、缶体強度を満足させるために高強度化に向かっているため、均一延性の低下が余儀なくされている。そのため、延性を補うべく、特に2ピース缶用鋼板では、高いr値が要求されるようになってきた。高r値を得るためには、炭素量の低減が不可欠であり、低炭素鋼板では得られない高r値が極低炭素鋼板で期待できる。
【0008】
(2) r値の面内異方性(Δr)は小さい方が望ましい。というのは、絞り用鋼板において歩留りの向上につながるだけでなく、DRD缶のように、塗装印刷したあとに絞り加工を行う缶種では、異方性が大きいと印刷に歪みが生じてしまうからである。また、ネックイン加工性について検討を行ったところ、異方性が大きいと残留応力が発生し、ネックしわを発生する要因となることが判明した。最近の素材板厚の減少、高強度化は、一次冷間圧下率および焼純後の2次圧延率を高くしなけれはならず、どうしてもΔrを負の値で大きくさせる傾向にあるので、そのような条件下でも異方性の小さい鋼板が求められている。異方性の改善には、圧延中の結晶粒径や集合組織を制御する必要があり、特にγ域での材料特性の変化をうまく制御する必要がある。
【0009】
(3) 変形の均一化の面では微細な組織が望ましい。これには、肌あれなどが関係し、特に結晶粒径を細かくする手法が求められている。ただし、上記したような高r値が達成可能な極低炭素鋼板においては粒径が大きくなる傾向がある。
熱延板の結晶粒径は、鋼組成による粒成長性の他に、熱延条件の適正化による結晶粒の制抑、析出物の存在状態を制御することよる粒成長性の制御がポイントとなってくる。
【0010】
この発明は、製造工程の中でも製品の特性に大きな影響を与える重要な熱間圧延工程ではあるが、従来あまり注目されていなかった、鋼の変態、再結晶過程での圧下条件を詳細に検討した結果、開発されたものである。
【0011】
すなわち、本発明の要旨構成は次のとおりである。
1) C:0.0005〜0.0150wt%、
Si:0.2 wt%以下、
Mn:0.05〜0.6 wt%、
P:0.02wt%以下、
S:0.02wt%以下、
Al:0.15wt%以下および
N:0.020 wt%以下
を含み、残部はFeおよび不可避不純物の組成になる鋼を、溶製した後、スラブとし、ついでスラブ加熱後、熱間粗圧延工程において、総圧下率:80%以上でかつ最終パス圧下率:20%以上の圧延を施し、ついで得られたシートバーを、仕上げ圧延前に、先行するシートバーと接合したのち、熱間仕上げ圧延工程において、950 ℃以上の温度域で総圧下率:70%以上の圧延を施し、ついでAr3〜950 ℃の温度域で総圧下率:55%以上の圧延を施して、最終仕上げ温度:Ar3−50℃以上で熱間圧延を終了し、ついで 550〜750 ℃の温度範囲で巻き取り、スケール除去後、冷間圧延、再結晶焼鈍を施したのち、圧下率:30%以下のスキンパスまたは二次圧延を施すことを特徽とする、缶用鋼板の製造方法。
【0012】
2)上記1において、鋼組成がさらに、
Nb:0.003 〜0.020 wt%、
Ti:0.003 〜0.020 wt%および
B:0.0002〜0.0020wt%
のうちから選んだ1種または2撞以上を含む組成になることを特徽とする、缶用鋼板の製造方法。
【0013】
3)上記1または2において、鋼組成がさらに、
Cu:0.5 wt%以下、
Ni:0.5 wt%以下、
Cr:0.5 wt%以下および
Mo:0.2 wt%以下
のうちから選んだ1種または2撞以上を含む組成になることを特徽とする、缶用鋼板の製造方法。
【0014】
4)上記1,2または3において、得られる鋼板が、板厚:0.25〜0.05mm、板幅:1200〜900mm、板幅/板厚<20000の要件を満足する、材質が均一な極薄・広幅材であることを特徴とする、缶用鋼板の製造方法。ここで、「材質が均一」とは、幅端より20mmの位置から反対側の幅端より20mmの位置までの領域において、HR30Tの変動値が5%以内にあることと定義する。
5)上記1,2,3または4において、熱間粗圧延で得られたシートバーを仕上げ圧延する前に、先行するシートバーと接合するとともに、シートバーの幅縁部および長さ端部における温度を均一にするための処理を施すことが望ましい。
【0015】
【発明の実施の形態】
強度と加工性のバランスを向上させるためには、最終的なめっき原板の組織を均一かつ微細にする必要がある。このためには、熱延段階で均一微細な組織とすることが必須条件となる。というのは、熱延段階で、粗粒または混粒組織であると、いくら冷延条件(例えば冷延圧下率の増加)、焼純条件(焼鈍温度の低下)に工夫を加えても、熱延組織の影響を受けてしまい、たとえ強度が高くても、加工性に劣る鋼板しか得られない。
また、本発明の成分系である極低炭素鋼板は、従来の熱延法では、低炭素鋼板に比べると、粒径が粗大となったり、加工組織が残存することによる焼鈍後の集合組織に悪影響を及ぼすことが稀ではなかった。
この理由は、変態点が高いことや、粒成長性の違いが考えられる。
【0016】
本発明は、成分を適正に制卸した鋼を用いると同時に、熱間圧延工程の加工熱処理条件を最適化することにより、冷延、焼純後の組織を均一微細化することを可能にしたものである。
特に、本発明は、熱延条件のなかでも、高温γ域(再結晶域)および低温γ域(未再結晶域)での加工歪量を適正化するという、従来あまり注目されていなかった制御法を用いることにより、上記の目標を達成したものである。
【0017】
以下、本発明において鋼板の成分組成および製造条件を上記の範囲に限定した理由について説明する。
まず、本発明の主たる条件である熱延条件についての限定理由を述べる。
(1) スラブ加熱温度
スラブ加熱温度は、高すぎると析出物が細かくなり、熱延板の粒径を細かくするため、硬質化し易いだけでなく、局部変形能を低下させるので好ましくない。従って、1250℃以下として、析出物を粗大化させ、成形性と軟質化を両立させることが望ましい。
【0018】
(2) 熱間圧延における圧下率の配分
この条件が、本発明のなかでも特に重要なパラメータであり、これを制御することによって均一で微細な組織とすることが可能となる。
粗圧延工程では、総圧下率:80%以上で、その内最終パス圧下率:20%以上の圧下を行う。さらに、これに続く仕上げ圧延工程では、 950℃以上の温度域で総圧下率:70%以上の圧延を施し、ついでAr3〜950 ℃の温度域で総圧下率:55%以上の圧下を行う必要がある。
【0019】
以下、それぞれについての作用および限定理由を述べる。
(a) 粗圧延工程において、総圧下率:80%以上でかつ、最終パス圧下率:20%以上の圧下を行うこと
特に重要な工程は、後述する(b), (c)であるが、仕上げ圧延に入るまでに、ある程度粒径を揃えておくためには、粗圧延での加工歪み量と、再結晶を伴うある程度の加工歪み量が必要である。また、本鋼板は、缶用鋼板に適用されるため、最終製品が、自動車、家電製品と比較して、非常に薄いことが特徴である。このため、粗圧延の段階である程度薄くしておかないと、仕上げ圧延機の許容量をオーバーしてしまう可能性がある。これらを考慮して、トータルの圧下量の下限を80%に定めた。
また、その内、最終パスの圧下量が20%に満たないと、仕上げ圧延機に入る段階で十分に整粒化されない(表層から中心部にいたる組織の不均一性)ことから、最終パスの圧下量は20%以上とした。
【0020】
(b) 仕上げ圧延工程において、 950℃以上の温度域での総圧下率を70%以上とすること
この温度域は、γ域でしかも、圧延の歪により充分再結晶できる領域であり、圧延歪→再結晶→圧延歪→再結晶を繰り返して、粒径が微細となる温度域といえる。とはいえ、圧下率が70%に満たないと、かような細粒化が十分に進行しないだけでなく、圧延歪の不足により、均一に再結晶せず、部分的に粒径の大きな領域が生じるので、 950℃以上の温度域での総圧下率は70%以上とすることが肝要である。
【0021】
(c) Ar3〜950 ℃の温度域での総圧下率を55%以上とすること
この温度域は、上記した(b) と同じγ域ではあるが、
1) 温度が低くなることにより元素の拡散現象が遅れること
2) 析出物によるピン止め効果
3) さらには固溶元素による再結晶抑制効果
が重なって、再結晶が十分に行い難い領域である。
従来の手法においては、この領域を他の温度域、とくに上記の再結晶γ域と区別していなかったため、成分によっては、加工性に望ましくない集合組織となったり、混粒となり、均一な組織に制御することが非常に困難であった。
実際、この領域の圧延率がトータルで55%に満たないと、まったく再結晶しないで加工性に悪影響を及ぼす集合組織を残したり、一部しか再結晶せず、混粒になるのが避けられなかった。
この点、圧下率を55%以上とすれば、Nbなどが入って再結晶が非常に遅れた場合でも、導入歪により、変態の核を均一微細に析出させることができる。
