JP3852210B2 - Steel plate for modified 3-piece can and manufacturing method thereof - Google Patents

Steel plate for modified 3-piece can and manufacturing method thereof Download PDF

Info

Publication number
JP3852210B2
JP3852210B2 JP17928398A JP17928398A JP3852210B2 JP 3852210 B2 JP3852210 B2 JP 3852210B2 JP 17928398 A JP17928398 A JP 17928398A JP 17928398 A JP17928398 A JP 17928398A JP 3852210 B2 JP3852210 B2 JP 3852210B2
Authority
JP
Japan
Prior art keywords
less
rolling
temperature
value
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17928398A
Other languages
Japanese (ja)
Other versions
JPH11124654A (en
Inventor
昌利 荒谷
章男 登坂
敬 坂田
隆史 小原
誠 荒谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP17928398A priority Critical patent/JP3852210B2/en
Publication of JPH11124654A publication Critical patent/JPH11124654A/en
Application granted granted Critical
Publication of JP3852210B2 publication Critical patent/JP3852210B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Sheet Steel (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、缶用鋼板およびその製造方法に係り、とくに鋼板を円筒状に成形したのちさらに円周方向に伸び歪を与えて、樽型等の3次元的に変形した特殊な3ピース缶(変形3ピース缶)に用いて好適な、缶用鋼板とその製造方法に関する。
【0002】
【従来の技術】
缶容器はその部品構造から、缶胴と上蓋からなる2ピース缶と、缶胴と上蓋、底蓋からなる3ピース缶とに大別できる。
3ピース缶の製造工程は2ピース缶のそれに比較して比較的単純であり、通常、特に厳しい加工を行うことはない。3ピース缶では、鋼板を円筒状に成形したのち、樹脂接着、溶接あるいははんだ付けなどの方法で接合した缶胴に、最終の巻締め工程で上蓋、底蓋が組付けられるが、この巻締め工程に備えるためのフランジ成形が品質のネックになる程度であった。巻締め工程でのフランジ成形加工は、缶胴に蓋をつけるために、缶胴の両端部に直径方向外側にむかって延出するフランジ部を形成する加工であり、加工に際しフランジ部に割れが生じる場合がある。フランジ割れが生じると缶内容物の漏洩を引き起こすことになる。
【0003】
しかし、従来の3ピース缶については、この問題は、鋼組成と焼鈍後の2次冷延圧下率の最適化などによってほぼ解決されたと言える(特開平9-118928号公報参照)。
【0004】
【発明が解決しようとする課題】
ところが、近年、缶の意匠性向上の観点から、単純な円筒状の缶でなく、より3次元的に変形した形状の3ピース缶(以下、変形3ピース缶という)の要求が高まっている。この状況は、例えば、雑誌「THE CANMAKER」Feb.1996,p32-37 に紹介されている。
【0005】
これらの変形3ピース缶は、鋼板を円筒状に成形し接合して缶胴としたのち、精巧な割型、静水圧プレス等の技術を適用して円筒状の缶胴部に円周方向の伸び歪を付与して製造される。この製造の際に生じる問題点は、割れ、表面荒れの発生、缶寸法の変化などがある。
上記した問題点を考慮し、変形3ピース缶用鋼板に要求される特性を列挙すれば、以下の▲1▼〜▲4▼のようになる。
【0006】
▲1▼缶高さ方向に寸法の減少がないこと。缶高さ方向に寸法の減少があると内容量の確保が困難となる。
▲2▼肌あれ、ストレッチャーストレインなどの外観不良を生じないこと。焼付け塗装後の二次成形でストレッチャーストレインが発生すると表面美麗性が損なわれる。
【0007】
▲3▼接合部の近傍などで割れを生じないこと。
▲4▼十分な形状凍結性を有し、目標とする形状を忠実に実現できること。形状凍結性が劣ると、缶胴部の円筒成形時にスプリングパック量が増大し、円筒の真円度が低下し、接合部の接合代のばらつきが大きくなり溶接不良が増加する結果、溶接部の加工時に割れが発生する場合がある。
【0008】
一方、最近、コストダウンの1手段として板厚低減への強い要望があり、この要望は複雑で厳しい2次成形を伴う変形3ピース缶用鋼板においても例外ではないが要求される材料特性はより過酷なものとなる。
板厚を低減し缶用鋼板の薄肉化を図るためには、缶体強度の確保という点から、鋼板の硬質化を図る必要がある。鋼板の硬質化の方法としては、▲1▼C、N等の添加による固溶強化、▲2▼焼鈍後の2次圧延等による加工硬化、▲3▼合金元素添加等による組織制御が挙げられる。
【0009】
しかしながら、▲1▼の固溶強化による方法では、従来、固溶強化能の高いC、Nを用いていたため、2次成形時に鋼板表面にストレッチャーストレインが発生し外観不良となる問題があった。
▲2▼の加工硬化による方法は、従来の強化方法の主流をなすものであった。しかし、缶胴の薄肉化および鋼板の高強度化が進むにしたがい焼鈍後の2次圧延圧下率が増加するため、降状応力が上昇して形状凍結性が悪化するなどの問題が生じていた。さらに、2次圧延により材質の異方性が大きくなり、とくに圧延直角方向の延性が圧延方向のそれに比べ著しく小さくなる。このため、缶の円周方向が鋼板の圧延直角方向となるように板取りを行った場合には、フランジ加工に際し、低延性のため割れが発生する危険があるという問題があった。
【0010】
▲3▼の組織制御による方法は、食品衛生上、鋼中の成分元素に規制があり、過剰な合金元素の添加は好ましくない。
このようなことから、厳しい2次加工を伴う変形3ピース缶に供しうる極薄鋼板として、所望の缶強度を有し、変形後の缶高さ方向の寸法変化が少なく、かつストレッチャーストレインの発生しにくい、すなわちC、N等による時効の少ない材料が要望されていた。
【0011】
本発明は、上記した問題を解決し、複雑な缶デザインの要求に対しても応えうる優れた成形性を有し、高い歩留りを発揮できる変形3ピース缶用鋼板およびその製造方法を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明者らは、上記した課題を解決するために鋭意検討した結果、缶胴の2次加工に際し接合部に割れを発生させないためには、鋼板の強化方法として延性の異方性が大きくなる2次圧延に代わり、従来とは異なる固溶強化を適用するのが有利であるという知見を得た。
【0013】
また、肌あれ、ストレッチャーストレインの発生を防止するためには、塗装・焼き付け相当の時効処理(210 ℃×20min )後の降伏点伸びが3%未満であることおよび時効指数AI値が30MPa 以下であることが必要であり、このためにはC、N、Al含有量の調整とMnの添加、あるいはさらにBの添加が有効であるという知見を得た。なお、本発明でいうAI値は、7.5 %引張予歪を付与したのち100 ℃×30min の熱処理を施し、熱処理前後の降伏応力の増加量をいう。
【0014】
3ピース缶の缶胴の製作方法としては、鋼板の圧延方向(L方向)が缶の円周方向となるように円筒成形される方法(ノーマルグレーン法)と鋼板の圧延直角方向(C方向)が缶の円周方向となるように円筒成形される方法(リバースグレーン法)がある。
ノーマルグレーン法で変形3ピース缶の缶胴を製作した場合には、図4に示すように、円筒成形後、2次成形により鋼板はL方向に延伸されることになる。一方、リバースグレーン法で製作した場合には、鋼板はC方向に延伸されることになる。したがって、缶高さ方向の縮み量は、2次成形時の引張方向と直角方向の縮み量と一致し、鋼板のLまたはC方向に引張試験を行った場合の試験片幅方向の縮み量、すなわちLまたはC方向のr値と相関が強いことになる。
【0015】
そこで、2次成形時の缶胴部寸法変化を種々の材料を用いて詳細に調査した。その結果について、説明する。
鋼板からノーマルグレーン法で板取りして円筒成形し、ついで円筒状缶胴に図4の(B)に示す2次成形を施し変形3ピース缶の缶胴とした。2次成形後、缶胴の高さ変化を測定し、鋼板のr値(L方向)と関係づけて図1に示す。図1から、缶高さ方向の変化が小さく、かつ十分な加工性を確保するためには、鋼板のr値は0.5 〜1.0 の範囲とすることが有効であることがわかる。リバースグレーン法の場合も同様な傾向がある。
【0016】
また、鋼板のr値を0.5 〜1.0 の範囲とするためには、図2に示すように、Mn含有量を0.3 %以上とすることが有効であるという知見を得た。
また、図3に示すように、Mn含有量を0.3 %以上とすると、時効処理後の降伏点伸び(Y-El)が3%以下となり、時効性が低下するという効果もあることを見いだした。
【0017】
本発明は上記した知見をもとにさらに検討を加え構成されたものである。
すなわち、本発明は、量%で、C:0.03〜0.1 %、Si:0.10%以下、Mn:0.3 〜1.5 %、P:0.04%以下、S:0.01%以下、Al:0.01〜0.1 %、N:0.0030%以下を含有し、残部Feおよび不可避的不純物からなり、圧延方向および圧延直角方向のr値がいずれも0.5 〜1.0 で、かつAI値が30MPa 以下であることを特徴とする変形3ピース缶用鋼板である。
【0018】
また、本発明は、量%で、C:0.05超〜0.1 %、Si:0.10%以下、Mn:0.3 〜1.5 %、P:0.04%以下、S:0.01%以下、Al:0.01〜0.1 %、B:0.0002〜0.01%、N:0.0030%以下を含有し、残部Feおよび不可避的不純物からなり、圧延方向および圧延直角方向のr値がいずれも0.5 〜1.0 で、かつAI値が30MPa 以下であることを特徴とする変形3ピース缶用綱板であり、板厚が0.25mm以下の極薄鋼板とするのが好ましい。
【0019】
また、本発明は、質量%で、C:0.03〜0.1 %、Si:0.10%以下、Mn:0.3 〜1.5 %、P:0.04%以下、S:0.01%以下、Al:0.01〜0.1 %、N:0.0030%以下を含有し、残部Feおよび不可避的不純物からなる組成の鋼素材を、加熱温度:1050〜1300℃で加熱後、仕上圧延温度を800 〜1000℃とする仕上圧延を施し、巻取り温度:500 〜750 ℃で巻取ったのち、酸洗、およびそれに続く冷間圧延を行い、ついで再結晶温度以上720 ℃以下の温度で連続焼鈍を行ったのち、圧下率:1.0 〜10%の二次圧延を施すことを特徴とする圧延方向および圧延直角方向のr値がいずれも0.5 〜1.0 で、かつAI値が30MPa 以下である変形3ピース缶用鋼板の製造方法であり、また好ましくは板厚0.25mm以下の極薄鋼板の製造方法である。
【0020】
また、本発明は、質量%で、C:0.05超〜0.1 %、Mn:0.3 〜1.5 %、Al:0.01〜0.1 %、B:0.0002〜0.01%、N:0.0030%以下を含有する鋼素材を、好ましくは、C:0.05超〜0.1 %、Si:0.10%以下、Mn:0.3 〜1.5 %、P:0.04%以下、S:0.01%以下、Al:0.01〜0.1 %、B:0.0002〜0.01%、N:0.0030%以下を含有し、残部Feおよび不可避的不純物からなる組成の鋼素材を、加熱温度:1050〜1300℃に加熱後、仕上圧延温度:800 〜1000℃とする仕上圧延を施し、巻取り温度:500 〜750 ℃で巻取ったのち、酸洗、およびそれに続く冷間圧延を行い、ついで再結晶温度以上720 ℃以下の温度で連続焼鈍を行ったのち、圧下率:8%超〜10%の二次圧延を施すことを特徴とする圧延方向および圧延直角方向のr値がいずれも0.5 〜1.0 で、かつAI値が30MPa 以下である変形3ピース缶用綱板の製造方法であり、また好ましくは板厚0.25mm以下の極薄鋼板の製造方法である。
【0021】
また、本発明では、前記加熱温度では10〜240min保持するのが好ましく、また、前記連続焼鈍の均熱時間は60sec 以下好ましくは5sec 以上とするのが好ましい。
【0022】
【発明の実施の形態】
まず、本発明鋼板の化学組成の限定理由について説明する。
C:0.03〜0.1 %
Cは、鋼板の強度と時効性の観点から、本発明においては重要な元素の1つである。時効性を低減するためには、セメンタイトを十分に析出させ、鋼中に固溶するC量を少なくする必要があるが、C量が0.03%未満では、薄肉化した場合に缶体強度が不足し、一方、 0.1%を超えると、過度に硬質化し成形性が劣化する。また、本発明においては時効性低減の観点からBを添加してもよいが、Cが0.05%以下でBを添加すると、詳細な機構は不明であるが、L方向あるいはC方向いずれかの方向のr値が 1.0を超えてしまうために、Bを添加する場合にはC量を0.05%超え〜 0.1%とする必要がある。なお、鋼中のC量が増加すれば、セメンタイトの析出核が増加しセメンタイト析出時のCの拡散距離を短くすることができ、それによってセメンタイトの析出が促され、時効性が低減できる。
【0023】
Si:0.10%以下
Siは、多量に添加すると表面処理性、耐食性を劣化させるため、その上限を0.10%とした。とくに、優れた耐食性が必要な場合には、0.02%以下とするのが望ましい。
Mn:0.3 〜1.5 %
Mnは、本発明において重要な元素の1つである。Mnは鋼の固溶強化に効果があり、薄肉化に対応するために有効である。さらに、Mnは時効性の低減、r値の低減に効果を示す。
【0024】
熱延工程で析出するセメンタイトは巻取り温度が高いと凝集、粗大化しそれにより、冷延・焼鈍後の結晶粒が粗大化したり、r値が高くなることが従来より知られている。したがって、Mnはセメンタイト中に濃化し、セメンタイト−フェライト界面の移動速度を遅くし、セメンタイトの凝集、粗大化を抑制し、焼鈍板のr値を低減していると考えられる。また、鋼中の固溶Mnの増加もr値の低減に寄与していると考えられる。
【0025】
熱延工程で析出したセメンタイトは、さらに焼鈍工程で一部、再固溶するが、Mnがセメンタイト中に濃化することによりセメンタイト−フェライト界面の移動速度が遅くなっているため、セメンタイトの再固溶が遅れることになる。したがって、焼鈍工程での固溶C量の増大が抑制され、時効性の低減を実現しているものと考えられる。
【0026】
これらの効果を発揮するためには、Mnは少なくとも0.3 %以上の添加を必要とする。一方、1.5%を超えて、多量に添加すると耐食性が劣化する傾向にあることに加え、鋼板を硬質化させ製缶加工性を劣化させる。なお、好ましくはMnは、時効性低減の観点から 0.5〜1.0 %である。
P:0.04%以下
Pは、鋼を硬質化させ、絞り成形性やフランジ加工性を悪化させるうえ、さらに耐食性を劣化させる有害な元素である。とくに、P量が0.04%を超えると、その影響が顕著となるため、0.04%以下に限定した。なお、とくにこれらの特性が重要視される場合には、0.01%以下とすることが望ましい。
【0027】
S:0.01%以下
Sは、鋼中で介在物として存在し、鋼板の延性を低下させ、さらに耐食性を劣化させる元素であり0.01%以下に限定した。なお、とくに加工性が要求される用途の場合には、0.005 %以下とすることが望ましい。
Al:0.01〜0.1 %
Alは、AlN として鋼中の固溶Nを固定化するため、低時効性に対し有効な元素である。このためには、Alは0.01%以上の添加を必要とする。なお、時効性に対し厳しい用途の場合には、0.05%以上の添加が望ましい。一方、含有量が多すぎると、アルミナクラスタなどに起因する表面欠陥の発生頻度が急増するため、0.1 %を上限とした。
【0028】
N:0.0030%以下
