JPH09184018A - Manufacture of high strength steel sheet for vessel, reduced in inplane anisotroty - Google Patents

Manufacture of high strength steel sheet for vessel, reduced in inplane anisotroty

Info

Publication number
JPH09184018A
JPH09184018A JP7342357A JP34235795A JPH09184018A JP H09184018 A JPH09184018 A JP H09184018A JP 7342357 A JP7342357 A JP 7342357A JP 34235795 A JP34235795 A JP 34235795A JP H09184018 A JPH09184018 A JP H09184018A
Authority
JP
Japan
Prior art keywords
cold rolling
less
rolling
steel sheet
secondary cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7342357A
Other languages
Japanese (ja)
Inventor
Kaneharu Okuda
金晴 奥田
Akio Tosaka
章男 登坂
Toshiyuki Kato
俊之 加藤
Satoru Sato
覚 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP7342357A priority Critical patent/JPH09184018A/en
Publication of JPH09184018A publication Critical patent/JPH09184018A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide the manufacturing method for reducing the inplane anisotropy of a high strength steel sheet for vessel, having >=65 hardness by HR30T. SOLUTION: A slab of a steel, having a composition consisting of, by weight, 0.008-0.08% C, <=0.06% Si, <=0.8% Mn, <=0.03% P, <=0.03% S, <=0.15% sol.Al, <=0.008% N, and the balance Fe with inevitable impurities, is hot-rolled at a rolling finishing temp. not lower than the Ar3 transformation point, coiled at <=730 deg.C, and descaled. The resultant steel plate is subjected to primary cold rolling satisfying inequality 70<=CR<=83-3.3log(Cwt.%), to recrystallization annealing, and then to secondary cold rolling satisfying either of the following inequalities: in the case of 70<=CR<80, 10<=DR<=30; in the case of CR>=80, 10<=DR<=9.2(91.5-CR) -675(Cwt.%) and DR<=30. In the above inequalities, CR means the draft (%) at the primary cold rolling and DR means the draft (%) at the secondary cold rolling.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、高強度で、かつ面
内異方性に優れる容器用鋼板の製造方法に係り、特に、
硬さがHR30Tで65以上で、DRD缶(Drawn and
Redrawn Can)素材として好適な高強度容器用鋼板の製造
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a steel sheet for containers having high strength and excellent in-plane anisotropy, and in particular,
Hardness of HR30T is 65 or more, DRD can (Drawn and
The present invention relates to a method for producing a steel plate for a high-strength container, which is suitable as a redrawn can material.

【0002】[0002]

【従来の技術】ブリキ、TFS(Tin Free Steel)の原
板は次の2種類に大きく分類される。 (1)再結晶焼鈍後、軽度の圧下率(約3%以下)で調
質圧延を行って仕上げるT1〜T6(JIS G330
3ロックウエルT硬さ(HR30T)46〜73)、
(2)再結晶焼鈍後、再び高圧下率(50%以下)で冷
間圧延を行って仕上げるDR材(Double Reduced Mater
ial) DR材は、AISIにおいて、さらにDR−8(HR3
0T:73)、DR9(同:76)、DR−9M(同:
77)、DR−10(同:80)に分類されている。
2. Description of the Related Art Tinplate and TFS (Tin Free Steel) original plates are roughly classified into the following two types. (1) After recrystallization annealing, T1-T6 (JIS G330) that is finished by temper rolling at a slight reduction (about 3% or less)
3 Rockwell T hardness (HR30T) 46-73),
(2) DR material (Double Reduced Mater) finished by re-rolling annealing and then cold rolling again at high pressure reduction rate (50% or less)
ial) DR material is also DR-8 (HR3
0T: 73), DR9 (same: 76), DR-9M (same:
77) and DR-10 (same as: 80).

【0003】これらの素材を用いた食缶の分野におい
て、最近、胴部と底部を一体成形したカップに天部を接
合したいわゆる2ピ−ス缶が広く用いられるようになっ
てきた。その理由は、缶の機能が優れていること、およ
び製缶効率は高いことがあげられ、2ピ−ス缶の中でも
特にDI缶(Drawn and Wall Ironed Can)やDRD缶
(Drawn and Redrawn Can)の製造技術が急速に進歩して
きた。その結果、DRD缶の素材として、従来、調質度
がT−4 T−5、板厚0.2〜0.3 mm程度のものが使用
されていたが、最近では、経済性の面から、板厚を薄く
し、それによる強度不足を原板の強度で補う方法がとら
れている。このように、DRD缶用の原板強度を高める
代表的な技術として、特開昭58−151426号公報
にみられるような、再結晶焼鈍後、2回目の冷間圧延
(2次冷間圧延)を行う方法が提案されている。
In the field of food cans using these materials, so-called two-piece cans, in which the top part is joined to a cup having a body and a bottom integrally formed, have been widely used in recent years. The reason is that the can function is excellent and the can manufacturing efficiency is high. Among the two-piece cans, DI cans (Drawn and Wall Ironed Can) and DRD cans (Drawn and Redrawn Can) can be used. The manufacturing technology of has advanced rapidly. As a result, as a material for DRD cans, a material having a temper of T-4 T-5 and a plate thickness of 0.2 to 0.3 mm has been conventionally used, but recently, from the economical aspect, the plate thickness is reduced. A method is adopted in which the strength of the original plate is used to make it thinner and compensate for the lack of strength. Thus, as a typical technique for increasing the strength of the original plate for DRD cans, the second cold rolling after recrystallization annealing as shown in JP-A-58-151426.
A method of performing (secondary cold rolling) has been proposed.

【0004】さて、このDRD缶に求められる特性とし
ては、自動車の絞り用鋼板などと同様にr値が大きいこ
とが望ましい。しかし、大きい絞り加工を必要とする極
薄鋼板はたとえr値が非常に大きくても、鋼板が薄いの
で絞り加工時にしわが発生しやすく、高度の深絞り加工
が困難である。よって深い容器の場合は、しごきや再絞
りなどの手法がとられ、実際にはあまりおおきなr値は
必要ない。むしろ、トリミング代を小さくして歩留りを
向上させるため耳の発生が小さいことが重要となってい
る。この耳の指標としてはr値の異方性を示すΔr Δr=(r0 +r90−2r45)/2 r0 :圧延方向のr値 r90:圧延方向と90度の傾きをなす方向のr値 r45:圧延方向と45度の傾きをなす方向のr値 が用いられている。
Now, as a characteristic required for this DRD can, it is desirable that the r value is large as in the case of a drawing steel sheet for automobiles. However, an ultra-thin steel sheet that requires a large drawing process, even if the r value is very large, is thin and easily wrinkles during the drawing process, making it difficult to perform deep drawing. Therefore, in the case of a deep container, methods such as ironing and redrawing are taken, and in practice, a large r value is not necessary. Rather, it is important that the occurrence of ears is small in order to reduce the trimming allowance and improve the yield. As an index of this ear, Δr Δr = (r 0 + r 90 −2r 45 ) / 2 r 0 indicating the anisotropy of the r value: r value in the rolling direction r 90 : in the direction forming a 90 ° inclination with the rolling direction r value r 45 : The r value in the direction forming an inclination of 45 degrees with the rolling direction is used.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記特
開昭58−151426号公報に開示の高強度化技術
は、2次冷間圧延圧下率を高める方法であり、Δrを負
で大きくさせるという問題があった。そこで、本発明の
目的は、高強度容器用鋼板の面内異方性を小さくするた
めの製造技術を確立することにある。また、本発明の具
体的な目的は、硬さがHR30Tで65以上を満たし、
かつΔrが±0.2 以下の小さな面内異方性を有する高強
度容器用鋼板の製造技術を確立することにある。
However, the technique for strengthening the strength disclosed in Japanese Patent Laid-Open No. 58-151426 is a method of increasing the reduction ratio of the secondary cold rolling, which causes a problem of increasing Δr negatively. was there. Then, the objective of this invention is to establish the manufacturing technique for reducing the in-plane anisotropy of the steel plate for high strength containers. Further, a specific object of the present invention is that the hardness satisfies HR30T of 65 or more,
In addition, it is to establish a manufacturing technology of a steel sheet for a high strength container having a small in-plane anisotropy of Δr of ± 0.2 or less.

【0006】[0006]

【課題を解決するための手段】発明者らは、かかる目的
達成のため、低炭素鋼板のr値の面内異方性に及ぼす製
造条件とくに圧延条件について鋭意研究を進めてきた。
その結果、発明者らにより、新たに見出された知見は、
2次冷間圧延圧下率によりΔrは単調に減少し、その減
少率はC量によらずほぼ一定であることである。それ
故、調質度を目標硬さ以上にするためには、ある程度の
2次冷間圧延を行わなけれならないが、上記のように2
次冷間圧延によりΔrが減少するため、再結晶焼鈍後の
目標Δrに応じて2次冷間圧延圧下率の上限を定めなけ
ればならず、それ以上2次冷間圧延を行うと耳が大きく
なり、DRD缶として不適となる。一方、焼鈍後のr
値、Δrは、炭素量および1次冷間圧延圧下率に依存す
る。このようなことから、炭素量に応じて、1次冷間圧
延圧下率および2次冷間圧延圧下率を決めることが必要
である。そして高強度鋼板を得るためには、ある程度の
2次冷間圧延の圧下をとらなければならないこととを考
慮すると、従来よりも1次冷間圧延の圧下率を下げる必
要がある。
[Means for Solving the Problems] In order to achieve such an object, the inventors have made earnest studies on manufacturing conditions, especially rolling conditions, which affect the in-plane anisotropy of r value of a low carbon steel sheet.
As a result, the findings newly found by the inventors are:
Δr decreases monotonically with the reduction ratio of the secondary cold rolling, and the reduction ratio is almost constant regardless of the C content. Therefore, in order to bring the temper to the target hardness or higher, a certain amount of secondary cold rolling must be performed, but as described above,
Since Δr decreases due to the next cold rolling, after recrystallization annealing
The upper limit of the reduction ratio of the secondary cold rolling has to be set according to the target Δ r, and if the secondary cold rolling is performed further, the ear becomes large and it becomes unsuitable as a DRD can. On the other hand, r after annealing
The value, Δr, depends on the carbon content and the primary cold rolling reduction. For this reason, it is necessary to determine the primary cold rolling reduction and the secondary cold rolling reduction according to the amount of carbon. Considering that a certain degree of reduction in secondary cold rolling must be taken in order to obtain a high-strength steel sheet, it is necessary to reduce the reduction rate in primary cold rolling as compared with the conventional case.

【0007】本発明は上記知見に基づいて完成したもの
であり、その要旨構成は下記のとおりである。 C:0.008 〜0.08wt%、Si:0.06wt%以下、Mn:0.8 wt
%以下、P:0.03wt%以下、S:0.03wt%以下、sol A
l:0.15wt%以下、N:0.008 wt%以下を含有し、残部
はFeおよび不可避的不純物よりなる鋼スラブを、圧延終
了温度をAr3 変態点以上とする熱間圧延を行い、730 ℃
以下で巻き取り、脱スケ−ルをした後、下記(1) 式を満
足する1次冷間圧延を行い、再結晶焼鈍を施し、下記
(2)式または(3) 式を満足する2次冷間圧延を行うこと
を特徴とする面内異方性が小さい高強度容器用鋼板の製
造方法。 記 70≦CR≦83−3.3 log(Cwt%)……(1) 70≦CR<80の場合 10≦DR≦30……(2) CR≧80の場合 10≦DR≦9.2(91.5−CR)−675(Cwt%)、かつDR≦30 ……(3) ただし、CR:1次冷間圧延圧下率(%) DR:2次冷間圧延圧下率(%)
The present invention has been completed on the basis of the above findings, and its gist structure is as follows. C: 0.008 to 0.08 wt%, Si: 0.06 wt% or less, Mn: 0.8 wt%
% Or less, P: 0.03 wt% or less, S: 0.03 wt% or less, sol A
A steel slab containing l: 0.15 wt% or less, N: 0.008 wt% or less, and the balance of Fe and unavoidable impurities is hot-rolled at a rolling end temperature of Ar 3 transformation point or higher at 730 ° C.
After winding and descaling as follows, primary cold rolling satisfying the following formula (1) was performed, recrystallization annealing was performed, and
A method for producing a steel sheet for a high-strength container having a small in-plane anisotropy, which comprises performing a secondary cold rolling satisfying the formula (2) or the formula (3). Note 70 ≦ CR ≦ 83-3.3 log (Cwt%) (1) When 70 ≦ CR <80 10 ≦ DR ≦ 30 (2) When CR ≧ 80 10 ≦ DR ≦ 9.2 ( 91.5-CR) -675 (Cwt%), and DR ≦ 30 (3) However, CR: primary cold rolling reduction (%) DR: secondary cold rolling reduction (%)

【0008】[0008]

【発明の実施の形態】以下、本発明における鋼組成およ
び製造条件の好ましい実施形態について説明する。 C:0.008 〜0.08wt% Cは、再結晶粒の成長を抑制する重要な成分である。C
を多くすると結晶粒が細かくなり調質度の高いものが得
られる。しかし、過剰に添加すると加工性を低下させ、
硬質化により冷間圧延性が劣化する。したがって、C含
有量は0.008 wt%〜0.08wt%、好ましくは0.012 〜0.05
wt%の範囲とする。
BEST MODE FOR CARRYING OUT THE INVENTION Preferred embodiments of the steel composition and manufacturing conditions in the present invention will be described below. C: 0.008 to 0.08 wt% C is an important component that suppresses the growth of recrystallized grains. C
If the content is increased, the crystal grains will become finer and a high degree of tempering will be obtained. However, if added excessively, the workability deteriorates,
Cold rolling deteriorates due to hardening. Therefore, the C content is 0.008 wt% to 0.08 wt%, preferably 0.012 to 0.05
wt% range.

【0009】Si:0.06wt%以下 Siは、ブリキの耐蝕性を低下させ、材質を極端に硬質化
させ冷間圧延を妨げるので、0.06wt%以下好ましくは0.
03wt%以下とする。
Si: 0.06 wt% or less Si lowers the corrosion resistance of tin plate and extremely hardens the material to prevent cold rolling. Therefore, 0.06 wt% or less, preferably 0.
It should be less than 03wt%.

【0010】Mn:0.8 wt%以下 Mnは、MnS として脱Sを促して熱間割れを防ぐのに有用
な元素である。また、変態点を低下させるため、熱間圧
延時に変態点以上で圧延を終了しやすく、材質確保の上
から好ましい元素である。しかしながら、過剰な添加は
熱延板を硬質な組織に変化する恐れをもたらす。このた
め添加量を0.8 wt%以下とする。
Mn: 0.8 wt% or less Mn is an element useful as MnS for promoting de-S and preventing hot cracking. Further, since the transformation point is lowered, rolling is likely to be completed at the transformation point or higher during hot rolling, which is a preferable element from the viewpoint of securing the material. However, excessive addition brings about a risk that the hot-rolled sheet is transformed into a hard structure. Therefore, the addition amount is 0.8 wt% or less.

【0011】P:0.03wt%以下 Pは、Siと同様に材質を硬化させ、ブリキの耐蝕性を低
下させる元素である。このためにP含有量は0.03wt%以
下とする。
P: 0.03 wt% or less P is an element that hardens the material like Si and reduces the corrosion resistance of tinplate. Therefore, the P content is 0.03 wt% or less.

【0012】S:0.03wt%以下 Sは、熱間圧延時におけるコイルの耳割れを引き起こす
元素である。また、S含有量が多くなるとMnS 等の介在
物が増加し、局部延性を低下させる原因となる。このた
めS含有量は0.03wt%以下に制限する必要がある。
S: 0.03 wt% or less S is an element that causes ear cracking of the coil during hot rolling. Further, when the S content is increased, inclusions such as MnS are increased, which causes a decrease in local ductility. Therefore, it is necessary to limit the S content to 0.03 wt% or less.

【0013】sol Al:0.15wt%以下 sol Alは、脱酸に必要な元素であるが、0.15wt%を超え
て添加すると脱酸効果が飽和するだけでなく、介在物が
発生し、成形性に悪影響を及ぼす。このためsol Alの含
有量は0.15wt%以下とする。
Sol Al: 0.15 wt% or less sol Al is an element necessary for deoxidation, but if it is added in excess of 0.15 wt%, not only the deoxidizing effect will be saturated, but also inclusions will be generated, resulting in moldability. Adversely affect. Therefore, the content of sol Al should be 0.15 wt% or less.

【0014】N:0.008 wt%以下 Nは、不可避的に鋼中に混入する不純物元素であるが、
過剰のNは材料を硬質化させるため上限を0.008 wt%と
する。
N: 0.008 wt% or less N is an impurity element that is unavoidably mixed in the steel.
Excess N hardens the material, so the upper limit is made 0.008 wt%.

【0015】次に、製造条件について述べる。熱間圧延
の終了温度は、Ar3 変態点以上とし、Ar3 変態点に応じ
て下限温度を変化させる必要がある。熱間圧延の終了が
Ar3 変態点未満では、二相域圧延となり、焼鈍材のr値
に悪影響をおよぼす集合組織が発達してしまい、耳率が
高くなる。また、熱間圧延終了後の巻取り温度について
は、730℃以下とする必要がある。この温度を超える
と、Δrに及ぼす巻取り温度の影響が大きくなること、
また熱延板が軟質化し、最終製品の目標硬さを得るため
2次冷間圧延の圧下率を高くしなければならず面内異方
性の維持のうえから好ましくない。なお、巻取り温度が
余りに低いとAlN などの析出が十分でないことによるr
値の劣化を招くので500℃を下限とすることが望まし
い。
Next, manufacturing conditions will be described. The end temperature of hot rolling is set to an Ar 3 transformation point or higher, and the lower limit temperature needs to be changed according to the Ar 3 transformation point. The end of hot rolling
Below the Ar 3 transformation point, two-phase rolling occurs, and a texture that adversely affects the r value of the annealed material develops, resulting in a high ear rate. Further, the coiling temperature after completion of hot rolling needs to be 730 ° C. or lower. If this temperature is exceeded, the influence of the winding temperature on Δr will increase,
Further, the hot-rolled sheet is softened and the reduction ratio of the secondary cold rolling must be increased in order to obtain the target hardness of the final product, which is not preferable from the viewpoint of maintaining the in-plane anisotropy. If the coiling temperature is too low, the precipitation of AlN, etc. will not be sufficient.
Since lowering of the value is caused, it is preferable to set the lower limit to 500 ° C.

【0016】1次冷間圧延の圧下率は、70≦CR≦8
3−3.3 log(Cwt%)、ただし、CR:1次冷間圧
延圧下率(%)、の範囲で行う必要がある。この関係を
図1に示す。すなわち、ブリキ板の板厚と、製造可能な
熱延板の厚さを考えると1次冷間圧延圧下率は70%未
満にすることはできない。一方、過度に高圧下率とする
と、板を薄くできるが、Δrが再結晶焼鈍後負で大きく
なってしまい、その上2次冷間圧延を行うとさらにその
値は負で大きくなる。この傾向は、炭素量が大きいほど
強くなるため、1次冷間圧延圧延の圧下率の上限は炭素
量の関数とする必要がある。
The reduction ratio of the primary cold rolling is 70≤CR≤8.
3-3.3 log (Cwt%), but CR: primary cold rolling reduction (%) must be performed in the range. This relationship is shown in FIG. That is, considering the plate thickness of the tin plate and the thickness of the hot-rolled plate that can be manufactured, the primary cold rolling reduction cannot be less than 70%. On the other hand, if the high-pressure reduction ratio is excessively high, the plate can be thinned, but Δr becomes negatively large after recrystallization annealing, and further, when secondary cold rolling is performed, the value becomes negatively large. Since this tendency becomes stronger as the carbon amount increases, the upper limit of the reduction rate in the primary cold rolling must be a function of the carbon amount.

【0017】1次冷間圧延後の焼鈍は連続焼鈍が望まし
い。その場合の焼鈍温度は再結晶が完了するよう670
℃〜750℃の範囲にすることが好ましい。
Continuous annealing is desirable as the annealing after the primary cold rolling. The annealing temperature in that case is 670 so that the recrystallization is completed.
It is preferably in the range of ℃ to 750 ℃.

【0018】1次冷間圧延および焼鈍に続いて行う2次
冷間圧延は、1次冷間圧延の圧下率によって下記の式で
定まる圧下率の範囲で行う。1次冷間圧延の圧下率CR
が、70≦CR<80の場合には、10≦DR≦30の
範囲で、また、CR≧80の場合には、10≦DR≦
9.2(91.5−CR)−675(Cwt%)、かつD
R≦30の範囲で行う。ただし、CR:1次冷間圧延圧
下率(%)、DR:2次冷間圧延圧下率(%)
The secondary cold rolling performed after the primary cold rolling and annealing is performed within the range of the rolling reduction determined by the following formula according to the rolling reduction of the primary cold rolling. Reduction ratio of primary cold rolling CR
Is in the range of 10 ≦ DR ≦ 30 when 70 ≦ CR <80, and 10 ≦ DR ≦ when CR ≧ 80.
9.2 (91.5-CR) -675 (Cwt%), and D
It is performed in the range of R ≦ 30. However, CR: primary cold rolling reduction (%), DR: secondary cold rolling reduction (%)

【0019】すなわち、いずれの場合も、目標とする硬
さを得るためには、2次冷間圧延において10%以上の
圧下率を与える必要がある。しかし、2次冷間圧延は4
5度方向のr値を相対的に大きくし、耳率を大きくさせ
る傾向にあるので上限値を定める必要がある。前述した
ように、2次冷間圧延によるΔrの変化率は炭素量によ
らず一定であるため、2次冷間圧延する前の(再結晶焼
鈍後の)材料のΔrと2次冷間圧延の圧下率によりΔr
は決まる。ここで、再結晶焼鈍後のΔr値は、図2(他
の製造条件は表2と同じ)に示すように、1次冷間圧延
の圧下率と炭素量で定まる。図2に示すように、70≦
CR%<80においては、Δrはほどんど変化しない
が、80%以上になるとΔrが急に低下してくること、
低下する圧下率の値は炭素量により異なることがわか
る。このため、1次冷間圧延の圧下率(CR)が70≦
CR%<80の場合には、2次冷間圧延の圧下率(D
R)の上限は30%とするが、1次冷間圧延の圧下率が
80%以上の場合には、2次冷間圧延の圧下率の上限値
は、上記式のように、炭素量および1次冷間圧延の圧下
率の関数とする必要がある。
That is, in any case, in order to obtain the target hardness, it is necessary to give a reduction rate of 10% or more in the secondary cold rolling. However, the secondary cold rolling is 4
Since the r value in the 5 degree direction tends to be relatively large and the ear rate tends to be large, it is necessary to set an upper limit value. As described above, since the rate of change of Δr due to the secondary cold rolling is constant regardless of the carbon content, the Δr of the material before the secondary cold rolling (after the recrystallization annealing) and the secondary cold rolling are performed. Δr depending on the rolling reduction of
Is determined. Here, the Δr value after the recrystallization annealing is determined by the reduction ratio and the carbon amount of the primary cold rolling as shown in FIG. 2 (other manufacturing conditions are the same as in Table 2). As shown in FIG. 2, 70 ≦
When CR% <80, Δr hardly changes, but when 80% or more, Δr suddenly decreases.
It can be seen that the value of the reduction rate that decreases depends on the amount of carbon. Therefore, the reduction ratio (CR) of the primary cold rolling is 70 ≦.
When CR% <80, the reduction ratio (D
Although the upper limit of R) is 30%, when the reduction ratio of the primary cold rolling is 80% or more, the upper limit value of the reduction ratio of the secondary cold rolling is as follows. It must be a function of the reduction ratio of the primary cold rolling.

【0020】[0020]

【実施例】本発明に係る高強度容器用鋼板の製造方法に
ついて、実施例に基づいて説明する。表1に示す化学成
分の鋼を溶製した後、これを表2に示す条件で、熱間圧
延し、巻き取り、酸洗による脱スケールを経て、1次冷
間圧延、連続焼鈍による再結晶焼鈍および2次冷間圧延
を行いNo. 1〜10をぶりき、No. 11〜20をTFS
に仕上げた。
EXAMPLES A method for manufacturing a steel sheet for high strength containers according to the present invention will be described based on examples. After the steel having the chemical composition shown in Table 1 was melted, it was hot-rolled under the conditions shown in Table 2, wound, descaled by pickling, re-crystallized by primary cold rolling and continuous annealing. Annealing and secondary cold rolling are performed and No. 1 to 10 are tinted, and No. 11 to 20 are TFS.
Finished.

【0021】[0021]

【表1】 [Table 1]

【0022】[0022]

【表2】 [Table 2]

【0023】得られた鋼板から試験片を採取し、硬さお
よびr値を測定した。また、前述した式によりΔrを求
めた。ただし、2次冷間圧延を行う高強度DRD材のr
値については、普通の引張り試験法によってr値を求め
ることができないので、Contorol Products 社(USA) の
Module Drawability Tester を使って求めた。これはr
値とヤング率の間に相関関係があることが経験的に求め
られていることから、ヤング率を「磁わい振動方式」に
よりもとめ、r値とヤング率の測定結果の統計解析から
r値をもとめるものである。
A test piece was taken from the obtained steel sheet, and hardness and r value were measured. Further, Δr was calculated by the above-mentioned formula. However, r of high-strength DRD material subjected to secondary cold rolling
Regarding the value, it is not possible to obtain the r value by the ordinary tensile test method, so the value of Contorol Products (USA)
Obtained using Module Drawability Tester. This is r
Since it has been empirically found that there is a correlation between the value and the Young's modulus, the Young's modulus is determined by the “magnetic vibration method”, and the r-value is calculated from the statistical analysis of the measurement results of the r-value and Young's modulus. It is what I want.

【0024】測定した各特性値を表2に示す。なお、図
3は、通常のぶりき鋼板において上記方法で求めたΔr
と実際にカップにしぼって測定した耳率ΔH(耳率の定
義は図4を参照)との関係を示すものである。これか
ら、ΔHとΔrには良い相関が見られることが確認され
た。また、図5は、炭素含有量が異なる2種の鋼を1次
冷間圧延圧下率86%で圧延した鋼板を再結晶焼鈍後、
2次冷間圧延圧下率を種々変化させた(他の製造条件は
表2と同じ)ときの、DRとΔrとの関係を示す。表2
から、本発明方法により製造された鋼板は、硬さがHR
30Tで65以上を満たした上、面内異方性Δrが±0.
2 と小さいことがわかる。これに対して、成分組成ある
いは、1次冷間圧延圧下率、2次冷間圧延圧下率あるい
は熱間圧延条件が本発明法の範囲から外れた比較法No
1、5、7、8、9、10、13、14、15、20は
HR30T硬さが65に満たないか、面内異方性Δrが
±0.2 を超えていることがわかる。
Table 2 shows the measured characteristic values. It should be noted that FIG. 3 shows Δr obtained by the above method for an ordinary tin-plated steel plate.
And the ear rate ΔH (refer to FIG. 4 for the definition of the ear rate) actually measured by squeezing the cup. From this, it was confirmed that there is a good correlation between ΔH and Δr. Further, FIG. 5 shows that after recrystallizing annealing a steel sheet obtained by rolling two kinds of steels having different carbon contents at a primary cold rolling reduction of 86%,
The relation between DR and Δr when the secondary cold rolling reduction ratio is variously changed (other manufacturing conditions are the same as in Table 2) is shown. Table 2
Therefore, the steel plate manufactured by the method of the present invention has a hardness of HR.
It satisfies 65 or more at 30T and the in-plane anisotropy Δr is ± 0.
You can see that it is as small as 2. On the other hand, the comparative method No. in which the component composition, the primary cold rolling reduction rate, the secondary cold rolling reduction rate, or the hot rolling condition was out of the range of the method of the present invention
It can be seen that HR30T hardness of Nos. 1, 5, 7, 8, 9, 10, 13, 14, 15, and 20 is less than 65, or the in-plane anisotropy Δr exceeds ± 0.2.

【0025】[0025]

【発明の効果】以上説明したように、本発明法によれ
ば、面内異方性Δrが±0.2 以内に改善できるので、プ
レス成形時における耳の耳の発生を小さくすることがで
き、トリミング代減少による歩留りの向上が可能にな
る。
As described above, according to the method of the present invention, since the in-plane anisotropy Δr can be improved to within ± 0.2, it is possible to reduce the occurrence of ears during press molding and to perform trimming. The yield can be improved by reducing the cost.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明における1次冷間圧延圧下率とC量との
関係を示す図である。
FIG. 1 is a diagram showing the relationship between the primary cold rolling reduction and the C content in the present invention.

【図2】1次冷間圧延前の面内異方性Δrと1次冷間圧
延圧下率、C量との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between in-plane anisotropy Δr before primary cold rolling, primary cold rolling reduction, and C content.

【図3】耳率ΔHと異方性Δrとの関係を示すグラフで
ある。
FIG. 3 is a graph showing the relationship between ear rate ΔH and anisotropy Δr.

【図4】耳率ΔHの定義を示す図である。FIG. 4 is a diagram showing the definition of ear rate ΔH.

【図5】面内異方性Δrと2次冷間圧延圧下率との関係
を示すグラフである。
FIG. 5 is a graph showing the relationship between in-plane anisotropy Δr and reduction ratio of secondary cold rolling.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 加藤 俊之 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社技術研究所内 (72)発明者 佐藤 覚 千葉県千葉市中央区川崎町1番地 川崎製 鉄株式会社千葉製鉄所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toshiyuki Kato 1 Kawasaki-cho, Chuo-ku, Chiba-shi, Chiba Prefecture Technical Research Institute, Kawasaki Steel Co., Ltd. (72) Satoru Sato 1 Kawasaki-cho, Chuo-ku, Chiba, Chiba Prefecture Kawasaki Chiba Steel Works, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】C:0.008 〜0.08wt%、 Si:0.06wt%以下、 Mn:0.8 wt%以下、 P:0.03wt%以下、 S:0.03wt%以下、 sol Al:0.15wt%以下、 N:0.008 wt%以下 を含有し、残部はFeおよび不可避的不純物よりなる鋼ス
ラブを、圧延終了温度をAr3 変態点以上とする熱間圧延
を行い、730 ℃以下で巻き取り、脱スケ−ルをした後、
下記(1) 式を満足する1次冷間圧延を行い、再結晶焼鈍
を施し、下記(2)式または(3) 式を満足する2次冷間圧
延を行うことを特徴とする面内異方性が小さい高強度容
器用鋼板の製造方法。 記 70≦CR≦83−3.3 log(Cwt%)……(1) 70≦CR<80の場合 10≦DR≦30……(2) CR≧80の場合 10≦DR≦9.2(91.5−CR)−675(Cwt%)、かつDR≦30 ……(3) ただし、CR:1次冷間圧延圧下率(%) DR:2次冷間圧延圧下率(%)
1. C: 0.008 to 0.08 wt%, Si: 0.06 wt% or less, Mn: 0.8 wt% or less, P: 0.03 wt% or less, S: 0.03 wt% or less, sol Al: 0.15 wt% or less, N : A steel slab containing 0.008 wt% or less and the balance Fe and unavoidable impurities is hot-rolled at a rolling end temperature of Ar 3 transformation point or higher, wound at 730 ° C or lower, and descaled. After doing
In-plane anomaly characterized by performing primary cold rolling that satisfies the following formula (1), performing recrystallization annealing, and performing secondary cold rolling that satisfies the following formula (2) or (3) A method for manufacturing a steel sheet for a high-strength container, which has a low degree of orientation. Note 70 ≦ CR ≦ 83-3.3 log (Cwt%) (1) When 70 ≦ CR <80 10 ≦ DR ≦ 30 (2) When CR ≧ 80 10 ≦ DR ≦ 9.2 ( 91.5-CR) -675 (Cwt%), and DR ≦ 30 (3) However, CR: primary cold rolling reduction (%) DR: secondary cold rolling reduction (%)
JP7342357A 1995-12-28 1995-12-28 Manufacture of high strength steel sheet for vessel, reduced in inplane anisotroty Pending JPH09184018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7342357A JPH09184018A (en) 1995-12-28 1995-12-28 Manufacture of high strength steel sheet for vessel, reduced in inplane anisotroty

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7342357A JPH09184018A (en) 1995-12-28 1995-12-28 Manufacture of high strength steel sheet for vessel, reduced in inplane anisotroty

Publications (1)

Publication Number Publication Date
JPH09184018A true JPH09184018A (en) 1997-07-15

Family

ID=18353104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7342357A Pending JPH09184018A (en) 1995-12-28 1995-12-28 Manufacture of high strength steel sheet for vessel, reduced in inplane anisotroty

Country Status (1)

Country Link
JP (1) JPH09184018A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170070184A (en) * 2014-11-28 2017-06-21 제이에프이 스틸 가부시키가이샤 Steel sheet for crown cap, manufacturing method therefor, and crown cap
CN107002190A (en) * 2014-10-28 2017-08-01 杰富意钢铁株式会社 Two panels steel plate for tanks and its manufacture method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113123A (en) * 1982-12-17 1984-06-29 Kawasaki Steel Corp Production of ultra-hard extra-thin cold rolled steel sheet
JPS637336A (en) * 1986-06-27 1988-01-13 Nippon Steel Corp Production of extra-thin steel sheet for welded can having excellent flanging property
JPH02141536A (en) * 1988-11-19 1990-05-30 Nippon Steel Corp Production of steel sheet for drawn can decreased earing
JPH0336215A (en) * 1989-07-03 1991-02-15 Toyo Kohan Co Ltd Manufacture of high strength and extremely thin steel sheet for can having excellent plane anisotropy
JPH03257123A (en) * 1990-03-06 1991-11-15 Nippon Steel Corp Production of steel sheet for extremely thin welded can having excellent blank layout property
JPH0754101A (en) * 1993-08-13 1995-02-28 Toyo Kohan Co Ltd Steel sheet for thinning/deep drawing

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59113123A (en) * 1982-12-17 1984-06-29 Kawasaki Steel Corp Production of ultra-hard extra-thin cold rolled steel sheet
JPS637336A (en) * 1986-06-27 1988-01-13 Nippon Steel Corp Production of extra-thin steel sheet for welded can having excellent flanging property
JPH02141536A (en) * 1988-11-19 1990-05-30 Nippon Steel Corp Production of steel sheet for drawn can decreased earing
JPH0336215A (en) * 1989-07-03 1991-02-15 Toyo Kohan Co Ltd Manufacture of high strength and extremely thin steel sheet for can having excellent plane anisotropy
JPH03257123A (en) * 1990-03-06 1991-11-15 Nippon Steel Corp Production of steel sheet for extremely thin welded can having excellent blank layout property
JPH0754101A (en) * 1993-08-13 1995-02-28 Toyo Kohan Co Ltd Steel sheet for thinning/deep drawing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107002190A (en) * 2014-10-28 2017-08-01 杰富意钢铁株式会社 Two panels steel plate for tanks and its manufacture method
KR20170070184A (en) * 2014-11-28 2017-06-21 제이에프이 스틸 가부시키가이샤 Steel sheet for crown cap, manufacturing method therefor, and crown cap

Similar Documents

Publication Publication Date Title
EP0672758B1 (en) Method of manufacturing canning steel sheet with non-aging property and superior workability
EP0816524B1 (en) Steel sheet for excellent panel appearance and dent resistance after forming
EP0556834A2 (en) Method of producing high-strength steel sheet used for can
JP2012233255A (en) Steel sheet for can having high buckling strength of can body part to external pressure and excellent formability and surface property after forming, and method for manufacturing the same
JP6052412B2 (en) Steel plate for can and manufacturing method thereof
JP4788030B2 (en) Steel plate for lightweight two-piece can and manufacturing method thereof
KR20070086712A (en) Flexible sheet steel for can and process for production the same
JP6288331B2 (en) Steel plate for can and manufacturing method thereof
JP3720154B2 (en) Austenitic stainless steel with excellent polishability after press working
EP2918695B1 (en) Steel sheet for three-piece can and manufacturing process therefor
JP4677914B2 (en) Steel plate for soft can and method for producing the same
JPH09184018A (en) Manufacture of high strength steel sheet for vessel, reduced in inplane anisotroty
JPH05117758A (en) Manufacture of cold rolled steel sheet excellent in secondary working brittleness and small in plane anisotropy
JP4810766B2 (en) Manufacturing method of ultra-thin high-strength steel sheet for lightweight 2-piece can
KR102587650B1 (en) Steel sheet for cans and method of producing same
JPH08269568A (en) Production of steel sheet for can making excellent in flange formability
JP2816358B2 (en) Manufacturing method of steel sheet for DI can
JP3799868B2 (en) High-tensile cold-rolled steel sheet with excellent roll formability and buckling resistance
JP3244956B2 (en) Method for producing ultra-thin container steel sheet with excellent can formability
JP3593728B2 (en) Manufacturing method of ultra low carbon cold rolled steel sheet with excellent formability
JP4213870B2 (en) Steel sheet for ultra-thin two-piece containers with excellent weather resistance and earrings at the time of neck diameter reduction and method for manufacturing the same
JPH1088233A (en) Production of steel sheet for can
JPH08283863A (en) Production of hard steel sheet for can excellent in uniformity of material
JPH08176673A (en) Production of steel sheet for can
JPH08120348A (en) Production of steel sheet for hard can small in plane anisotropy

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060822