以上の理由により、Ar3〜950 ℃の温度域での総圧下率は55%以上の範囲に限定した。
【0022】
(3) 最終仕上げ温度
熱間仕上げ圧延は、Ar3−50℃以上の温度で終了する必要があり、この要件を満足させることによって、熱延板の組織、粒径を均一微細にすることができる。
熱延終了温度が、Ar3−50℃に満たないと、巻き取り温度によっては加工組織が残存して、冷間圧延性を悪化させるだけでなく、加工性に悪影響を及ぼす再結晶集合組織となり、また加工歪がなくとも組織が粗大となって強度一加工性バランスが悪化するので好ましくない。
【0023】
(4) 巻き取り温度
巻き取り温度が、 750℃を超えるとスケール厚みが著しく増大して、酸洗時の脱スケール性が低下し、一方 550℃未満で巻き取ると、析出物が充分に析出せず、再結晶集合組織に悪影響が生じるので、巻き取り温度は 550〜750 ℃の範囲に限定した。
【0024】
(5) 連続圧延(エンドレス圧延)
従来、製造が困難とされていた極薄で広幅の鋼板を製造するためには、薄くしかも広幅の熱延鋼帯を製造する必要がある。このためには、粗圧延後、シートバーを仕上げ圧延に先立って巻き取り、先行するシートバーと接合し、好ましくはエッジヒーター等でシートバーの幅縁部および長さ端部の温度を均一にすることが極めて有用なので、本発明ではかかる連続圧延を行うものとした。
【0025】
次に、鋼板の成分組成についての限定理由を述べる。
C:0.0005〜0.0150wt%
C含有量が高くなると、結晶粒径が細かくなり、調質度の高いものが得られるが、0.0150wt%を超えると、加工性の低下を招く。また時効劣化の面からもC量は0.0150wt%以下(望ましくは0.0100wt%未満)にする必要がある。
一方、成形性の面からは、C量は低い方が望ましいが、結晶粒径が粗大になること、および現在の製鋼技術レベルからCの下限は0.0005wt%に定めた。
【0026】
Si:0.2 wt%以下
Siは、鋼板の表面性状を劣化させる元素であり、添加量が多いと、表面処理鋼板として望ましくないだけでなく、鋼を硬化させ、熱間圧延を困難にし、しかも最終製品としての鋼を硬化させる。この観点からは、Siは 0.2wt%以下とする必要がある。なお、特に表面性状の要求が厳格な用途では 0.050wt%以下とすることが望ましい。
【0027】
Mn:0.05〜0.6 wt%
Mn含有量が、0.05wt%に満たないと、S含有量を低下させた場合でも、いわゆる熱間脆性を回避することが難しく、表面割れなどの問題が生じ、一方 0.6wt%を超えると、変態点が低下し過ぎて、好ましい熱延板を得ることが難しくなるので、Mn量は0.05〜0.6 wt%の範囲に限定した。
【0028】
P:0.02wt%以下
P含有量の低減により、耐食性の改善効果を狙えるが、過度の低減は、製造コストの増加につながるので、これらの兼ね合からPは0.02wt%以下で含有させるものとした。なお、加工性を顕著に改善するためには、0.010 wt%以下とするのが好ましい。
【0029】
S:0.02wt%以下
S含有量が多くなると、MnS等の介在物が増加し、伸びフランジ性に代表される局部延性を低下させる原因となり、また含有量を従来の鋼板よりもさらに低減することによって全伸びが著しく改善される。そこで、S含有量は0.02wt%以下に制限した。なお、加工性を顕著に改善するためには、0.010 wt%以下にすることが好ましい。
【0030】
sol.Al:0.15wt%以下
sol.Alは、脱酸に必要な元素であるが、0.15wt%を超えると脱酸効果が飽和するだけでなく、介在物が発生し、成形性に悪影響を及ぼす。このため、sol.Al含有量は0.15wt%以下に限定した。なお、安定した製造条件を確保するためには、0.030 〜0.10wt%の範囲が好ましい。
【0031】
N:0.020 wt%以下
Nは、析出物を形成し伸びを低下させる原因となる。一方、固溶状態で残存させた場合、鋼を適度に硬質化させ、強度と加工性のバランスを向上させることが可能である。ただし、0.020 wt%を超えると伸びを著しく低下させるだけでなく、スラブ割れの原因となることから、0.020 wt%以下に限定した。なお、強度以上に加工性を重視する場合には、0.010 wt%以下とすることが好ましい。
【0032】
以上、必須成分について説明したが、本発明ではさらに、次に述べるような元素も適宜含有させることができる。
Nb:0.003 〜0.020 wt%
Nbは、炭素の固着により、時効性の低減、鋼の軟質化に有効に寄与するだけでなく、熱間圧延時にγ領域にて再結晶を適度に抑制し、微細な組織とする点でも有用な元素である。しかしながら、含有量が 0.020wt%を超えると、熱延板に不均一な組織をもたらすばかりでなく、熱延時における負荷の増大を招き、一方、0.003 wt%未満ではその添加効果に乏しいので、Nbは 0.003〜0.020 wt%の範囲で添加するものとした。なお、加工性を重視する場合には、 0.003〜0.015 wt%の範囲とすることが望ましい。
【0033】
Ti:0.003 〜0.020 wt%
Tiは、、Nbと同様の効果があり、Nbとの複合添加により、成形性を向上させることができる。しかしながら、 0.020wt%を超えて添加してもその効果は飽和に達し、コストの増加を招くだけであり、一方 0.003wt%に満たないとその添加効果に乏しいので、Tiは 0.003〜0.020 wt%の範囲で添加するものとした。
【0034】
B:0.0002〜0.0020wt%
Bは、熱延条件と併せて熱延板の組織の微細化に有用な元素である。また、2次加工脆性を防止させる役目も果たす。しかしながら、過剰な添加は、熱間圧延時にオーステナイトの再結晶を遅らせ、圧延時の負荷を大きくするだけでなく、焼鈍材の材質、特に伸びを劣化させるので、Bは0.0002〜0.0020wt%の範囲で添加するものとした。
【0035】
Cu:0.5 wt%以下、Ni:0.5 wt%以下、Cr:0.5 wt%以下、Mo:0.2 wt%以下
Cu, Ni, CrおよびMoはいずれも、Mnと同様、固溶強化元素であり、変態点を低下させるので組織の微細化に有用な元素である。しかしながら、あまり過剰に添加すると、鋼のコストアツプのみならず、熱延板の硬質化による冷間圧延の負荷の増大を伴うので、上限を 0.5wt%、とくにMoについてはコストを考慮して0.2 wt%とした。
【0036】
次に、熱間圧延工程以外の製造条件について述べる。
(a) 酸洗後の冷間圧延条件
冷間圧延は、70〜90%の圧下率で行うことが望ましい。というのは、本発明鋼は、低減したとはいえ、それでも熱延板の粒径はかなり大きいため、圧下率が70%に満たないと再結晶の駆動力が少なくなって、焼鈍後、結晶粒が粗大となり易く、一方90%を超えると異方性の劣化を招くからである。
【0037】
(b) 冷間圧延後の焼鈍およびスキンパス、二次圧延条件
冷延圧延後の焼純は、生産性の面から、連続焼鈍で、再結晶以上の温度で行うことが望ましい。
その後、目的の調質度に調整するため、また耐ストレッチャーストレインの観点から、スキンパスまたは二次圧延を施す必要がある。その時と圧下率は、30%以下とする必要がある。というのは、これ以上の圧下率では、高強度になり過ぎて、加工性と強のバランスが維持できなくなるだけでなく、面内異方性が悪化するからである。
【0038】
上記した成分組成および製造条件とすることにより、強度および加工性に優れるだけでなく、板厚:0.25〜0.05mm、板幅:1200〜900 mm、板幅/板厚<20000の関係を満足する、極薄で広幅の鋼板を安定して得ることができる。かようなサイズの鋼板は、従来の製造法では望み得なかった極薄・広幅の鋼板である。
【0039】
【実鹿例】
実施例1
表1に示す成分組成になる鋼を溶製し、供試材とした。
まず、表1の鋼No.1, 11を用い、表2に示す条件で熱間圧延を行い、ついで酸洗後、同表に示す圧下率で冷間圧延、再結晶焼鈍を施したのち、表3に示す条件で二次圧延を施した。なお、いずれの供試材も仕上げ圧延に先立って先行するシートバーの後端部に接合しエンドレス圧延を行い、エッジヒーターによる幅縁部の均熱化も行った。
かくして得られた各鋼板の結晶粒径(G.S.N.)、板厚方向での組織の均一性、ロックウェル硬さ、r値、Δr値およびフランジ成形性について調べた結果を表3に併記する。
なお、ロックウェル硬さのスケールはHR30Tとした。また、r値はJISに定める弾性率の異方性により評価した。さらに、フランジ成形性は、通常の条件で#25相当のすずめっきを行い、これをロールフォーミング、高速シーム溶接で3P缶の缶胴部相当に成形し、これにネッキング、伸びフランジ加工を施したときの、肌あれ、割れ発生の有無で評価した。
【0040】
【表1】