Nは、時効性を高める元素であり、ストレッチャーストレインの発生頻度を増加させため、できるだけ低減するのが望ましい。0.0030%以下の範囲に制限すれば、上記した悪影響を抑制でき実用上の不具合発生は防止できる。下限はとくに限定しないが、0.0010%程度であれば、経済的、工業的に達成できる範囲といえる。なお、材質の安定性確保という観点からは、0.0020%以下とするのが好ましい。
【0029】
B:0.0002〜0.01%
Bは、鋼板の結晶粒を微細化し、あるいは缶溶接部の熱影響部の結晶粒の粗大化を抑制し、またNを固定化し時効性を低減する効果を有している。このような効果が発揮されるのは0.0002%以上の添加からである。一方、0.01%を超えて添加しても効果が飽和する傾向を有し、表面欠陥の発生などの不具合を生じる。このため、Bは0.0002〜0.01%の範囲に限定した。なお、材質の安定性を考慮すれば、Bは0.0005〜0.0050%の範囲が好適である。
【0030】
残部はFeおよび不可避的不純物からなるが、不純物として、Snなどのトランプエレメントが混入しても、0.10%以下であれば許容でき、缶としての使用特性におよぼす影響は無視できる。
つぎに、製造条件の限定について説明する。
上記した組成の溶鋼を通常の溶製方法で溶製し、連続鋳造法あるいは造塊法により凝固させた鋼素材に熱間圧延を施す。鋼素材は、いったん室温まで冷却したのち再加熱するか、あるいは冷却することなく加熱炉に装入されて加熱されてもよい。
【0031】
本発明では、MnS の析出を可能なかぎり抑制し、Mnをセメンタイト中に濃化させる必要がある。このため、熱間圧延のための鋼素材の加熱温度は高いほうが好ましく、1050〜1300℃で、好ましくは10〜240min加熱保持されるのが望ましい。加熱温度が1050℃未満では、MnS の析出が進行し、セメンタイトへのMnの濃化が達成されないうえ、その後の圧延時の鋼板エッジ部に疵を生じる危険がある。一方、加熱温度が1300℃を超えると、異常粒成長を生じ組織が不均一となるうえ、エネルギーコストが増大する。このため、鋼素材の加熱温度は1050〜1300℃の範囲とする。なお、MnS の溶解温度は1100〜1150℃と考えられているため、加熱温度は1150℃以上とするのが好ましい。
【0032】
加熱温度における保持時間が、10min 未満では鋼素材内の温度が不均一でありシートバーの反り、曲がりなどの圧延トラブルが多発する。また、240minを超えて保持すると、MnS の析出が進行し本発明の所期した効果が期待できなくなるうえ、最終製品での組織不均一が生じたり、スケール厚みの増加によるスケールロスが顕著となる。このため、加熱温度における保持時間は10〜240minの範囲とするのが好ましい。なお、材質安定の点で、さらに好ましくは30〜240minである。
【0033】
鋼素材は加熱後熱間圧延を施される。熱間圧延では、仕上圧延温度を800 〜1000℃とする仕上圧延を施す。
仕上圧延温度が800 ℃未満では、最終製品の結晶粒を微細化することが困難であり製缶後の外観美麗性が損なわれる。一方、1000℃を超えて仕上圧延されると、スケールロスが増加し好ましくない。なお、仕上圧延後、強制冷却を行うのが望ましい。強制冷却により、材質の面内異方性が抑制され、さらに脱スケール性も改善される。
【0034】
巻取り温度は500 〜750 ℃とする。
巻取り温度が500 ℃未満では、鋼板形状、幅方向の材質均一性が低下するため缶用極薄鋼板としては好ましくない。また、750 ℃を超えるとセメンタイトの凝集、粗大化が生じ、r値が高くなるとともに、スケール厚みが増加する。このため、巻取り温度は500 〜750 ℃に限定する。なお、固溶NをAlN として固定し時効性を低下させるためには、600 〜700 ℃、より好ましくは650 〜700 ℃とするのが望ましい。
【0035】
熱延後、酸洗を行う。
酸洗の条件はとくに限定する必要はなく、通常の塩酸、硫酸による酸洗を実施すればよい。
酸洗に続いて、冷間圧延を行う。
酸洗後の冷間圧延は、焼鈍後の冷間圧延と区別するため、1次冷間圧延と呼ぶ。1次冷間圧延の条件はとくに限定されない。本発明のような極薄鋼板では、通常、圧下率75%以上、好ましくは80%以上の圧延が施される。
【0036】
1次冷間圧延後、焼鈍が施される。
焼鈍は、再結晶温度以上 720℃以下の温度で連続焼鈍を行う。
円筒成形後の優れた2次成形性を得るため、鋼板は再結晶温度以上で焼鈍し、再結晶組織とするのが必要である。しかし、720 ℃を超える高温で焼鈍すると、連続焼鈍時に高温強度が低下し極薄鋼板ではヒートバックルと呼ばれる形状不良現象を生じる場合が多い。また、セメンタイトが溶解しやすくなるため、耐時効性が劣化する。このため、焼鈍温度は再結晶温度以上 720℃以下とするのがよい。なお、生産性の観点からより好ましくは再結晶温度以上700 ℃以下である。
【0037】
さらに、本発明では、焼鈍の均熱時間を60sec 以下好ましくは5sec 以上とするのが望ましい。均熱時間が、5sec 未満では、セメンタイトの析出が不十分であり、一方、60sec を超えると生産性が低下する。本発明では、過時効処理を行うことなく低時効性の鋼板を製造することができる。過時効処理の代替として冷却速度を遅くし均熱時間を長くするのが好ましい。過時効処理を行ってもよいが、例えば、400 〜450 ℃間を5sec 以上保持するか10℃/s以下で徐冷する程度でもよい。実際の製造では、操業の安定性を考慮して、40sec 以下の均熱時間での焼鈍とするのが好適である。
【0038】
焼鈍後、2次冷間圧延を施す。
2次冷間圧延の圧下率は、Bを添加しない鋼で1.0 〜10%、Bを添加する鋼で8%超〜10%とする。2次冷間圧延は、缶体強度を確保するのに必要な圧下率で行う必要がある。焼鈍板の材質の均一化、可動転位の導入による時効性の低減のために、少なくとも1.0 %以上の圧下率とするのが必要である。なお、Bを添加する鋼ではr値が高くなる傾向にあるので、r値1.0 以下を確保するために8%超の2次冷間圧延を施す必要がある。一方、圧下率が10%を超えると、円筒成形時のスプリングバック量が大きく、また延性が低下する、あるいは延性の異方性が増加しフランジ割れが発生するなどの問題を生じる。このため、2次冷間圧延の圧下率はBを添加しない鋼で1.0 〜10%、Bを添加する鋼で8%超〜10%の範囲に限定する。
【0039】
本発明は、とくに0.25mm以下の極薄鋼板に適用して好適である。
また、上記した条件を適用して製造すれば、変形3ピース缶に適した缶用鋼板が得られ、それらの缶用鋼板は、圧延方向および圧延直角方向のr値がいずれも0.5 〜1.0 で、かつAI値が30MPa 以下を有し、変形3ピース缶に成形しても缶軸方向の縮み量が少なく、さらに焼付け塗装後の降伏点伸びが少なく時効性が低い鋼板となる。
【0040】
圧延方向および圧延直角方向のr値がいずれも0.5 〜1.0 とすることにより、円筒状の缶胴の2次成形に際し、缶軸方向の収縮を最低限とすることができ鋼材の歩留りを改善できる。なお、この場合変形部は薄肉化するが、その分、加工硬化が加わり、缶体強度としては問題ない。r値が大きい鋼板を使用した場合にくらべ、缶体の軽量化の点で望ましい。
【0041】
【実施例】
(実施例1)
表1に示す組成の溶鋼を転炉で溶製し、連続鋳造法でスラブとした。これらスラブ(鋼No.7〜9 を除く)を表2に示す熱間圧延、1次冷間圧延、連続焼鈍、2次冷間圧延を行い、最終仕上板厚を0.19mmの極薄鋼板とした。ついで、ハロゲンタイプの電気錫めっきラインで25番相当の錫めっきを連続的に施し、ぶりきに仕上げた。これら錫めっき鋼板について、圧延方向(L方向)および圧延直角方向(C方向)の引張強度(TS)、r値、焼付け相当の時効処理(210 ℃×20min )後の降伏点伸び(Y−El)、およびAI値を求めた。AI値は、 7.5%引張予歪を付与したのち 100℃×30min の熱処理を施し、熱処理前後の降伏応力の増加量として測定した。なお、試験片はJIS 13号試験片を用いた。
【0042】
【表1】
【0043】
【表2】
【0044】
つぎに、これら鋼板を、250g缶サイズに円筒成形したのち、特殊な割型構造よりなるプレス治具を用いて2次成形を行った。2次成形における引張歪の方向は鋼板L方向で、伸び歪量は平均7%であった。
製缶後、溶接部、溶接熱影響部、およびそれ以外の部分について、割れ発生にの有無、外観不良の有無について評価した。外観不良は、ストレッチャーストレイン、リジング、肌荒れ等の発生について評価している。また、2次成形の前後で缶軸方向の高さ変化を調査した。これらの結果を表3に示す。
【0045】
【表3】
【0046】
表3から、本発明例は、比較例に比べ、引張強さが高くr値が0.5 〜1.0 の適正な範囲に調整され、しかも時効性が低く、さらに2次成形後に割れは発生せず、表面外観も良好で、2次成形よる缶高さの変化も少ないことがわかる。本発明ではブランク形状をより小さくでき歩留りが改善される。
(実施例2)
表1のNo.3鋼およびNo.7〜9 鋼を用いて、実施例1と同様にして、表4に示す条件で最終仕上板厚0.22mmの鋼板とした。ついで、これら鋼板にハロゲンタイプの電気錫めっきラインで25番相当の錫めっきを連続的に施し、ぶりきに仕上げた。これら錫めっき鋼板について、実施例1と同様に鋼板の機械的性質、缶体特性を調査した。なお、缶体成形の板取りは缶軸方向がL方向となるよう設定した。
【0047】
これらの結果を表5に示す。
【0048】
【表4】
【0049】
【表5】
【0050】
表5から、本発明例は、比較例に比べ、引張強さが高くr値が0.5 〜1.0 の適正な範囲に調整され、しかも時効性が低く、さらに2次成形後に割れは発生せず、表面外観も良好で、2次成形よる缶高さの変化も少ないことがわかる。本発明ではブランク形状をより小さくでき歩留りが約2%改善される。生産数量が多い場合には歩留り向上による経済効果は顕著となる。
【0051】
なお、本発明で得られる缶用鋼板は、上記した錫めっきに限定されることなく、ティンフリー鋼板、複合めっき鋼板、またはめっきを施さない塗油鋼板、鋼板の表面に樹脂フィルムを接着した鋼板としても同様な効果が得られる。
また、3ピース缶用鋼板以外にも2ピース缶用鋼板として用いても何ら問題ない。
【0052】
【発明の効果】
本発明によれば、時効性が低く缶成形・焼付塗装後の表面美麗性に優れ、さらに変形3ピース缶を製造する際に発生する缶軸方向の収縮量が低減でき、素材歩留りを向上させることができ、産業上格段の効果を奏する。
【図面の簡単な説明】
【図1】2次成形後の缶高さ変化に及ぼす鋼板の圧延方向r値の影響を示すグラフである。
【図2】時効処理後の降伏点伸びに及ぼすMn含有量の影響を示すグラフである。
【図3】鋼板L方向r値に及ぼすMn含有量の影響を示すグラフである。
【図4】円筒成形後、円周方向に引張歪を与える2次成形加工の状況を示す説明図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a steel plate for cans and a method for producing the same, and more particularly to a special three-piece can (such as a barrel shape) which is deformed three-dimensionally, such as a barrel shape, after forming the steel plate into a cylindrical shape and further imparting elongation strain in the circumferential direction. The present invention relates to a steel plate for cans suitable for use in a modified 3-piece can) and a method for producing the same.
[0002]
[Prior art]
The can container can be roughly classified into a two-piece can composed of a can body and an upper lid, and a three-piece can composed of a can body, an upper cover, and a bottom cover.
The manufacturing process of a three-piece can is relatively simple compared to that of a two-piece can and usually does not require particularly severe processing. In the three-piece can, after the steel plate is formed into a cylindrical shape, the top lid and the bottom lid are assembled in the final winding and tightening process on the can body joined by a method such as resin bonding, welding or soldering. Flange molding to prepare for the process was only a bottleneck in quality. The flange forming process in the winding process is a process of forming flange portions extending outward in the diameter direction at both ends of the can body so as to cover the can body, and the flange portion is cracked during the processing. May occur. If the flange cracks, the can contents will leak.
[0003]
However, in the conventional three-piece can, it can be said that this problem has been substantially solved by optimizing the steel composition and the secondary cold rolling reduction after annealing (see Japanese Patent Application Laid-Open No. 9-118928).
[0004]
[Problems to be solved by the invention]
However, in recent years, from the viewpoint of improving the design of the can, there has been an increasing demand for a three-piece can (hereinafter referred to as a deformed three-piece can) having a more three-dimensionally deformed shape than a simple cylindrical can. This situation is introduced, for example, in the magazine “THE CANMAKER” Feb. 1996, p32-37.
[0005]
These deformed three-piece cans are formed by joining steel plates into a cylindrical shape to form a can body, and then applying a technique such as elaborate split mold and hydrostatic pressure press to the cylindrical can body portion in the circumferential direction. Manufactured with elongation strain. Problems that arise during the production include cracks, surface roughness, and changes in can dimensions.
