JP3244956B2 - Method for producing ultra-thin container steel sheet with excellent can formability - Google Patents

Method for producing ultra-thin container steel sheet with excellent can formability

Info

Publication number
JP3244956B2
JP3244956B2 JP16043494A JP16043494A JP3244956B2 JP 3244956 B2 JP3244956 B2 JP 3244956B2 JP 16043494 A JP16043494 A JP 16043494A JP 16043494 A JP16043494 A JP 16043494A JP 3244956 B2 JP3244956 B2 JP 3244956B2
Authority
JP
Japan
Prior art keywords
steel sheet
less
rolling
formability
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16043494A
Other languages
Japanese (ja)
Other versions
JPH0827519A (en
Inventor
英邦 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16043494A priority Critical patent/JP3244956B2/en
Publication of JPH0827519A publication Critical patent/JPH0827519A/en
Application granted granted Critical
Publication of JP3244956B2 publication Critical patent/JP3244956B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、食品缶、飲料缶に代表
される容器に利用される延性、特に局部延性に優れた極
薄鋼板の製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an ultra-thin steel sheet having excellent ductility, particularly excellent local ductility, used for containers represented by food cans and beverage cans.

【0002】[0002]

【従来の技術】飲料缶、食品缶などの製造においては缶
蓋、又は缶底と胴部との接合は通常、捲き締めにより行
われるため、胴部の開口端は缶胴の直径外側に向かい延
伸されるフランジ成形と呼ばれる加工を受ける。このフ
ランジ成形の際には、フランジ部に内容物が漏れる原因
となる割れ、一般にフランジクラックと呼ばれている欠
陥を生じにくいことが求められる。このフランジ成形性
は製缶工程で極めて重要視されており、現在、通常に製
造されている缶においてはフランジクラック発生率は数
十ppm というレベルに抑えられている。これまでの研究
開発により、フランジ成形性は鋼板の延性と密接な関係
があり、延性、特に局部延性の優れた鋼板は良好なフラ
ンジ成形性を示すことが知られている。
2. Description of the Related Art In the manufacture of beverage cans, food cans, and the like, the joining of a can lid or a can bottom to a body is usually performed by crimping, so that the open end of the body faces the outside of the diameter of the can body. It undergoes a process called flange forming to be stretched. In the case of this flange forming, it is required that cracks which cause leakage of contents to the flange portion and defects generally called flange cracks hardly occur. This flange formability is regarded as extremely important in the can manufacturing process, and the rate of occurrence of flange cracks is currently suppressed to a level of several tens ppm in cans which are usually manufactured. It has been known from research and development so far that the flange formability is closely related to the ductility of a steel sheet, and that a steel sheet having excellent ductility, particularly local ductility, exhibits good flange formability.

【0003】一方、容器用鋼板は低コスト化の観点から
薄手化の方向にあり、鋼板の延性は劣化することとなる
ため、極薄でもフランジ成形性の良好な鋼板が求められ
ている。また、薄手化に伴い鋼板の製造工程においては
冷延圧下率を増加させ又は熱延板厚を減少させている。
しかし、冷延率の増加は鋼板のランクフォード値の面内
異方性の増大を招き、絞り成形により製造される2ピー
ス缶においてイヤリングと呼ばれるカップへり高さの変
動のため鋼板歩留りが低下する。またランクフォード値
と密接な関係にある局部延性も方向によっては大きく劣
化する。また、熱延板板厚の減少は熱延での生産性を阻
害する要因となる。さらに、極薄材は連続焼鈍時にヒー
トバックルと呼ばれる鋼板の腰折れを起こし易いため通
板性が非常に悪く、特に鋼板の強度を低下させる高温で
の通板は困難となる。このため焼鈍温度の低下を図ると
再結晶が不十分となり延性が極端に劣化してしまう。
On the other hand, the steel sheet for containers is becoming thinner from the viewpoint of cost reduction, and the ductility of the steel sheet is deteriorated. Therefore, a steel sheet which is extremely thin and has good flange formability is required. In addition, in the manufacturing process of a steel sheet, the reduction ratio of the cold rolling is increased or the thickness of the hot rolled sheet is reduced in accordance with the reduction in thickness.
However, an increase in the cold rolling ratio causes an increase in the in-plane anisotropy of the Rankford value of the steel sheet, and the yield of the steel sheet decreases due to a fluctuation in the edge height of a cup called an earring in a two-piece can manufactured by drawing. . Also, the local ductility, which is closely related to the Rankford value, is greatly degraded in some directions. Further, a decrease in the thickness of the hot-rolled sheet becomes a factor that hinders productivity in hot-rolling. Further, ultra-thin materials tend to break the steel plate, called a heat buckle, during continuous annealing, and therefore have extremely poor threading properties. In particular, it is difficult to thread steel sheets at high temperatures, which lowers the strength of the steel sheets. Therefore, if the annealing temperature is lowered, recrystallization becomes insufficient and ductility is extremely deteriorated.

【0004】これらの課題を解決するため、焼鈍時は板
厚を最終製品より厚くして通板し、焼鈍後に再冷延で目
標とする板厚を得る、いわゆるDR法(ダブルレデュー
ス法)が特開平3−257123号公報、特開平2−1
18026号公報などで提示されている。しかし、再冷
延による鋼板の延性劣化は避けられないためフランジ成
形性の点では不利であり、又加工硬化のため軟質材の製
造は不可能である。一方、DR法を必須としないものと
して特開昭63−89625号公報、特開平2−197
523号公報、特開平3−236446号公報などが提
案されている。しかしこれらの方法では極薄材の連続焼
鈍ラインの通板性(耐ヒートバックル)については何ら
考慮がなされておらず、実製造での生産性阻害は避けら
れない。
In order to solve these problems, a so-called DR method (double reduction method) is used, in which the thickness of the sheet is made thicker than the final product during annealing, and the sheet thickness is obtained by re-cold rolling after annealing. JP-A-3-257123, JP-A-2-1-1
18026 and the like. However, since ductility deterioration of the steel sheet due to re-cold rolling is inevitable, it is disadvantageous in terms of flange formability, and it is impossible to produce a soft material due to work hardening. On the other hand, JP-A-63-89625 and JP-A-2-197 describe that the DR method is not essential.
523 and JP-A-3-236446 have been proposed. However, in these methods, no consideration is given to the threading property (heat buckle resistance) of the continuous annealing line of an extremely thin material, and productivity impairment in actual production cannot be avoided.

【0005】[0005]

【発明が解決しようとする課題】本願発明は上記した問
題点を解決しようとするものであり、連続焼鈍工程通板
時の生産性低下の回避が可能な比較的低い温度での焼鈍
によって、良好なフランジ成形性を達成する軟質かつ良
好な延性を示す極薄容器用鋼板の製造方法を提供するも
のである。
SUMMARY OF THE INVENTION The present invention is intended to solve the above-mentioned problems, and it is preferable to perform annealing at a relatively low temperature at which the productivity can be prevented from decreasing during the continuous annealing step. An object of the present invention is to provide a method for producing a steel sheet for an ultra-thin container, which is soft and has good ductility and achieves excellent flange formability.

【0006】[0006]

【課題を解決するための手段】本発明は、延性、特に局
部延性の良好な極薄容器用鋼板を製造するにあたり、連
続焼鈍ラインの通板性を阻害しない比較的低い焼鈍温度
で製造するための手段として、酸洗後の圧延時の圧延温
度に注目し検討を重ねた結果、完成されたものである。
その要旨とするところは、酸洗後の圧延の全歪の中の特
定量以上を通常の圧延温度域より高い温度で付与し、比
較的低い焼鈍温度で局部延性の優れた鋼板を得るもの
で、そのための成分、酸洗後の圧延の圧下率、圧延温度
条件の限定を行うものである。
DISCLOSURE OF THE INVENTION The present invention relates to a method of manufacturing a steel sheet for an ultra-thin container having good ductility, particularly local ductility, at a relatively low annealing temperature which does not hinder the sheet passing property of a continuous annealing line. As a means of the above, the present invention has been completed as a result of repeated investigations focusing on the rolling temperature during rolling after pickling.
The gist is to apply a specific amount or more in the total strain of rolling after pickling at a temperature higher than the normal rolling temperature range and obtain a steel sheet with excellent local ductility at a relatively low annealing temperature. The components for this purpose, the rolling reduction after pickling, and the rolling temperature conditions are limited.

【0007】すなわち本発明は、 (1) 重量%で、 C :0.0050%超〜0.0400%以下、 Si:0.10%以下、 Al:0.01%〜0.08%、 Mn:0.01〜0.50%、 P :0.02%以下、 S :0.002%〜0.02%、 N :0.0040%以下、 を含有し、残部鉄及び不可避的不純物からなる鋼片を熱
間圧延、酸洗した後に行う冷間圧延で、対数歪に換算
してそのうちの50%以上の歪を100〜500℃の温
間で付与する圧延を実施し、550〜650℃で焼鈍す
ることを特徴とする缶成形性に優れた極薄容器用鋼板の
製造方法。 (2) 重量%で、 C :0.0050%以下、 Si:0.10%以下、 Al:0.01%〜0.08%、 Mn:0.01〜0.50%、 P :0.02%以下、 S :0.002%〜0.02%、 N :0.0040%以下、 を含有し、残部鉄及び不可避的不純物からなる鋼片を熱
間圧延、酸洗した後に行う冷間圧延で、対数歪に換算
してそのうちの50%以上の歪を100〜500℃の温
間で付与する圧延を実施し、600〜700℃で焼鈍す
ることを特徴とする缶成形性に優れた極薄容器用鋼板の
製造方法。 (3) 鋼成分として、更にTi:0.040%以下を
含有させることを特徴とする前項2記載の缶成形性に優
れた極薄容器用鋼板の製造方法。 (4) 鋼成分として、更にB:0.0015%以下を
含有させることを特徴とする前項2又は3記載の缶成形
性に優れた極薄容器用鋼板の製造方法である。
That is, the present invention provides: (1) C: more than 0.0050% to 0.0400% or less, Si: 0.10% or less, Al: 0.01% to 0.08%, Mn : 0.01 to 0.50%, P: 0.02% or less, S: 0.002% to 0.02%, N: 0.0040% or less, with the balance being iron and unavoidable impurities The slab is hot-rolled, and cold-rolling is performed after pickling, and rolling is performed in which a strain of 50% or more of which is converted into logarithmic strain at a temperature of 100 to 500 ° C. is applied, and 550 to 550. A method for producing a steel sheet for an ultrathin container excellent in formability of a can, characterized by annealing at 650 ° C. (2) By weight%, C: 0.0050% or less, Si: 0.10% or less, Al: 0.01% to 0.08%, Mn: 0.01 to 0.50%, P: 0. 02% or less, S: 0.002% ~0.02%, N: 0.0040% or less, containing, a slab containing the balance of iron and unavoidable impurities hot rolling, carried out after pickling Cold forming is performed by converting to logarithmic strain, performing rolling in which 50% or more of the strain is imparted at a temperature of 100 to 500 ° C, and annealing at 600 to 700 ° C. Manufacturing method of excellent steel sheet for ultra-thin containers. (3) The method for producing a steel sheet for an ultra-thin container excellent in can formability according to item 2, wherein the steel component further contains Ti: 0.040% or less. (4) The method for producing a steel sheet for an ultra-thin container excellent in can formability according to the above item 2 or 3, wherein the steel component further contains B: 0.0015% or less.

【0008】[0008]

【作用】以下、本発明を詳細に説明する。まず、成分に
ついて説明する。成分はすべて重量%である。Cは、容
器の製造過程における絞り、しごき、フランジ成形性な
どの点から低い方が好ましく、上限を0.0400%と
する。近年の極薄材においてはフランジ成形性を確保す
るためより軟質な材料が要求され、真空脱ガス処理など
によりCを0.0050%以下まで低減することが好ま
しい。特に、軟質な材質が必要な場合は、0.0020
%以下まで低減すれば、フランジ成形性及び絞り、しご
き加工も大幅に向上させることが可能である。
Hereinafter, the present invention will be described in detail. First, the components will be described. All components are% by weight. C is preferably low in terms of drawing, ironing, flange formability and the like in the production process of the container, and the upper limit is made 0.0400%. In recent ultra-thin materials, softer materials are required in order to secure flange formability, and it is preferable to reduce C to 0.0050% or less by vacuum degassing or the like. In particular, when a soft material is required, 0.0020
% Or less, it is possible to greatly improve flange formability, drawing, and ironing.

【0009】Si、Pは強度を上昇させ加工性を劣化さ
せるため加工性の観点からは低い方が望ましく、Si:
0.10%以下、P:0.02%以下と限定した。M
n、Sも過剰な含有は延性を劣化させる。しかし、どち
らか一方又は両方が極端に低いと鋼板中に生成する析出
物(MnS)が微細化し鋼板の延性を低下させる。この
ため上限と下限を設定し、Mn:0.01%〜0.50
%、S:0.002%〜0.020%とする。
Since Si and P increase strength and deteriorate workability, it is desirable that Si and P are low from the viewpoint of workability.
It was limited to 0.10% or less and P: 0.02% or less. M
Excessive contents of n and S also degrade ductility. However, if one or both are extremely low, the precipitate (MnS) generated in the steel sheet becomes finer, and the ductility of the steel sheet is reduced. Therefore, an upper limit and a lower limit are set, and Mn: 0.01% to 0.50
%, S: 0.002% to 0.020%.

【0010】AlについてはAlそのものによる加工性
への影響は比較的小さい。脱酸のため少なからず含有す
る必要がある元素である。また、Nとの結合力が強く鋼
板中に窒化物(AIN)を形成し、製造条件によっては
この窒化物が微細となった場合には延性を極端に劣化さ
せる。含有量が少なすぎると窒化物が微細となるため
0.01%〜0.08%と限定した。NはAlまたはT
iなどにより窒化物として固定されることが良好な延性
を得るためには望ましい。含有量が多すぎると固溶Nと
して残存または窒化物の量が増加し延性を劣化させるた
め0.0050%以下とする。
With respect to Al, the influence of Al itself on workability is relatively small. It is an element that needs to be contained at least for deoxidation. Further, the bonding force with N is strong, and nitride (AIN) is formed in the steel sheet. If the nitride becomes fine depending on manufacturing conditions, ductility is extremely deteriorated. If the content is too small, the nitride becomes fine, so the content is limited to 0.01% to 0.08%. N is Al or T
It is desirable to be fixed as nitride by i or the like in order to obtain good ductility. If the content is too large, the amount of residual N or solid nitride as solid solution N increases and the ductility deteriorates, so the content is made 0.0050% or less.

【0011】Tiは炭窒化物を形成し固溶C、Nを低減
することで鋼板の延性を格段に向上させるので特にCが
0.0050%以下の極低Cの場合には添加されるのが
望ましい。しかし過剰な添加は加工性を劣化させるとと
もに再結晶温度を上昇させ焼鈍温度上昇の必要が生じ極
薄材の連続焼鈍通板性を低下させるとともにエネルギー
コスト的にも不利となる。添加コストも考慮しTi:
0.04%以下とする。極低C化、および炭化物形成元
素の添加はフランジ成形など2次加工性が劣化する場合
がある。このため必要に応じBを添加することが望まし
い。この場合過剰な添加は加工性を劣化させるので上限
を0.0015%とする。
[0011] Ti significantly improves the ductility of a steel sheet by forming carbonitride and reducing solid solution C and N. Therefore, Ti is added particularly in the case of extremely low C of 0.0050% or less. Is desirable. However, excessive addition deteriorates the workability, raises the recrystallization temperature, and necessitates an increase in the annealing temperature, which lowers the continuous annealing passability of the extremely thin material and is disadvantageous in energy cost. Considering the addition cost, Ti:
0.04% or less. Extremely low C and addition of carbide forming elements may deteriorate secondary workability such as flange forming. Therefore, it is desirable to add B as necessary. In this case, an excessive addition deteriorates workability, so the upper limit is made 0.0015%.

【0012】本成分鋼は熱延、酸洗後、冷間圧延を行
う。熱延条件は特に限定はしないが、捲取温度は650
℃以上とすると延性が良好となり好ましい。しかし、た
とえ常温で捲取ったとしても後述の冷延温度の限定によ
る発明の効果は何等損なわれるものではない。酸洗後の
圧延の圧下率は特に限定されるものではないが90%以
上とすることが望ましい。これは冷延率を高める、すな
わち熱延板厚を増大することで熱延の生産性を改善する
ことが可能であるばかりでなく、一般的に酸洗後の圧延
の圧下率が高い方が、再結晶温度は低下し低温焼鈍化が
可能となるためである。
The present component steel is subjected to cold rolling after hot rolling and pickling. The hot rolling conditions are not particularly limited, but the winding temperature is 650.
C. or higher is preferred because ductility is good. However, even if the film is wound at room temperature, the effect of the invention due to the limitation of the cold rolling temperature described below is not impaired at all. Although the rolling reduction after the pickling is not particularly limited, it is desirably 90% or more. This is because not only can the productivity of hot rolling be improved by increasing the cold rolling rate, that is, increasing the thickness of the hot rolled sheet, but in general, the higher the rolling reduction rate of rolling after pickling, the better. This is because the recrystallization temperature is lowered and low-temperature annealing becomes possible.

【0013】酸洗後の圧延の温度条件が本発明における
重要な用件である。付与される全歪を対数歪で換算した
もののうち50%以上を100〜500℃の温度で付与
されることが良好な延性を得るために必要である。圧延
温度域が100℃未満になると延性改善の効果がなくな
り、一方、温度が500℃を超えると圧延作業に支障を
きたすようになる。この温度域での圧延は圧下の全量に
わたる必要はなく前述のごとく対数歪換算で50%以上
にわたっていれば延性改善効果は現われる。この温間圧
延は酸洗後の圧延の初期、中期、後期のいずれで行って
もよい。
The temperature condition of rolling after pickling is an important requirement in the present invention. It is necessary that at least 50% of the total strain to be applied is converted at logarithmic strain at a temperature of 100 to 500 ° C. in order to obtain good ductility. When the rolling temperature range is lower than 100 ° C., the effect of improving ductility is lost. On the other hand, when the temperature exceeds 500 ° C., the rolling operation is hindered. Rolling in this temperature range does not need to extend over the entire amount of reduction, and as described above, if it extends over 50% in terms of logarithmic strain, the effect of improving ductility appears. This warm rolling may be performed in any of the initial, middle, and late stages of rolling after pickling.

【0014】冷間圧延の後、焼鈍するがこの温度は材料
特性の均一性、加工性を確保するためには圧延組織を十
分再結晶させることが必要であり、また焼鈍温度の低減
が本発明の大きな目的の一つであるため、550℃以
上、650℃以下とする。また一般には鋼成分が高純化
するほど再結晶温度は低下するが、通常真空脱ガスによ
り製造されるCが0.0050%以下の鋼では、Cが
0.02%以上でセメンタイトを生成する鋼とは冷延時
の歪の蓄積が異なるため再結晶温度が上昇する。このた
め、延性を高めるためCを低減した鋼においては焼鈍温
度を600℃以上、700℃以下と制限する。
After cold rolling, annealing is performed. This temperature is required to sufficiently recrystallize the rolled structure in order to ensure uniformity of the material properties and workability. 550 ° C. or higher and 650 ° C. or lower. In general, the higher the purity of the steel component, the lower the recrystallization temperature. However, in the case of steel with a C content of 0.0050% or less, which is usually produced by vacuum degassing, a steel that produces cementite with a C content of 0.02% or more In this case, the accumulation of strain during cold rolling differs, and the recrystallization temperature rises. For this reason, in steel in which C is reduced in order to increase ductility, the annealing temperature is limited to 600 ° C. or more and 700 ° C. or less.

【0015】現在、容器の製造においては容器の強度を
もたせるため焼鈍の後、再冷延し加工硬化により硬質化
させた鋼を用いる場合もある。この様な鋼板においても
本発明法によれば再冷延前の延性が向上しているためフ
ランジ成形性の向上効果が得られる。また、本発明法に
よる鋼板は再冷延前の特性として延性に優れている反
面、降伏強度が比較的高い。これは本発明鋼の結晶粒径
が微細化することが原因しているためと考えられる。こ
のため缶強度の点では有利となり再冷延圧下率を低く設
定できるため、DR法によった場合でも再冷延によるフ
ランジ成形性の劣化を抑制することができる。
At present, in the manufacture of containers, steel which is re-rolled after annealing and hardened by work hardening is sometimes used to increase the strength of the container. According to the method of the present invention, even in such a steel sheet, the ductility before re-cold rolling is improved, so that the effect of improving the flange formability can be obtained. Further, the steel sheet according to the method of the present invention is excellent in ductility as a property before re-cold rolling, but has relatively high yield strength. This is presumably because the crystal grain size of the steel of the present invention is reduced. For this reason, the strength of the can is advantageous, and the re-rolling rolling reduction can be set low. Therefore, even when the DR method is used, the deterioration of the flange formability due to the re-rolling can be suppressed.

【0016】上述のように本発明は優れた延性を示すた
めフランジ成形性ばかりでなく、缶胴開口部の縮径化を
図るネック加工性や2ピース缶におけるしごき加工性な
ども良好となる。また、通常、本発明鋼板は表面処理鋼
板用の原板として使用されるが、表面処理により本発明
の効果はなんら損なわれるものではない。缶用表面処理
としては通常、錫、クロム(ティンフリー)などが施さ
れる。また、近年使用されるようになっている有機皮膜
を貼ったラミネート鋼板用の原板としても発明の効果を
損なうことなく使用できる。
As described above, since the present invention exhibits excellent ductility, not only flange formability but also neck workability for reducing the diameter of the opening of the can body and ironing workability for a two-piece can are improved. In addition, the steel sheet of the present invention is usually used as an original sheet for a surface-treated steel sheet, but the surface treatment does not impair the effects of the present invention at all. As the surface treatment for cans, tin, chromium (tin-free) or the like is usually applied. In addition, it can be used as a base plate for a laminated steel sheet to which an organic film, which has been used in recent years, is attached without impairing the effects of the invention.

【0017】[0017]

【実施例】表1に示す各成分の鋼について熱間圧延、冷
間圧延、連続焼鈍し、一部の材料については再冷延を施
して最終板厚0.16mmの鋼板を製造した。冷延は連続
的に5パスで行い各パスの入り側と出側で測温し、入り
側、出側温度とも限定温度範囲以内にあった場合はその
パスで加えられた歪はすべて限定温度範囲内での歪と
し、圧延前半または後半が限定温度範囲から外れる場合
は、ロールに噛み込んでいる圧延中は直線的に温度が変
化するものと仮定し、限定温度範囲内で加えられた歪量
を計算した。
EXAMPLES Steel having the components shown in Table 1 was hot-rolled, cold-rolled, and continuously annealed, and some of the materials were re-cold-rolled to produce a steel sheet having a final thickness of 0.16 mm. Cold rolling is performed continuously in 5 passes, and the temperature is measured at the entrance and exit of each pass. If both the entrance and exit temperatures are within the limited temperature range, all the strain applied in that pass is the limited temperature. If the first half or the second half of the rolling is out of the limited temperature range, it is assumed that the temperature changes linearly during rolling in the roll, and the strain applied within the limited temperature range The amount was calculated.

【0018】材料特性評価は、本発明者らの実験室の缶
成形機による実際の缶成形と同様の工程での成形により
行った。一つは3ピース缶についてのもので缶胴を溶接
により製造し、ネック成形およびフランジ成形を行っ
た。また、2ピース缶用素材としては、絞り、再絞り加
工に続くしごき加工、その後のネックおよびフランジ成
形を行った。ネック成形性についてはネック成形時のし
わの発生割合およびその程度を同時に成形した従来材と
比較した。フランジ成形性についてはフランジクラック
の発生率を従来材と比較した。また、しごき加工性はし
ごき加工時の加工力をやはり従来材と比較した。結果を
表2に示す。表2から明らかな様に本発明の範囲内で製
造されたものはイヤリング率が小さくなっている。
The evaluation of the material properties was carried out by molding in the same process as the actual can molding by the can molding machine in the laboratory of the present inventors. One was for a three-piece can, and the can body was manufactured by welding, and neck forming and flange forming were performed. In addition, as a material for two-piece cans, drawing, redrawing, ironing, and neck and flange forming were performed. As for neck formability, the ratio of wrinkles generated during neck forming and the degree thereof were compared with those of a conventional material formed simultaneously. Regarding the flange formability, the rate of occurrence of flange cracks was compared with that of the conventional material. The ironing processability was also compared with the conventional material in terms of the processing power during ironing. Table 2 shows the results. As is evident from Table 2, those manufactured within the scope of the present invention have low earring rates.

【0019】[0019]

【表1】 [Table 1]

【0020】[0020]

【表2】 [Table 2]

【0021】[0021]

【発明の効果】以上述べたごとく本発明によれば、比較
的低い焼鈍温度でも延性、特に局部延性の優れた鋼板が
製造できる。このため、極薄容器用材料について鋼板の
製造時には連続焼鈍時の通板性改善により生産性の向上
が可能となり、また、製缶時にはネック成形性、フラン
ジ成形性およびしごき成形性が非常に良好となる。
As described above, according to the present invention, a steel sheet excellent in ductility, particularly local ductility, can be manufactured even at a relatively low annealing temperature. For this reason, for materials for ultra-thin containers, productivity can be improved by improving the sheetability during continuous annealing during the production of steel sheets, and the neck formability, flange formability and ironing formability are extremely good during can making. Becomes

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) C21D 9/46 - 9/48 C21D 8/00 - 8/10 C22C 38/00 - 38/60 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 7 , DB name) C21D 9/46-9/48 C21D 8/00-8/10 C22C 38/00-38/60

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 重量%で、 C :0.0050%超〜0.0400%以下、 Si:0.10%以下、 Al:0.01%〜0.08%、 Mn:0.01〜0.50%、 P :0.02%以下、 S :0.002%〜0.02%、 N :0.0040%以下、 を含有し、残部鉄及び不可避的不純物からなる鋼片を熱
間圧延、酸洗した後に行う冷間圧延で、対数歪に換算
してそのうちの50%以上の歪を100〜500℃の温
間で付与する圧延を実施し、550〜650℃で焼鈍す
ることを特徴とする缶成形性に優れた極薄容器用鋼板の
製造方法。
1. In weight%, C: more than 0.0050% to 0.0400% or less, Si: 0.10% or less, Al: 0.01% to 0.08%, Mn: 0.01 to 0% .50%, P: 0.02% or less, S: 0.002% to 0.02%, N: 0.0040% or less, and hot-rolling a slab consisting of iron and unavoidable impurities Then, in cold rolling performed after pickling, rolling is performed in which a logarithmic strain is converted and 50% or more of the strain is imparted at a temperature of 100 to 500 ° C, and annealing is performed at 550 to 650 ° C. A method for producing a steel sheet for an ultra-thin container excellent in formability of a can characterized by the following.
【請求項2】 重量%で、 C :0.0050%以下、 Si:0.10%以下、 Al:0.01%〜0.08%、 Mn:0.01〜0.50%、 P :0.02%以下、 S :0.002%〜0.02%、 N :0.0040%以下、 を含有し、残部鉄及び不可避的不純物からなる鋼片を熱
間圧延、酸洗した後に行う冷間圧延で、対数歪に換算
してそのうちの50%以上の歪を100〜500℃の温
間で付与する圧延を実施し、600〜700℃で焼鈍す
ることを特徴とする缶成形性に優れた極薄容器用鋼板の
製造方法。
2. In% by weight, C: 0.0050% or less, Si: 0.10% or less, Al: 0.01% to 0.08%, Mn: 0.01 to 0.50%, P: 0.02% or less, S: 0.002% ~0.02%, N: 0.0040% or less, containing, a slab containing the balance of iron and unavoidable impurities hot rolling, after pickling Wherein the cold rolling is performed at a temperature of 100 to 500 ° C. in the form of a logarithmic strain, and annealing at 600 to 700 ° C. is performed. Method for manufacturing ultra-thin steel sheets for containers with excellent heat resistance.
【請求項3】 鋼成分として、更にTi:0.040%
以下を含有させることを特徴とする請求項2記載の缶成
形性に優れた極薄容器用鋼板の製造方法。
3. The steel component further contains Ti: 0.040%
3. The method for producing a steel sheet for an ultra-thin container according to claim 2, which comprises:
【請求項4】 鋼成分として、更にB:0.0015%
以下を含有させることを特徴とする請求項2又は3記載
の缶成形性に優れた極薄容器用鋼板の製造方法。
4. B: 0.0015% as a steel component
The method for producing a steel sheet for an ultra-thin container excellent in formability of a can according to claim 2 or 3, wherein:
JP16043494A 1994-07-12 1994-07-12 Method for producing ultra-thin container steel sheet with excellent can formability Expired - Lifetime JP3244956B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16043494A JP3244956B2 (en) 1994-07-12 1994-07-12 Method for producing ultra-thin container steel sheet with excellent can formability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16043494A JP3244956B2 (en) 1994-07-12 1994-07-12 Method for producing ultra-thin container steel sheet with excellent can formability

Publications (2)

Publication Number Publication Date
JPH0827519A JPH0827519A (en) 1996-01-30
JP3244956B2 true JP3244956B2 (en) 2002-01-07

Family

ID=15714854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16043494A Expired - Lifetime JP3244956B2 (en) 1994-07-12 1994-07-12 Method for producing ultra-thin container steel sheet with excellent can formability

Country Status (1)

Country Link
JP (1) JP3244956B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589089B (en) * 2012-02-29 2014-04-30 美的集团股份有限公司 Control mode of air conditioner
CN105241017B (en) * 2015-10-26 2018-11-06 广东美的制冷设备有限公司 The control method for frequency of air-conditioning system and compressor of air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102589089B (en) * 2012-02-29 2014-04-30 美的集团股份有限公司 Control mode of air conditioner
CN105241017B (en) * 2015-10-26 2018-11-06 广东美的制冷设备有限公司 The control method for frequency of air-conditioning system and compressor of air conditioner

Also Published As

Publication number Publication date
JPH0827519A (en) 1996-01-30

Similar Documents

Publication Publication Date Title
EP0672758B1 (en) Method of manufacturing canning steel sheet with non-aging property and superior workability
EP0556834B1 (en) Method of producing high-strength steel sheet used for can
JPH08246060A (en) Production of steel sheet for can
JP2761594B2 (en) Manufacturing method of high strength ultra-thin steel sheet for cans with excellent in-plane anisotropy
JP2001335888A (en) Steel sheet for lightweight two-piece can, and its production method
JP3826442B2 (en) Manufacturing method of steel plate for can making with good workability and no rough skin
JP3244956B2 (en) Method for producing ultra-thin container steel sheet with excellent can formability
JP2676581B2 (en) Steel sheet suitable for thinned deep-drawing can and its manufacturing method
JP3596037B2 (en) Manufacturing method of steel plate for can-making
JP3718865B2 (en) Manufacturing method of lightweight can with excellent bottom pressure strength
JPH093547A (en) Production of high strength steel sheet for can
JPH08127816A (en) Production of starting steel sheet for vessel, excellent in wrinkling resistance
JP3244947B2 (en) Method for producing steel sheet for two-piece can container with small in-plane anisotropy
JPH06306536A (en) Surface treated original sheet for di can excellent in pressure withstanding strength and necked-in property and its production
JPH08269568A (en) Production of steel sheet for can making excellent in flange formability
JP3609883B2 (en) Method for producing steel plate for containers with extremely small earrings during drawing
JPH1030152A (en) Steel sheet suitable for use in thin deep-drawn can, and its production
JP4213870B2 (en) Steel sheet for ultra-thin two-piece containers with excellent weather resistance and earrings at the time of neck diameter reduction and method for manufacturing the same
JP3548390B2 (en) Steel plate for hard two-piece container with remarkably small earring and method for producing the same
JP3466263B2 (en) Surface-treated original sheet for DI can with excellent pressure resistance and necked-in property, and manufacturing method
JP3474647B2 (en) Manufacturing method of steel sheet for thin containers
JP3878329B2 (en) Steel plate for containers having excellent wrinkle resistance after primary processing and method for producing the same
JP3806242B2 (en) Steel plate for containers with extremely small earrings during drawing and method for producing the same
JP4091717B2 (en) Manufacturing method of high strength and high ductility steel sheet for containers
JP3917749B2 (en) Manufacturing method of steel sheets for ultra-thin soft containers

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010918

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071026

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081026

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091026

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101026

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111026

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121026

Year of fee payment: 11

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131026

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term