Figure 0003700280
【0041】
【表2】
Figure 0003700280
【0042】
【表3】
Figure 0003700280
【0043】
表3から明らかなように、本発明に従い、粗圧延工程で総圧下率:80%以上、その内最終パス圧下率:20%以上の圧延を施し、ついで仕上げ圧延工程において、950℃以上の温度域で総圧下率:70%以上の圧延を施し、さらにAr3〜950℃の温度域で総圧下率:55%以上の圧延を施して、最終仕上げ温度がAr3−50℃以上となるように熱間圧延を終了し、ついで 550〜750℃の温度範囲で巻き取ることにより、均一で微細な、加工性と強度バランスに優れ、しかも極薄で広幅(900〜1200mm、板幅/板厚< 20000)の鋼板を製造することができた。なお、本発明による鋼板では、幅端から20mm以内の幅縁部を除く領域における、HR30Tの変動値が5%以下にあり均一な材質を示した。
【0044】
また、図1には、仕上げ圧延工程における 950℃以上での圧下率と最終製品の粒度番号との関係を示す。
用いた素材は鋼No.11 で、製造条件は表2,3の条件Dと同じである。
同図に示したとおり、950 ℃以上の温度域で総圧下量:70%以上の圧延を行うことにより、最終段階における組織が微細となるため、その段階での再結晶を効果的に行わせることが可能となり、結果的に最終製品の粒径を微細化することができる。
【0045】
また、図2には、仕上げ圧延工程におけるAr3〜950 ℃の温度域での圧下率と最終製品の粒度番号との関係を示す。
用いた素材は鋼No.11 で、製造条件は表2,3の条件Dと同じである。
同図に示したとおり、Ar3〜950 ℃の温度域で55%以上の圧延を行うことにより、再結晶しにくいこの領域でも微細化が実現されることが判る。
【0046】
実施例2
前掲表1に示した鋼No.1〜19を用い、表4および表5に示す条件で缶用鋼板を製造した。
かくして得られた各鋼板の結晶粒径、板厚方向での組織の均一性、ロックウェル硬さ、r値、Δr値およびフランジ成形性について調べた結果を表5に併記する。
【0047】
【表4】
Figure 0003700280
【0048】
【表5】
Figure 0003700280
【0049】
比較鋼のうち、鋼No.7, 9はいづれも、r値が低く、深絞り性に劣っていた。また鋼No.7, 8, 9, 17, 18, 19はいずれも、Δrが負で大きな値となり、絞り変形した際に耳が大きく不良となることが判る。さらに、鋼No.10, 17, 18 については、混粒組織が残り、肌あれ判定が×となった。
これに対し、本発明の要件を全て満足する鋼No.1〜6、11〜16はいずれも、全ての特性に優れた極薄・広幅鋼板とすることができた。
【0050】
【発明の効果】
かくして、本発明によれば、極低炭素鋼板であっても、微細かつ均一な組織を持ち、強度と加工性の両者を兼ね備え、しかもフランジ成形性にも優れた缶用鋼板を得ることができ、しかも本発明によれば、従来望み得なかったほどの極薄で広幅の鋼板の製造も可能となる。
【図面の簡単な説明】
【図1】仕上げ圧延工程における 950℃以上での圧下率と最終製品の粒度番号との関係を示したグラフである。
【図2】仕上げ圧延工程におけるAr3〜950 ℃の温度域での圧下率と最終製品の粒度番号との関係を示したグラフである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing a steel plate for cans such as an ultrathin tin plate and tin-free steel, and particularly has excellent workability and strength property balance, as well as excellent properties for cans such as skin roughness, and the like. Compared to, it is possible to produce ultra-thin and wide steel plates.
[0002]
[Prior art]
Container cans such as beverage cans, 18 liter cans, and pail cans can be roughly classified into two-piece cans and three-piece cans from the manufacturing method (process).
Two-piece cans are processed by deep drawing, DWI, DRD, etc. on surface-treated steel sheets that have undergone tin plating, chrome plating, chemical conversion treatment, oiling, etc., and the bottom and can body are integrated. It is a can made of two parts which is molded and has a lid attached thereto.
A three-piece can is a three-piece can that is formed by bending a surface-treated steel sheet into a cylindrical shape or a rectangular tube shape, joining ends together to form a can body, and then attaching a canopy and a bottom lid to the can body. is there.
[0003]
Since all of these cans have a high ratio of material costs to can costs, there is a strong demand for cost reduction of the steel sheets. Therefore, it is desirable to produce steel plates for cans by continuous annealing with high production efficiency and excellent yield and surface quality, rather than inefficient and box annealing with poor material yield and surface quality. .
As such a continuous annealing technique, for example, there is a technique disclosed in Japanese Examined Patent Publication No. 63-102113, and a technique with further improvements has been developed and expressed by the value of Rockwell hardness (HR30T). A soft steel plate for cans having a refining degree of about T2 (50-56) can be obtained.
Furthermore, technology for producing soft steel sheets by continuous annealing has also been developed. For example, as disclosed in Japanese Patent Publication No. 1-52452, an extremely low carbon steel sheet is applied, and various hardened materials are combined with work hardening after annealing. Technology for manufacturing steel plates for cans has also been developed.
[0004]
However, even this type of steel sheet for cans is required to further reduce costs, and in order to meet this demand, it is necessary to develop a new manufacturing process and a new material.
As one method for reducing the cost, it is conceivable to reduce the thickness of the steel sheet to be used and to strengthen the neck diameter reduction of the upper lid. However, even if the plate thickness decreases, the strength of the can must be maintained. To that end, the material must be high-strength, so the required material properties are becoming increasingly severe. There is a need for a technique for producing steel plates for cans that have good workability (for example, deep drawability) that can be tolerated.
[0005]
For example, Japanese Patent Application Laid-Open No. 6-306536 proposes a technique that achieves both strength and formability using an ultra-low carbon steel sheet.
However, the ultra-low carbon steel sheet, which is advantageous for workability, tends to have a larger particle size than the low-carbon steel sheet, and causes problems such as rough skin after can molding. Therefore, the structure of the ultra-low carbon steel sheet is uniform and fine. In addition, development of a manufacturing technique for a very thin and wide surface treatment original plate is desired.
[0006]
[Problems to be solved by the invention]
The object of the present invention is to achieve better strength by a more rational manufacturing method different from the conventional one while maintaining good characteristics as a steel plate for cans even under severe processing conditions. It is intended to improve workability and make it possible to produce ultra-thin and wide steel sheets.
[0007]
[Means for Solving the Problems]
Now, in order to achieve the above object, the inventors conducted a thorough examination on the steel composition and production conditions, and also conducted a metallurgical examination on the factors governing the necessary characteristics of the steel sheet for cans, The following findings were obtained.
(1) In conventional steel plates for cans, unlike deep drawing steel plates used in automobiles and the like, a high r value is not necessarily an essential condition. However, recently, as the thickness of the material plate decreases, the uniform ductility is inevitably lowered because the strength is increased in order to satisfy the can body strength. Therefore, in order to compensate for ductility, a high r value has been required particularly for a steel plate for a two-piece can. In order to obtain a high r value, reduction of the carbon content is indispensable, and a high r value that cannot be obtained with a low carbon steel plate can be expected with an extremely low carbon steel plate.
[0008]
(2) It is desirable that the in-plane anisotropy (Δr) of the r value is small. This is because it not only leads to an improvement in the yield of the steel sheet for drawing, but can also cause distortion in printing if the anisotropy is large in a can type that is drawn after coating and printing, such as a DRD can. It is. Further, when the neck-in workability was examined, it was found that if the anisotropy is large, a residual stress is generated, which causes a neck wrinkle. The recent reduction in sheet thickness and increase in strength must increase the primary cold rolling reduction and secondary rolling reduction after sinter, and inevitably tend to increase Δr with negative values. There is a need for a steel sheet with low anisotropy even under such conditions. In order to improve the anisotropy, it is necessary to control the crystal grain size and texture during rolling, and it is necessary to control the change in material properties particularly in the γ region.
[0009]
(3) A fine structure is desirable in terms of uniform deformation. This involves skin roughness and the like, and in particular, a technique for reducing the crystal grain size is required. However, in the ultra-low carbon steel sheet that can achieve the high r value as described above, the particle size tends to increase.