In consideration of the above-mentioned problems, the characteristics required for the deformed three-piece can steel plate are listed as (1) to (4) below.
[0006]
(1) No reduction in dimensions in the can height direction. If there is a reduction in dimensions in the can height direction, it is difficult to secure the inner volume.
(2) No appearance defects such as rough skin and stretcher strain. If stretcher strain occurs in secondary molding after baking, the surface beauty is impaired.
[0007]
(3) There should be no cracks in the vicinity of the joint.
(4) It must have sufficient shape freezing property and can faithfully realize the target shape. If the shape freezing property is inferior, the amount of spring pack increases when the can body is formed into a cylinder, the roundness of the cylinder decreases, the variation in the joining allowance of the joint increases, and welding defects increase. Cracks may occur during processing.
[0008]
On the other hand, recently, there is a strong demand for reducing the plate thickness as one means of reducing the cost. This demand is not an exception even in the steel plate for deformed three-piece cans with complicated and severe secondary forming, but the required material properties are more It will be harsh.
In order to reduce the plate thickness and reduce the thickness of the steel plate for cans, it is necessary to make the steel plate harder from the viewpoint of securing the strength of the can body. Methods for hardening steel sheets include (1) solid solution strengthening by adding C, N, etc., (2) work hardening by secondary rolling after annealing, and (3) structure control by adding alloying elements. .
[0009]
However, in the method (1) by solid solution strengthening, conventionally, C and N having a high solid solution strengthening ability have been used, so that there was a problem that stretcher strain was generated on the surface of the steel sheet during the secondary forming, resulting in poor appearance. .
The method (2) by work hardening is the mainstream of the conventional strengthening method. However, as the thickness of the can body and the strength of the steel sheet increase, the secondary rolling reduction ratio after annealing increases, so that the yield stress increases and the shape freezeability deteriorates. . Further, the secondary rolling increases the anisotropy of the material, and in particular, the ductility in the direction perpendicular to the rolling becomes significantly smaller than that in the rolling direction. For this reason, there has been a problem that when the plate is cut so that the circumferential direction of the can is the direction perpendicular to the rolling direction of the steel plate, there is a risk of cracking due to low ductility during the flange processing.
[0010]
In the method (3) based on the structure control, the component elements in the steel are restricted for food hygiene, and it is not preferable to add excessive alloy elements.
For this reason, as an ultra-thin steel plate that can be used for a deformed three-piece can with severe secondary processing, it has the desired can strength, little dimensional change in the can height direction after deformation, and stretcher strain There has been a demand for a material that does not easily occur, that is, has low aging due to C, N, or the like.
[0011]
The present invention provides a deformed three-piece can steel plate that can solve the above-described problems, has excellent formability that can meet the demands of complex can designs, and can exhibit high yield, and a method for manufacturing the same. With the goal.
[0012]
[Means for Solving the Problems]
As a result of intensive studies to solve the above-described problems, the present inventors have increased ductility anisotropy as a steel sheet strengthening method in order to prevent cracking at the joint during secondary processing of the can body. It has been found that it is advantageous to apply solid solution strengthening different from the conventional one in place of secondary rolling.
[0013]
In addition, to prevent the occurrence of rough skin and stretcher strain, the elongation at yield after aging treatment (210 ° C x 20 min) equivalent to painting and baking is less than 3%, and the aging index AI value is 30 MPa or less. For this purpose, the inventors have found that adjustment of the C, N and Al contents and addition of Mn, or further addition of B is effective. The AI value in the present invention refers to the amount of increase in yield stress before and after heat treatment of 100 ° C. × 30 min after applying 7.5% tensile prestrain.
[0014]
As a manufacturing method of the can body of the three-piece can, a method in which the rolling direction (L direction) of the steel plate is cylindrically formed so as to be the circumferential direction of the can (normal grain method) and a direction perpendicular to the rolling direction of the steel plate (C direction). There is a method (reverse grain method) in which a cylinder is formed so that is in the circumferential direction of the can.
When a can body of a deformed three-piece can is manufactured by the normal grain method, as shown in FIG. 4, the steel plate is stretched in the L direction by secondary forming after cylindrical forming. On the other hand, when manufactured by the reverse grain method, the steel sheet is stretched in the C direction. Therefore, the amount of shrinkage in the can height direction matches the amount of shrinkage in the direction perpendicular to the tensile direction at the time of secondary forming, and the amount of shrinkage in the specimen width direction when a tensile test is performed in the L or C direction of the steel sheet, That is, the correlation with the r value in the L or C direction is strong.
[0015]
Therefore, the change in the dimensions of the can body during secondary molding was investigated in detail using various materials. The result will be described.
The steel plate was picked up by a normal grain method and formed into a cylinder, and then the cylindrical can body was subjected to secondary forming as shown in FIG. 4B to obtain a deformed 3-piece can body. After secondary forming, the change in height of the can body is measured and shown in FIG. 1 in relation to the r value (L direction) of the steel sheet. From FIG. 1, it can be seen that it is effective to set the r value of the steel sheet in the range of 0.5 to 1.0 in order to ensure a small change in the can height direction and sufficient workability. The reverse grain method has the same tendency.
[0016]
Moreover, in order to make r value of a steel plate into the range of 0.5-1.0, as shown in FIG. 2, the knowledge that it was effective to make Mn content 0.3% or more was acquired.
Moreover, as shown in FIG. 3, when the Mn content is 0.3% or more, it has been found that the yield point elongation (Y-El) after aging treatment is 3% or less, and the aging property is also lowered. .
[0017]
The present invention has been further studied based on the above findings.
That is, the present invention is a mass%, C: 0.03~0.1%, Si : 0.10% or less, Mn: 0.3 ~1.5%, P : 0.04% or less, S: 0.01% or less, Al: 0.01 to 0.1%, N: containing 0.0030% or less, and a balance of Fe and unavoidable impurities, modifications rolling direction and the direction perpendicular to the rolling direction of the r values are all 0.5-1.0, and AI value is equal to or less than 30 MPa 3 It is a steel plate for piece cans.
[0018]
Further, the present invention is a mass%, C: 0.05 super ~0.1%, Si: 0.10% or less, Mn: 0.3 ~1.5%, P : 0.04% or less, S: 0.01% or less, Al: 0.01 to 0.1% , B: 0.0002 to 0.01%, N: 0.0030% or less, the balance being Fe and inevitable impurities, the r value in the rolling direction and the direction perpendicular to the rolling are both 0.5 to 1.0, and the AI value is 30 MPa or less a deformation 3-piece can for steel plate you wherein there, plate thickness is preferably not more than a very thin steel sheet 0.25 mm.
[0019]
Moreover, this invention is mass% , C : 0.03-0.1%, Si: 0.10% or less, Mn: 0.3-1.5%, P: 0.04% or less, S: 0.01% or less, Al: 0.01-0.1%, N : A steel material containing 0.0030% or less and the balance Fe and unavoidable impurities is heated at a heating temperature of 1050 to 1300 ° C, and then subjected to finish rolling at a finish rolling temperature of 800 to 1000 ° C, and wound. Temperature: After winding at 500 to 750 ° C, pickling and subsequent cold rolling, followed by continuous annealing at a temperature not lower than the recrystallization temperature and not higher than 720 ° C, followed by a reduction ratio of 1.0 to 10% It is a method for producing a steel sheet for a deformed three-piece can, wherein the r value in the rolling direction and the direction perpendicular to the rolling is 0.5 to 1.0, and the AI value is 30 MPa or less, characterized by performing secondary rolling. This is a method for producing an ultrathin steel sheet having a thickness of 0.25 mm or less.
[0020]
The present invention also provides a steel material containing, by mass%, C: more than 0.05 to 0.1%, Mn: 0.3 to 1.5%, Al: 0.01 to 0.1%, B: 0.0002 to 0.01%, N: 0.0030% or less. C: more than 0.05 to 0.1%, Si: 0.10% or less, Mn: 0.3 to 1.5%, P: 0.04% or less, S: 0.01% or less, Al: 0.01 to 0.1%, B: 0.0002 to 0.01% N: 0.0030% or less, the steel material having the balance Fe and unavoidable impurities is heated to a heating temperature of 1050 to 1300 ° C., and then subjected to finish rolling at a finishing rolling temperature of 800 to 1000 ° C., Winding temperature: After winding at 500 to 750 ° C, pickling and subsequent cold rolling, followed by continuous annealing at a temperature not lower than the recrystallization temperature and not higher than 720 ° C, followed by a reduction ratio of more than 8% 10% of the secondary rolling in the rolling direction and perpendicular to the rolling direction r value either 0.5-1.0 and wherein the performing, and deformation 3 peak AI values Ru der less 30MPa A method for producing cans steel plate, also preferably the following method for producing ultrathin steel sheet thickness 0.25 mm.
[0021]
In the present invention, the heating temperature is preferably maintained for 10 to 240 minutes, and the soaking time of the continuous annealing is preferably 60 seconds or less, preferably 5 seconds or more.
[0022]
DETAILED DESCRIPTION OF THE INVENTION
First, the reasons for limiting the chemical composition of the steel sheet of the present invention will be described.
C: 0.03-0.1%
C is one of the important elements in the present invention from the viewpoint of the strength and aging of the steel sheet. In order to reduce aging, it is necessary to sufficiently precipitate cementite and reduce the amount of C dissolved in the steel. However, if the amount of C is less than 0.03%, the strength of the can is insufficient when thinned. On the other hand, if it exceeds 0.1%, it becomes excessively hard and formability deteriorates. In the present invention, B may be added from the viewpoint of reducing aging, but when C is added at 0.05% or less, the detailed mechanism is unknown, but either the L direction or the C direction. Therefore, when adding B, the amount of C must be 0.05% to 0.1%. If the amount of C in the steel increases, cementite precipitation nuclei increase and the diffusion distance of C during cementite precipitation can be shortened, thereby promoting precipitation of cementite and reducing aging.
[0023]
Si: 0.10% or less
When Si is added in a large amount, the surface treatment property and corrosion resistance deteriorate, so the upper limit was made 0.10%. In particular, when excellent corrosion resistance is required, the content is preferably 0.02% or less.
Mn: 0.3 to 1.5%
Mn is one of the important elements in the present invention. Mn is effective in strengthening the solid solution of steel, and is effective in responding to thinning. Further, Mn is effective in reducing aging and r value.
[0024]
It has been conventionally known that cementite precipitated in the hot rolling process is agglomerated and coarsened when the coiling temperature is high, thereby coarsening the crystal grains after cold rolling and annealing or increasing the r value. Therefore, it is considered that Mn is concentrated in cementite, slows the moving speed of the cementite-ferrite interface, suppresses aggregation and coarsening of cementite, and reduces the r value of the annealed plate. Moreover, it is thought that the increase in the solid solution Mn in the steel also contributes to the reduction of the r value.
[0025]
Part of the cementite precipitated in the hot rolling process is re-dissolved in the annealing process, but the migration speed of the cementite-ferrite interface is slowed due to the concentration of Mn in the cementite. Melting will be delayed. Therefore, it is considered that an increase in the amount of solute C in the annealing process is suppressed and aging is reduced.
[0026]
In order to exert these effects, Mn needs to be added at least 0.3% or more. On the other hand, if it exceeds 1.5% and it is added in a large amount, the corrosion resistance tends to deteriorate, and the steel plate is hardened to deteriorate the can-making processability. In addition, Preferably Mn is 0.5 to 1.0% from a viewpoint of aging reduction.
P: 0.04% or less P is a harmful element that hardens steel, deteriorates drawability and flange workability, and further deteriorates corrosion resistance. In particular, when the amount of P exceeds 0.04%, the effect becomes significant, so it is limited to 0.04% or less. In particular, when these characteristics are regarded as important, it is desirable to set it to 0.01% or less.
[0027]
S: 0.01% or less S is an element that exists as an inclusion in steel, lowers the ductility of the steel sheet, and further deteriorates the corrosion resistance, and is limited to 0.01% or less. In particular, in applications where workability is required, the content is preferably 0.005% or less.
Al: 0.01 to 0.1%
Al is an effective element for low aging because it fixes solute N in steel as AlN. For this purpose, Al requires addition of 0.01% or more. In addition, it is desirable to add 0.05% or more in the case of applications that are severe with respect to aging. On the other hand, if the content is too high, the occurrence frequency of surface defects due to alumina clusters and the like increases rapidly, so the upper limit was made 0.1%.
[0028]
N: 0.0030% or less N is an element that enhances aging, and is desirably reduced as much as possible in order to increase the frequency of stretcher strain generation. If it is limited to a range of 0.0030% or less, the above-described adverse effects can be suppressed and occurrence of practical problems can be prevented. The lower limit is not particularly limited, but if it is about 0.0010%, it can be said that it can be achieved economically and industrially. From the viewpoint of ensuring the stability of the material, the content is preferably 0.0020% or less.
[0029]
B: 0.0002 to 0.01%
B has the effect of making the crystal grains of the steel plate finer or suppressing the coarsening of the crystal grains in the heat-affected zone of the can weld zone, and fixing N to reduce aging. Such an effect is exhibited when 0.0002% or more is added. On the other hand, even if added over 0.01%, the effect tends to saturate, causing defects such as the occurrence of surface defects. For this reason, B was limited to the range of 0.0002 to 0.01%. In consideration of the stability of the material, B is preferably in the range of 0.0005 to 0.0050%.
[0030]
The balance consists of Fe and inevitable impurities, but even if a Trump element such as Sn is mixed in as impurities, it can be tolerated if it is 0.10% or less, and the influence on the use characteristics as a can can be ignored.
Next, limitation of manufacturing conditions will be described.
The molten steel having the above composition is melted by a normal melting method, and hot rolled on a steel material solidified by a continuous casting method or an ingot forming method. The steel material may be cooled to room temperature and then reheated, or may be charged and heated in a heating furnace without cooling.
[0031]
In the present invention, it is necessary to suppress the precipitation of MnS as much as possible and to concentrate Mn in the cementite. For this reason, it is preferable that the heating temperature of the steel material for hot rolling is high, and it is desirable that the steel material is heated and held at 1050 to 1300 ° C., preferably for 10 to 240 minutes. When the heating temperature is less than 1050 ° C., precipitation of MnS proceeds, Mn concentration in cementite is not achieved, and there is a risk of causing flaws at the edge of the steel sheet during subsequent rolling. On the other hand, when the heating temperature exceeds 1300 ° C., abnormal grain growth occurs and the structure becomes non-uniform, and the energy cost increases. For this reason, the heating temperature of a steel raw material shall be the range of 1050-1300 degreeC. Since the melting temperature of MnS is considered to be 1100 to 1150 ° C., the heating temperature is preferably 1150 ° C. or higher.
[0032]
If the holding time at the heating temperature is less than 10 minutes, the temperature in the steel material is not uniform, and rolling troubles such as sheet bar warping and bending frequently occur. Further, if it is maintained for more than 240 minutes, the precipitation of MnS proceeds and the expected effect of the present invention cannot be expected, and the structure of the final product is not uniform, and the scale loss due to the increase in scale thickness becomes remarkable. . For this reason, the holding time at the heating temperature is preferably in the range of 10 to 240 min. In view of material stability, it is more preferably 30 to 240 min.
[0033]
The steel material is hot rolled after heating. In hot rolling, finish rolling is performed at a finish rolling temperature of 800 to 1000 ° C.
If the finish rolling temperature is less than 800 ° C., it is difficult to refine the crystal grains of the final product, and the appearance beauty after canning is impaired. On the other hand, if the finish rolling exceeds 1000 ° C., the scale loss increases, which is not preferable. In addition, it is desirable to perform forced cooling after finish rolling. The forced cooling suppresses the in-plane anisotropy of the material and further improves the descaling property.
[0034]
The winding temperature is 500 to 750 ° C.
When the coiling temperature is less than 500 ° C., the material uniformity in the shape and width direction of the steel sheet is lowered, which is not preferable as an ultrathin steel sheet for cans. On the other hand, when the temperature exceeds 750 ° C., cementite is aggregated and coarsened, and the r value increases and the scale thickness increases. For this reason, winding temperature is limited to 500-750 degreeC. In order to fix the solid solution N as AlN and lower the aging property, it is desirable that the temperature be 600 to 700 ° C., more preferably 650 to 700 ° C.
[0035]
After hot rolling, pickling is performed.
The conditions for pickling are not particularly limited, and normal pickling with hydrochloric acid or sulfuric acid may be performed.
Following pickling, cold rolling is performed.
Cold rolling after pickling is called primary cold rolling in order to distinguish it from cold rolling after annealing. The conditions for primary cold rolling are not particularly limited. In the ultrathin steel sheet as in the present invention, rolling is usually performed at a rolling reduction of 75% or more, preferably 80% or more.
[0036]
After the primary cold rolling, annealing is performed.
For annealing, continuous annealing is performed at a temperature not lower than the recrystallization temperature and not higher than 720 ° C.
In order to obtain excellent secondary formability after cylindrical forming, the steel sheet needs to be annealed at a recrystallization temperature or higher to have a recrystallized structure. However, if annealing is performed at a high temperature exceeding 720 ° C., the high-temperature strength decreases during continuous annealing, and a shape defect phenomenon called a heat buckle often occurs in an ultrathin steel plate. Moreover, since cementite becomes easy to melt | dissolve, aging resistance deteriorates. For this reason, the annealing temperature is preferably not less than the recrystallization temperature and not more than 720 ° C. From the viewpoint of productivity, the recrystallization temperature is more preferably 700 ° C. or less.
[0037]
Furthermore, in the present invention, it is desirable that the soaking time for annealing is 60 sec or less, preferably 5 sec or more. When the soaking time is less than 5 seconds, the precipitation of cementite is insufficient. On the other hand, when it exceeds 60 seconds, the productivity decreases. In the present invention, a low-aging steel sheet can be produced without performing an overaging treatment. As an alternative to the overaging treatment, it is preferable to slow the cooling rate and lengthen the soaking time. Although an overaging treatment may be performed, for example, a temperature between 400 and 450 ° C. may be maintained for 5 seconds or more, or may be gradually cooled at 10 ° C./s or less. In actual production, it is preferable to perform annealing with a soaking time of 40 seconds or less in consideration of operational stability.
[0038]
Secondary annealing is performed after annealing.
The rolling reduction of secondary cold rolling is 1.0 to 10% for steel not containing B, and more than 8% to 10% for steel containing B. The secondary cold rolling needs to be performed at a reduction rate necessary to ensure the strength of the can body. In order to make the material of the annealed plate uniform and reduce aging by introducing movable dislocations, it is necessary to set the rolling reduction to at least 1.0%. In addition, since the r value tends to be high in steel to which B is added, in order to secure the r value of 1.0 or less, it is necessary to perform secondary cold rolling exceeding 8%. On the other hand, when the rolling reduction exceeds 10%, there are problems such as a large amount of springback at the time of cylindrical molding, a decrease in ductility, or an increase in ductility anisotropy and the occurrence of flange cracks. For this reason, the rolling reduction of the secondary cold rolling is limited to a range of 1.0 to 10% for steel not containing B, and more than 8% to 10% for steel containing B.
[0039]
The present invention is particularly suitable for application to an ultrathin steel plate of 0.25 mm or less.
Moreover, if it manufactures by applying above-mentioned conditions, the steel plate for cans suitable for a deformation | transformation 3 piece can will be obtained, and the r value of a rolling direction and a rolling right angle direction is 0.5-1.0 in both these steel plates for cans. In addition, even if it is formed into a deformed three-piece can, the AI value is 30 MPa or less, and the amount of shrinkage in the can axis direction is small, and the yield point elongation after baking coating is small and the aging property is low.
[0040]
By setting the r value in the rolling direction and the direction perpendicular to the rolling to 0.5 to 1.0, the shrinkage in the can axis direction can be minimized during the secondary forming of the cylindrical can body, and the yield of the steel material can be improved. . In this case, although the deformed portion is thinned, work hardening is added correspondingly, and there is no problem with the can body strength. Compared to the case where a steel plate having a large r value is used, it is desirable in terms of weight reduction of the can body.
[0041]
【Example】
Example 1
Molten steel having the composition shown in Table 1 was melted in a converter and made into a slab by a continuous casting method. These slabs (except steel Nos. 7 to 9) are subjected to hot rolling, primary cold rolling, continuous annealing, and secondary cold rolling shown in Table 2 to obtain an ultrathin steel plate with a final finished sheet thickness of 0.19 mm. did. Next, tin plating equivalent to No. 25 was continuously applied on a halogen type electric tin plating line to finish it with a tinplate. For these tin-plated steel sheets, the tensile strength (TS) in the rolling direction (L direction) and the direction perpendicular to the rolling direction (C direction), the r value, and the elongation at yield after aging treatment (210 ° C. × 20 min) (Y-El) ) And AI values. The AI value was measured as the amount of increase in yield stress before and after heat treatment after applying a heat treatment of 100 ° C. × 30 min after applying 7.5% tensile prestrain. The test piece used was a JIS No. 13 test piece.
[0042]
[Table 1]
[0043]
[Table 2]
[0044]
Next, these steel plates were cylindrically formed into a 250 g can size, and then subjected to secondary forming using a press jig having a special split mold structure. The direction of tensile strain in secondary forming was the steel plate L direction, and the amount of elongation strain was 7% on average.
After making the can, the welded part, the weld heat-affected part, and other parts were evaluated for the presence of cracks and the appearance defects. Appearance defects are evaluated for the occurrence of stretcher strain, ridging, rough skin, and the like. Moreover, the height change of the can axis direction was investigated before and after secondary molding. These results are shown in Table 3.
[0045]
[Table 3]
[0046]
From Table 3, the inventive example has a higher tensile strength and an r value adjusted to an appropriate range of 0.5 to 1.0 as compared with the comparative example, and has low aging, and further, no cracking occurs after secondary molding. It can be seen that the surface appearance is good and the change in can height due to secondary molding is small. In this invention, a blank shape can be made smaller and a yield is improved.
(Example 2)
Using No.3 steel and No.7-9 steel of Table 1, it carried out similarly to Example 1, and was set as the steel plate of final finishing board thickness 0.22mm on the conditions shown in Table 4. Next, these steel sheets were continuously plated with tin corresponding to No. 25 on a halogen-type electric tin plating line, and finished with a tinplate. For these tin-plated steel plates, the mechanical properties and can characteristics of the steel plates were investigated in the same manner as in Example 1. Note that the can body forming plate was set so that the can axis direction was the L direction.
[0047]
These results are shown in Table 5.
[0048]
[Table 4]
[0049]
[Table 5]
[0050]
From Table 5, the present invention example has a higher tensile strength and an r value adjusted to an appropriate range of 0.5 to 1.0 as compared with the comparative example, and is low in aging, and further, no cracking occurs after secondary molding. It can be seen that the surface appearance is good and the change in can height due to secondary molding is small. In the present invention, the blank shape can be made smaller, and the yield is improved by about 2%. When the production volume is large, the economic effect due to yield improvement becomes significant.
[0051]
In addition, the steel plate for cans obtained by the present invention is not limited to the above-described tin plating, but is a tin-free steel plate, a composite plated steel plate, an oil-coated steel plate to which plating is not applied, or a steel plate having a resin film adhered to the surface of the steel plate. The same effect can be obtained.
Moreover, there is no problem even if it uses as a steel plate for 2 piece cans besides the steel plate for 3 piece cans.
[0052]
【The invention's effect】
According to the present invention, the aging property is low, the surface beauty after can molding and baking coating is excellent, and the amount of shrinkage in the can axis direction that occurs when producing a deformed three-piece can can be reduced, thereby improving the material yield. It is possible to achieve a remarkable industrial effect.
[Brief description of the drawings]
FIG. 1 is a graph showing an influence of a rolling direction r value of a steel sheet on a change in can height after secondary forming.
FIG. 2 is a graph showing the influence of Mn content on yield point elongation after aging treatment.
FIG. 3 is a graph showing the influence of the Mn content on the r value in the L direction of the steel sheet.
FIG. 4 is an explanatory diagram showing a state of secondary molding processing that gives tensile strain in the circumferential direction after cylindrical molding.

Claims (4)

量%で、
C:0.03〜0.1 %、 Si:0.10%以下、
Mn:0.3 〜1.5 %、 P:0.04%以下、
S:0.01%以下、 Al:0.01〜0.1 %、
N:0.0030%以下
を含有し、残部Feおよび不可避的不純物からなり、圧延方向および圧延直角方向のr値がいずれも0.5 〜1.0 で、かつAI値が30MPa 以下であることを特徴とする変形3ピース缶用鋼板。
In mass%,
C: 0.03-0.1%, Si: 0.10% or less,
Mn: 0.3 to 1.5%, P: 0.04% or less,
S: 0.01% or less, Al: 0.01 to 0.1%,
N: containing 0.0030% or less, and a balance of Fe and unavoidable impurities, modifications rolling direction and the direction perpendicular to the rolling direction of the r values are all 0.5-1.0, and AI value is equal to or less than 30 MPa 3 Steel plate for piece cans.
量%で、
C:0.05超〜0.1 %、 Si:0.10%以下、
Mn:0.3 〜1.5 %、 P:0.04%以下、
S:0.01%以下、 Al:0.01〜0.1 %、
B:0.0002〜0.01%、 N:0.0030%以下
を含有し、残部Feおよび不可避的不純物からなり、圧延方向および圧延直角方向のr値がいずれも0.5 〜1.0 で、かつAI値が30MPa 以下であることを特徴とする変形3ピース缶用鋼板。
In mass%,
C: more than 0.05 to 0.1%, Si: 0.10% or less,
Mn: 0.3 to 1.5%, P: 0.04% or less,
S: 0.01% or less, Al: 0.01 to 0.1%,
B: 0.0002 to 0.01%, N: 0.0030% or less, remaining Fe and inevitable impurities, r value in the rolling direction and in the direction perpendicular to the rolling is 0.5 to 1.0, and AI value is 30 MPa or less A modified three-piece steel plate for cans.
質量%で、
C:0.03〜0.1 %、Si 0.10 %以下、Mn:0.3 〜1.5 %、P: 0.04 %以下、S: 0.01 %以下、Al:0.01〜0.1 %、N:0.0030%以下を含有し、残部 Fe および不可避的不純物からなる組成の鋼素材を、加熱温度:1050〜1300℃に加熱後、仕上圧延温度:800 〜1000℃とする仕上圧延を施し、巻取り温度:500 〜750 ℃で巻取ったのち、酸洗、およびそれに続く冷間圧延を行い、ついで再結晶温度以上720 ℃以下の温度で連続焼鈍を行ったのち、圧下率:1.0 〜10%の二次圧延を施すことを特徴とする圧延方向および圧延直角方向のr値がいずれも0.5 〜1.0 で、かつAI値が30MPa 以下である変形3ピース缶用鋼板の製造方法。
% By mass
C: 0.03 to 0.1%, Si : 0.10 % or less, Mn: 0.3 to 1.5%, P: 0.04 % or less, S: 0.01 % or less, Al: 0.01 to 0.1%, N: 0.0030% or less , balance Fe And a steel material having a composition composed of unavoidable impurities was heated to a heating temperature of 1050 to 1300 ° C., and then subjected to finish rolling at a finishing rolling temperature of 800 to 1000 ° C. and wound at a winding temperature of 500 to 750 ° C. After that, pickling and subsequent cold rolling, followed by continuous annealing at a temperature not lower than the recrystallization temperature and not higher than 720 ° C, followed by secondary rolling at a rolling reduction of 1.0 to 10% A method for producing a steel sheet for a deformed three-piece can in which the r value in the rolling direction and the direction perpendicular to the rolling is 0.5 to 1.0 and the AI value is 30 MPa or less.
量%で、
C:0.05超〜0.1 %、Mn:0.3 〜1.5 %、Al:0.01〜0.1 %、B:0.0002〜0.01%、N:0.0030%以下を含有する鋼素材を、加熱温度:1050〜1300℃に加熱後、仕上圧延温度:800 〜1000℃とする仕上圧延を施し、巻取り温度:500 〜750 ℃で巻取ったのち、酸洗、およびそれに続く冷間圧延を行い、ついで再結晶温度以上720 ℃以下の温度で連続焼鈍を行ったのち、圧下率:8%超〜10%の二次圧延を施すことを特徴とする圧延方向および圧延直角方向のr値がいずれも0.5 〜1.0 で、かつAI値が30MPa 以下である変形3ピース缶用鋼板の製造方法。
In mass%,
C: More than 0.05 to 0.1%, Mn: 0.3 to 1.5%, Al: 0.01 to 0.1%, B: 0.0002 to 0.01%, N: 0.0030% or less steel material is heated to heating temperature: 1050 to 1300 ° C Thereafter, finish rolling is performed at a finish rolling temperature of 800 to 1000 ° C., winding at a winding temperature of 500 to 750 ° C., pickling and subsequent cold rolling, and then a recrystallization temperature of 720 ° C. or higher. After performing continuous annealing at the following temperatures, the rolling reduction and the r-value in the direction perpendicular to the rolling are 0.5 to 1.0, characterized by performing secondary rolling at a reduction ratio of more than 8% to 10%, and AI. A method for producing a steel plate for a modified 3-piece can having a value of 30 MPa or less.
JP17928398A 1997-08-18 1998-06-25 Steel plate for modified 3-piece can and manufacturing method thereof Expired - Fee Related JP3852210B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17928398A JP3852210B2 (en) 1997-08-18 1998-06-25 Steel plate for modified 3-piece can and manufacturing method thereof

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP22151897 1997-08-18
JP9-221518 1997-08-18
JP17928398A JP3852210B2 (en) 1997-08-18 1998-06-25 Steel plate for modified 3-piece can and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH11124654A JPH11124654A (en) 1999-05-11
JP3852210B2 true JP3852210B2 (en) 2006-11-29

Family

ID=26499189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17928398A Expired - Fee Related JP3852210B2 (en) 1997-08-18 1998-06-25 Steel plate for modified 3-piece can and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP3852210B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185114A (en) * 2010-03-05 2011-09-22 Sankei Giken Kogyo Co Ltd Method of manufacturing cylindrical body of cleaning device for automobile, and cleaning device for automobile

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI290177B (en) 2001-08-24 2007-11-21 Nippon Steel Corp A steel sheet excellent in workability and method for producing the same
KR20030035697A (en) * 2001-11-02 2003-05-09 주식회사 포스코 A method for manufacturing high intensity tin plating steel plate having good aging property and corrosion-resistance and broken-resistance
JP4630268B2 (en) * 2006-12-28 2011-02-09 新日本製鐵株式会社 Steel plate for profile can
JP5000467B2 (en) * 2007-12-03 2012-08-15 新日本製鐵株式会社 Steel plate for 3-piece can with high strength and excellent expandability and manufacturing method
TWI504760B (en) 2012-11-07 2015-10-21 Jfe Steel Corp Steel sheet for 3-piece can and manufacturing method thereof
KR101989712B1 (en) * 2014-10-28 2019-06-14 제이에프이 스틸 가부시키가이샤 Steel sheet for two-piece can and manufacturing method therefor
EP3187612B1 (en) * 2014-11-12 2019-06-19 JFE Steel Corporation Steel sheet for cans and method for manufacturing steel sheet for cans
WO2018180404A1 (en) * 2017-03-27 2018-10-04 Jfeスチール株式会社 Steel sheet for two-piece can and production method therefor
CN110494581B (en) 2017-03-27 2021-07-09 杰富意钢铁株式会社 Two-piece steel sheet for can and method for producing same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011185114A (en) * 2010-03-05 2011-09-22 Sankei Giken Kogyo Co Ltd Method of manufacturing cylindrical body of cleaning device for automobile, and cleaning device for automobile

Also Published As

Publication number Publication date
JPH11124654A (en) 1999-05-11

Similar Documents

Publication Publication Date Title
KR100615380B1 (en) Steel sheet for can and manufacturing method thereof
WO2010113333A1 (en) Steel sheet for high‑strength container and manufacturing method thereof
JP5939368B1 (en) Steel plate for can and manufacturing method thereof
JP3852210B2 (en) Steel plate for modified 3-piece can and manufacturing method thereof
JP2009007607A (en) Steel sheet for extrathin vessel
JP3695048B2 (en) Steel plate for modified 3-piece can and manufacturing method thereof
JP4193228B2 (en) Steel plate for can and manufacturing method thereof
JP2023507810A (en) Tin-plated base plate for processing and method for producing the same
JPH03277741A (en) Dual-phase cold roller steel sheet excellent in workability, cold nonaging properties and baking hardenability and its manufacture
JP4630268B2 (en) Steel plate for profile can
JPS637336A (en) Production of extra-thin steel sheet for welded can having excellent flanging property
JP4779737B2 (en) Manufacturing method of steel sheet for ultra thin can and steel sheet for ultra thin can
JP5463720B2 (en) Cold rolled steel sheet for can steel sheet, steel sheet for can and manufacturing method thereof
JP4276388B2 (en) Thin steel plate for high-strength welding cans excellent in flange formability and method for producing the same
JP3728911B2 (en) Raw material for surface-treated steel sheet having excellent aging resistance and low ear occurrence rate, and method for producing the same
JP3727150B2 (en) Hot-rolled steel sheet for drums, method for producing the same, and steel high-strength drum
JP3700280B2 (en) Manufacturing method of steel plate for cans
JPH03257123A (en) Production of steel sheet for extremely thin welded can having excellent blank layout property
JPH03294432A (en) Production of extra thin steel sheet for welded can excellent in blank layout property
JPH08218146A (en) Steel sheet for welded can excellent in flange workability and neck formability and production thereof
JPH0892695A (en) Steel sheet for two-piece can excellent in can making workability and flanging workability and its production
JP3273383B2 (en) Cold rolled steel sheet excellent in deep drawability and method for producing the same
JPH06264138A (en) Production of steel sheet for welded can excellent in blank layout property
JPH09118928A (en) Manufacture of steel sheet for welded can excellent in workability of flange and formability of neck
JPH10110244A (en) Double cold rolling finished steel sheet for welded can in which flange forming is easily executable and its production

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A132

Effective date: 20051206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060828

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees