JPS637336A - Production of extra-thin steel sheet for welded can having excellent flanging property - Google Patents

Production of extra-thin steel sheet for welded can having excellent flanging property

Info

Publication number
JPS637336A
JPS637336A JP15119686A JP15119686A JPS637336A JP S637336 A JPS637336 A JP S637336A JP 15119686 A JP15119686 A JP 15119686A JP 15119686 A JP15119686 A JP 15119686A JP S637336 A JPS637336 A JP S637336A
Authority
JP
Japan
Prior art keywords
cold rolling
annealing
rolling
steel sheet
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15119686A
Other languages
Japanese (ja)
Inventor
Yaichiro Mizuyama
水山 弥一郎
Kazumasa Yamazaki
一正 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP15119686A priority Critical patent/JPS637336A/en
Publication of JPS637336A publication Critical patent/JPS637336A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PURPOSE:To produce an extra-thin steel sheet for welded cans having an excellent flanging property by subjecting a steel consisting of specifically composed C, Si, Mn, P, Al, N, and Fe to hot rolling, cold rolling, annealing, and secondary cold rolling under specific conditions. CONSTITUTION:A steel contg. 0.02-0.20% C, <=0.02% Si, 0.1-0.6% Mn, <=0.06% P, 0.005-0.1% Al, and <=0.1% N, and consisting of the balance Fe and unavoidable impurities is subjected to the hot rolling at the finishing temp. above the A3 transformation point and is coiled at <=680 deg.C coiling temp. After the hot rolled steel sheet is pickled, the steel sheet is subjected to rolling and annealing additionally as a pretreatment at need; thereafter, the sheet is subjected to the cold rolling at <=85% draft. The cold rolled sheet is then annealed at the temp. above the recrystallization temp. by continuous annealing or box annealing. The annealed steel sheet obtd. in such a manner is subjected to the secondary cold rolling at 10-40%, by which the stock for plating is obtd.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はフランジ加工性の優れた溶接缶月極薄銅板の製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing an ultra-thin welded copper plate having excellent flanging properties.

〔従来の技術〕[Conventional technology]

従来から、缶の接合は半田付けKよる方法、樹脂接着に
よる方法、溶接による方法で行なわれている。缶の接合
代は半田付け、樹脂接着、溶接の7順に小さくなシ、鋼
板の使用歩留同上のために、缶の接合代を小さくできる
溶接による方法が近年主流になっている。ところで、接
合した缶胴に蓋をするために缶胴の端部に直径方向外方
に向かつて延出するフランジ部を形成するフランジ加工
を行う。その際、フランジ部から缶の内容物が漏れる原
因となる割れ、つまシ、7ランジ割れと呼ばれる欠陥を
生じることがある。
Conventionally, cans have been joined by soldering, resin adhesion, and welding. The welding cost for cans decreases in the order of seven: soldering, resin adhesion, and welding.In recent years, welding, which can reduce the joining cost for cans, has become mainstream, as the yield rate for steel plates is the same. Incidentally, in order to cover the joined can bodies, flange processing is performed to form a flange portion extending diametrically outward at the end of the can body. At that time, defects called cracks, bulges, and 7-lunge cracks may occur that cause the contents of the can to leak from the flange.

その7ランジ割れを生じる原因として、溶接での接合不
良、鋼板自体の加工性不良、鋼板の介在物、溶接部の硬
化、溶接熱影響部の軟化等がある。そのうち、7ランジ
加工時に割れにつながる部分が局部的に変形して7ラン
ジ割れを起こすのは溶接部の硬化、溶接熱影響部の軟化
の相互作用で溶接熱影響部からのことが多く、7ランジ
加工における最大の問題点である。
7. Causes of lunge cracking include poor welding, poor workability of the steel plate itself, inclusions in the steel plate, hardening of the weld, and softening of the weld heat affected zone. Among them, the part that leads to cracking during 7-lung processing is locally deformed, and 7. Lange cracking is often caused by the weld heat-affected zone due to the interaction of hardening of the weld and softening of the weld heat-affected zone. This is the biggest problem in lunge machining.

この問題は下記の鋼板において顕著である。This problem is noticeable in the following steel plates.

省資源の観点から缶用素材の板厚を薄くする傾向にあシ
、鋼板の硬さを硬くして対処している。このような鋼板
は熱延鋼板を冷間圧延後、焼鈍し、再度冷間圧延を行う
、いわゆる、2回冷延方弐によシ製造したものである。
In order to save resources, there is a trend toward thinner can materials, and this is being countered by increasing the hardness of steel sheets. Such a steel plate is produced by cold-rolling a hot-rolled steel plate, annealing it, and cold-rolling it again, which is the so-called two-time cold rolling process.

この2回冷延材は溶接後の7ランジ加工でフランジ割れ
を起こすことが多い。その原因として、溶接によって硬
化した溶接部と2回冷延で硬化している原板の部分に挾
まれた溶接によって軟化した溶接熱影響部にフランジ加
工での歪が集中して割れると考えられる。
This twice cold-rolled material often suffers flange cracking during 7-lung processing after welding. The reason for this is thought to be that strain during flange processing concentrates on the weld heat-affected zone, which is softened by the welding and is sandwiched between the weld hardened by welding and the part of the original sheet that has been hardened by cold rolling twice, resulting in cracking.

一方、7ランジ加工性の優れた溶接缶用極薄鋼板の製造
方法に関しては、従来よシ、特開昭59−25934号
公報の如く合金添加を多くして硬質にして溶接熱影響部
の軟化を防ぐ方法が用いられている。しかし、7ランジ
割れを防止するには不十分であシ、フランジ加工性の優
れた溶接缶用極薄鋼板を製造することはできなかった。
On the other hand, regarding the manufacturing method of ultra-thin steel sheets for welded cans with excellent 7-lange workability, the conventional method is as described in Japanese Patent Application Laid-open No. 59-25934. Methods are being used to prevent this. However, it was insufficient to prevent 7-lunge cracking, and it was not possible to produce an ultra-thin steel plate for welded cans with excellent flange workability.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記の如き欠点を改善し、7ランジ加工性の優
れた溶接缶用極4鋼板の製造方法を提供するものである
The present invention improves the above-mentioned drawbacks and provides a method for producing a 4-pole steel plate for welded cans with excellent 7-lung workability.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、C:0.02〜0.20%、Si≦0、02
 %、Mn : 0.1〜0.6 %、P≦0.06 
%、A1:0.005〜0.1%、N≦0,1チを含有
し、残部Feおよび不可避的不純物からなる鋼をA。
In the present invention, C: 0.02 to 0.20%, Si≦0, 02
%, Mn: 0.1-0.6%, P≦0.06
%, A1: 0.005 to 0.1%, N≦0.1%, and the balance is Fe and inevitable impurities.

変態点以上の仕上温度で熱間圧延し、巻取温度680℃
以下で巻取シ、酸洗後、冷延率85チ以下の冷間圧延を
施し、連続焼鈍あるいは箱焼鈍で再結晶温度以上の温度
で焼鈍した後、10〜40%の2次冷間圧延を施し、め
っき用素材とすることを特徴とする7ランジ加工性の優
れた溶接缶用極4鋼板の製造方法および上記方法におい
て、付加的に冷延率85チ以下とするための鋼板の板厚
を薄くする圧延、焼鈍を施すことを特徴とする7ランジ
加工性の優れた溶接缶用極薄鋼板の製造方法であり、7
ランジ加工性の優れた溶接缶用極薄鋼板を経済的にも有
利に製造することを可能としたものである。
Hot rolled at a finishing temperature above the transformation point and coiled at a temperature of 680°C.
After winding and pickling, cold rolling is performed at a cold rolling rate of 85 inches or less, followed by continuous annealing or box annealing at a temperature higher than the recrystallization temperature, and then secondary cold rolling of 10 to 40%. A method for manufacturing a pole 4 steel plate for welded cans with excellent 7-lunge workability, characterized in that the steel plate is subjected to a cold rolling process and used as a material for plating, and in the above method, the steel plate is additionally made to have a cold rolling rate of 85 inches or less. 7. A method for producing an ultra-thin steel plate for welded cans with excellent flange workability, characterized by rolling and annealing to reduce the thickness.
This makes it possible to economically advantageously produce ultra-thin steel plates for welded cans with excellent lunge workability.

以下、本発明について詳細に説明する。The present invention will be explained in detail below.

本発明者らはフランジ加工性の浸れた溶接缶用極薄鋼板
の製造方法について鋭意検討した結果、冷延率85チ以
下の冷間圧延を行い、鋼板の圧延方向のr値を高くする
ことによって、溶接熱影響部の局部変形能の向上を図シ
、7ランジ加工時のフランジ割れを防止することでフラ
ンジ加工性の優れた溶接缶用極薄鋼板が得られることを
知見した。
The inventors of the present invention have conducted extensive studies on the manufacturing method of ultra-thin steel sheets for welded cans with excellent flanging properties, and have found that cold rolling is performed at a cold rolling rate of 85 inches or less to increase the r value in the rolling direction of the steel sheet. It was discovered that by improving the local deformability of the weld heat-affected zone and preventing flange cracking during 7-flange processing, an ultra-thin steel plate for welded cans with excellent flange workability could be obtained.

第1図はC:0.05%、Si:0.012%、Mn 
: 0.32 %、P : 0.01%、AZ:0.0
35%、N : 0. OO43チを含有した鋼を溶製
し常法に従い熱間圧延で仕上温度870℃、巻取@度を
630℃で巻取シ、板厚1,4、zl、2.8mの熱延
鋼板とした後、板厚2.8wg材を冷延率75.70.
61チで冷間圧延を行い、680℃で2時間の箱焼鈍を
実施して、板厚0.71〜18 mxとした後、常法に
従い、冷延率70〜92%の冷間圧延を施し、板厚0.
213mの鋼板とした後、680℃で20秒の連続焼鈍
および640℃で2時間の箱焼鈍を行い、ついで、冷延
率20チの冷間圧延いわゆる2次冷延を行い、板厚0.
17mmの溶接缶用極薄鋼板としたときの冷延率と圧延
方向のr値、フランジアップ率との関係について調べた
図である。ここで、圧延方向のr値は圧延方向、その直
角方向、圧延方向から45度方向のヤング率を測定し、
ヤング率とr値の対応関係式から求めた。また、フラン
ジアップ率は7ランジ割れのない範囲を7ランジアツプ
率夕〔(7ランジ加工後のつばの直径−缶胴の直径)/
缶胴の直径)X100(チ)で求めた。なお、鋼板の硬
さはHr30Tで70以上であシ、硬さで鋼板の強度を
表示する溶接缶用極薄鋼板の一般的な規格のDR8、D
R9、DRIQの範囲に入っている。図から、冷延率が
85%以下になると圧延方向のr値が高くなシ、フラン
ジアップ率が高くなり、7ランジ加工性が向上すること
がわかる。それに比し、冷延率が85チを超えると圧延
方向のr値が低くなシ、7ランジアツプ率が低く、7ラ
ンジ加工性が悪くなることがわかる。このことは7ラン
ジ加工するときの加工される方向が圧延方向と同じ方向
であるために、圧延方向のr値が高くなることで、局部
伸び性が良くなるので、溶接熱影響部の局部伸び性も良
くなるので7ランジ割れを起こさず、7ランジ加工性の
良い鋼板とすることができる。しかも、冷延率を低くす
るためには熱延鋼板の板厚を薄くすることが必要である
が、熱間圧延での板厚を薄くすることはその製造工程か
ら限界があり、冷間圧延前の前処理としての板厚減少の
ための冷間圧延、焼鈍工程も有効であるといえる。
Figure 1 shows C: 0.05%, Si: 0.012%, Mn
: 0.32%, P: 0.01%, AZ: 0.0
35%, N: 0. A steel containing OO43 was melted and hot-rolled according to a conventional method at a finishing temperature of 870°C and a winding temperature of 630°C, resulting in a hot-rolled steel plate with a plate thickness of 1.4, zl, and 2.8 m. After that, the plate thickness 2.8wg material was cold rolled at a cold rolling rate of 75.70.
After performing cold rolling at 61 mm and box annealing at 680°C for 2 hours to obtain a plate thickness of 0.71 to 18 mx, cold rolling was performed at a cold rolling rate of 70 to 92% according to a conventional method. Finished, board thickness 0.
After forming a 213 m steel plate, it was subjected to continuous annealing at 680°C for 20 seconds and box annealing at 640°C for 2 hours, and then cold rolling with a cold rolling rate of 20 inches, so-called secondary cold rolling, to obtain a plate with a thickness of 0.
It is a figure which investigated the relationship between the cold rolling rate, the r value in the rolling direction, and the flange-up ratio when a 17 mm ultra-thin steel plate for welded cans was made. Here, the r value in the rolling direction is determined by measuring the Young's modulus in the rolling direction, the direction perpendicular to the rolling direction, and the Young's modulus in the 45 degree direction from the rolling direction.
It was determined from the correspondence equation between Young's modulus and r value. In addition, the flange up rate is calculated based on the range without 7-lunge cracking.
It was determined by (diameter of can body) x 100 (ch). The hardness of the steel plate must be 70 or higher at Hr30T, and the hardness is DR8, D, which is the general standard for ultra-thin steel plates for welding cans, which indicates the strength of the steel plate.
R9, within the DRIQ range. From the figure, it can be seen that when the cold rolling ratio is 85% or less, the r value in the rolling direction is not high, the flange up ratio is high, and the 7-lung workability is improved. In contrast, it can be seen that when the cold rolling rate exceeds 85 inches, the r value in the rolling direction is low, the 7-range up ratio is low, and the 7-range workability is poor. This is because the processing direction during 7-lange processing is the same as the rolling direction, so the r value in the rolling direction increases and the local elongation improves, so the local elongation of the weld heat affected zone increases. Since the properties are also improved, a steel plate that does not cause 7-lunge cracking and has good 7-lunge workability can be obtained. Moreover, in order to lower the cold rolling rate, it is necessary to reduce the thickness of the hot rolled steel sheet, but there is a limit to reducing the thickness during hot rolling due to the manufacturing process. It can be said that cold rolling and annealing processes for reducing the plate thickness as pretreatment are also effective.

尚、本発明で特定した成分範囲の鋼は略同様の結果を示
す。
Incidentally, steels having the composition range specified in the present invention show substantially similar results.

本発明において、成分を上記のごとく限定する理由は以
下のとおシである。
In the present invention, the reasons for limiting the components as described above are as follows.

C量の下限を0.02%としたのはそれ未満では極薄鋼
板としての強度が得られないためである。また、C量の
上限を0.2oチとしたのはそれを超えると硬質になり
、7ランジ加工性が悪くなるためである。
The lower limit of the C content is set to 0.02% because if it is less than that, the strength as an ultra-thin steel plate cannot be obtained. Further, the reason why the upper limit of the amount of C is set to 0.2° is that if it exceeds this value, the material becomes hard and the 7-lunge workability deteriorates.

81量を0.02−以下としたのはそれを超えると7ラ
ンジ加工性が劣化するためである。また、Si量が多く
なるとSn、  Cr、 Nt、AII等のめっきを施
して、めっき鋼板とするときに1めりきの密着性が悪化
するのでSi量を少なくすることが必要である。さらに
1缶の耐蝕性の観点からも有効でSi量を少なくするこ
とが望ましい。
The reason why the amount of 81 is set to be 0.02- or less is because if it exceeds this amount, the 7 lunge workability deteriorates. Furthermore, if the amount of Si increases, the adhesion of the first plating will deteriorate when plating with Sn, Cr, Nt, AII, etc. is applied to produce a plated steel sheet, so it is necessary to reduce the amount of Si. Furthermore, it is desirable to reduce the amount of Si, which is effective from the viewpoint of corrosion resistance of one can.

Mn1iを0.1〜0.6チと限定したのは0.1係未
満では極薄鋼板としての強度が得られないためであシ、
また0、6%を超えると硬質となり、7ランジ加工性が
悪くなるためと製造コストが高くなシ経済的に不利にな
るためである。
The reason why Mn1i is limited to 0.1 to 0.6 is because if it is less than 0.1, the strength as an ultra-thin steel plate cannot be obtained.
Moreover, if it exceeds 0.6%, it will become hard, resulting in poor lunge workability and high manufacturing cost, which is economically disadvantageous.

P量を0.06%以下と限定したのは固溶体強化元素と
して有効であるが、必要以上に多くするとフランジ加工
性を悪くするためであり、また多くなると耐蝕性の点か
らも好ましくないためである。
The reason why the amount of P is limited to 0.06% or less is because it is effective as a solid solution strengthening element, but if it is more than necessary, it will worsen flange workability, and if it is too much, it is not preferable from the viewpoint of corrosion resistance. be.

AII量を0.005〜0.1係と限定し、下限を0、
 OQ 5チとしたのはそれ未満では脱酸が十分ではな
く、介在物の多い鋼となυ、フランジ割れが発生し易く
なり、また、上限を041チとしたのはそれを超えて多
く含有すると固溶Mにより結晶粒が細かく硬質になシ、
7ランジ加工性を劣化さするためである。
The AII amount is limited to 0.005 to 0.1, and the lower limit is 0,
The reason why we set the OQ to 5chi is because if it is less than that, deoxidation will not be sufficient, resulting in a steel with many inclusions, and flange cracking will easily occur.Also, we set the upper limit to 041chi because if the content is higher than that, the steel will have many inclusions. Then, the crystal grains become fine and hard due to solid solution M,
7. This is because it deteriorates the lunge workability.

N量を0.1チ以下と限定したのは固溶体強化元素とし
て有効であるが、必要以上に多くすると硬質になシ、シ
かも、A!Nとして析出し硬化するため7ランジ加工性
を劣化させるためである。
Limiting the amount of N to 0.1 or less is effective as a solid solution strengthening element, but if it is increased more than necessary, it may become hard. A! This is because N is precipitated and hardened, which deteriorates the 7-lunge workability.

つづいて、本発明の製造工程について述べる。Next, the manufacturing process of the present invention will be described.

熱間圧延工程の仕上温度をA、変態点以上に限定したの
はそれ未満とすると圧延の歪が残り、組織を均一にでき
ないため硬質の部分で7ランジ割れを招くおそれがある
ためである。
The finishing temperature of the hot rolling process was limited to A, the transformation point or higher, because if it was lower than that, rolling distortion would remain and the structure could not be made uniform, which could lead to 7-lunge cracking in hard parts.

熱間圧延工程の巻取温度を680℃以下に限定したのは
680℃を超えて高温巻取を行うと鋼板の長手方向、幅
方向の材質のばらつきが犬きくなシ、溶接缶用素材が全
面に均一性が要求されるのに反するためである。
The reason why the coiling temperature in the hot rolling process is limited to 680℃ or less is because if the coiling temperature is higher than 680℃, the material quality of the steel sheet will be uneven in the longitudinal and width directions, and the material for welded cans will be This is because uniformity is required over the entire surface.

酸洗後、冷間圧延を行うが、冷延率を85チ以下と限定
するのは本発明の主眼とするところであシ、圧延方向の
r値を高くシ、局部変形能を良くして、7ランジ加工性
を向上させるためである。冷延率が85チを超えると圧
延方向のr値は低くなり、フランジ加工性は劣化する。
After pickling, cold rolling is performed, but the main focus of the present invention is to limit the cold rolling rate to 85 inches or less, and to increase the r value in the rolling direction and improve local deformability. 7. This is to improve lunge workability. When the cold rolling rate exceeds 85 inches, the r value in the rolling direction becomes low and the flange workability deteriorates.

なお、熱延鋼板の板厚を薄くできず、冷延率が85%を
超えるときは冷延率を低くできるように、冷間圧延前の
前処理として、冷間圧延、焼鈍を行うことは有効である
。その条件は限定するものではないが、冷延率40〜8
5チ、焼鈍は箱焼鈍、連続焼鈍で再結晶する温度以上で
行う。箱焼鈍の焼鈍温度は620〜700℃で2〜5時
間を標準とし、連続焼鈍の焼鈍温度は620〜700℃
で20〜60秒を標準とする。
In addition, if the thickness of the hot rolled steel sheet cannot be reduced and the cold rolling rate exceeds 85%, cold rolling and annealing may not be performed as pretreatment before cold rolling so that the cold rolling rate can be lowered. It is valid. The conditions are not limited, but the cold rolling rate is 40 to 8.
5. Annealing is performed at a temperature higher than the temperature at which recrystallization occurs in box annealing or continuous annealing. The standard annealing temperature for box annealing is 620-700℃ for 2-5 hours, and the annealing temperature for continuous annealing is 620-700℃.
The standard time is 20 to 60 seconds.

冷間圧延後の焼鈍は箱焼鈍、連続焼鈍で再結晶する温度
以上で行う。箱焼鈍の焼鈍温度は620〜700℃で2
〜5時間を標準とし、連続焼鈍の焼鈍温度は620〜7
00℃で20〜60秒を標準とする。さらに、連続焼鈍
では固溶炭素を減少させるために、過時効処理を行うこ
とが望ましく、その条件として、温e300〜450℃
、時間1〜3分とする。
Annealing after cold rolling is performed at a temperature higher than the temperature at which recrystallization occurs in box annealing or continuous annealing. The annealing temperature for box annealing is 620-700℃.
~5 hours is standard, and the annealing temperature of continuous annealing is 620 ~ 7
The standard temperature is 20 to 60 seconds at 00°C. Furthermore, in continuous annealing, in order to reduce solid solution carbon, it is desirable to perform overaging treatment, and the conditions are as follows:
, the time is 1 to 3 minutes.

焼鈍後の冷間圧延いわゆる2次冷延の冷延率を10〜4
0%と限定したのは冷延率10係未満では溶接缶用素材
としての極薄鋼板の強度が得られないためであり、また
、高速度の7ランジ加工の際に多少なシとも固溶炭素を
含む鋼板が時効によって、リューダース帯が発生した部
分のみが変形し、破断につながる現象でフランジ加工注
が劣化するためであυ、さらに、冷延率40%を超える
と鋼板は硬質になりすぎ7ランジ加工性が劣化するため
である。
Cold rolling after annealing The cold rolling rate of so-called secondary cold rolling is 10 to 4.
The reason why it is limited to 0% is because if the cold rolling ratio is less than 10%, the strength of the ultra-thin steel sheet as a material for welded cans cannot be obtained. This is because when a steel plate containing carbon ages, only the parts where Lüders bands are generated deform, a phenomenon that leads to breakage and deteriorates the flanging process.Furthermore, when the cold rolling rate exceeds 40%, the steel plate becomes hard. This is because too much 7. lunge workability deteriorates.

このようにして得た鋼板を素材として、その表面にめつ
きを施して、めっき鋼板とするが、この鋼板はSnめつ
き、薄目付きのSnめっき、Snと他金属との複層めつ
き、NiめつきおよびN1と他金属との複層めっき、C
rめつきおよびCrと他金属との複層めつき等の各種の
めっき層に対して同等の良好な効果を発揮する。
The steel plate obtained in this way is used as a raw material and its surface is plated to produce a plated steel plate.This steel plate can be plated with Sn, thin Sn plating, multi-layer plating of Sn and other metals, etc. Ni plating and multilayer plating of N1 and other metals, C
It exhibits equally good effects on various plating layers such as R plating and multilayer plating of Cr and other metals.

以上、本発明に従えば、7ランジ加工性の優れた溶接缶
用極薄鋼板を経済的Kn造することが可能である。
As described above, according to the present invention, it is possible to economically produce an ultra-thin steel plate for welded cans with excellent 7-lung workability.

する。do.

’   −1+−;、       −圧延、酸洗、冷
間圧延、焼鈍、2次冷延を行い、また、焼鈍前に前処理
として、冷間圧延、焼鈍を行ったものを含め、2次冷延
後に得られた鋼板のフランジアップ率等について調査し
た。
'-1+-;, - Rolling, pickling, cold rolling, annealing, secondary cold rolling, including those subjected to cold rolling and annealing as pre-treatment before annealing, secondary cold rolling The flange-up ratio of the steel plate obtained later was investigated.

第1表かられかるとおシ、本発明法以外の比較法では所
望の7ランジアツプ率等が得られず、それに比し、本発
明法の製造では所望のフランジアンプ率等が得られるこ
とがわかる。
From Table 1, it can be seen that the desired 7-range up ratio, etc. cannot be obtained with the comparative methods other than the method of the present invention, whereas the desired flange amplifier ratio, etc. can be obtained with the method of the present invention. .

〔発明の効果〕〔Effect of the invention〕

以上、説明してきたように、本発明に従えば、7ランジ
加工性に優れ、また、鋼板の厚さを薄くできる等の効果
があシ、これによって、省資源、省エネルギーに寄与す
るところ大であり、7ランジ加工性の優れた溶接缶用極
薄鋼板を経済的にも有利に製造することが可能である。
As explained above, according to the present invention, there are effects such as excellent 7-lunge workability and the ability to reduce the thickness of the steel plate, which greatly contributes to resource and energy conservation. Therefore, it is possible to economically advantageously produce an ultra-thin steel plate for welded cans with excellent 7-lung workability.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は冷延率と圧延方向のr値、フランジアップ率と
の関係を示す図である。 第1図 プOり5    δ065     りO;會延率(%
FIG. 1 is a diagram showing the relationship between the cold rolling rate, the r value in the rolling direction, and the flange up ratio. Figure 1 5 δ065
)

Claims (2)

【特許請求の範囲】[Claims] (1)C:0.02〜0.20% Si≦0.02% Mn:0.1〜0.6% P≦0.06% M:0.005〜0.1% N≦0.1% を含有し、残部Feおよび不可避的不純物からなる鋼を
A_3変態点以上の仕上温度で熱間圧延し、巻取温度6
80℃以下で巻取り、酸洗後、冷延率85%以下の冷間
圧延を施し、連続焼鈍あるいは箱焼鈍で再結晶温度以上
の温度で焼鈍した後、10〜40%の2次冷間圧延を施
し、めつき用素材とすることを特徴とするフランジ加工
性の優れた溶接缶用極薄鋼板の製造方法
(1) C: 0.02-0.20% Si≦0.02% Mn: 0.1-0.6% P≦0.06% M: 0.005-0.1% N≦0.1 %, with the balance consisting of Fe and unavoidable impurities, is hot rolled at a finishing temperature of A_3 transformation point or higher, and then rolled at a coiling temperature of 6.
After winding at 80℃ or less and pickling, cold rolling at a cold rolling rate of 85% or less, continuous annealing or box annealing at a temperature higher than the recrystallization temperature, and then secondary cold rolling at 10 to 40%. A method for producing an ultra-thin steel plate for welded cans with excellent flange workability, characterized by rolling it and using it as a plating material.
(2)付加的に、酸洗後に熱延鋼板を冷間圧延前の前処
理として、圧延、焼鈍を施した後、冷延率85%以下の
冷間圧延を行うことを特徴とする特許請求の範囲第1項
のフランジ加工性の優れた溶接缶用極薄鋼板の製造方法
(2) A patent claim characterized in that the hot rolled steel sheet is additionally subjected to rolling and annealing as a pretreatment before cold rolling after pickling, and then cold rolling is performed at a cold rolling rate of 85% or less. Method for producing ultra-thin steel plates for welded cans with excellent flange workability as set forth in item 1
JP15119686A 1986-06-27 1986-06-27 Production of extra-thin steel sheet for welded can having excellent flanging property Pending JPS637336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15119686A JPS637336A (en) 1986-06-27 1986-06-27 Production of extra-thin steel sheet for welded can having excellent flanging property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15119686A JPS637336A (en) 1986-06-27 1986-06-27 Production of extra-thin steel sheet for welded can having excellent flanging property

Publications (1)

Publication Number Publication Date
JPS637336A true JPS637336A (en) 1988-01-13

Family

ID=15513354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15119686A Pending JPS637336A (en) 1986-06-27 1986-06-27 Production of extra-thin steel sheet for welded can having excellent flanging property

Country Status (1)

Country Link
JP (1) JPS637336A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310922A (en) * 1987-06-11 1988-12-19 Nippon Steel Corp Production of 2cr material for welded can having superior flanging workability by continuous annealing
JPH09184018A (en) * 1995-12-28 1997-07-15 Kawasaki Steel Corp Manufacture of high strength steel sheet for vessel, reduced in inplane anisotroty
US7067023B2 (en) 2000-05-26 2006-06-27 Jfe Steel Corporation Cold rolled steel sheet and galvanized steel sheet having strain age hardenability and method of producing the same
WO2009125876A1 (en) * 2008-04-11 2009-10-15 Jfeスチール株式会社 High-strength steel sheet for container and process for production thereof
WO2011068231A1 (en) 2009-12-02 2011-06-09 Jfeスチール株式会社 Steel sheet for cans and method for producing same
WO2012073914A1 (en) 2010-12-01 2012-06-07 Jfeスチール株式会社 Steel sheet for can, and process for producing same
CN103014483A (en) * 2011-09-26 2013-04-03 宝山钢铁股份有限公司 High extended secondary cold-rolled plate and production method thereof
JP2013133483A (en) * 2011-12-26 2013-07-08 Jfe Steel Corp High-strength high-processability steel sheet for can, and method for manufacturing the same
CN103205657A (en) * 2008-04-03 2013-07-17 杰富意钢铁株式会社 High-strength Steel Plate For A Can And Method For Manufacturing Said High-strength Steel Plate
JP2016113648A (en) * 2014-12-12 2016-06-23 Jfeスチール株式会社 Steel sheet for hard vessel and manufacturing method therefor

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310922A (en) * 1987-06-11 1988-12-19 Nippon Steel Corp Production of 2cr material for welded can having superior flanging workability by continuous annealing
JPH09184018A (en) * 1995-12-28 1997-07-15 Kawasaki Steel Corp Manufacture of high strength steel sheet for vessel, reduced in inplane anisotroty
US7067023B2 (en) 2000-05-26 2006-06-27 Jfe Steel Corporation Cold rolled steel sheet and galvanized steel sheet having strain age hardenability and method of producing the same
CN103205657A (en) * 2008-04-03 2013-07-17 杰富意钢铁株式会社 High-strength Steel Plate For A Can And Method For Manufacturing Said High-strength Steel Plate
WO2009125876A1 (en) * 2008-04-11 2009-10-15 Jfeスチール株式会社 High-strength steel sheet for container and process for production thereof
JP2010043349A (en) * 2008-04-11 2010-02-25 Jfe Steel Corp Steel sheet for high-strength container, and method for manufacturing therefor
WO2011068231A1 (en) 2009-12-02 2011-06-09 Jfeスチール株式会社 Steel sheet for cans and method for producing same
US8557065B2 (en) 2009-12-02 2013-10-15 Jfe Steel Corporation Steel sheet for cans and method for manufacturing the same
WO2012073914A1 (en) 2010-12-01 2012-06-07 Jfeスチール株式会社 Steel sheet for can, and process for producing same
CN103014483A (en) * 2011-09-26 2013-04-03 宝山钢铁股份有限公司 High extended secondary cold-rolled plate and production method thereof
JP2013133483A (en) * 2011-12-26 2013-07-08 Jfe Steel Corp High-strength high-processability steel sheet for can, and method for manufacturing the same
JP2016113648A (en) * 2014-12-12 2016-06-23 Jfeスチール株式会社 Steel sheet for hard vessel and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JPH08325670A (en) Steel sheet for can making excellent in deep drawability and flanging workability at the time of can making and surface property after can making and having sufficient can strength and its production
CN113106327B (en) High corrosion-resistant strip steel and manufacturing method thereof
JPS637336A (en) Production of extra-thin steel sheet for welded can having excellent flanging property
JP3852210B2 (en) Steel plate for modified 3-piece can and manufacturing method thereof
JP4779737B2 (en) Manufacturing method of steel sheet for ultra thin can and steel sheet for ultra thin can
JPS6024327A (en) Manufacture of very thin steel sheet for welded can with superior flanging workability
JP2001064727A (en) Production of 60 kilo class high tensile strength steel excellent in weldability and toughness after strain aging
JP2002294399A (en) High strength thin steel sheet for welded can having excellent flange formability and production method therefor
JPH03294432A (en) Production of extra thin steel sheet for welded can excellent in blank layout property
JPH0832952B2 (en) Manufacturing method of cold-rolled steel sheet for press work with excellent chemical conversion treatability, weldability, punchability and slidability
JPH08218146A (en) Steel sheet for welded can excellent in flange workability and neck formability and production thereof
JPS6126724A (en) Manufacture of dead soft base sheet for surface treatment by continuous annealing
JP2714994B2 (en) Manufacturing method of steel plate for welding can with excellent stripping property
JP3048739B2 (en) Method for producing high strength alloyed hot-dip galvanized steel sheet with excellent stretch flangeability
JP3273383B2 (en) Cold rolled steel sheet excellent in deep drawability and method for producing the same
JPH06264138A (en) Production of steel sheet for welded can excellent in blank layout property
JP3240843B2 (en) Steel plate excellent in spot weldability and surface properties and method for producing the same
JPS63130283A (en) Production of high-strength high-toughness clad steel plate for large-diameter pipe
JPS5925934A (en) Production of ultrathin sheet having excellent processability for flanging
JP3238460B2 (en) Manufacturing method of non-aged cold-rolled steel sheet for deep drawing
JPS6033317A (en) Manufacture of 2cr material for welded can good in flange workability
JPH04333525A (en) Production of extra thin steel sheet for welded can excellent in blank layout characteristic
JPH08295986A (en) Extra thin steel sheet for welded can, excellent in necking formability
JPS63310922A (en) Production of 2cr material for welded can having superior flanging workability by continuous annealing
JPS63286522A (en) Production of steel sheet for di can