The crystal grain size of hot-rolled sheets is not only the grain growth property by steel composition, but also the control of grain growth by optimizing hot rolling conditions and the control of grain growth property by controlling the presence of precipitates. It becomes.
[0010]
Although this invention is an important hot rolling process that has a great influence on the properties of products in the manufacturing process, the reduction conditions in the transformation and recrystallization processes of steel, which has not been much attention in the past, were examined in detail. As a result, it was developed.
[0011]
That is, the gist configuration of the present invention is as follows.
1) C: 0.0005 to 0.0150 wt%,
Si: 0.2 wt% or less,
Mn: 0.05-0.6 wt%
P: 0.02 wt% or less,
S: 0.02 wt% or less,
A steel containing Al: 0.15 wt% or less and N: 0.020 wt% or less, with the balance being Fe and inevitable impurities, is made into a slab after melting, and then in the hot rough rolling process after slab heating, Rolling ratio: 80% or more and final pass rolling ratio: 20% or more rolling, then joining the preceding sheet bar with the preceding sheet bar before finish rolling, in the hot finish rolling process, Rolling at a total reduction ratio of 70% or more at a temperature range of 950 ° C. or higher, followed by rolling at a total reduction ratio of 55% or higher at a temperature range of Ar 3 to 950 ° C., and a final finishing temperature: Ar 3 −50 Finishes hot rolling above ℃, then winds in the temperature range of 550-750 ℃, removes scale, and after cold rolling and recrystallization annealing, reduction rate: 30% or less skin pass or secondary rolling The manufacturing method of the steel plate for cans characterized by giving.
[0012]
2) In 1 above, the steel composition is further
Nb: 0.003 to 0.020 wt%,
Ti: 0.003 to 0.020 wt% and B: 0.0002 to 0.0020 wt%
The manufacturing method of the steel plate for cans characterized by becoming the composition containing 1 type or 2 or more selected from among.
[0013]
3) In the above 1 or 2, the steel composition is further
Cu: 0.5 wt% or less,
Ni: 0.5 wt% or less,
Cr: 0.5 wt% or less and
Mo: A method for producing a steel plate for cans, characterized in that the composition contains one or more selected from 0.2 wt% or less.
[0014]
4) In 1, 2 or 3 above, the obtained steel plate satisfies the requirements of plate thickness: 0.25 to 0.05 mm, plate width: 1200 to 900 mm, plate width / plate thickness <20000 A method for producing a steel plate for cans, characterized in that it is a wide material. Here, “the material is uniform” is defined as that the variation value of HR30T is within 5% in a region from a position 20 mm from the width end to a position 20 mm from the opposite width end.
5) In 1, 2, 3 or 4 above, before finish rolling the sheet bar obtained by hot rough rolling, the sheet bar is joined to the preceding sheet bar, and at the width edge and the length end of the sheet bar. It is desirable to apply a treatment for making the temperature uniform.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
In order to improve the balance between strength and workability, it is necessary to make the structure of the final plating original plate uniform and fine. For this purpose, it is essential to obtain a uniform and fine structure in the hot rolling stage. This is because, in the hot rolling stage, if it is a coarse or mixed grain structure, no matter how much the cold rolling conditions (for example, the increase in the cold rolling reduction) and the annealing conditions (decreasing the annealing temperature) are added, Even if the strength is high, only a steel sheet having poor workability can be obtained.
In addition, the ultra-low carbon steel sheet, which is the component system of the present invention, has a grain size that is larger than that of the low carbon steel sheet in the conventional hot rolling method, or a texture after annealing due to the remaining processed structure. It was not uncommon to have an adverse effect.
This can be attributed to the high transformation point and the difference in grain growth.
[0016]
The present invention makes it possible to uniformly refine the structure after cold rolling and smelting by optimizing the heat treatment conditions in the hot rolling process at the same time as using steel with properly controlled components. Is.
In particular, the present invention is a control that has not been attracting much attention in the past to optimize the amount of processing strain in the high temperature γ region (recrystallization region) and the low temperature γ region (non-recrystallized region) even under hot rolling conditions. By using the law, the above goal has been achieved.
[0017]
Hereinafter, the reason why the composition of the steel sheet and the production conditions in the present invention are limited to the above ranges will be described.
First, the reasons for limiting the hot rolling conditions, which are the main conditions of the present invention, will be described.
(1) Slab heating temperature If the slab heating temperature is too high, the precipitates become fine, and the grain size of the hot-rolled sheet is made fine, so that it is not only difficult to harden but also undesirably reduces local deformability. Therefore, it is desirable that the precipitate be coarsened at 1250 ° C. or lower to achieve both moldability and softening.
[0018]
(2) Allocation of reduction ratio in hot rolling This condition is a particularly important parameter in the present invention, and it becomes possible to obtain a uniform and fine structure by controlling this condition.
In the rough rolling process, the total rolling reduction is 80% or more, and the final pass rolling reduction is 20% or more. Furthermore, in the subsequent finish rolling process, rolling at a total reduction ratio of 70% or more is performed at a temperature range of 950 ° C. or higher, and then a total reduction ratio of 55% or higher is applied at a temperature range of Ar 3 to 950 ° C. There is a need.
[0019]
Hereinafter, the operation and reason for limitation will be described.
(a) In the rough rolling process, the particularly important process of performing the reduction of the total reduction ratio: 80% or more and the final pass reduction ratio: 20% or more is (b) and (c) described later. In order to keep the grain sizes to some extent before the finish rolling, a processing strain amount in rough rolling and a certain processing strain amount accompanying recrystallization are required. Moreover, since this steel plate is applied to the steel plate for cans, it is characterized in that the final product is very thin compared to automobiles and home appliances. For this reason, unless it is made thin to some extent at the stage of rough rolling, there is a possibility that the allowable amount of the finish rolling mill will be exceeded. Considering these, the lower limit of the total amount of reduction was set to 80%.
In addition, if the reduction amount of the final pass is less than 20%, it will not be sufficiently sized at the stage of entering the finishing mill (non-uniform structure of the structure from the surface layer to the center). The amount of reduction was 20% or more.
[0020]
(b) In the finish rolling process, the total rolling reduction in a temperature range of 950 ° C. or higher should be 70% or higher. This temperature range is a γ range and can be sufficiently recrystallized by rolling strain. ->Recrystallization-> Rolling strain-> Recrystallization can be said to be a temperature range in which the grain size becomes fine. Nonetheless, if the rolling reduction is less than 70%, not only such fine graining does not proceed sufficiently, but also due to insufficient rolling strain, it does not recrystallize uniformly and is a partly large grain size region. Therefore, it is important that the total rolling reduction in the temperature range of 950 ° C or higher is 70% or higher.
[0021]
(c) The total rolling reduction in the temperature range of Ar 3 to 950 ° C. should be 55% or more. This temperature range is the same γ range as (b) described above.
1) Delay of element diffusion due to lower temperature
2) Pinning effect by precipitates
3) Furthermore, the effect of inhibiting recrystallization by solid solution elements overlaps, making it difficult to recrystallize sufficiently.
In the conventional method, this region has not been distinguished from other temperature regions, particularly the above-mentioned recrystallization γ region. Therefore, depending on the component, it becomes a texture that is undesirable for workability or a mixed grain, resulting in a uniform structure. It was very difficult to control.
In fact, if the rolling ratio in this region is less than 55% in total, it does not recrystallize at all, leaving a texture that adversely affects workability, or only partially recrystallizing and avoiding mixed grains. There wasn't.
In this respect, if the rolling reduction is 55% or more, even if Nb or the like enters and recrystallization is very delayed, the transformation nuclei can be uniformly and finely precipitated by the introduced strain.
For the above reasons, the total rolling reduction in the temperature range of Ar 3 to 950 ° C. is limited to a range of 55% or more.
[0022]
(3) Final finishing temperature Hot finishing rolling must be completed at a temperature of Ar 3 -50 ° C or higher. By satisfying this requirement, the structure and grain size of the hot-rolled sheet can be made uniform and fine. it can.
If the hot rolling end temperature is less than Ar 3 -50 ° C, the processed structure remains depending on the coiling temperature, which not only deteriorates the cold rolling property but also becomes a recrystallized texture that adversely affects the workability. In addition, even if there is no processing strain, the structure becomes coarse and the strength-workability balance deteriorates, which is not preferable.
[0023]
(4) Winding temperature When the coiling temperature exceeds 750 ° C, the scale thickness increases significantly, and the descaling property during pickling decreases. Without this, the recrystallization texture was adversely affected, so the coiling temperature was limited to the range of 550 to 750 ° C.
[0024]
(5) Continuous rolling (endless rolling)
Conventionally, in order to manufacture an ultrathin and wide steel plate that has been difficult to manufacture, it is necessary to manufacture a thin and wide hot-rolled steel strip. For this purpose, after rough rolling, the sheet bar is wound up prior to finish rolling, and joined to the preceding sheet bar, and preferably the temperature at the width edge and the length edge of the sheet bar is made uniform with an edge heater or the like. Since it is extremely useful to do so, the present invention performs such continuous rolling.
[0025]
Next, the reason for limitation about the component composition of a steel plate is described.
C: 0.0005 to 0.0150 wt%
When the C content increases, the crystal grain size becomes finer and a high tempering degree can be obtained, but when it exceeds 0.0150 wt%, the workability is reduced. In view of aging deterioration, the C content should be 0.0150 wt% or less (preferably less than 0.0100 wt%).
On the other hand, from the viewpoint of formability, a lower C content is desirable, but the lower limit of C is set to 0.0005 wt% based on the fact that the crystal grain size becomes coarse and the current steelmaking technology level.
[0026]
Si: 0.2 wt% or less
Si is an element that degrades the surface properties of steel sheets, and if added in a large amount, it is not only desirable as a surface-treated steel sheet, but also hardens the steel, making hot rolling difficult, and hardening the steel as the final product. Let From this point of view, Si needs to be 0.2wt% or less. In addition, it is desirable to make it 0.050 wt% or less especially in applications where the requirement of surface properties is strict.
[0027]
Mn: 0.05-0.6 wt%
If the Mn content is less than 0.05 wt%, even when the S content is reduced, it is difficult to avoid so-called hot brittleness, causing problems such as surface cracks, while if it exceeds 0.6 wt%, Since the transformation point is too low and it is difficult to obtain a preferable hot rolled sheet, the Mn content is limited to a range of 0.05 to 0.6 wt%.
[0028]
P: 0.02 wt% or less Although the corrosion resistance can be improved by reducing the P content, excessive reduction leads to an increase in manufacturing cost. Therefore, P should be contained at 0.02 wt% or less because of these factors. did. In order to significantly improve the workability, it is preferably 0.010 wt% or less.
[0029]
S: 0.02wt% or less Increasing the S content increases inclusions such as MnS, which causes a decrease in local ductility typified by stretch flangeability, and further reduces the content compared to conventional steel sheets. Significantly improves the total elongation. Therefore, the S content is limited to 0.02 wt% or less. In order to significantly improve the workability, it is preferably 0.010 wt% or less.
[0030]
sol.Al: 0.15wt% or less
sol.Al is an element necessary for deoxidation, but if it exceeds 0.15 wt%, not only the deoxidation effect is saturated but also inclusions are generated, which adversely affects the moldability. For this reason, sol.Al content was limited to 0.15 wt% or less. In order to secure stable production conditions, a range of 0.030 to 0.10 wt% is preferable.
[0031]
N: 0.020 wt% or less N forms precipitates and causes a decrease in elongation. On the other hand, when left in a solid solution state, it is possible to harden the steel appropriately and improve the balance between strength and workability. However, if it exceeds 0.020 wt%, not only the elongation is remarkably lowered but also it causes slab cracking, so it is limited to 0.020 wt% or less. When workability is more important than strength, it is preferably 0.010 wt% or less.
[0032]
Although the essential components have been described above, the present invention can further contain the following elements as appropriate.
Nb: 0.003 to 0.020 wt%
Nb not only contributes to the reduction of aging and softening of steel by carbon fixation, but is also useful in that it has a fine structure by moderately suppressing recrystallization in the γ region during hot rolling. Element. However, if the content exceeds 0.020 wt%, not only a non-uniform structure is caused in the hot-rolled sheet, but also an increase in the load during hot-rolling is caused. Was added in the range of 0.003 to 0.020 wt%. In addition, when emphasizing workability, it is desirable to set it as the range of 0.003-0.015 wt%.
[0033]
Ti: 0.003 to 0.020 wt%
Ti has the same effect as Nb, and the formability can be improved by the combined addition with Nb. However, even if added over 0.020 wt%, the effect reaches saturation and only increases the cost. On the other hand, if less than 0.003 wt%, the addition effect is poor, so Ti is 0.003 to 0.020 wt%. In this range, it was added.
[0034]
B: 0.0002-0.0020wt%
B is an element useful for refining the structure of a hot-rolled sheet in combination with hot-rolling conditions. It also serves to prevent secondary processing brittleness. However, excessive addition not only delays the recrystallization of austenite during hot rolling and increases the load during rolling, but also degrades the material of the annealed material, particularly the elongation, so B is in the range of 0.0002 to 0.0020 wt%. It was supposed to be added.
[0035]
Cu: 0.5 wt% or less, Ni: 0.5 wt% or less, Cr: 0.5 wt% or less, Mo: 0.2 wt% or less
Cu, Ni, Cr and Mo are all solid solution strengthening elements like Mn, and are useful elements for refining the structure because they lower the transformation point. However, if it is added too much, not only the cost of the steel is increased, but also the load of cold rolling due to the hardened hot rolled sheet is increased, so the upper limit is 0.5 wt%, especially for Mo, considering the cost, 0.2 wt% %.
[0036]
Next, manufacturing conditions other than the hot rolling process will be described.
(a) Cold rolling conditions after pickling Cold rolling is preferably performed at a rolling reduction of 70 to 90%. This is because, although the steel according to the present invention has been reduced, the grain size of the hot-rolled sheet is still quite large, so if the rolling reduction is less than 70%, the driving force for recrystallization decreases, and after annealing, This is because the grains tend to be coarse, and if over 90%, anisotropy is deteriorated.
[0037]
(b) Annealing and skin pass after cold rolling, and annealing after secondary rolling cold rolling are preferably performed at a temperature higher than recrystallization by continuous annealing from the viewpoint of productivity.
Then, in order to adjust to the target tempering degree and from the viewpoint of stretcher strain resistance, it is necessary to perform skin pass or secondary rolling. At that time, the rolling reduction should be 30% or less. This is because, if the rolling reduction is higher than this, the strength becomes too high and the balance between workability and strength cannot be maintained, and the in-plane anisotropy deteriorates.
[0038]
By using the above-described component composition and manufacturing conditions, not only the strength and workability are excellent, but also satisfies the relationship of plate thickness : 0.25 to 0.05 mm, plate width : 1200 to 900 mm, plate width / plate thickness <20000. An ultra-thin and wide steel plate can be obtained stably. Such a steel plate is an extremely thin and wide steel plate that could not be expected by a conventional manufacturing method.
[0039]
[Real deer example]
Example 1
Steels having the composition shown in Table 1 were melted to prepare test materials.
First, using steel Nos. 1 and 11 in Table 1, hot rolling was performed under the conditions shown in Table 2, and after pickling, cold rolling and recrystallization annealing were performed at the rolling reduction shown in the same table. Secondary rolling was performed under the conditions shown in Table 3. Each specimen was joined to the rear end portion of the preceding sheet bar prior to finish rolling, endless rolling was performed, and the width edge portion was soaked with an edge heater.
Table 3 shows the results of the examination of the crystal grain size (GSN), the structure uniformity in the thickness direction, the Rockwell hardness, the r value, the Δr value, and the flange formability of each steel plate thus obtained.
The scale of Rockwell hardness was HR30T. The r value was evaluated by the anisotropy of the elastic modulus as defined in JIS. Furthermore, the flange formability is tin plating equivalent to # 25 under normal conditions, this is formed into the can body of a 3P can by roll forming and high-speed seam welding, and subjected to necking and stretch flange processing. Evaluation was made based on the presence or absence of skin roughness and cracking.
[0040]
[Table 1]
Figure 0003700280
[0041]
[Table 2]
Figure 0003700280
[0042]
[Table 3]
Figure 0003700280
[0043]
As apparent from Table 3, in accordance with the present invention, rolling is performed at a total rolling reduction ratio of 80% or more in the rough rolling process, of which the final pass rolling reduction ratio is 20% or more, and then at a temperature of 950 ° C. or higher in the finish rolling process. Rolling at a total rolling reduction of 70% or more in the region, and rolling at a rolling reduction of 55% or more in the temperature range of Ar 3 to 950 ° C so that the final finishing temperature becomes Ar 3 -50 ° C or more. After finishing the hot rolling, and then winding up in the temperature range of 550-750 ° C, it is uniform and fine, excellent in workability and strength balance, and extremely thin and wide (900-1200mm, width / thickness) < 20000 ) steel sheet could be produced. In the steel sheet according to the present invention, the variation value of HR30T was 5% or less in the region excluding the width edge portion within 20 mm from the width end, indicating a uniform material.
[0044]
FIG. 1 shows the relationship between the rolling reduction at 950 ° C. or higher and the grain number of the final product in the finish rolling process.
The material used was steel No. 11, and the production conditions were the same as the conditions D in Tables 2 and 3.
As shown in the figure, by rolling at a total reduction of 70% or more in a temperature range of 950 ° C or higher, the microstructure in the final stage becomes finer, so that recrystallization at that stage is effectively performed. As a result, the particle size of the final product can be reduced.
[0045]
Also, FIG. 2 shows the relationship between the grain size number of rolling reduction and final product in the temperature range of Ar 3 to 950 ° C. in the finish rolling process.
The material used was steel No. 11, and the production conditions were the same as the conditions D in Tables 2 and 3.
As shown in the figure, it can be seen that by performing rolling of 55% or more in the temperature range of Ar 3 to 950 ° C., miniaturization is realized even in this region where recrystallization is difficult.
[0046]
Example 2
Steel plates for cans were produced under the conditions shown in Tables 4 and 5 using Steel Nos. 1 to 19 shown in Table 1 above.
Table 5 shows the results of examination of the crystal grain size, the structure uniformity in the thickness direction, the Rockwell hardness, the r value, the Δr value, and the flange formability of each steel plate thus obtained.
[0047]
[Table 4]
Figure 0003700280
[0048]
[Table 5]
Figure 0003700280
[0049]
Among the comparative steels, steels Nos. 7 and 9 had low r values and poor deep drawability. Further, in each of Steel Nos. 7, 8, 9, 17, 18, and 19, Δr is negative and becomes a large value, and it is understood that the ear becomes large and defective when the diaphragm is deformed. Further, for steel Nos. 10, 17 and 18, the mixed grain structure remained and the skin roughness judgment was x.
On the other hand, all of the steel Nos. 1 to 6 and 11 to 16 satisfying all the requirements of the present invention were able to be ultra-thin and wide steel plates excellent in all properties.
[0050]
【The invention's effect】
Thus, according to the present invention, it is possible to obtain a steel plate for a can that has a fine and uniform structure, has both strength and workability, and is excellent in flange formability even with an extremely low carbon steel plate. Moreover, according to the present invention, it is possible to manufacture a steel sheet that is as thin and wide as could not be expected.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the rolling reduction at 950 ° C. or higher and the grain number of the final product in the finish rolling process.
FIG. 2 is a graph showing the relationship between the rolling reduction in the temperature range of Ar 3 to 950 ° C. and the grain number of the final product in the finish rolling process.

Claims (4)

C:0.0005〜0.0150wt%、
Si:0.2 wt%以下、
Mn:0.05〜0.6 wt%、
P:0.02wt%以下、
S:0.02wt%以下、
Al:0.15wt%以下および
N:0.020 wt%以下
を含み、残部はFeおよび不可避不純物の組成になる鋼を、溶製した後、スラブとし、ついでスラブ加熱後、熱間粗圧延工程において、総圧下率:80%以上でかつ最終パス圧下率:20%以上の圧延を施し、ついで得られたシートバーを、仕上げ圧延前に、先行するシートバーと接合したのち、熱間仕上げ圧延工程において、950 ℃以上の温度域で総圧下率:70%以上の圧延を施し、ついでAr3〜950 ℃の温度域で総圧下率:55%以上の圧延を施して、最終仕上げ温度:Ar3−50℃以上で熱間圧延を終了し、ついで 550〜750 ℃の温度範囲で巻き取り、スケール除去後、冷間圧延、再結晶焼鈍を施したのち、圧下率:30%以下のスキンパスまたは二次圧延を施すことを特徽とする、缶用鋼板の製造方法。
C: 0.0005 to 0.0150 wt%,
Si: 0.2 wt% or less,
Mn: 0.05-0.6 wt%
P: 0.02 wt% or less,
S: 0.02 wt% or less,
A steel containing Al: 0.15 wt% or less and N: 0.020 wt% or less, with the balance being Fe and inevitable impurities, is made into a slab after melting, and then in the hot rough rolling process after slab heating, Rolling ratio: 80% or more and final pass rolling ratio: 20% or more rolling, then joining the preceding sheet bar with the preceding sheet bar before finish rolling, in the hot finish rolling process, Rolling at a total reduction ratio of 70% or more at a temperature range of 950 ° C. or higher, followed by rolling at a total reduction ratio of 55% or higher at a temperature range of Ar 3 to 950 ° C., and a final finishing temperature: Ar 3 −50 Finishes hot rolling above ℃, then winds in the temperature range of 550-750 ℃, removes scale, and after cold rolling and recrystallization annealing, reduction rate: 30% or less skin pass or secondary rolling The manufacturing method of the steel plate for cans characterized by giving.
請求項1において、鋼組成がさらに、
Nb:0.003 〜0.020 wt%、
Ti:0.003 〜0.020 wt%および
B:0.0002〜0.0020wt%
のうちから選んだ1種または2撞以上を含む組成になることを特徽とする、缶 用鋼板の製造方法。
In Claim 1, the steel composition further comprises
Nb: 0.003 to 0.020 wt%,
Ti: 0.003 to 0.020 wt% and B: 0.0002 to 0.0020 wt%
A method for producing a steel plate for cans, characterized by having a composition containing one or more selected from the above.
請求項1または2において、鋼組成がさらに、
Cu:0.5 wt%以下、
Ni:0.5 wt%以下、
Cr:0.5 wt%以下および
Mo:0.2 wt%以下
のうちから選んだ1種または2撞以上を含む組成になることを特徽とする、缶用鋼板の製造方法。
The steel composition according to claim 1 or 2, further comprising:
Cu: 0.5 wt% or less,
Ni: 0.5 wt% or less,
Cr: 0.5 wt% or less and
Mo: A method for producing a steel plate for cans, characterized in that the composition contains one or more selected from 0.2 wt% or less.
請求項1,2または3において、得られる鋼板が、板厚:0.25〜0.05mm、板幅:1200〜900 mm、板幅/板厚<20000の要件を満足する、材質が均一な極薄・広幅材であることを特徴とする、缶用鋼板の製造方法。The obtained steel sheet according to claim 1, 2 or 3, the sheet thickness: 0.25 to 0.05 mm, the sheet width : 1200 to 900 mm, the sheet width / thickness < 20 000, satisfying the requirements of ultra-thin, uniform material A method for producing a steel plate for cans, characterized in that it is a wide material.
JP24839196A 1996-09-19 1996-09-19 Manufacturing method of steel plate for cans Expired - Fee Related JP3700280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24839196A JP3700280B2 (en) 1996-09-19 1996-09-19 Manufacturing method of steel plate for cans

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24839196A JP3700280B2 (en) 1996-09-19 1996-09-19 Manufacturing method of steel plate for cans

Publications (2)

Publication Number Publication Date
JPH1088233A JPH1088233A (en) 1998-04-07
JP3700280B2 true JP3700280B2 (en) 2005-09-28

Family

ID=17177418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24839196A Expired - Fee Related JP3700280B2 (en) 1996-09-19 1996-09-19 Manufacturing method of steel plate for cans

Country Status (1)

Country Link
JP (1) JP3700280B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3324074B2 (en) * 1998-05-26 2002-09-17 新日本製鐵株式会社 High strength and high ductility steel plate for container and method of manufacturing the same
JP4559918B2 (en) * 2004-06-18 2010-10-13 新日本製鐵株式会社 Steel plate for tin and tin free steel excellent in workability and method for producing the same
EP4339304A1 (en) * 2016-09-20 2024-03-20 ThyssenKrupp Steel Europe AG Method for producing flat steel products and flat steel product
CN113621889A (en) * 2021-08-10 2021-11-09 山东盛阳金属科技股份有限公司 N06600 iron-nickel base alloy hot continuous rolling plate coil and acid pickling process thereof

Also Published As

Publication number Publication date
JPH1088233A (en) 1998-04-07

Similar Documents

Publication Publication Date Title
KR100615380B1 (en) Steel sheet for can and manufacturing method thereof
JP3931455B2 (en) Steel plate for can and manufacturing method thereof
JPH08325670A (en) Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production
KR960006584B1 (en) Method of producing high-strength steel sheet used for can
WO2010074308A1 (en) Method for manufacturing steel plate for can-making
JP2001107186A (en) High strength steel sheet for can and its producing method
WO2003031670A1 (en) Steel sheet for container and method of producing the same
JPH10280089A (en) Steel sheet for two-piece modified can, two-piece modified can body, and their manufacture
JP2001335888A (en) Steel sheet for lightweight two-piece can, and its production method
JP3726371B2 (en) Steel plate for cans with high age-hardening properties and excellent material stability and method for producing the same
JP3852210B2 (en) Steel plate for modified 3-piece can and manufacturing method thereof
JP4265574B2 (en) Steel plate for two-piece deformable can and manufacturing method thereof
JP3826442B2 (en) Manufacturing method of steel plate for can making with good workability and no rough skin
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP3700280B2 (en) Manufacturing method of steel plate for cans
JP3108330B2 (en) Manufacturing method of steel sheet for high strength cans
JP3596037B2 (en) Manufacturing method of steel plate for can-making
JPH08269568A (en) Production of steel sheet for can making excellent in flange formability
JPH04272143A (en) Manufacture of cold rolled steel sheet for deep drawing excellent in dent resistance
JP4081823B2 (en) Manufacturing method of steel plate for cans by annealing skipping process
JPH09316543A (en) Production of steel sheet for can, excellent in formability
JP4810766B2 (en) Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can
JP3707260B2 (en) Method for producing ultra-thin steel sheet for 2-piece can with excellent in-plane anisotropy and in-plane anisotropy uniformity in coil
JP2733423B2 (en) Plated sheet excellent in secondary workability and weldability and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050704

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090722

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100722

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110722

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120722

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130722

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees